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Abstract
The paper is devoted to the construction of high-precision unconditionally stable
finite difference methods for solving time-space fractional diffusion equation with
the Caputo fractional derivative (of order β, with β ∈ (0, 1)) in time and the Rimann-
Liouville fractional derivatives (of order α, with α ∈ (1, 2]) in space. Two kinds of
difference schemes with the approximation orders O(τ 2−β + h3) and O(τ 2 + h3)

respectively are constructed. The stability and convergence are analyzed in detail.
The obtained results are illustrated numerically by some examples, and a comparative
study of several high-order schemes is also carried out.
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1 Introduction

Fractional differential equations (FDEs) can be used to model many systems in
various fields, such as in engineering, physics, finance hydrology, and fractional
kinetics (see [1] and many references cited therein). In finance, fractional models
have been used because of the relationship with certain option pricing mechanisms
and heavy-tailed stochastic processes [2]. In water resources, they have been used
to describe chemical and contaminant transport in heterogeneous aquifers [3]. For a
recent review we refer the reader to [4]. However, most of the analytical solutions
to FDEs are usually difficult to derive and always contain some infinite series even
if it is luckily obtained. Therefore, the development of numerical methods for these
problems has received enormous attention in recent years.

In this paper, we focus on the following time-space fractional diffusion equation:
⎧
⎪⎪⎨

⎪⎪⎩

C
0 D

β
t u(x, t) =

n∑

i=1

RLDαi
xi

u(x, t) + f (x, t), (x, t) ∈ � × (0, T ],
u(x, 0) = u0(x), x ∈ �,

u(x, t) = 0, (x, t) ∈ ∂� × (0, T ],
(1)

where β ∈ (0, 1), αi ∈ (1, 2), and � = [0, 1]n(n = 1, 2, 3). The solution u(x, t)
and the source function f (x, t) are assumed to be sufficiently smooth and have the
necessary continuous partial derivatives up to certain orders. We consider up to three
dimensions and hence use x, y, and z instead of x1, x2, and x3 in the sequel. The
derivative C

0 D
β
t u(t) is β-order Caputo fractional derivative defined by [7]

C
0 D

β
t u(t) = 1

�(1 − β)

∫ t

0

∂u(s)

∂s

1

(t − s)β
ds, β ∈ (0, 1),

and, RLDα
x u(x) is α-order Rimann-Liouville fractional derivative defined by [7]

RLDα
x u(x) = 1

�(2 − α)

∂2

∂x2

∫ x

0

u(ξ)

(x − ξ)α−1
dξ, α ∈ (1, 2).

Recent studies show that non-homogeneities of the medium may fundamentally
alter the laws of Markov diffusion, leading to long range fluxes, and non-Gaussian,
heavy-tailed profiles, and these motions may no longer obey the classical Fick’s law.
This phenomenon is called anomalous diffusion. The time-space fractional diffusion
(1), as an important class of anomalous diffusion equations, can successfully depict
the probability density of random walk models [5]. More physical interpretations of
this equation can be seen in [6, 8] and references cited therein.

Study of this kind of equations can be found in [9–12] and the references therein.
However, all the above works are restricted to low-dimensional problems with no
more than second-order accuracy. Recently, Pang and Sun [13] applied the L1
approximation (see, e.g., [14–18]) and the fourth-order quasi-compact difference
scheme [19] for solving the 1D/2D time-space fractional diffusion equation. For the
same problem, Vong et al. [20] employed the discretization formulas proposed in
[21] and improved the time accuracy to second order. Nevertheless, the ADI strategy
is not considered in [20].
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Compared with the considerable work on the low-dimensional models, very lit-
tle research has been done on the 3D time-space fractional diffusion equation. The
goal of this paper is to develop some high-efficiency and high-precision ADI finite
difference schemes for high-dimensional time-space fractional diffusion (1).

High-order numerical methods for approximating Riemann-Liouville fractional
derivative have been considered by many authors and we mention here a few key
contributions. Tian et al. [22] proposed a third-order weighted and shifted Grünwald
difference (WSGD) operator for Riemann-Liouville derivative, but the resulted third-
order scheme for time-dependent fractional problems will not be unconditionally

stable for α ∈ (1, 1+√
73

6 ). Then, they modified the method in [22] and introduced
a new third-order quasi-compact finite difference scheme [23] for solving 1D/2D
space fractional diffusion equations. Very recently, Ding and Li [24] presented a
class of pth-order (p ≤ 6) numerical algorithms for Riesz derivatives (with order
α ∈ (1, 2)) based on shifted Lubich’s numerical differential formula and generating
functions. But, when p ≥ 3, the resulted p-order scheme fails to numerically solve
the time-dependent space fractional diffusion equations with unconditional stability.
One can easily verify it numerically or see our numerical experiments in Section 6 for
more details. Then, they established another class of high-order numerical schemes
[25] for Riesz derivatives (with order α ∈ (0, 2)), and applied these schemes to the
1D Riesz-type turbulent diffusion equation. In this paper, we proposed a new third-
order WSGD scheme for Riemann-Liouville derivatives, which is based on the idea
in [22]. Compared with the above works, our new scheme is unconditional stability
for time-dependent fractional problems and without extra computational cost. As a
particularly interesting case, when the order of fractional derivative α equals to 1 or
2, it becomes the compact difference operators for the first- or second-order spatial
derivatives with third- or fourth-order accuracy.

For the Caputo fractional derivative in time, we shall use two ways to discrete.
The first way is based on the L1 approximation, which is obtained by the stan-
dard first-order backward differentiation with the order of approximation O(τ 2−β).
The second is based on the significant work by Dimitrov [29], who shown that
the first-order shifted Grünwald formula is the second-order approximation for the
Caputo fractional derivative at some particular points. These points with supercon-
vergence have also been used in [21, 27, 28]. For the 2D/3D cases, we also construct
ADI schemes to reduce the storage requirement and the computational burden. The-
oretical analyses show that the proposed schemes are unconditionally stable and
convergent.

This paper is organized as follows. In Section 2, some definitions and auxil-
iary lemmas are given. Then, the derivation of the difference schemes S1, S2, and
S3 with order O(τ 2−β + h3) are presented for solving the 1D/2D/3D time-space
fractional diffusion equations in Sections 3 and 4 respectively. The corresponding
stability and convergence are analyzed. In Section 5, three improved schemes MS1,
MS2, and MS3 with order O(τ 2 + h3) are further investigated. And the stabil-
ity and convergence analysis are given for these schemes. In Section 6, numerical
experiments are performed to support the theoretical analysis and to illustrate the
efficiency of the improved schemes. Finally in the last section, some conclusions are
drawn.
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2 Auxiliary results

We shall first give some basic definitions and recall some useful results for our use
in the rest of the paper.

Definition 2.1 ([30]) Let Toeplitz matrix Tn be of the following form,

Tn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

t0 t−1 · · · t2−n t1−n

t1 t0 t−1 · · · t2−n

... t1 t0
. . .

...

tn−2 · · · . . .
. . . t−1

tn−1 tn−2 · · · t1 t0.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

If the diagonal elements {tk}n−1
k=−n+1 are the Fourier coefficients of a function g(x),

that is,

tk = 1

2π

∫ π

−π

g(x)e−Ikx dx ,

then the function g(x) is called the generating function of Tn, where I = √−1.

Lemma 2.1 (Grenander-Szegö theorem [30, 31]) For the above Toeplitz matrix
Tn, suppose that g(x) is a 2π -periodic continuous real-valued function defined on
[−π, π ]. Denote λmin(Tn) and λmax(Tn) as the smallest and largest eigenvalues of
Tn, respectively. Then, we have

gmin ≤ λmin(Tn) ≤ λmax(Tn) ≤ gmax ,

where gmin and gmax denote the minimum and maximum values of g(x) respectively.
Moreover, if gmin < gmax , then all eigenvalues of Tn satisfy

gmin < λ(Tn) < gmax ,

for all n > 0. Furthermore, if gmin ≥ 0, then Tn is positive definite.

Lemma 2.2 ([32]) A real matrix A of order n is positive definite if and only if its

symmetric part H = A+AT

2 is positive definite; H is positive definite if and only if
the eigenvalues of H are positive.

Lemma 2.3 ([32]) If A ∈ C
n×n, let H = A+A∗

2 be the Hermitian part of A, and A∗
is the conjugate transpose of A. Then, for any eigenvalue λ of A, there exists

λmin(H) ≤ Re(λ) ≤ λmax(H) ,

where Re(λ) represents the real part of λ, and λmin(H) and λmax(H) are the
minimum and maximum of the eigenvalues of H respectively.

Lemma 2.4 ([33]) The matrix A ∈ R
n×n is asymptotically stable if and only if

there exists a symmetric and positive (or negative) definite solution X ∈ R
n×n to the

Lyapunov equation
AX + XAT = C,
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where C = CT ∈ R
n×n is a negative (or positive) definite matrix. The matrix A

is called asymptotically stable if all its eigenvalues have real parts in the open left
half-plane, that is, Re(λ(A)) < 0.

In the following, we list some properties of Kronecker products of matrices. Here,
A ⊗ B represents the Kroneckerproduct of A and B.

Lemma 2.5 ([33]) Let matrices A ∈ R
n×n and B ∈ R

m×m have eigenvalues {μi}ni=1
and {νj }mj=1, respectively. Then, the mn eigenvalues of A ⊗ B are

μ1ν1, μ1ν2, · · · , μ1νm, μ2ν1, μ2ν2, · · · , μ2νm, μnν1, μnν2, · · · , μnνm.

Lemma 2.6 ([33]) Let matrices A ∈ R
m×n, B ∈ R

r×s , C ∈ R
n×p and D ∈ R

s×t .
Then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD(∈ R
mr×pt ).

Moreover, if A, B ∈ R
n×n, E is a unit matrix of order n, then matrices E ⊗ A and

B ⊗ E commute.

Lemma 2.7 ([33]) For all A and B, (A ⊗ B)T = AT ⊗ BT .

Lemma 2.8 ([33]) Let A and B be two symmetric and positive semi-definite
matrices, symbolized A ≥ 0 and B ≥ 0. Then, A ⊗ B ≥ 0.

