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Abstract
Recently, the numerical solution of multi-frequency, highly oscillatory Hamilto-
nian problems has been attacked by using Hamiltonian boundary value methods
(HBVMs) as spectral methods in time. When the problem derives from the space
semi-discretization of (possibly Hamiltonian) partial differential equations (PDEs),
the resulting problem may be stiffly oscillatory, rather than highly oscillatory. In such
a case, a different implementation of the methods is needed, in order to gain the
maximum efficiency.
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1 Introduction

Multi-frequency highly oscillatory problems have been recently attacked by using
Hamiltonian boundary value methods (HBVMs) as spectral methods in time [8]. The
proposed approach has proven to be very efficient when solving a number of severe
highly oscillatory problems, allowing to effectively and accurately “resolve” all high-
frequency components in the solution. Sometimes, however, the problem is only
stiffly oscillatory, rather than highly oscillatory, which means that the high-frequency
components in the solution all have a very small amplitude. This is the case, for
example, of problems deriving from the space semi-discretization of time-dependent
PDEs having a relatively smooth solution.

In this paper, we shall consider Hamiltonian PDEs with periodic boundary condi-
tions possessing a soliton-type solution. In such a case, the two implementing criteria
devised in [8], which are aimed at grasping all the high-frequencies, may be too much
stringent and, therefore, the approach could become less efficient. In fact, the high-
est frequencies with negligible amplitude could be more conveniently omitted, since
their contribution to the accuracy of the solution is actually marginal. In order to
restore the efficiency of HBVMs used as spectral methods, we here propose an adap-
tive implementation of the methods, able to overcome this drawback, still providing
a practical spectral accuracy in time. Coupling this approach with a spectrally accu-
rate space semi-discretization will result in a spectrally accurate space-time solution
of Hamiltonian PDEs.

With this premise, the structure of the paper is as follows: in Section 2, we describe
the main differences with the approach described in [8]; in Section 3, we provide
some details on the semi-discrete problem derived from the space discretization of
the considered Hamiltonian PDEs; in Section 4, some numerical tests are reported;
at last, a few conclusions are given in Section 5.

2 Basic facts

We are here concerned with the numerical solution of Hamiltonian problems in the
form

ẏ = J [Ay + ∇f (y)] ≡ φ(y), y(0) = y0 ∈ R
2m, J =

(
Im

−Im

)
, (1)

where, in general, Ir ∈ R
r×r is the identity matrix, A is a symmetric and positive

semi-definite matrix such that, in a neighbourhood of the solution,

‖A‖ ≡ ω � ‖∇f ‖, (2)

where ‖ · ‖ denotes the 2-norm, so that ω = ρ(A). Moreover, hereafter, we assume
f to be suitably smooth, e.g., analytical. Problem (1) is clearly Hamiltonian with
Hamiltonian

H(y) = 1

2
y�Ay + f (y) ( ⇒ φ(y) = J∇H(y) ) . (3)

Numer Algor (2019) 81:1183–12021184



A differential system in the form (1)–(2) provides an instance of a, possibly multi-
frequency,1 highly oscillatory problem. We refer to the recent monograph [10] for an
account of the various approaches used so far for dealing with such problems.

More recently, in [8], a spectral method along the Legendre polynomial basis,

deg(Pi) = i,

∫ 1

0
Pi(x)Pj (x)dx = δij , ∀i, j = 0, 1, . . . , (4)

has been defined, as is sketched below, based on the approach defined in [7]. We start
considering the expansion of the right-hand side of the differential equation in (1),
on the interval [0, h], along the orthonormal basis (4):

ẏ(ch) =
∑
j≥0

Pj (c)γj , c ∈ [0, 1], γj =
∫ 1

0
Pj (τ)φ(y(τh))dτ,

j = 0, 1, . . . . (5)

Integrating term by term the first equation in (5), and imposing the initial condition
in (1), then gives:

y(ch) = y0 + h
∑
j≥0

∫ c

0
Pj (x)dx γj , c ∈ [0, 1]. (6)

At this point, two facts have to be taken into account, in order for (6) to become an
effective method, when using a finite precision arithmetic with machine epsilon u:2

1. in the expansion (6), the coefficients γj which are too small can be neglected.
By considering that their norm is approximately decreasing from a certain index
on, one has that

y(ch)
.= y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γj , c ∈ [0, 1], (7)

where
.= stands for equal within machine precision, with the index s satisfying

ρs ≡ ‖γs−1‖
maxi=0,...,s−1 ‖γi‖ ≤ u ; (8)

2. with reference to the coefficients γj defined in (5), one has

γj
.=

k∑
i=1

biPj (ci)φ(y(cih)), (9)

by using an enough accurate quadrature which, hereafter, we choose as the
Gauss-Legendre quadrature formula of order 2k, for a suitable k > s. Unless
better choices are available, we consider the choice used in [8, Eq. (34)], i.e.,

k = max{s + 2, 20}. (10)

