ORIGINAL PAPER

CrossMark

Linesearch methods for bilevel split pseudomonotone variational inequality problems

Tran Viet Anh¹

Received: 13 November 2017 / Accepted: 6 August 2018 / Published online: 13 August 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

In this paper, we propose Linesearch methods for solving a bilevel split variational inequality problem (BSVIP) involving a strongly monotone mapping in the upperlevel problem and pseudomonotone mappings in the lower-level one. A strongly convergent algorithm for such a BSVIP is proposed and analyzed.

Keywords Bilevel split variational inequality problem · Linesearch methods · Pseudomonotone mapping · Strong convergence

Mathematics Subject Classification (2010) 47J25 · 47N10 · 90C25

1 Introduction

Let *C* and *Q* be two nonempty closed convex subsets of two real Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , respectively, and let $A : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ be a bounded linear operator. Given mappings $F_1 : \mathcal{H}_1 \longrightarrow \mathcal{H}_1$ and $F_2 : \mathcal{H}_2 \longrightarrow \mathcal{H}_2$. The split variational inequality problem (in short, SVIP) introduced first by Censor et al. [\[10\]](#page-19-0) can be formulated as

Find
$$
x^* \in C : \langle F_1(x^*), x - x^* \rangle \ge 0 \ \forall x \in C
$$
 (1)

such that

$$
y^* = Ax^* \in Q : \langle F_2(y^*), y - y^* \rangle \ge 0 \ \forall y \in Q. \tag{2}
$$

If the solution sets of variational inequality problems [\(1\)](#page-0-0) and [\(2\)](#page-0-1) are denoted by $Sol(C, F_1)$ and $Sol(Q, F_2)$, respectively, then the SVIP becomes the problem of finding *x*[∗] ∈ Sol*(C, F*1*)* such that *Ax*[∗] ∈ Sol*(Q, F*2*)*. If we consider only the problem [\(1\)](#page-0-0) then [\(1\)](#page-0-0) is a classical variational inequality problem, which was studied by many authors, for example $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$ $[2, 4, 14, 17, 19, 21, 29]$. A special case of the SVIP, when

⊠ Tran Viet Anh [tranvietanh@outlook.com](mailto: tranvietanh@outlook.com)

¹ Department of Scientific Fundamentals, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

 $F_1 = F_2 = 0$, is the split feasibility problem (SFP), which has been studied intensively and used to model the intensity-modulated radiation therapy $[11-13, 24]$ $[11-13, 24]$ $[11-13, 24]$ and further development of this topic [\[5](#page-19-10)[–9,](#page-19-11) [24,](#page-19-9) [26\]](#page-20-1).

The SVIP was introduced and investigated by Censor et al. [\[10\]](#page-19-0) in the case when F_1 and F_2 are inverse strongly monotone mappings. Specifically, they proposed the following iteration method

$$
\begin{cases} x^0 \in \mathcal{H}_1 \text{ chosen arbitrarily,} \\ x^{k+1} = P_C^{F_1,\lambda}(x^k + \gamma A^*(P_Q^{F_2,\lambda} - I)(Ax^k)) \quad \forall k \ge 0, \end{cases}
$$

where F_1 is α_1 -inverse strongly monotone on \mathcal{H}_1 , F_2 is α_2 -inverse strongly monotone on \mathcal{H}_2 , γ \in $\left(0, \frac{1}{\|A\|}\right)$ $||A||^2$ $\left(\begin{array}{c} 0, 0 \leq \lambda \leq 2 \min\{\alpha_1, \alpha_2\} \text{ and } P_C^{F_1,\lambda} \text{ and } P_Q^{F_2,\lambda} \text{ and for } \end{array} \right)$ $P_C(I - \lambda F_1)$ and $P_Q(I - \lambda F_2)$, respectively. They proved that the sequence $\{x^k\}$ converges weakly to a solution of the split variational inequality problem, provided that the solution set of the SVIP is nonempty.

In this paper, we suppose that $\Phi : C \longrightarrow \mathcal{H}_1$ is β -strongly monotone and *L*-Lipschitz continuous on *C*, $F: C \longrightarrow H_1$ and $G: Q \longrightarrow H_2$ be pseudomonotone mappings. Our main purpose is to investigate the following bilevel split variational inequality problem (BSVIP)

Find
$$
x^* \in \Omega
$$
 such that $\langle \Phi(x^*), x - x^* \rangle \ge 0 \ \forall x \in \Omega$, $(BSVIP)$

where $\Omega = \{x^* \in Sol(C, F) : Ax^* \in Sol(Q, G)\}\)$. Here, *A* is a bounded linear operator between \mathcal{H}_1 and \mathcal{H}_2 .