Lemma 2.9 ([29]) Suppose that β ∈ (0, 1), u(t) ∈ C2[0, +∞], d3u(t)

dt3
∈ L1[0, +∞)

and u′(0) = u′′(0) = 0. Then, for every integer p, the Caputo fractional derivative
at tk + (p − β

2 )τ could be approximated by the shifted Grünwald formulas

C
0 D

β
t u

(

tk + (p − β

2
)τ

)

= 1

τβ

k∑

l=0

ωl

(
uk+p−l − u0

)
+ O(τ 2).

An important special case of the above formula is when p = 0

C
0 D

β
t u

(

tk − β

2
τ

)

= 1

τβ

k∑

l=0

ωl(u
k−l − u0) + O(τ 2). (2)

The numbers ωl are the coefficients of the power series

(1 − z)β =
∞∑

l=0

ωlz
l

with

ω0 = 1, ωl =
(

1 − 1 + β

l

)

ωl−1 for l ≥ 1.

Lemma 2.10 ([22]) Let u(x) ∈ L1(R), and RL
a Dα+3

x u(x) whose Fourier trans-
form also belongs to L1(R). Then, we have the following third-order weighted and
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shifted Grünwald difference (3-WSGD) operator for the Rimann-Liouville fractional
derivative RL

a Dα
x u,

RLDα
x,(p,q,r)u(x) =

∞∑

l=0

{
λ1

hα
gα

l u (x − (l − p)h) + λ2

hα
gα

l u (x − (l − q)h)

+ λ3

hα
gα

l u (x − (l − r)h)

}

= RL
a Dα

x u(xi) + O
(
h3
)

, (3)

where p, q, andr are integers and p > q > r , and
⎧
⎪⎪⎨

⎪⎪⎩

λ1 = 12qr−(6q+6r+1)α1+3α12

12(p−q)(p−r)
,

λ2 = 12pr−(6p+6r+1)α1+3α12

12(q−p)(q−r)
,

λ3 = 12pq−(6p+6q+1)α1+3α12

12(r−p)(r−q)
,

and gα
l = (−1)l

(
α
l

)
are the coefficients of the power series of the function (1 − z)α .

Remark 2.1 Assume that u(x) ∈ C5[a, b] and dmu(x)
dxm

∣
∣
∣
x=a,b

= 0 (m = 0, 1, · · · , 5),

the function u(x) can be extended by zero for x < a or x > b. Then, the extended
function of u(x) satisfies the conditions of Lemma 2.10. Thus, according to Lemma
2.2, the α-order Riemann-Liouville fractional derivatives of u(x) at each point x can
be approximated by the WSGD operators with second-order accuracy, i.e.,

RLDα
x,(p,q,r)u(x) = λ1

hα

x−a
h

+p
∑

l=0

gα
l u (x − (l − p)h) + λ2

hα

x−a
h

+q
∑

l=0

gα
l u (x − (l − q)h)

+ λ3

hα

x−a
h

+r
∑

l=0

gα
l u (x − (l − r)h)

= RL
a Dα

x u(xi) + O
(
h3
)

, (4)

3 A new scheme of orderO
(
τ2−β + h3

)
for 1D time-space fractional

diffusion equation

3.1 Derivation of the difference scheme S1

In this section, we first consider the 1D time-space fractional diffusion (1). In the
following, α will be written in short for α1. Introducing a uniform mesh with the time
size τ = T

M
and the space step size h = 1

N
, where M and N are two positive integers.

Define uk
i as the numerical approximation to u(xi, tk) with xi = ih and tk = kτ for

0 ≤ i ≤ N and 0 ≤ k ≤ M . Similar notation gives f k
i = f (xi, tk).
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Assume that u(x, t) ∈ C2(0, T ; L1(�)). The time-fractional derivative
C
0 D

β
t u(x, t) at tk is estimated by

C
0 D

β
t uk

i = 1

�(1 − β)

k−1∑

l=0

∫ tl+1

tl

∂u(xi, ξ)

∂ξ

dξ

(tk − ξ)β

= 1

�(1 − β)

k−1∑

l=0

ul+1
i − ul

i

τ

∫ tl+1

tl

dξ

(tk − ξ)β
+ Erk

τ

= 1

�(2 − β)

k−1∑

l=0

bl

uk−l
i − uk−1−l

i

τ β
+ Er

k

τ , (5)

where bl = (l + 1)1−β − l1−β , Er
k

τ is the truncation error and |Er
k

τ | ≤ Cuτ
2−β , and

Cu is a positive constant depending on only u.
In space discretization, we choose the 3-WSGD operator in Remark 2.1 to approx-

imate the Rimann-Liouville fractional derivative RLDα
x u. In fact, the 3-WSGD

operator with special choice (p, q, r) = (1, 0, −1) was given by Tian et al. in
[22]. Unfortunately, the resulting finite difference scheme for time-dependent prob-
lem is not unconditionally stable. To overcome this drawback, here, we choose
(p, q, r) = (2, 1, 0); then, we obtain

RLDα
x,(2,1,0)u(xi, t) = 1

hα

i+2∑

l=0

cα
l u
(
xi−(l−2), t

) = RLDα
x u(xi, t) + O

(
h3
)

, (6)

where

cα
0 = λ1g

α
0 , cα

1 = λ1g
α
1 + λ2g

α
0 , cα

l = λ1g
α
l + λ2g

α
l−1 + λ3g

α
l−2 (l ≥ 2),

and

λ1 = α2

8
− 7α

24
, λ2 = −α2

4
+ 13α

12
, λ3 = α2

8
− 19α

24
+ 1.

The proof in next subsection shows that this choice guarantees unconditional
stability for α ∈ (1, 2].

Then, combining (5) and (6), we obtain the following scheme S1 for solving 1D
problem (1).
S1:

For k = 1, i = 1, 2, · · · , N − 1,

u1i − τβ�(2 − β) RLDα
x,(2,1,0)u

1
i = u0i + τβ�(2 − β)f 1

i ,

and for k = 2, 3, · · · , M , i = 1, 2, · · · , N − 1,

uk
i −τβ�(2−β) RLDα

x,(2,1,0)u
k
i = uk−1

i −
k−1∑

l=1

bl

(
uk−l

i − uk−1−l
i

)
+τβ�(2−β)f k

i ,

where uk
N+1 = û(xN+1, tk) = 0 is given by Remark 2.1.
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Remark 3.1 Specially, for α=1 or 2, scheme (6) can be respectively reduced to the
compact difference operators for the first/second-order spatial derivatives with third/
fourth-order accuracy, i.e.,

RLD1
x,(2,1,0)u(x) = 1

6h
(−u(x + 2h) + 6u(x + h) − 3u(x) − 2u(x − h))

= u′(x) + O(h3).

and

RLD2
x,(2,1,0)u(x) = 1

12h2
(−u(x + 2h) + 16u(x + h) − 30u(x)

+ 16u(x − h) − u(x − 2h))

= u′′(x) + O
(
h4
)
.

Inspired by the results in the two extreme cases α=1 and 2, it is reasonable to conjec-
ture that the accuracy of scheme (6) may depend on α. Our numerical tests in Section
6 illustrate that scheme (6) can yield a spatial approximation order close to 2 + α in
some cases (e.g., polynomial solutions), which verifies the conjecture.

3.2 Analysis of the difference scheme S1

In this subsection, stability and convergence analysis of scheme S1 are discussed by
mathematical induction. We will first prove the following useful result.

Lemma 3.1 Let matrix Cα be of the following form,

Cα =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cα
2 cα

1 cα
0 0 . . . 0 0

cα
3 cα

2 cα
1 cα

0 . . . 0 0
...

...
...

...
. . .

...
...

cα
N−1 cα

N−2 cα
N−3 cα

N−4 . . . cα
2 cα

1
cα
N cα

N−1 cα
N−2 cα

N−3 . . . cα
3 cα

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (7)

where the diagonals {cα
i }Ni=0 are the coefficients given in (6). Then, Cα is negative

definite matrix whose eigenvalues are with negative real part for α ∈ (1, 2].

Proof Let H = Cα+(Cα)T

2 , the symmetric part of Cα . The generating functions of
Cα and (Cα)T are

g
Cα (x) =

∞∑

i=0

cα
i eI (i−2)x, g

(Cα)T
(x) =

∞∑

i=0

cα
i e−I (i−2)x,

respectively.

Then, g(α; x) = g
Cα (x)+g

(Cα)T
(x)

2 is the generating function of H , and g(α; x) is
a periodic continuous real-valued function on [−π, π ] since g

Cα (x) and g
(Cα)T

(x)
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are mutually conjugated. With the corresponding coefficients cα
i given by (6), we

have

g(α; x) = 1

2

( ∞∑

i=0

cα
i eI (i−2)x +

∞∑

i=0

cα
i e−I (i−2)x

)

= 1

2

(
λ1e

−2Ix + λ2e
−Ix + λ3

) ∞∑

i=0

gα
i eI ix

+1

2

(
λ1e

2Ix + λ2e
Ix + λ3

) ∞∑

i=0

gα
i e−I ix

= λ1e
−2Ix + λ2e

−Ix + λ3

2

(
1 − eIx

)α

+λ1e
2Ix + λ2e

Ix + λ3

2

(
1 − e−Ix

)α

=
(
2 sin

(x

2

))α
[

λ1 cos

(
α(x − π)

2
− 2x

)

+ λ2 cos

(
α(x − π)

2
− x

)

+ λ3 cos

(
α(x − π)

2

)]

.

Since g(α; x) is a real-valued and even function, we just consider its principal
value on [0, π ]. By the formula

eIx = cos(x) + I sin(x),

we obtain

g(α; x) =
(
2 sin

(x

2

))α
[

λ1 cos

(
α(x − π)

2
− 2x

)

+ λ2 cos

(
α(x − π)

2
− x

)

+ λ3 cos

(
α(x − π)

2

)]

.

Denoting

h(α; x)=λ1 cos

(
α(x − π)

2
− 2x

)

+λ2 cos

(
α(x − π)

2
− x

)

+λ3 cos

(
α(x − π)

2

)

Since h(α; x) decreases with respect to α (please see Appendix), thus

g(α; x) ≤
(
2 sin

(x

2

))α

h(1; x)

=
(
2 sin

(x

2

))α
[
1

3
cos2

(x

2

)
sin
(x

2

)
+ 1

6
cos(x) sin

(x

2

)
− 1

2
sin
(x

2

)]

≤ 0.