1Depending on the occurrence of different large eigenvalues of matrix A.
2E.g., u ≈ 10−16, for the double precision IEEE.
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Next, by considering that:

– by setting Yi
.= y(cih), from (7) and (9) one obtains

Yi = y0 + h

k∑
j=1

[
bj

s−1∑
�=0

∫ ci

0
P�(x)dx P�(cj )

]
φ(Yj ), i = 1, . . . , k,

– the new approximation, by virtue of the orthogonality conditions (4), is defined as

y(h)
.= y1 = y0 + h

k∑
i=1

biφ(Yi), (11)

one eventually arrives at the k-stage Runge-Kutta method defined by the
following Butcher tableau,

c IsP�
s 	

b� , (12)

with

c = (c1, . . . , ck)
�, b = (b1, . . . , bk)

�, 	 =
⎛
⎜⎝

b1
. . .

bk

⎞
⎟⎠ ,

(13)

Is =
⎛
⎜⎝

∫ c1
0 P0(x)dx . . .

∫ c1
0 Ps−1(x)dx

...
...∫ ck

0 P0(x)dx . . .
∫ ck

0 Ps−1(x)dx

⎞
⎟⎠ , Ps =

⎛
⎜⎝

P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

⎞
⎟⎠ .

Definition 1 The k-stage Runge-Kutta method (12)–(13) is called Hamiltonian
boundary value method with parameters (k, s). In short, HBVM(k, s).

It is quite clear that, by choosing k large enough, the method is able to conserve,
either exactly or within the round-off error level, the HamiltonianH along the numer-
ical solution. We also mention that the HBVM(k, s) family may be thought of as a
generalization of Gauss-Legendre collocation methods in that HBVM(s, s) coincides
with the s-stage Gauss integrator. We refer to the monograph [4], and to the recent
review paper [5], for full details about HBVMs.

Moreover, we observe that, when the parameters k and s are chosen such that (7)
and (9) hold true, they provide a spectrally accurate in time method for the solution
of (1)–(2).

It is also worth mentioning that the discrete problem generated by a HBVM(k, s)

method can be cast in terms of the s coefficients γ0, . . . , γs−1 in (5), thus leading
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to a nonlinear system having (block) dimension s independently of k [6]. In fact, by
setting (see (3))

γ =
⎛
⎜⎝

γ0
...

γs−1

⎞
⎟⎠ , Y =

⎛
⎜⎝

Y1
...

Yk

⎞
⎟⎠ , φ(Y ) =

⎛
⎜⎝

φ(Y1)
...

φ(Yk)

⎞
⎟⎠ ≡ (Ik ⊗ J )∇H(Y),

e =
⎛
⎜⎝
1
...
1

⎞
⎟⎠ ∈ R

k,

from (7)–(9), one obtains

Y = e ⊗ y0 + hIs ⊗ I2mγ , γ = P�
s 	 ⊗ J ∇H(Y),

which, combined together, provide us with the discrete problem

γ = P�
s 	 ⊗ J ∇H (e ⊗ y0 + hIs ⊗ I2mγ ) . (14)

Once it has been solved, the new approximation (11) is easily seen to be given by

y1 = y0 + hγ0. (15)

In [8], two criteria for a priori selecting two integer parameters s0 and s, s0 ≤ s,
are given so that:

– HBVM(s0, s0) solves, up to the round-off error level, the homogeneous linear
problem associated with (1),

ẏ = JAy, y(0) = y0, (16)

on the interval [0, h];
– HBVM(k, s) then solves (1), by using the solution of (16) to obtain the initial

guess for the nonlinear iteration solving (14). This was indeed paramount, to
guarantee its convergence, because of the high-oscillatory nature of the solution;

– in addition to this, the parameter k defined in (10) was considered, in order to
guarantee (9).

The resulting method was named SHBVM(k, s, s0) in [8], which stands for spectral
HBVM with parameters (k, s, s0).

The parameters s0 and s were derived by imposing that the ratio (8) essentially
holds for each frequency component contributing to the solution. It has to be noticed
that, according to the analysis in [8], the larger the frequencies involved, the larger
the parameters s0 and s. Consequently, when ω in (2) is large, s0 and s are large as
well.