The remaining part of the paper is organized as follows. In Section [2,](#page-1-0) we collect some basic definitions and preliminary results that are needed. Section [3](#page-3-0) deals with the algorithm and its convergence analysis. Finally, in Section [4,](#page-16-0) we illustrate the proposed algorithm by considering some preliminary computational results and experiments.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H . We denote the strong convergence and the weak convergence of a sequence $\{x^k\}$ to *x* in H by $x^k \longrightarrow x$ and $x^k \rightharpoonup x$, respectively. By P_C , we denote the metric projection onto *C*. Namely, for each $x \in \mathcal{H}$, $P_C(x)$ is the unique element in *C* such that

$$
||x - P_C(x)|| \le ||x - y|| \quad \forall y \in C.
$$

Some important properties of the projection operator P_C are gathered in the following lemma.

Lemma 1 ([\[18\]](#page-19-12))

(i) For given $x \in \mathcal{H}$ and $y \in C$, $y = P_C(x)$ *if and only if*

 $\langle x - y, z - y \rangle \leq 0 \quad \forall z \in C.$

 (iii) P_C *is firmly nonexpansive, that is,*

$$
||P_C(x) - P_C(y)||^2 \le \langle P_C(x) - P_C(y), x - y \rangle \ \forall x, y \in \mathcal{H}.
$$

Consequently, PC is nonexpansive, i.e.,

$$
||P_C(x) - P_C(y)|| \le ||x - y|| \quad \forall x, y \in \mathcal{H}.
$$

(iii) For all $x \in \mathcal{H}$ *and* $y \in C$ *, we have*

$$
||P_C(x) - y||^2 \le ||x - y||^2 - ||P_C(x) - x||^2.
$$

Let us also recall some well-known definitions, which will be used in this paper.

Let \mathcal{H}_1 and \mathcal{H}_2 be two Hilbert spaces and let $A : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ be a bounded linear operator. The linear operator $A^* : \mathcal{H}_2 \longrightarrow \mathcal{H}_1$ with the property

$$
\langle A(x), y \rangle = \langle x, A^*(y) \rangle
$$

for all $x \in \mathcal{H}_1$ and $y \in \mathcal{H}_2$, is called the adjoint operator.

The adjoint operator of a bounded linear operator *A* on a Hilbert space always exists and is uniquely determined. Futhermore, *A*∗ is a bounded linear operator and $||A^*|| = ||A||.$

The following definitions are commonly used in the variational inequality theory

Definition 1 ([\[15,](#page-19-13) [20,](#page-19-14) [23\]](#page-19-15))

A mapping $\phi: C \longrightarrow \mathcal{H}$ is said to be

(i) β-strongly monotone on *C* if there exists *β >* 0 such that

$$
\langle \phi(x) - \phi(y), x - y \rangle \ge \beta \|x - y\|^2 \quad \forall x, y \in C;
$$

(ii) L-Lipschitz continuous on *C* if

$$
\|\phi(x) - \phi(y)\| \le L\|x - y\| \,\forall x, y \in C;
$$

(iii) monotone on *C* if

$$
\langle \phi(x) - \phi(y), x - y \rangle \ge 0 \quad \forall x, y \in C;
$$

(iv) pseudomonotone on *C* if

$$
\langle \phi(y), x - y \rangle \ge 0 \Longrightarrow \langle \phi(x), x - y \rangle \ge 0 \quad \forall x, y \in C.
$$

The next lemmas will be used for proving the convergence of the proposed algorithm described below.

Lemma 2 ([\[22,](#page-19-16) Remark 4.4]) Let $\{a_n\}$ be a sequence of nonnegative real numbers. *Suppose that for any integer m, there exists an integer p such that* $p \ge m$ *and* $a_p \le a_{p+1}$ *. Let* n_0 *be an integer such that* $a_{n_0} \le a_{n_0+1}$ *and define, for all integer* $n \geq n_0$ *, by*

$$
\tau(n) = \max\{k \in \mathbb{N} : n_0 \leq k \leq n, a_k \leq a_{k+1}\}.
$$

Then, $\{\tau(n)\}_{n \ge n_0}$ *is a nondecreasing sequence satisfying* $\lim_{n \to \infty} \tau(n) = \infty$ *and the following inequalities hold true:*

$$
a_{\tau(n)} \leq a_{\tau(n)+1}, \ a_n \leq a_{\tau(n)+1} \ \forall n \geq n_0.
$$