By Lemmas 2.1 and 2.3, we get Re(λCα ) < 0 for α ∈ (1, 2].
From above discussions and Lemma 2.1, we know that, for α ∈ (1, 2], the

matrix Cα+(Cα)T

2 is negative definite, which implies matrix Cα is negative definite by
Lemma 2.2.



78 Numerical Algorithms (2019) 82:69–106

From Lemma 3.1, we know that Cα is a negative definite matrix; thus,(
E − τβ�(2−β)

hα Cα
)
is a positive definite matrix (where E is the identity matrix of

order (N − 1)). Then, we further have the following lemma.

Lemma 3.2 Let Cα be defined in (7), then

‖
(

E − τβ�(2 − β)

hα
Cα

)−1

‖2< 1.

where ‖ · ‖2 denotes the L2-norm (spectral norm).

Proof For convenience of writing, we define

Dα = τβ�(2 − β)

hα
Cα .

From Lemma 3.1, we know that Dα + (Dα)T is a negative definite and symmetric
matrix. Then, for any v = (v1, v2, · · · , vN−1)

T ∈ RN−1, we obtain that

vT v < vT
(
E − (Dα)T

) (
E − Dα

)
v.

Substituting v and vT by (E − Dα)−1v and vT
(
E − (Dα)T

)−1
, respectively, for

any v ∈ RN−1, we get

vT
(
E − (Dα)T

)−1 (
E − Dα

)−1
v < vT v.

Thus, it leads to

‖ (E − Dα)−1 ‖2= max
v �=0

vT
(
E − (Dα)T

)−1
(E − Dα)−1 v

vT v
< 1. �

Now, we consider the stability of the scheme S1. Without lose of generality, we
consider the case f (x, t) = 0. Let

Uk = (uk
1, u

k
2, . . . , u

k
N−1)

T , k = 0, . . . , M . (8)

Theorem 3.1 The fully discrete scheme S1 is unconditionally stable in the sense that
for all h > 0 and τ > 0, it holds

‖ Uk ‖2<‖ U0 ‖2, k = 1, . . . , M,

where ‖ · ‖2 stands for the discrete L2-norm.

Proof When k = 1, the expression of scheme S1 is
(
E − τβ�(2 − β)

hα
Cα
)
U1 = U0.
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Since E − τβ�(2−β)
hα Cα is a positive definite matrix, then we have

U1 =
(
E − τβ�(2 − β)

hα
Cα
)−1

U0,

Taking the L2-norm on both sides, we have that

‖ U1 ‖2 ≤ ‖
(

E − τβ�(2 − β)

hα
Cα

)−1

‖2‖ U0 ‖2 <‖ U0 ‖2,

where Lemma 3.2 shows that ‖
(
E − τβ�(2−β)

hα Cα
)−1 ‖2< 1.

Using the mathematical induction, we suppose that

||Uk||2 < ||U0||2, k = 1, . . . , L. (9)

to prove ||UL+1||2 < ||U0||2.
For k = L + 1, scheme S1 can be written in the form of

(

E − τβ�(2 − β)

hα
Cα

)

UL+1 = UL −
L∑

l=1

bl

(
UL−l − UL−1−l

)

=
L∑

l=1

(bl−1 − bl)U
L+1−l + bLU0.

Mergering similar items and acting
(
E− τβ�(2−β)

hα Cα
)−1

on both sides, we obtain that

UL+1 =
(

E − τβ�(2 − β)

hα
Cα

)−1
(

L∑

l=1

(bl−1 − bl)U
L+1−l + bLU0

)

.

Taking the L2-norm on both sides and using Lemma 3.2 and (9), we have that

||UL+1||2 ≤
L∑

l=1

(bl−1 − bl)||
(

E − τβ�(2 − β)

hα
Cα

)−1

||2||UL+1−l ||2

+ bL||
(

E − τβ�(2 − β)

hα
Cα

)−1

||2||U0||2

<

L∑

l=1

(bl−1 − bl)||UL+1−l ||2 + bL||U0||2

<

L∑

l=1

(bl−1 − bl)||U0||2 + bL||U0||2 = ||U0||2,

The proof is completed.

Denote
ek
i = u(xi, tk) − uk

i , 0 < i < N, 0 < k ≤ M .

Next we will present the main convergence result.
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Theorem 3.2 Suppose that u(x, t) ∈ C2
(
0, T ; C5(a, b)

)
and ∂mu(x,t)

∂xm

∣
∣
∣
x=a, b

=
0 (m = 0, 1, · · · , 5). If u(xi, tk) and uk

i are respectively the exact solution of prob-
lem (4) and the difference solution of the scheme S1 respectively at grid point (xi, tk).
Then, there exists a positive constant ψ such that

‖ ek ‖2 ≤ b−1
k−1ψ

(
τ 2 + τβh3

)
, k = 1, 2, . . . , M, (10)

where ψ denotes a positive constant and is independent of τ and h.

Proof By S1, if k = 0,

e1 =
(

E − τβ�(2 − β)

hα
Cα

)−1

e0 + τβR1,

where R1 is the truncation error and |R1| ≤ ψ
(
τ 2−β + h3

)
.

Together with
e0 = 0

and ‖
(
E − τβ�(2−β)

hα Cα
)−1 ‖2< 1 in Lemma 3.2, then the above equation becomes

as

‖ e1 ‖2≤ ψ
(
τ 2 + τβh3

)
= ψb−1

0

(
τ 2 + τβh3

)
.

Let us use mathematical induction method to prove the desired result. Suppose
that ‖ ek ‖2≤ ψb−1

k−1

(
τ 2 + τβh3

)
for all k = 1, . . . , L. Then, we shall prove that it

holds also for k = L + 1. By S1, we have

eL+1 =
(

E − τβ�(2 − β)

hα
Cα

)−1 L∑

l=1

(bl−1 − bl) eL+1−l + τβRL+1,

where RL+1 is the truncation error at tL+1.

Noting that 0<b−1
l < b−1

L , l=1, 2, . . . , L − 1, and ‖
(
E − τβ�(2−β)

hα1 Cα
)−1 ‖2<

1, and |RL+1| ≤ ψ
(
τ 2−β + h3

)
, we have

‖ eL+1 ‖2 <

L∑

l=1

(bl−1 − bl) ‖ eL+1−l ‖2 +τβ |RL+1|

<

(
L∑

l=1

(bl−1 − bl)b
−1
L−l + 1

)

ψ
(
τ 2 + τβh3

)

< b−1
L

(
L∑

l=1

(bl−1 − bl) + bL

)

ψ
(
τ 2 + τβh3

)

= b−1
L ψ

(
τ 2 + τβh3

)
.

Hence, the estimation (10) is proved.
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Since

k−βb−1
k−1 = k−β

k1−β − (k − 1)1−β
= k−1

1 − (1 − k−1)
1−β

−→ 1

1 − β
, as k −→ ∞,

there exists a positive constant C such that k−βb−1
k−1 < C

1−β
.

Thus, we have, for all l such that lτ ≤ T ,

‖ ek ‖2≤ b−1
k−1ψ

(
τ 2 + τβh3

)
≤ C

1 − β
ψkβ

(
τ 2 + τβh3

)
≤ φT β

(
τ 2−β + h3

)
,

where φ = C
1−β

ψ is a positive constant and independent of τ and h.

Theorem 3.3 Suppose that u(x, t) ∈ C2
(
0, T ; C5(a, b)

)
and ∂mu(x,t)

∂xm

∣
∣
∣
x=a,b

=
0 (m = 0, 1, · · · , 5). If u(xi, tk) and uk

i are respectively the exact solution of (1)
and the difference solution of the scheme S1 at grid point (xi, tk), then there exists a
positive constant φ, such that

‖ ek ‖2 ≤ φT β
(
τ 2−β + h3

)
, k = 1, 2, . . . ,M .

4 Two new ADI difference schemes of orderO
(
τ2−β + h3

)
for 2D/3D

time-space fractional diffusion equations

4.1 Derivation of the difference scheme S2

In this subsection, we consider the 2D time-space fractional diffusion (1). Define uk
ij

as the numerical approximation to u(xi, yj , tk), with xi = ih, yj = jh, and tk = kτ .
Similar notation gives f k

ij = f (xi, yj , tk). The definitions of τ and h are the same

as ones mentioned in Section 3. In this subsection, uk and f k will be respectively
written in short for uk

ij and f k
ij if there is no confusion about these notations.

Similar to the process of dealing with the 1D case, the high-order difference
scheme for solving 2D problem (1) can be constructed as follows

uk
ij − τβ�(2 − β)

(
RLD

α1
x,(2,1,0) + RLD

α2
y,(2,1,0)

)
uk

ij = uk−1
ij + Fk

ij , (11)

where

Fk
ij =

⎧
⎪⎨

⎪⎩

τβ�(2 − β)f k
ij , k = 1,

−
k−1∑

l=1
bl

(
uk−l

ij − uk−1−l
ij

)
+ τβ�(2 − β)f k

ij , 2 ≤ k ≤ M .

and the values uk
N+1,j = uk

i,N+1 = 0, which can be obtained from Remark 2.1.
Note that at each time step, scheme (11) requires solving a very large non-sparse

linear system of equations with (N − 1)2 unknowns, which is computationally



82 Numerical Algorithms (2019) 82:69–106

intensive. The problem becomes more computationally demanding as finer grid
resolutions. A preferable choice is the use of ADI methods, where the difference
equations are specified and solved in one direction at a time. Following, we introduce
an additional perturbation error and rewrite scheme (11) in a directional separation
product form.