The strategy devised in [8] is finely tuned for highly oscillatory systems. How-
ever, when the solution of problem (1)–(2) is stiffly oscillatory, i.e., only the lowest
frequencies contribute to it, whereas the contribution of the highest-frequency com-
ponents is essentially negligible, the two a priori criteria defined in [8] are generally
too restrictive, since they would select much larger values for s and s0 than actually
needed.
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In addition, the solution of a stiffly oscillatory problem is often smooth enough that
the convergence of the nonlinear iteration for solving (14) will not require an accurate
choice of the initial guess. Consequently, the solution of the associated homogeneous
problem (16) is no more needed and the role of the parameter s0 becomes quite
marginal. As a result, we only need to define an implementation of the HBVM(k, s)

method, such that s satisfies

ρs ≡ ‖γs−1‖
maxi=0,...,s−1 ‖γi‖ ≤ tol , (17)

for a suitably small tolerance tol ∼ u. This could be in principle done adaptively, by
checking the coefficients γj at runtime.

In the remaining part of this paper, we shall provide numerical evidence that this
can be effectively done for the stiffly oscillatory Hamiltonian problems deriving from
the space semi-discretization of Hamiltonian PDEs, even though we defer to a future
paper a thorough analysis for deriving a general criterion.

3 Space discretization

When solving a Hamiltonian PDE defined in the domain [a, b] × [0, T ], with pre-
scribed initial conditions at t = 0 and periodic boundary conditions, we shall
consider a semi-discretization in space along the Fourier basis:

c0(x) = 1√
b − a

,

cj (x) =
√

2

b − a
cos

(
2πj

x − a

b − a

)
, (18)

sj (x) =
√

2

b − a
sin

(
2πj

x − a

b − a

)
, j = 1, 2, . . . ,

which is orthonormal, since, for all allowed i, j :
∫ b

a

ci(x)cj (x)dx = δij =
∫ b

a

si(x)sj (x)dx,

∫ b

a

ci(x)sj (x)dx = 0.

For simplicity, we confine ourselves to the 1D case, even though the used arguments
could in principle be generalized to the case of higher-dimensional space domains.

The use of the Fourier basis (18) for the space discretization has been considered
in a series of papers [1–3, 9] (see also [4, 5]), and we collect here some significant
examples, i.e., the semilinear wave equation [2], which in first order form reads

ut = v, vt = uxx − f ′(u), (x, t) ∈ [a, b] × [0, T ], (19)

and the nonlinear Schrödinger equation [1], which we write in real form as

ut = −vxx − f ′(u2 + v2)v,

vt = uxx + f ′(u2 + v2)u, (x, t) ∈ [a, b] × [0, T ]. (20)
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Here, u, v, f are real scalar functions, and f ′ is the derivative of f . All the equations
are equipped with initial and periodic boundary conditions. The initial conditions,
say u0(x) and v0(x), as well as f , will be assumed to provide a solution which is
suitably regular in space (as a periodic function).

For (19) and (20), the solution is expanded in space along the basis (18), so that,
for time-dependent coefficients αj (t), βj (t), θj (t), ηj (t), one has

u(x, t) = α0(t)c0(x) +
∑
j≥1

αj (t)cj (x) + βj (t)sj (x), (21)

v(x, t) = θ0(t)c0(x) +
∑
j≥1

θj (t)cj (x) + ηj (t)sj (x). (22)

The previous expansions can be written in vector form, by introducing the infinite
vectors

w(x) =

⎛
⎜⎜⎜⎝

c0(x)

s1(x)

c1(x)
...

⎞
⎟⎟⎟⎠ , q(t) =

⎛
⎜⎜⎜⎝

α0(t)

β1(t)

α1(t)
...

⎞
⎟⎟⎟⎠ , p(t) =

⎛
⎜⎜⎜⎝

θ0(t)

η1(t)

θ1(t)
...

⎞
⎟⎟⎟⎠ , (23)

as
u(x, t) = w(x)�q(t), v(x, t) = w(x)�p(t). (24)

As a result, by introducing the infinite matrix

D = 2π

b − a

⎛
⎜⎜⎜⎝
0
1 · J2

2 · J2
. . .

⎞
⎟⎟⎟⎠ , J2 =

(
1

−1

)
, (25)

and considering that ∫ b

a

w(x)w(x)�dx = I,

the identity operator, one verifies that (19) reads

q̇ = p, ṗ = −D�Dq −
∫ b

a

w(x)f ′(w(x)�q)dx, t ∈ [0, T ], (26)

whereas (20) becomes

q̇ = D�Dp −
∫ b

a

w(x)f ′ ((w(x)�q)2 + (w(x)�p)2
)

w(x)�p dx, (27)

ṗ = −D�Dq+
∫ b

a

w(x)f ′ ((w(x)�q)2+(w(x)�p)2
)

w(x)�q dx, t ∈ [0, T ] .
It is quite straightforward to prove the following result.

Theorem 1 Problem (26) is Hamiltonian with Hamiltonian

H(q, p) = 1

2

[
p�p + q�D�Dq + 2

∫ b

a

f (w(x)�q)dx

]
. (28)
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Similarly, problem (27) is Hamiltonian with Hamiltonian

H(q, p) = 1

2

[
p�D�Dp + q�D�Dq −

∫ b

a

f
(
(w(x)�q)2 + (w(x)�p)2

)
dx

]
.