For convenience of writing, we define

Lβ
α1

= τβ�(2 − β)RLD
α1
x,(2,1,0) and Lβ

α2
= τβ�(2 − β)RLD

α2
y,(2,1,0). (12)

Then, a simple perturbation error is given

Lβ
α1

Lβ
α2

(
uk − 2uk−1 + uk−2

)
= O

(
τ 2+2β

)
, k ≥ 2 (13)

Adding this term onto the right-hand side of (11). After rearranging the terms, an
ADI scheme for k ≥ 2 is obtained

S2:
(
I − Lβ

α1

) (
I − Lβ

α2

)
uk = uk−1 + Fk + Lβ

α1
Lβ

α2

(
2uk−1 − uk−2

)

with obtaining u1 by solving
(
I − Lβ

α1

) (
I − Lβ

α2

)
u1 = u0 + F 1 + Lβ

α1
Lβ

α2
u0, (14)

where uk
i,N+1 = 0 and uk

N+1,j = 0.
Computationally, the ADI method for the above form is set up and solved by the

following iterative schemes. Introducing one intermediate variable u∗, schemes (14)
and S2 can be solved in two steps as

⎧
⎪⎨

⎪⎩

(
I − Lβ

α1

)
u∗ = u0 + F 1 + Lβ

α1
Lβ

α2
u0, (15a)

(
I − Lβ

α2

)
u1 = u∗, (15b)

and
⎧
⎪⎨

⎪⎩

(
I − Lβ

α1

)
u∗ = uk−1 + Fk + Lβ

α1
Lβ

α2

(
2uk−1 − uk−2

)
, (16a)

(
I − Lβ

α2

)
uk = u∗. (16b)

Here, the values of u∗ on the boundary are easily obtained from (15b) and (16b),
respectively.

Remark 4.1 Since 1 + β > 2 − β for β ∈ [ 12 , 1), it seems that we can use

Lβ
α1

Lβ
α2

(
uk − uk−1

)
= O

(
τ 1+2β

)
, k ≥ 1. (17)

instead of (13). Although the resulted schemes from both perturbation errors have
the similar truncation errors, numerical experiments in [36] show that (13) is much
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better than (17), regardless of the value of β. We would like to comment the fact
that in most ADI methods, the splitting terms are of the same or higher order as
the truncation error terms associated with the underlying numerical methods. Thus,
the asymptotic rates of convergence for an ADI method should be of the same
order in the spatial and temporal discretization parameters as those for its asso-
ciated underlying method. However,at practical levels of discretization, the actual
errors associated with an ADI method can be much larger than that for the underly-
ing method. We will further illustrate this phenomenon by numerical experiments in
Section 6.

In some cases, the splitting error totally dominates the error for the AD procedure,
which motivates us to reduce the splitting error. Although ADI methods [15, 26]
have been widely used for solving fractional differential equations, few of them are
considered from this point of view.

4.2 Stability and convergence analysis of S2

In this subsection, we shall demonstrate the stability and convergence of scheme S2.

Lemma 4.1 Let Cα1,α2 = 1
hα1 E ⊗Cα1 + 1

hα2 Cα2 ⊗E, where E ∈ R
(N−1)×(N−1) is a

unit matrix, and Cα1 , Cα2 ∈ R
(N−1)×(N−1) have the same form as (7). Then, Cα1,α2

is asymptotically stable.

Proof By Lemma 2.4 and Lemma 3.1, we know that Cα1 and Cα2 are asymptot-
ically stable. This means that there exist symmetric matrices X1, X2, B1, B2 ∈
R

(N−1)×(N−1) such that

Cα1X1 + X1(C
α1)T = B1, Cα2X2 + X2(C

α2)T = B2.

Denoting symmetric and positive matrix X = X2 ⊗ X1, from Lemma 2.6 and
Lemma 2.7, we have

Cα1,α2X + X(Cα1,α2)T

= 1

hα1
(E ⊗ Cα1)(X2 ⊗ X1) + 1

hα2
(Cα2 ⊗ E)(X2 ⊗ X1)

+ 1

hα1
(X2 ⊗ X1)(E ⊗ Cα1)T + 1

hα2
(X2 ⊗ X1)(C

α2 ⊗ E)T

= 1

hα1
X2 ⊗ (Cα1X1) + 1

hα2
(Cα2X2) ⊗ X1 + 1

hα1
X2 ⊗

(
X1(C

α1)T
)

+ 1

hα2

(
X2(C

α2)T
)

⊗ X1

= 1

hα1
X2 ⊗

(
Cα1X1 + X1(C

α1)T
)

+ 1

hα2

(
Cα2X2 + X2(C

α2)T
)

⊗ X1

= 1

hα1
X2 ⊗ B1 + 1

hα2
B2 ⊗ X1.
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Then, for any φ=(φ1, φ2, · · · , φN−1)
T ∈ R

N−1 \ 0 and ϕ=(ϕ1, ϕ2, · · · , ϕN−1)
T ∈

R
N−1 \ 0, it follows from Lemmas 2.6–2.8 that

(φ ⊗ ϕ)T
(

1

hα1
X2 ⊗ B1 + 1

hα2
B2 ⊗ X1

)

(φ ⊗ ϕ)

= 1

hα1
(φ ⊗ ϕ)T (X2 ⊗ B1)(φ ⊗ ϕ) + 1

hα2
(φ ⊗ ϕ)T (B2 ⊗ X1)(φ ⊗ ϕ)

= 1

hα1
[(φT X2) ⊗ (ϕT B1)](φ ⊗ ϕ) + 1

hα2
[(φT B2) ⊗ (ϕT X1)](φ ⊗ ϕ)

= 1

hα1
(φT X2φ) ⊗ (ϕT B1ϕ) + 1

hα2
(φT B2φ) ⊗ (ϕT X1ϕ)

< 0,

which means that 1
hα1 X2 ⊗ B1 + 1

hα2 B2 ⊗ X1 is a negative matrix. Moreover,
(

1

hα1
X2 ⊗ B1 + 1

hα2
B2 ⊗ X1

)T

= 1

hα1
XT
2 ⊗ BT

1 + 1

hα2
BT
2 ⊗ XT

1

= 1

hα1
X2 ⊗ B1 + 1

hα2
B2 ⊗ X1.

Then, it yields from Lemma 2.4 that Cα1,α2 is asymptotically stable.

Since schemes (11) and S2 are equivalent, now we only consider the stability of
scheme (11). Without lose of generality, we consider the case f (x, y, t) = 0. We
express grid function uk

ij in the vector form as

Uk =
(
uk
1,1, u

k
2,1, . . . , u

k
N−1,1, u

k
1,2, u

k
2,2, . . . , u

k
N−1,2, · · · ,

uk
1,N−1, u

k
2,N−1, . . . , u

k
N−1,N−1

)T

. (18)

Theorem 4.1 The fully discrete scheme of (11) is unconditionally stable in the sense
that for all h > 0 and τ > 0, it holds

||Uk||2 < ||U0||2, k = 1, . . . ,M .

Proof Expressing the equation system of (11) in matrix form

(
E − τβ�(2 − β)Cα1,α2

)
Uk = Uk−1 −

k−1∑

l=1

bl

(
Uk−l − Uk−1−l

)
,

where E ∈ R
(N−1)2×(N−1)2 is a unit matrix.

Note that matrices Cα1 and Cα2 are negative definite by Lemma 3.1. Hence, based
on Lemma 4.1 and Lemma 2.4, Cα1,α2 is also negative definite which follows that(
E − τβ�(2 − β)Cα1,α2

)
is positive definite. On the other hand, based on Lemma

3.1, it is easy to show that ‖ (E − τβ�(2 − β)Cα1,α2)−1 ‖2< 1. For the rest of
the proof, the reader is referred to Theorem 3.1. The concrete process is omitted
here.
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Denote

ek
ij = u(xi, yj , tk) − uk

ij , 0 < i, j < N, 0 < k ≤ M .

By the similar approach used in Theorem 3.2, we can obtain the following conver-
gence result for (11).

Theorem 4.2 Suppose that u(x, y, t) ∈ C2
(
0, T ; C5(�)

)
and ∂mu(x,t)

∂xm

∣
∣
∣
x∈∂�

=
0 (m = 0, 1, · · · , 5). If u(xi, yj , tk) and uk

ij are respectively the exact solution of (1)
and the difference solution of scheme (11) at grid point (xi, yj , tk), then there exists
positive constant φ such that

‖ ek ‖2 ≤ φT β
(
τ 2−β + h3

)
, k = 1, 2, . . . ,M .

4.3 Derivation of the difference scheme S3

In this subsection, we consider the 3D time-space fractional diffusion (1).
For convenience of writing, we define

Lβ
α3

= τβ�(2−β)RLD
α3
z,(2,1,0), Lerr = Lβ

α1
Lβ

α2
+Lβ

α1
Lβ

α3
+Lβ

α2
Lβ

α3
−Lβ

α1
Lβ

α2
Lβ

α3
,

where the operators L
β
α1 and L

β
α2 are defined by (12).

Similar to the process of dealing with the 2D case, we can directly obtain the
following difference scheme for 3D problem (1)

uk −
(
Lβ

α1
+ Lβ

α2
+ Lβ

α3

)
uk = uk−1 + Fk,

and the corresponding ADI difference scheme

S3:
(
I − Lβ

α1

) (
I − Lβ

α2

) (
I − Lβ

α3

)
uk = uk−1 + Fk + Lerr

(
2uk−1 − uk−2

)

with obtaining u1 by solving

(
I − Lβ

α1

) (
I − Lβ

α2

) (
I − Lβ

α3

)
u1 = u0 + F 1 + Lerru

0, β ∈ (0, 1),

where

Fk =
⎧
⎨

⎩

τβ�(2 − β)f k, k = 1,

−
k−1∑

l=1
bl

(
uk−l − uk−1−l

)+ τβ�(2 − β)f k, 2 ≤ k ≤ M .

and uk = uk
ij l , f k = f k

ij l = f (xi, yj , zl, tk) (xi=ih, yj=jh, zl=lh, tk=kτ ), and

from Remark 2.1, we know that the values uk
N+1,j,l=uk

i,N+1,l =uk
i,j,N+1 = 0.
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Now, we directly give the stability and convergence for the scheme S3, which can
be obtained by using the similar idea as the 2D case. First, expressing grid function
uk

ij l in the vector form as

Uk =
(
uk
1,1,1, u

k
2,1,1, · · · , uk

N−1,1,1, · · · , uk
1,2,1, u

k
2,2,1, · · · , uk

N−1,2,1,

· · · , uk
1,N−1,1, u

k
2,N−1,1, · · · , uk

N−1,N−1,1, · · · ,

uk
1,N−1,N−1, u

k
2,N−1,N−1, · · · , uk

N−1,N−1,N−1

)T

, (19)

and denoting

ek
ij l = u(xi, yj , zl, tk) − uk

ij l, 0 < i, j, l < N, 0 < k ≤ M .

Then, we have the following results.

Theorem 4.3 The fully discrete scheme of S3 is unconditionally stable in the sense
that for all h > 0 and τ > 0, it holds

||Uk||2 < ||U0||2, k = 1, . . . ,M .

Theorem 4.4 Suppose that u(x, y, z, t) ∈ C2
(
0, T ; C5(�)

)
and ∂mu(x,t)

∂xm

∣
∣
∣
x∈∂�

=
0 (m = 0, 1, · · · , 5). If u(xi, yj , zl, tk) and uk

ij l are respectively the exact solution
of problem (1) and the difference solution of scheme S3 at grid point (xi, yj , zl, tk),
then there exists positive constant φ such that

‖ ek ‖2 ≤ φT β(τ 2−β + h3), k = 1, 2, . . . , M .

5 Three improved schemes of orderO
(
τ2 + h3

)
for 1D/2D/3D

time-space fractional diffusion equations

5.1 Derivation of the difference schemesMS1-MS3

In this section, to improve the numerical accuracy of difference schemes in time,
three improved formats for 1D/2D/3D problems (1) with the approximation order
O(τ 2 +h3) are constructed. In the following, uk will be written in short for uk

i or uk
ij

or uk
ij l under different circumstances if there is no confusion about the notation.

For 1D problem (1) at (xi, tk+1−β/2), it follows from (2) and (6) that

1

τβ

k∑

l=0

ωl

(
uk−l − u0

)
=RL Dα

x,(2,1,0)u
k+1− β

2 + f k+1− β
2 + O

(
τ 2 + h3

)
. (20)

Note that

uk+1− β
2 = β

2
uk +

(

1 − β

2

)

uk+1 + O
(
τ 2
)
.

Substituting the above equation into (20), then multiplying (20) by τβ and neglect-
ing small terms, after rearranging the terms of the resulted scheme, we establish an
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improved difference scheme with the approximation order O(τ 2 + h3) for solving
1D problem (1) as follows:

MS1 : uk −
(

1 − β

2

)

τβ RLDα
x,(2,1,0)u

k

= β

2
τβ RLDα

x,(2,1,0)u
k−1 + u0 −

k∑

l=1

ωl

(
uk−l − u0

)
+ τβf k− β

2 .

Let us now consider 2D/3D problems (1) at (xi, yj , tk+1−β/2) and
(xi, yj , zl, tk+1−β/2) respectively. Neglecting small terms, it follows from (2) and
(6) that

1

τβ

k∑

l=0

ωl

(
uk−l − u0

)
=
(

RLD
α1
x,(2,1,0) +RL D

α2
y,(2,1,0)

)
uk+1− β

2 + f k+1− β
2 ,

and

1

τβ

k∑

l=0

ωl

(
uk−l−u0

)
=
(

RLD
α1
x,(2,1,0) +RL D

α2
y,(2,1,0) +RL D

α3
z,(2,1,0)

)
uk+1− β

2

+f k+1− β
2 ,

Performing the same procedure as MS1, we further get two improved difference
schemes with the approximation order O(τ 2 + h3):

uk − τβ

(

1 − β

2

)[
RLD

α1
x,(2,1,0) + RLD

α2
y,(2,1,0)

]
uk

= τβ β

2

[
RLD

α1
x,(2,1,0) + RLD

α2
y,(2,1,0)

]
uk−1 + u0

−
k∑

l=1

ωl

(
uk−l − u0

)
+ τβf k− β

2 . (21)

and

uk − τβ

(

1 − β

2

)[
RLD

α1
x,(2,1,0) +RL D

α2
y,(2,1,0) +RL D

α3
z,(2,1,0)

]
uk

= τβ β

2

[
RLD

α1
x,(2,1,0) +RL D

α2
y,(2,1,0) + RLD

α3
z,(2,1,0)

]
uk−1 + u0

−
k∑

l=1

ωl

(
uk−l − u0

)
+ τβf k− β

2 . (22)
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Furthermore, in order to obtain an effective ADI schemes for the above schemes,
adding two small terms

(
1 − β

2

�(2 − β)

)2

Lβ
α1

Lβ
α2

(uk − 2uk−1 + uk−2),

⎧
⎨

⎩

(
1 − β

2

�(2 − β)

)2
[
Lβ

α1
Lβ

α2
+ Lβ

α1
Lβ

α3
+ Lβ

α2
Lβ

α3

]−
(

1 − β
2

�(2 − β)

)3

Lβ
α1

Lβ
α2

Lβ
α3

⎫
⎬

⎭

×
(
uk − 2uk−1 + uk−2

)
(23)

onto the right-hand sides of (21) and (22), respectively, we deduce that

(

I − L
β
α1

2�(1 − β)

)(

I − L
β
α2

2�(1 − β)

)

uk

MS2 : = L
β
α1L

β
α2

(2�(1 − β))2

(
2uk−1 − uk−2

)
+ β

2�(2 − β)

(
Lβ

α1
+ Lβ

α2

)
uk−1

+ u0 −
k∑

l=1

ωl

(
uk−l

ij − u0
)

+ τβf k− β
2 .

and
(

I − L
β
α1

2�(1 − β)

)(

I − L
β
α2

2�(1 − β)

)(

I − L
β
α3

2�(1 − β)

)

uk

MS3 : =
⎧
⎨

⎩

[
L

β
α1L

β
α2 + L

β
α1L

β
α3 + L

β
α2L

β
α3

]

(2�(1 − β))2
− L

β
α1L

β
α2L

β
α3

(2�(1 − β))3

⎫
⎬

⎭

(
2uk−1 − uk−2

)

+ β

2�(2 − β)

(
Lβ

α1
+ Lβ

α2
+ Lβ

α3

)
uk−1 + u0 −

k∑

l=1

ωl

(
uk−l − u0

)

+ τβf k− β
2 .

Here, u1 inMS2 andMS3 can be obtained by using uk−1 instead of 2uk−1 − uk−2.

5.2 Stability and convergence analysis of MS1–MS3

Now, we discuss the stability and convergence of schemes MS1–MS3. Note that
the discretization matrix ofDα1

x is 1
hα1 Cα1 . In order to simplify the notations, defining

D = 1

hα1
Cα1
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offers the discretization matrix of the fractional operator Dα1
x in 1D case. Using the

Kronecker tensor product notation, we can obtain the corresponding discretization
matrices in 2D

D = 1

hα1
E ⊗ Cα1 + 1

hα2
Cα2 ⊗ E

and 3D

D = 1

hα1
E ⊗ E ⊗ Cα1 + 1

hα2
E ⊗ Cα2 ⊗ E + 1

hα3
Cα2 ⊗ E ⊗ E.

By Lemmas 2.5 and 3.1, we know −D is positive definite matrix, thus

(−D) = (−D)
1
2 (−D)

1
2 .

Before analyzing the stability, we introduce a lemma.
Lemma 5.1 ([34]) Let {ωl} be given by Lemma 2.9. Then, we have

ω0 = 1, ωl < 0, |ωl+1| < |ωl |, l = 1, 2, · · ·

ω0 = −
∞∑

l=1

ωl > −
m∑

l=1

ωl > 0, l = 1, 2, · · ·

bk−1 =
k−1∑

l=0

ωl = �(k − β)

�(1 − β)�(k)
= k−β

�(1 − β)
+ O

(
k−1−β

)
, k = 1, 2, · · ·

Furthermore, with b0 = ω0 = 1 and (bl − bl−1) = ωl < 0 for l > 0.
For convenience, we define the norm ||| · |||1 as

||| Uk|||21 =‖ Uk‖22 + β

2
τβ ‖ (−D)

1
2 Uk‖22,

where {Uk} are defined by (8), (18), and (19) for 1D/2D/3D respectively.
Note that MS1–MS3 are equivalent to (20), (22), and (22), we now show that

schemes (20), (22), and (22) are unconditionally stable.

Theorem 5.1 The fully discrete schemes of (20), (22), and (22) are unconditionally
stable in the sense that for all h > 0 and τ > 0, there exists a positive constant C

independent of τ and h, such that

||| Uk |||1≤ 2 ‖ U0 ‖2 +2C max
0≤k≤M

‖ Fk− β
2 ‖, k = 1, . . . , M .

Proof Writing (20) or (22) or (22) in matrix form and taking the inner product with
Um yields
(

1

τβ

k∑

l=0

ωl

(
Uk−l − U0

)
, Uk

)

= β

2

(
DUk−1, Uk

)
+
(

1 − β

2

)(
DUk, Uk

)

+
(
Fk− β

2 , Uk
)
.
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Using the property bl −bl−1 = ωl (see Lemma 5.1), we rewrite the above formula as

‖ Uk‖22 + τβ(1 − β

2
) ‖ (−D)

1
2 Uk‖22

= τβ β

2

(
DUk−1, Uk

)
+

k∑

l=1

(bl−1 − bl)
(
Uk−l , Uk

)
+ bk

(
U0, Uk

)

+τβ
(
Fk− β

2 , Uk
)
.

Using bl − bl−1 < 0, bk > 0, and the Cauchy-Schwartz inequality yields

‖ Uk‖22 + τβ

(

1 − β

2

)

‖ (−D)
1
2 Uk‖22

≤ τβ β

4

(
‖ (−D)

1
2 Uk−1‖22+ ‖ (−D)

1
2 Uk‖22

)
+ 1

2

k∑

l=1

(bl−1 − bl)

×
(
‖ Uk−l‖22+ ‖ Uk‖22

)
bk ‖ U0‖22 + bk

4
‖ Uk‖22 + τ 2β

bk
‖ Fk− β

2 ‖22
+bk

4
‖ Uk‖22. (24)

Note that
(
1 − β

2 − β
4

)
>

β
4 and b0 − b1 = β, hence, we have from (24)

||| Uk|||21 ≤
k∑

l=1

(bl−1 − bl) ||| Uk−l |||21 + 2bk ‖ U0‖22 + 2τ 2β

bk
‖ Fk− β

2 ‖22. (25)

Then, by Lemma 5.1, there exist a positive constant C, such that

τ 2β

bk

= bk

τ 2β

b2k

≤ bkτ
2β
(
Ck2β

)
≤ CT 2β . (26)

Combining (25) and (26) yields

||| Uk|||21 ≤
k∑

l=1

(bl−1 − bl) ||| Uk−l |||21 + bk

(
2 ‖ U0‖22 + 2C ‖ Fk− β

2 ‖22
)
. (27)

Denote by

E = 2 ‖ U0‖22 + 2C max
0≤k≤M

‖ Fk− β
2 ‖22.