(29)

We also consider the Korteweg-de Vries equation [3],

ut = ν uxxx + μuux, (x, t) ∈ [a, b] × [0, T ], (30)

where ν, μ are nonzero real scalars, equipped with initial condition u0(x) and peri-
odic boundary conditions. The initial condition, as before, is assumed to provide a
suitably regular solution in space (as a periodic function). Also the solution of this
equation can be expanded along the basis (18) in the form (21). In such a case,
however, it is known that

α0(t)c0(x) ≡
∫ b

a

u0(x)dx ≡ û0.

Consequently, by setting the infinite vectors and matrix

ŵ(x) =

⎛
⎜⎜⎜⎜⎜⎝

c1(x)

s1(x)

c2(x)

s2(x)
...

⎞
⎟⎟⎟⎟⎟⎠

, y(t) =

⎛
⎜⎜⎜⎜⎜⎝

α1(t)

β1(t)

α2(t)

β2(t)
...

⎞
⎟⎟⎟⎟⎟⎠

, D̂ =
⎛
⎜⎝
1
2

. . .

⎞
⎟⎠ , (31)

the following result can be proved [3].

Theorem 2 With reference to (31) and matrix J2 defined in (25), problem (30) can
be written in Hamiltonian form as

ẏ = D̂ ⊗ J2 ∇H(y) (32)

with Hamiltonian

H(y) = 1

2

[
−ν

(
y�D̂2 ⊗ I2y

)
+ μ

3

∫ b

a

(
û0 + ŵ(x)�y

)3
dx

]
. (33)

Remark 1 It can be shown that the Hamiltonian functions (28), (29) and (33) are
equivalent to the corresponding Hamiltonian functionals defining the corresponding
equations [1–3].

For all problems, the Hamiltonian is a constant of motion. For the nonlinear
Schrödinger equation, there are also the following quadratic invariants [1], with
reference to (23)–(25):

M1(q, p) =
∫ b

a

[
(w(x)�q)2 + (w(x)�p)2

]
dx, M2(q, p) = 2

[
q�Dp

]
.

(34)
In order to derive a numerical method, the expansions (21) and (22) need to be

truncated at a convenient number N of terms. In so doing, the vectors (23) and the
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matrix (25) becomes of dimension 2N + 1, whereas the vectors and the matrix in
(31) becomes of dimension 2N and N , respectively. Upon regularity assumptions on
the solution, the truncated expansions (21) and (22) converge exponentially to the
respective limits, thus providing a spectrally accurate space discretization. We shall
always assume that this will be done, hereafter.

We also mention that the integrals in space, occurring in (26)–(33), can be com-
puted (either exactly or approximately within machine precision) by a composite
trapezoidal rule based at the points

xi = a + i
b − a

m
, i = 0, . . . , m, (35)

by using a suitably large value of m [1–3].
At last, we mention that the numerical solution of the discrete problem (14)

derived from the application of a HBVM(k, s) to any of the considered problems
(26), (27) and (32) can be made very efficient by using a blended implementation of
the methods [4–6] and considering an approximation of the Jacobian of the right-hand
side provided by the linear part only. This latter, in turn, is the same for all time-steps
and has a block diagonal structure with diagonal blocks. As a consequence, a very
efficient nonlinear iteration can be devised for all the considered PDE problems (we
refer to [1–3] for full details).

Fig. 1 Plot of u(x, t), solution of the Sine-Gordon problem (36)–(37)
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4 Numerical tests

We here compare the following methods:

– HBVM(s, s) methods, s = 1, 2, 3, i.e., the symplectic s-stage Gauss methods of
order 2,4,6;

– HBVM(k, s), s = 1, 2, 3, and k chosen so that the method is energy-conserving,
for the used time-step �t ;

– HBVM(k, s), where s is chosen according to (8) and k according to either (10)
or to gain exact approximation of the integrals (9). For sake of clarity, we shall
refer to such a method as spectral HBVM.

Table 1 s-stage Gauss method
(Gauss s), for solving the
Sine-Gordon problem (36)
and (37) with time-step
�t = 100/n