Then, we have from (27)

||| Uk|||21 ≤
k∑

l=1

(bl−1 − bl) ||| Uk−l |||21 + bkE.

The desired result then follows by induction.

Theorem 5.2 Suppose that u(x, t) ∈ C2
(
0, T ; C5(�)

)
and ∂mu(x,t)

∂xm |x∈∂� =
0 (m = 0, 1, · · · , 5). If u(x, t) is the solution of problem (1) and uk

i /u
k
ij /u

k
ij l are
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the difference solutions of schemes (8)/(18)/(19) at grid points (xi, tk)/(xi, yj , tk)/
(xi, yj , zl, tk) respectively. Then, there exists positive constant C̃ such that

‖ ek ‖2 ≤ C̃(τ 2 + h3), k = 1, 2, . . . ,M .

Proof We can easily get the following error equation for (20) or (22) or (22)

1

τβ

k∑

l=0

ωl

(
ek−l − e0

)
= β

2
Dek−1 +

(

1 − β

2

)

Dek + Rk .

where Rk = O
(
τ 2 + h3

)
is the truncation error at tk .

Then, according to Theorem 5.1, the desired result can be obtained directly.

6 Numerical experiments

In this section, three numerical examples are presented to confirm our theoretical
statements. For the purpose of accuracy investigation, we compute the errors in two
discrete norms: L2 and L∞, which denoted as L2-err and L∞-err, respectively. And
the L∞ errors are also plotted in a log-log graph.

Moreover, in the following examples, one can find that the conditions
∂ku(X,t)

∂Xk |X=∂� = 0 (k = 0, 1, · · · , M) with � = [0, 1]n(n = 1, 2, 3) in Theorems
3.3, 4.2 and 4.4 are not satisfied any longer. But the obtained results tell us that these
conditions of the above convergence theorems might be relaxed.

6.1 Problem 1

We firstly consider the 1D time-space fractional diffusion equation. The exact ana-
lytical solution and the corresponding forcing term and initial condition are given
by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(x, t) = (t2 + 1)x3(1 − x)3,

u0(x) = x3(1 − x)3,

f (x, t) =
(

2
�(3−β)

t2−β + 1
�(1−β)

t−β
)

x3(1 − x)3

− (t2 + 1
) (

�(4)
�(4−α)

x3−α − 3�(5)
�(5−α)

x4−α + 3�(6)
�(6−α)

x5−α − �(7)
�(7−α)

x6−α
)
.

6.1.1 Spatial convergence text

We first investigate the spatial convergence rate. To this end, T = 1 and tem-
poral stepsize τ = 10−3 are chosen such that the errors stemming from the
temporal approximation is negligible. Since schemes S1 and MS1 are obtained
based on the same space discrete method, we only use scheme S1 to complete
our goal. Furthermore, in order to compare the performance of our method with
that of the other third-order algorithms for Rimann-Liouville fractional deriva-
tive, the methods in [24, 25] are also considered. The numerical results and the
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computational times (in seconds) for β = 0.5 and different α are presented in
Tables (1, 2, and 3), where the corresponding results by schemes in [24, 25] are also
included.

By comparing these data, scheme S1 seems to have the best accu-
racy/efficiency/stability for this problem. The scheme in [24] is unstable for small α
(i.e., α = 1.2) (see Table 1). According to Tables 1, 2, and 3, with a moderate spatial
scales, there appears to be very little advantage to use the scheme in [25], which is
both low accuracy and time consuming. For example, when α = 1.8 and h = 1

128 (see
Table 3), the L2 error is 5.35× 10−8 (with CPU = 230.62) by our scheme; however,
the L2 errors by the schemes in [24] and [25] are 3.67 × 10−7 (with CPU = 199.65)
and 1.07 × 10−5 (with CPU = 514.15).

Furthermore, we find that the scheme S1 yields a higher spacial approximation
order than theoretical value 3 for α = 1.5 and α = 1.8. For example, when α =
1.8, the experimentally determined order is almost 3.7. In order to further study the
relationship between α and the spatial convergence rate, we plot L∞

Rate as a function
of α and β at T = 1 with h = 1/50 and τ = 1/1000, as shown in Fig. 1. From
which, we find that the spatial approximation order is close to 2 + α, which agrees
with the conjecture in Remark 3.2.

Remark 6.1 In fact, we also tested Problem 1 with different α. However, numerical
experiments illustrate that the algorithm in [24] is unstable for α ∈ (1, 1.35]. Due to
the complexity of the coefficient matrix (denoted by A) for the resulted third-order
scheme from [24], it is hard to obtain the spectral radius of A by theory analysis.

Table 1 Numerical results and CPU times (in seconds) of several difference schemes for Problem 1 with
α = 1.2, β = 0.5, T = 1, and τ = 10−3

h 1
16

1
32

1
64

1
128

Our scheme SI L2-err 2.25e−4 3.48e−5 4.30e−6 4.62e−7

Rate – 2.69 3.02 3.22

L∞-err 3.61e−4 6.19e−5 8.63e−6 1.06e−6

Rate – 2.55 2.84 3.03

CPU 6.22 12.17 23.59 210.85

Scheme in [24] L2-err 7.68e+4 5.39e+46 NaN NaN

Rate – – – –

L∞-err 2.27e+5 1.61e+47 NaN NaN

Rate – – – –

CPU 5.99 11.08 22.31 228.42

Scheme in [25] ERL∞ 1.69e+4 3.38e−5 4.59e−6 6.08e−7

Rate – – 2.88 2.92

ERL2 6.76e+4 5.63e−5 9.54e−6 1.61e−6

Rate – – 2.56 2.57

CPU 9.78 26.18 106.64 509.12
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Table 2 Numerical results and CPU times (in seconds) of several difference schemes for Problem 1 with
α = 1.5, β = 0.5, T = 1, and τ = 10−3

h 1
16

1
32

1
64

1
128

Our scheme SI L2-err 1.74e−4 1.94e−5 1.75e−6 1.34e−7

Rate – 3.16 3.48 3.71

L∞-err 2.95e−4 3.75e−5 4.10e−6 4.09e−7

Rate – 2.98 3.19 3.33

CPU 6.04 11.78 23.67 214.81

Scheme in [24] L2-err 1.89e−4 2.59e−56 3.42e−6 4.29e−7

Rate – 2.87 2.92 2.99

L∞-err 3.48e−4 4.88e−5 6.33e−6 7.92e−7

Rate – 2.84 2.95 3.00

CPU 5.79 10.89 21.90 199.65

Scheme in [25] ERL∞ 3.38e−4 5.48e−5 9.02e−6 1.52e−6

Rate – 2.62 2.60 2.57

ERL2 6.48e−4 1.13e−4 2.30e−5 3.96e−6

Rate – 2.52 2.30 2.53

CPU 11.67 29.83 126.44 571.10

Thus, let us analyze ρ(A) numerically. Figure 2 shows the varying of ρ(A) with α.
We can see that ρ(A) > 1 when α ∈ (1, 1.35]; thus, the resulted scheme in [24] is
unstable at this case.

Table 3 Numerical results and CPU times (in seconds) of several difference schemes for Problem 1 with
α = 1.8, β = 0.5, T = 1, and τ = 10−3

h 1
16

1
32

1
64

1
128

Our scheme SI L2-err 1.09e−4 9.47e−6 6.93e−7 5.35e−8

Rate – 3.52 3.77 3.70

L∞-err 1.90e−4 1.82e−5 1.50e−6 1.17e−7

Rate – 3.38 3.60 3.69

CPU 6.18 11.92 27.08 230.62

Scheme in [24] L2-err 1.50e−4 2.16e−56 2.89e−6 3.67e−7

Rate – 2.79 2.90 2.98

L∞-err 2.55e−4 3.72e−5 4.97e−6 6.32e−7

Rate – 2.78 2.90 2.98

CPU 5.63 10.95 21.83 197.58

Scheme in [25] L2-err 9.73e−4 2.20e−4 4.88e−5 1.07e−5

Rate − 2.14 2.17 2.19

L∞-err 1.62e−3 4.44e−4 9.91e−5 2.10e−5

Rate – 1.87 2.16 2.24

CPU 9.77 26.97 113.96 514.15
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Fig. 1 The spatial convergence rate as a function of α and β for Problem 1

6.1.2 Temporal convergence text

Now, we check the temporal accuracy of the schemes S1 and MS1. By fixed, the
space step is sufficiently small to avoid contamination of the spatial error. In Tables 4
and 5, the numerical results at T = 5 corresponding to S1 and MS1 are presented
with h = 1/500 and different τ . Clearly, Table 2 shows that scheme SI yields

1 1.2 1.4 1.6 1.8 2

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

α

ρ(
A

)

α=1.35, ρ(A)=1.0006
α=1.36, ρ(A)=0.9794

Fig. 2 The spectral radius of the coefficient matrix for the resulted third-order scheme from [24]
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Table 4 Numerical results using scheme S1 for Problem 1 at T = 5 with h = 1/500