n CPU time eu Rate eH Rate

Gauss 1

100 0.4 1.04e 01 – 1.81e 00 –

200 0.5 1.14e 01 ** 4.47e−01 2.0

400 0.7 1.20e 01 ** 1.12e−01 2.0

800 1.2 1.23e 01 ** 2.79e−02 2.0

1600 2.2 4.27e 00 1.5 6.98e−03 2.0

3200 4.0 7.78e−01 2.5 1.75e−03 2.0

6400 7.1 1.84e−01 2.1 4.36e−04 2.0

12800 15.5 4.53e−02 2.0 1.09e−04 2.0

25600 26.1 1.13e−02 2.0 2.73e−05 2.0

Gauss 2

100 0.9 5.55e 00 – 5.56e−02 –

200 1.6 1.43e 00 2.0 8.00e−03 2.8

400 2.5 6.02e−02 4.6 3.77e−04 4.4

800 3.3 3.34e−03 4.2 2.22e−05 4.1

1600 4.9 2.02e−04 4.0 1.37e−06 4.0

3200 8.3 1.26e−05 4.0 8.52e−08 4.0

6400 14.7 7.83e−07 4.0 5.32e−09 4.0

12800 28.9 4.89e−08 4.0 3.33e−10 4.0

25600 57.7 3.07e−09 4.0 2.08e−11 4.0

Gauss 3

100 1.7 5.34e−01 – 1.83e−03 –

200 2.7 8.74e−02 2.6 2.29e−04 3.0

400 3.0 9.35e−04 6.5 2.59e−06 6.5

800 3.4 1.35e−05 6.1 3.85e−08 6.1

1600 5.3 2.08e−07 6.0 5.97e−10 6.0

3200 9.8 3.23e−09 6.0 9.27e−12 6.0

6400 16.7 4.01e−11 6.3 1.49e−13 6.0

12800 32.9 2.15e−11 ** 4.26e−14 **
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Table 2 Energy-conserving
HBVMs, for solving the
Sine-Gordon problem (36)
and (37) with time-step
�t = 100/n

n CPU time eu Rate eH

HBVM (5,1)

100 1.1 1.19e 01 – 1.21e−07

200 1.4 2.99e 00 2.0 1.42e−14

400 2.2 1.71e−01 4.1 1.60e−14

800 3.5 1.10e−02 4.0 1.42e−14

1600 6.0 7.54e−04 3.9 1.07e−14

3200 10.6 1.76e−04 2.1 1.60e−14

6400 18.6 4.40e−05 2.0 1.07e−14

12800 36.3 1.10e−05 2.0 1.60e−14

25600 72.7 2.75e−06 2.0 1.07e−14

HBVM (6,2)

100 1.2 2.81e−01 – 4.85e−08

200 2.3 2.31e−03 6.9 1.42e−14

400 3.6 6.55e−05 5.1 1.07e−14

800 4.9 4.24e−06 3.9 1.42e−14

1600 7.1 2.68e−07 4.0 1.07e−14

3200 12.3 1.68e−08 4.0 1.07e−14

6400 21.7 1.05e−09 4.0 1.07e−14

12800 41.2 6.56e−11 4.0 1.07e−14

25600 83.8 1.27e−11 ** 1.60e−14

HBVM (6,3)

100 2.0 2.31e−03 – 1.36e−07

200 3.3 1.91e−05 6.9 7.11e−15

400 3.7 3.60e−07 5.7 7.11e−15

800 4.2 5.88e−09 5.9 1.07e−14

1600 6.7 9.28e−11 6.0 1.07e−14

3200 12.4 1.22e−11 ** 1.07e−14

6400 21.4 1.21e−11 ** 1.07e−14

12800 41.9 1.20e−11 ** 1.07e−14

Table 3 Spectral HBVM(k, s), for solving the Sine-Gordon problem (36) and (37) with time-step �t =
100/n (left), along with the obtained result by using the original SHBVM(k∗, s∗, s∗

0 ) method (right)

n CPU time eu eH k s CPU time eu eH k∗ s∗ s∗
0

100 2.4 1.23e−11 7.11e−15 22 20 3.8 5.56e−12 8.88e−15 38 36 36

150 1.8 1.19e−11 7.11e−15 20 16 3.6 5.50e−12 8.88e−15 31 29 29

200 1.9 1.26e−11 7.11e−15 20 14 3.2 5.56e−12 8.88e−15 28 26 26
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It is worth mentioning that the same code, implemented in Matlab (R 2017b, running
on a 2.8GHz Intel i7 quad-core computer with 16GB of memory), is used for all
the above methods. Consequently, the benchmark will be quite homogeneous, both
from the software and hardware point of view. All the reported execution times are
in seconds.

We shall apply the methods to particular instances of the (19), (20) and (30) pos-
sessing a (known) soliton solution. In all cases, this latter solution is suitably smooth
so that the resulting semi-discrete problem is stiffly oscillatory.

The expansions (21) and (22) are truncated at an index N such that the initial
conditions are accurately reproduced within a round-off error level, thus providing a
spectrally accurate space discretization. Concerning the integration in time provided
by a HBVM, choosing s according to the ratio (17) yields a practical spectral accu-
racy in time. The tolerance tol is chosen in order to truncate the expansion (6) when
the norm of the last coefficients becomes small and/or “stagnates” (meaning that a
round-off error level has been reached).