α = 1.2 α = 1.5 α = 1.8

τ β L2-err L∞-err L2-err L∞-err L2-err L∞-err

5/10 0.2 1.33e−4 1.97e−4 8.60e−5 1.25e−4 5.56e−5 8.07e−5

5/20 4.07e−5 6.02e−5 2.64e−5 3.84e−5 1.71e−5 2.48e−5

5/40 1.20e-5 1.77e-5 7.97e-6 1.15e-5 5.19e-6 7.50e-6

5/80 3.30e−6 4.79e−6 2.36e−6 3.32e−6 1.56e−6 2.25e−6

5/160 9.67e−7 1.37e−6 6.82e−7 9.06e−7 4.73e−7 6.89e−7

5/10 0.5 4.62e−4 6.85e−4 2.91e−4 4.24e−4 1.84e−4 2.67e−4

5/20 1.67e−4 2.47e−4 1.05e−4 1.53e−4 6.65e−5 9.63e−5

5/40 5.96e−5 8.83e−5 3.78e−5 5.50e−5 2.39e−5 3.45e−5

5/80 2.09e−5 3.10e−5 1.35e−5 1.96e−5 8.52e−6 1.23e−5

5/160 7.14e−6 1.05e−5 4.80e−6 6.98e−6 3.03e−6 4.37e−6

5/10 0.8 1.04e−3 1.54e−3 6.44e−4 9.36e−4 4.02e−4 5.81e−4

5/20 4.54e−4 6.73e−4 2.82e−4 4.09e−4 1.76e−4 2.54e−4

5/40 1.98e−4 2.93e−4 1.23e−4 1.78e−4 7.57e−5 1.11e−4

5/80 8.58e−5 1.27e−4 5.35e−5 7.76e−5 3.34e−5 4.83e−5

5/160 3.71e−5 5.50e−5 2.33e−5 3.37e−5 1.45e−5 2.10e−5

Table 5 Numerical results using schemeMS1 for Problem 1 at T = 5 with h = 1/500

α = 1.2 α = 1.5 α = 1.8

τ β L2-err L∞-err L2-err L∞-err L2-err L∞-err

5/10 0.2 1.70e−4 2.99e−4 1.77e−4 3.09e−4 1.86e−4 3.22e−4

5/20 3.99e−5 7.05e−5 4.17e−5 7.36e−5 4.47e−5 7.79e−5

5/40 9.09e−6 1.57e−5 9.16e−6 1.64e−5 1.03e−5 1.81e−5

5/80 2.32e−6 3.49e−6 1.72e−6 3.10e−6 2.10e−6 3.80e−6

5/160 5.39e−7 8.02e−7 3.60e−7 7.47e−7 3.04e−7 5.79e−7

5/10 0.5 3.90e−4 6.78e−4 3.99e−4 6.90e−4 4.09e−4 7.03e−4

5/20 9.37e−5 1.64e−4 9.66e−5 1.68e−4 1.00e−4 1.73e−4

5/40 2.17e−5 3.83e−5 2.24e−5 3.94e−5 2.39e−5 4.15e−5

5/80 5.00e−6 8.34e−6 4.70e−6 8.46e−6 5.38e−6 9.47e−6

5/160 1.15e−6 1.82e−6 7.99e−7 1.33e−6 1.01e−6 1.86e−6

5/10 0.8 5.35e−4 9.18e−4 5.38e−4 9.22e−4 5.42e−4 9.29e−4

5/20 1.32e−4 2.28e−4 1.33e−4 2.29e−4 1.35e−4 2.31e−4

5/40 3.25e−5 5.61e−5 3.26e−5 5.62e−5 3.32e−5 5.70e−5

5/80 7.97e−6 1.38e−5 7.76e−6 1.35e−5 8.05e−6 1.39e−5

5/160 2.13e−6 3.48e−6 1.71e−6 3.02e−6 1.86e−6 3.24e−6



96 Numerical Algorithms (2019) 82:69–106

a temporal approximation order close to 2 − β, which is fit with the theoretical
estimations. Again, all the results are plotted in a log-log graph (see Fig. 3a, c, e) and
the slopes of the error curves in these log-log plots are 1.8, 1.5, and 1.2 respectively
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Fig. 3 L∞-err as a function of the time step τ for Problem 1. a, c, e Corresponding to Table 2. b, d, f
Corresponding to Table 3
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for β = 0.2, 0.5, 0.8. Compared with the scheme S1, the data in Table 3 indicate that
schemeMS1 is second-order accurate in time, which can be observed more intuitive
from Fig. 3b, d, f.

Moreover, we plot the temporal convergence rate L∞
Rate as a function of α and

β at T = 5 with h = 1/256 and τ = 5/80, as shown in Fig. 4, which further
confirms temporal approximation orders of schemes S1 andMS1 close to 2-β and 2,
respectively.

6.2 Problem 2

In order to further study the order of convergence in space of scheme S1 and com-
pare the accuracy and stability of the proposed method with the schemes in [24,
25], we calculated a second 1D test problem with a smooth solution. The exact ana-
lytical solution and the corresponding forcing term and initial condition are given
by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x, t) = (t3+β + 1
)
sin3(πx),

u0(x) = sin3(πx),

f (x, t) =
(

2
�(3−β)

t2−β + 1
�(1−β)

t−β
)
sin(πx)3

−(t3+β + 1) 1
�(3−α)

∫ x

0 (x − ξ)2−α
[
27π3 cos3 (πξ) − 21π3 cos(πξ)

]
dξ .

For convenience, we only investigate the spatial convergence rate with β = 0.5
and α = 1.3, α = 1.7. Choosing T = 1 and τ = 2.5 × 10−4, the numerical results
and the computational times (in seconds) for our scheme S1 and schemes in [24, 25]
are presented in Tables 6 and 7. Again, by comparing these data, scheme S1 seems
to have the best accuracy/efficiency/stability for this problem.

S1

0

0.5

1

00.20.40.60.81
1.9

2

2.1

2.2

2.3

2.4

2.5

α
β

L∞ R
at

e

MS1

a b

Fig. 4 The temporal convergence rate as a function of α and β for solving Problem 1 using schemes a S1.
b MS1
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Table 6 Numerical results and CPU times (in seconds) of several difference schemes for Problem 2 with
α = 1.3, β = 0.5, T = 1, and τ = 2.5 × 10−4

h 1
16

1
32

1
64

1
128

Our scheme SI L2-err 1.04e−2 1.07e−3 1.09e−4 1.11e−5

Rate – 3.27 3.30 3.29

L∞-err 1.74e−2 2.04e−3 2.15e−4 2,22e−5

Rate – 3.10 3.24 3.28

CPU 4.17 9.69 28.50 138.20

Scheme in [24] L2-err 2.05e−1 1.01e3 1.37e23 Inf

Rate – – – –

L∞-err 4.79e−1 2.99e3 6.55e23 Inf

Rate – – – –

CPU 4.88 10.56 28.92 167.30

Scheme in [25] ERL∞ NaN 2.39e0 4.01e−4 5.87e−4

Rate – – – –

ERL2 NaN 1.31e1 9.79e−4 4.49e−3

Rate – – – –

CPU 9.30 30.39 145.27 689.48

Remark 6.2 Moreover, comparing the numerical results of Problems 1 and 2, we find
that the spatial convergence rate may also have a certain relationship with the smooth-
ness of the exact solution. We hope to investigate this important issue in the future.

Table 7 Numerical results and CPU times (in seconds) of several difference schemes for Problem 2 with
α = 1.7, β = 0.5, T = 1, and τ = 2.5 × 10−4

h 1
16

1
32

1
64

1
128

Our scheme SI L2-err 4.70e−3 3.52e−4 3.82e−5 5.05e−6

Rate – 3.74 3.20 2.92

L∞-err 8.35e−3 6.16e−4 6.20e−5 7.45e−6

Rate – 3.76 3.31 3.05

CPU 3.60 8.10 25.24 124.44

Scheme in [24] L2-err 9.11e−3 1.17e−3 1.46e−4 1.81e−5

Rate – 2.96 2.99 3.01

L∞-err 1.65e−2 2.17e−3 2.74e−4 3.38e−5

Rate – 2.93 2.99 3.02

CPU 4.85 10.25 28.60 145.52

Scheme in [25] ERL∞ 2.86e−2 5.18e−3 9.56e−4 1.85e−4

Rate – 2.47 2.44 2.37

ERL2 5.63e−2 1.10e−2 2.08e−3 3.87e−4

Rate – 2.36 2.40 2.43

CPU 9.28 30.06 144.35 715.34
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6.3 Problem 3

Now, we consider the 2D time-space fractional diffusion equation. The exact ana-
lytical solution and the corresponding forcing term and initial condition are given
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, t)= (t3+1)x3(1−x)3y3(1−y)3,

u0(x, y)=x3(1−x)3y3(1−y)3,

f (x, y, t)=
(

6
�(4−β)t3−β + 1

�(1−β)
t−β
)

x3(1−x)3y3(1−y)3

−(t3+1)y3(1−y)3
(

�(4)
�(4−α1)

x3−α1 − 3�(5)
�(5−α1)

x4−α1 + 3�(6)
�(6−α1)

x5−α1 − �(7)
�(7−α1)

x6−α1

)

−(t3+1)x3(1−x)3
(

�(4)
�(4−α2)

y3−α2 − 3�(5)
�(5−α1)

y4−α1 + 3�(6)
�(6−α2)

y5−α1 − �(7)
�(7−α2)

y6−α2

)
.

Without loss of generality, we only choose β = 0.5 to verify the numerical
accuracy and efficiency of schemes S2 and MS2.

6.3.1 Spatial convergence text

Firstly, the numerical accuracy in space is verified. Once again, we only use scheme
S2 to complete our goal due to the space discrete methods of both schemes S2 and
MS2 are same. Choosing T = 0.1, then taking a fixed temporal stepsize τ = 10−4

and varying spatial stepsize h, we obtain computational results for β = 0.5 displayed
in Table 8, from which we see that the spacial approximation order is higher than
theoretical value 3.

Once again, in order to further verify the spatial accuracy, we plot the spatial
convergence rate L∞

Rate as a function of α1 and α2 at T = 0.1 with τ = 10−4, h =
1/50 and β = 0.5, as shown in Fig. 5, which shows that the spatial approximation
order depends on α1 and α2.