4.1 Sine-Gordon equation

In this example, taken from [2],

utt = uxx − sin(u), (x, t) ∈ [−50, 50] × [0, 100], (36)

Fig. 2 Plot of u(x, t)2 + v(x, t)2, solution of the NLSE problem (38) and (39)
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the initial condition at t = 0 is obtained from the known solution,

u(x, t) = 4 atan(t sech(x)), (37)

plus periodic boundary conditions. The solution is depicted in Fig. 1. In this case, a
value N = 300 has been used for the space discretization, with m = 601 (see (35))
for computing the integrals in space. The corresponding semi-discretization error,
measured on the initial condition, is 6.21 · 10−14. The obtained numerical results
are shown in Tables 1, 2 and 3, where we list the solution error eu and the Hamil-
tonian error eH , together with the used time-step and the execution times. As is
expected, from Table 2, one sees that the energy conserving HBVMs conserve the
Hamiltonian. In Table 3, we list the results obtained by the spectral HBVM used
with parameters s and k computed according to (17) and (10), with a tolerance tol of
the order of 10−11, able to provide energy conservation and a uniformly small solu-
tion error. In the same table, we also report the results obtained by using the original
SHBVM(k∗, s∗, s∗

0 ) method, whose parameters k∗, s∗, s∗
0 are computed according to

the two criteria given in [8]. It turns out that both methods have a comparable accu-
racy but, as was expected, the value s for stiff oscillatory systems is smaller than
s∗
0 and s∗ corresponding to highly oscillatory problems and, consequently, the new

Table 4 s-stage Gauss method (Gauss s), for solving the NLSE problem (38) and (39) with time-step
�t = 10/n

n CPU time euv Rate eH Rate e1 e2

Gauss 1

100 1.2 8.86e−01 – 4.76e−02 – 7.84e−14 2.48e−15

200 1.6 2.63e−01 1.8 9.58e−04 5.6 1.53e−14 3.96e−16

400 3.7 6.60e−02 2.0 5.55e−05 4.1 1.18e−14 9.02e−17

800 7.1 1.64e−02 2.0 3.41e−06 4.0 1.27e−14 7.63e−17

1600 12.1 4.10e−03 2.0 2.12e−07 4.0 1.29e−14 6.94e−17

3200 23.0 1.03e−03 2.0 1.32e−08 4.0 1.35e−14 1.18e−16

Gauss 2

100 2.7 1.30e−02 – 1.09e−05 – 9.99e−15 2.07e−15

200 5.0 8.79e−04 3.9 5.20e−08 7.7 1.09e−14 2.08e−17

400 8.5 5.58e−05 4.0 2.18e−10 7.9 8.66e−15 2.78e−17

800 14.9 3.50e−06 4.0 8.75e−13 8.0 1.02e−14 2.78e−17

1600 25.5 2.19e−07 4.0 1.29e−14 6.1 1.11e−14 4.86e−17

3200 42.0 1.37e−08 4.0 1.47e−14 ** 1.02e−14 2.78e−17

Gauss 3

100 3.4 1.19e−04 – 1.03e−08 – 9.10e−15 2.78e−17

200 7.3 2.02e−06 5.9 3.99e−12 11.3 1.22e−14 2.78e−17

400 11.1 3.25e−08 6.0 1.47e−14 8.1 9.55e−15 2.78e−17

800 18.6 5.67e−10 5.8 1.47e−14 ** 9.55e−15 3.47e−17

1600 29.7 1.47e−10 ** 1.51e−14 ** 9.77e−15 2.78e−17
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method is less time-consuming. From the obtained results, one infers that the spectral
HBVM method here described is the most effective method, with an almost uniform
execution time.

4.2 Nonlinear Schrödinger equation (NLSE)

In this example, taken from [1],

ut = −vxx − 2(u2 + v2)v, (38)

vt = uxx + 2(u2 + v2)u, (x, t) ∈ [−40, 80] × [0, 10],
the initial condition at t = 0 is obtained from the known solution,

u(x, t) = sech(x −4t) cos(2x −3t), v(x, t) = sech(x −4t) sin(2x −3t), (39)

plus (approximate) periodic boundary conditions. The modulus of the solution
(u2 + v2) is depicted in Fig. 2. A value N = 300 has been used for the space dis-
cretization, with m = 601 for computing the integrals in space. The corresponding
semi-discretization error is 1.00 · 10−14. The obtained numerical results are listed in
Tables 4, 5 and 6, where we list the solution error euv , the Hamiltonian error eH , the

Table 5 Energy-conserving HBVM(2s, s) method, for solving the NLSE problem (38) and (39) with
time-step �t = 10/n

n CPU time euv Rate eH e1 Rate e2 Rate

HBVM (2,1)