Table 8 Numerical results using scheme S2 for Problem 3 at T = 0.1 with τ = 10−4 and β = 0.5

h 1
16

1
32

1
64

1
128

α1 = α2=1.2 L2-err 9.35e−7 1.69e−7 2.38e−8 3.12e−9

Rate – 2.47 2.83 2.93

L∞-err 2.59e−6 5.00e−7 7.86e−8 1.06e−8

Rate – 2.37 2.66 2.89

α1 = α2=1.5 L2-err 7.28e−7 8.88e−8 9.04e−9 1.06e−9

Rate – 3.04 3.30 3.09

L∞-err 1.96e−6 2.72e−7 3.01e−8 2.94e−9

Rate – 2.98 3.19 3.32

α1 = α2=1.8 ERL∞ 3.00e−7 3.01e−8 2.53e−9 2.23e−10

Rate – 3.32 3.57 3.50

ERL2 1.05e−6 1.22e−7 1.10e−8 8.91e−10

Rate – 3.11 3.46 3.63
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Fig. 5 The spatial convergence rate as a function of α1 and α2 with h = 1/50 for Problem 3

6.3.2 Temporal convergence text

To verify the temporal accuracy of the schemes S2 and MS2, with a fixed and
sufficiently small spatial stepsize h = 1/100, and different temporal stepsize τ ,
the numerical results for T = 5 using both schemes are listed in Tables 9 and
10, respectively. From the data of these tables, we can say that the computational
errors of the scheme MS2 are smaller than those of S2. However, Fig. 6a, b
illustrates that the accuracy of both schemes in temporal direction is 2.5-order.
Thus, we guess that the splitting error totally dominates the error for the AD pro-
cedure, i.e., the perturbation errors (13) and (23) are much larger than the time

Table 9 Numerical results using scheme S2 for Problem 3 at T = 5 with h = 1/100 and β = 0.5

(α1, α2) = (1.2, 1.7) (α1, α2) = (1.5, 1.5) (α1, α2) = (1.8, 1.6)

τ L2-err L∞-err L2-err L∞-err L2-err L∞-err

5/10 1.17e−3 3.36e−3 1.17e−3 3.68e−3 1.39e−3 4.80e−3

5/20 2.04e−4 5.85e−4 2.08e−4 6.62e−4 2.60e−4 8.90e−4

5/40 3.62e−5 1.03e−4 3.72e−5 1.19e−4 4.67e−5 1.59e−4

5/60 1.31e−5 3.72e−5 1.35e−5 4.24e−5 1.69e−5 5.79e−5

5/80 6.33e−6 1.81e−5 6.53e−6 2.07e−5 8.19e−6 2.80e−5

5/100 3.68e−6 1.05e−5 3.72e−6 1.19e−5 4.66e−6 1.59e−5
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Table 10 Numerical results using schemeMS2 for Problem 3 at T = 5 with h = 1/100 and β = 0.5

(α1, α2) = (1.2, 1.7) (α1, α2) = (1.5, 1.5) (α1, α2) = (1.8, 1.6)

τ L2-err L∞-err L2-err L∞-err L2-err L∞-err

5/10 7.67e−4 2.27e−3 8.36e−4 2.57e−3 9.97e−4 3.36e−3

5/20 1.40e−4 4.27e−4 1.50e−4 4.79e−4 1.81e−4 6.13e−4

5/40 2.64e−5 8.10e−5 2.77e−5 8.84e−5 3.39e−5 1.15e−4

5/60 8.99e−6 2.54e−5 1.04e−6 3.31e−5 1.26e−5 4.27e−5

5/80 4.13e−6 1.16e−5 5.22e−6 1.69e−5 6.29e−6 2.12e−5

5/100 2.32e−6 6.32e−6 3.17e−6 1.02e−5 3.67e−6 1.24e−5

truncation errors of schemes S2 and MS2. To further verify our speculation, we
plot

Div(τ, α1, α2) = L∞-err(τ, α1, α2,MS2)

L∞-err(τ, α1, α2, S2)

as a function of τ , as shown in Fig. 7, where L∞-err(τ, α1, α2, S2) and
L∞-err(τ, α1, α2,MS2) denote the L∞ errors which correspond to the results from
Tables 9 and 10 respectively. It is observed that there are a large group of numerical

results around a value near

(
1− β

2
�(2−β)

)2

= 0.7162, which is in good agreement with

the proportion of perturbation errors (23) and (13). Of course, the dominant role of
the splitting error will gradually diminished as the time step approaches zero. The
same phenomenon has been observed in [36].
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Fig. 6 L∞-err as a function of the time step τ for Problem 3 corresponding to a Table 5 and b Table 6



102 Numerical Algorithms (2019) 82:69–106

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.6

0.65

0.7

0.75

0.8

0.85

τ

D
iv

(τ
,α

1,α
2)

A line with value 0.7162

Div(τ,1.2,1.7)

Div(τ,1.5,1.5)

Div(τ,1.8,1.6)

Fig. 7 Div(τ, α1, α2) = L∞-err(τ,α1,α2,MS2)
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6.4 Problem 4

By the last example we attempt to verify the accuracy of schemes S3 and MS3 for
3D case. The exact solution and the initial value on (0, 1)3 × (0, T ] are given by

{
u(x, y, z, t) = (t3 + 1)x3(1 − x)3y3(1 − y)3z3(1 − z)3,

u0(x, y, z) = x3(1 − x)3y3(1 − y)3z3(1 − z)3.

The function f can easily be obtained with the help of the source term in Problem
2. Without loss of generality, we only choose β=0.5 and α1=α2=α3=1.5 to verify the
numerical accuracy and efficiency of schemes S3 and MS3.

Firstly, the numerical accuracy in space is verified. Once again, we only use
scheme S3 to complete our goal. Choosing T =10−3, then taking a fixed temporal
stepsize τ=10−5 and varying spatial stepsize h, we obtain the computational results
shown in Table 11 which confirmed that the convergence order of the scheme S3 in
space is three.

Secondly, we check the temporal accuracy of the schemes S3 and MS3. With the
fixed spatial stepsize h= 1

50 , the computational results at T =1 are reported in Table 12,
from which we can see that both schemes produced very similar results and the con-
vergence orders are round 2.5, which are much better than the theoretical estimates.

Table 11 Numerical results
using schemes S3 for Problem 4
at T = 10−3 with τ = 10−5,
β = 0.5, α1 = α2 = α3 = 1.5,
and different h

h 1
12

1
24

1
36

1
48

L2-err 7.70e−9 1.32e−9 3.93e−10 1.60e−10

Rate - 2.55 2.98 3.13

L∞-err 3.59e−8 7.72e−9 2.48e−9 1.04e−9

Rate - 2.22 2.80 3.01
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Table 12 Numerical results
using schemes S3 and MS3 for
Problem 4 at T = 1 with
h = 1/50, β = 0.5,
α1 = α2 = α3 = 1.5, and
different τ

τ 1
5

1
10

1
20

1
40

S3 L2-err 3.69e−7 1.22e−7 1.93e−8 3.15e−9

Rate – 1.60 2.66 2.61

L∞-err 2.13e−6 7.26e−7 1.17e−7 1.87e−8

Rate – 1.56 2.63 2.64

MS3 L2-err 3.21e−7 8.37e−8 1.30e−8 2.22e−9

Rate – 1.94 2.69 2.54

L∞-err 1.83e−6 4.79e−7 7.62e−8 1.32e−8

Rate – 1.94 2.65 2.53

This further illustrate that the splitting error totally dominates the error for the AD
procedure.

7 Conclusions

In this paper, based on the Caputo fractional derivative in time and the Riemann-
Liouville fractional derivatives in space, two kinds of high-precision unconditionally
stable finite difference methods have been proposed and studied for the 1D/2D/3D
time-space fractional diffusion equations. The theoretical analysis of the stability and
convergence is presented in details. Numerical experiments illustrated the availability
of the both methods and the high accuracy of these difference schemes. Moreover,
numerical results also illustrate that the spacial approximation order is higher than
theoretical value 3 in some cases, and Remark 3.2 provided a reasonable explanation.

Moreover, we can further improve the accuracy by the Richardson extrapolation
technique [20] or constructing compact operators [20, 35]. The research on these
aspects will be reported in our future work.
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Appendix

In this appendix, we present the proof of h(α; x) ≤ 0. Thus, we list the following
lemma.
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Lemma A.1 For any x ∈ [0, π ] and α ∈ (1, 2), we have h(α; x) decreases with
respect to α, that is

∂

∂α
h(α; x) ≤ 0.

Proof Taking the partial derivative of h(α, x) with respect to α, we have

∂

∂α
h(α; x) = L1(α; x) + π − x

2
L2(α; x), (28)

where

L1(α, x) = 6α − 7

24
cos(A−x)+−6α + 13

12
cos(A)+6α − 19

24
cos(A+x),

L2(α, x) = 3α2 − 7α

24
sin(A−x)+−3α2 + 13α

12
sin(A)+3α2 − 19α + 24

24
sin(A+x)

with A = α(x−π)
2 − x.

Next, we estimate Eq. 28 via the following two steps.

I: We first consider L1(α; x) ≤ 0. It is easy to obtain

L1(α, x) = 6α − 13

12
cos(A) cos(x)+ 1

2
sin(A) sin(x)+ −6α + 13

12
cos(A). (29)

For any x ∈ [π/2, π ] and α ∈ (1, 2), it is obviously L1(α; x) ≤ 0.
For any x ∈ [0, π/2) and α ∈ (1, 2), since

∂

∂x

[
6α − 13

12
cosA cos x + 1

2
sinA sin x

]

≤ 0,

we have

6α − 13

12
cosA cos x + 1

2
sinA sin x ≤ 6α − 13

12
cos
(
−απ

2

)
,

and combining with

−6α + 13

12
cosA ≤ −6α + 13

12
cos

(−απ

2

)

,

so we obtain L1(α; x) ≤ 0.
II: We now consider L2(α; x) ≤ 0. It is easy to obtain

L2(α; x) = 3α2 − 7α

12
sinA cos x+2 − α

2
sin

(
α(x − π)

2

)

+−3α2 + 13α

12
sin(A).

(30)
For any x ∈ [π/2, π ] and α ∈ (1, 2), it is obviously L2(α; x) ≤ 0.
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For any x ∈ [0, π/2) and α ∈ (1, 2), we have

L2(α; x) = 3α2 − 7α

12
sinA cos x + 2 − α

2
sin(A + x) + −3α2 + 13α

12
sin(A)

= 3α2 − 13α

12
sinA(cos x − 1) + sinA cos x + 2 − α

2
cosA cos x

≤ 0.

As a result of (I) and (II), we obtain the expected result.
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