100 2.5 9.10e−01 – 2.66e−15 3.64e−03 – 1.93e−04 –

200 4.4 2.82e−01 1.7 3.11e−15 1.40e−04 4.7 5.67e−06 5.1

400 7.4 7.00e−02 2.0 3.55e−15 8.23e−06 4.1 3.30e−07 4.1

800 12.9 1.75e−02 2.0 4.88e−15 5.07e−07 4.0 2.03e−08 4.0

1600 22.0 4.37e−03 2.0 4.44e−15 3.16e−08 4.0 1.26e−09 4.0

3200 36.8 1.09e−03 2.0 5.33e−15 1.97e−09 4.0 7.88e−11 4.0

HBVM (4,2)

100 2.3 1.35e−02 – 3.11e−15 1.46e−06 – 5.24e−08 –

200 5.4 8.95e−04 3.9 4.88e−15 6.66e−09 7.8 2.44e−10 7.7

400 9.4 5.68e−05 4.0 3.55e−15 2.74e−11 7.9 1.02e−12 7.9

800 15.8 3.56e−06 4.0 4.88e−15 1.13e−13 7.9 4.05e−15 8.0

1600 27.2 2.23e−07 4.0 4.44e−15 1.11e−14 ** 1.11e−16 **

3200 44.8 1.39e−08 4.0 4.44e−15 1.49e−14 ** 1.39e−16 **

HBVM (6,3)

100 4.2 1.20e−04 – 4.44e−15 6.88e−10 – 3.48e−11 –

200 8.1 2.03e−06 5.9 4.00e−15 2.52e−13 11.4 1.30e−14 11.4

400 14.0 3.26e−08 6.0 4.00e−15 1.09e−14 4.5 1.11e−16 6.9

800 23.0 5.65e−10 5.9 4.88e−15 1.22e−14 ** 1.04e−16 **

1600 36.9 1.47e−10 ** 4.44e−15 1.18e−14 ** 1.32e−16 **
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Fig. 3 Plot of u(x, t), solution of the KdV problem (40)–(42)

errors on the quadratic invariants (34) (e1 and e2, respectively) together with the used
time-step and the execution times. As was expected, the symplectic Gauss methods
conserve the two quadratic invariants but not the Hamiltonian (see Table 4), whereas
the energy conserving HBVMs conserve the Hamiltonian but not the quadratic invari-
ants (see Table 5). In Table 6, we give the parameters k∗, s∗, s∗

0 used by the spectral
method SHBVM(k∗, s∗, s0), as defined in [8], as well as the parameters k, s, obtained
by (10) and (17), used by the spectral HBVM here described, where tol turns out to
be of the order of 10−14, and is able to provide the conservation of all invariants and
a uniformly small solution error. It is worth mentioning that, for the larger time-step
used, the SHBVM(78,76,40) does not converge at all. From the above results, one
infers that also in this case, the spectral HBVM here described is the most effective
method, with a uniformly small execution time.

4.3 Korteweg-de Vries (KdV) equation

In this example, taken from [3],

ut (x, t) + εuxxx(x, t) + u(x, t)ux(x, t) = 0, (x, t) ∈ [−3, 5] × [0, 24],
ε = 0.0013020833, (40)
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Table 7 s-stage Gauss method (Gauss s), for solving the KdV problem (40)–(42) with time-step �t =
24/n

n CPU time eu Rate eH Rate

Gauss 1

60 3.9 1.07e 00 – 1.12e−02 –

120 2.3 1.01e 00 0.1 2.97e−04 5.2

240 2.5 6.90e−01 0.5 1.07e−06 8.1

480 3.5 2.11e−01 1.7 6.28e−08 4.1

960 5.2 5.37e−02 2.0 3.92e−09 4.0

1920 8.7 1.35e−02 2.0 2.57e−10 3.9

3840 13.3 3.37e−03 2.0 1.54e−11 4.1

7680 23.4 8.43e−04 2.0 9.42e−13 4.0

15360 43.3 2.11e−04 2.0 5.85e−14 4.0

Gauss 2

60 3.8 9.12e−01 – 2.51e−03 –

120 3.9 1.39e−01 2.7 4.80e−04 2.4

240 4.9 7.61e−03 4.2 1.90e−05 4.7

480 7.7 3.00e−04 4.7 3.49e−09 12.4

960 13.0 1.86e−05 4.0 7.39e−12 8.9

1920 22.3 1.14e−06 4.0 9.09e−16 13.0

3840 37.2 7.14e−08 4.0 5.55e−17 4.0

7680 68.9 4.45e−09 4.0 7.63e−17 **

15360 119.5 2.78e−10 4.0 7.63e−17 **

Gauss 3

60 3.0 1.82e−01 – 7.86e−04 –

120 4.2 2.12e−03 6.4 2.04e−06 8.6

240 6.3 5.04e−05 5.4 3.46e−09 9.2

480 10.2 1.90e−06 4.7 1.04e−11 8.4

960 18.0 5.57e−08 5.1 1.34e−14 9.6

1920 31.2 6.17e−10 6.5 6.25e−17 7.7

3840 56.2 5.78e−12 6.7 4.16e−17 **

7680 94.1 8.38e−14 6.1 1.25e−16 **

the initial condition at t = 0 is derived from the known solution of the problem, i.e.,

u(x, t) = 3c

[
sech

(√
c

4ε
(x − ct)[−3,5]

)]2
, c = 1

3
, (41)
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Table 8 Energy-conserving
HBVMs, for solving the KdV
problem (40)–(42) with
time-step �t = 24/n

n CPU time eu Rate eH

HBVM (2,1)

60 18.2 1.03e 00 – 1.39e−17

120 6.4 9.92e−01 0.1 1.39e−17

240 7.0 5.98e−01 0.7 1.39e−17

480 8.9 1.74e−01 1.8 1.39e−17

960 13.6 4.42e−02 2.0 1.73e−17

1920 22.3 1.11e−02 2.0 1.73e−17

3840 37.5 2.77e−03 2.0 1.73e−17

7680 65.1 6.93e−04 2.0 2.08e−17

15360 108.7 1.73e−04 2.0 2.08e−17

HBVM (3,2)

60 4.4 4.29e−01 – 2.08e−17

120 4.7 2.89e−02 3.9 1.39e−17

240 6.0 3.16e−03 3.2 1.39e−17

480 9.5 2.56e−04 3.6 1.39e−17

960 16.1 1.61e−05 4.0 2.08e−17

1920 27.3 9.89e−07 4.0 2.08e−17

3840 45.8 6.20e−08 4.0 2.08e−17

7680 85.6 3.87e−09 4.0 1.73e−17

15360 146.7 2.42e−10 4.0 2.08e−17

HBVM (5,3)

60 3.1 5.40e−02 – 2.08e−17

120 4.1 9.18e−04 5.9 1.39e−17

240 6.2 3.00e−05 4.9 1.73e−17

480 10.6 1.01e−06 4.9 1.39e−17

960 19.1 3.06e−08 5.1 1.39e−17

1920 35.1 3.53e−10 6.4 1.39e−17

3840 60.9 3.41e−12 6.7 2.08e−17

7680 98.6 5.14e−14 6.1 2.08e−17

Table 9 Spectral HBVM(k, s),
for solving the KdV problem
(40)–(42) with time-step
�t = 24/n

n CPU time eu eH k s

60 12.8 3.98e−13 1.39e−17 20 18

90 17.0 9.98e−14 1.39e−17 20 16

120 20.0 4.71e−14 1.39e−17 20 14
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where, in general,

(ξ)[a,b] :=

⎧⎪⎨
⎪⎩

ξ, if ξ ∈ [a, b],
a + rem(ξ − a, b − a), if ξ > b,

b − rem(b − ξ, b − a), if ξ < a,

(42)

with rem the remainder in the integer division between the two arguments, plus peri-
odic boundary conditions. As a result, one verifies that the solution (41) is periodic
in time with period T = 24. The solution is depicted in Fig. 3. A value N = 300
has been used for the space discretization, with m = 901 for (exactly) computing
the integrals in space. The corresponding semi-discretization error is 2.19 · 10−14.
The obtained numerical results are listed in Tables 7, 8 and 9, where we list the solu-
tion error eu and the Hamiltonian error eH , together with the used time-step and the
execution times. Again, from Table 8, one sees that HBVMs conserve the Hamilto-
nian function. Moreover, in Table 9, we also list the parameters k and s provided by
(10) and the ratio (17), where tol turns out to be of the order of 10−11, and is able
to provide energy conservation and a uniformly small solution error. In this case, the
corresponding values of the parameters k∗, s∗, s∗

0 for the SHBVM method described
in [8] would be impractically high and, therefore, we do not consider them in the
table. Also in this case, one infers that the spectral HBVM is the most effective
method, especially when using the largest time-step.

5 Conclusions

In this paper, we have provided numerical evidence that spectral HBVMs, formerly
devised for numerically solving highly oscillatory problems, can be adapted to effi-
ciently handle the stiffly oscillatory problems deriving from a spectrally accurate
space discretization of Hamiltonian PDEs. This is achieved by defining an adaptive
strategy to obtain the correct parameters for the method. Numerical tests on the sine-
Gordon equation, the nonlinear Schrödinger equation, and the Korteweg-de Vries
equation duly confirm the effectiveness of the approach, resulting in a spectrally
accurate space-time numerical method. It is also worth mentioning that, in principle,
this approach could be also used for solving, with spectral accuracy in time, larger
classes of problems than that considered here.
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