Lemma 3 ([\[27,](#page-20-2) Lemma 2.5]) *Assume* {*an*} *is a sequence of nonnegative real numbers satisfying the condition*

$$
a_{n+1} \le (1 - \alpha_n)a_n + \alpha_n \xi_n, \ \ \forall n \ge 0,
$$

where $\{\alpha_n\}$ *is a sequence in* $(0, 1)$ *and* $\{\xi_n\}$ *is a sequence in* R *such that*

$$
(i) \quad \sum_{n=0}^{\infty} \alpha_n = \infty;
$$

(ii) $\lim_{n \to \infty} \sup_{n \to \infty} \xi_n \leq 0.$ $\lim_{n \to \infty} a_n = 0.$

3 The algorithm and convergence analysis

In this section, we propose a strong convergence algorithm for solving BSVIP by using the linesearch technique for an equilibrium problem [\[25\]](#page-19-17). The linesearch technique has been used widely in descent methods for equilibrium problems as well as for variational inequalities in order to avoid the Lipschitz continuity assumption [\[3,](#page-19-18) [16,](#page-19-19) [17,](#page-19-4) [20,](#page-19-14) [25\]](#page-19-17). We impose the following assumptions on the mappings *F* and *G* associated with the problem *(BSV IP)*.

 (A_1) : $F: C \longrightarrow H_1$ be pseudomonotone on *C*. (h_2) : $\lim_{k \to \infty} F(x^k) = F(\overline{x})$ for every sequence $\{x^k\}$ converging weakly to \overline{x} . (A_3) : $G: Q \longrightarrow H_2$ be pseudomonotone on *Q*. *(A*₄): $\lim_{k \to \infty} G(u^k) = G(\overline{u})$ for every sequence $\{u^k\}$ converging weakly to \overline{u} .

Let us make some remarks on the above assumptions.

- i) Assumptions $(A_1) (A_4)$ are widely used in the theory of VIPs.
ii) In finite dimensional spaces, conditions (A_3) and (A_5) become t
- In finite dimensional spaces, conditions (A_3) and (A_5) become the conditions for the continuity of F_1, F_2 .
- iii) If *F* and *G* satisfy the properties (A_1) , (A_2) and (A_3) , (A_4) respectively, then by $[1, \text{Lemma 6}],$ $[1, \text{Lemma 6}],$ the solution sets $\text{Sol}(C, F)$ and $\text{Sol}(Q, G)$ of the variational inequalities $VIP(C, F)$ and $VIP(Q, G)$ are closed and convex. Therefore, the solution set $\Omega = \{x^* \in Sol(C, F) : Ax^* \in Sol(Q, G)\}\$ of the SVIP is also closed and convex.
- iii) If $\{x^k\}$ ⊂ *C* is bounded then $\{F(x^k)\}\$ is bounded. Indeed, suppose that ${F(x^k)}$ is unbounded, that is, there exists a subsequence ${x^{k_i}}$ of ${x^k}$ such that $\lim_{i \to \infty}$ $\|F(x^{k_i})\| = +\infty$. Since $\{x^{k_i}\}\$ is bounded then there exists a subsequence $\{x^{k_j}\}\$ of $\{x^{k_j}\}\$ such that $x^{k_j} \rightharpoonup \overline{x}$. Therefore, $\lim_{k \to \infty} F(x^{k_{i_j}}) = F(\overline{x})$.

Thus, $\lim_{k \to \infty} ||F(x^{k_{i_j}})|| = ||F(\bar{x})||$. Since $\lim_{i \to \infty} ||F(x^{k_i})|| = +\infty$, we have $\lim_{j \to \infty}$ $|| F(x^{k_j}) || = +\infty$, a contradiction. Therefore, {*F*(*x*^{*k*})} is bounded.

Our algorithm can be expressed as follows.

The following theorem shows validity and convergence of the algorithm.

Theorem 1 *Suppose that the assumptions* $(A_1) - (A_5)$ *and* $\Omega \neq \emptyset$ *hold. Then, the sequence* {*xk*} *in Algorithm 1 converges strongly to the unique solution of the bilevel split variational inequality problem (BSV IP).*

Proof Since $\Omega \neq \emptyset$, problem *(BSVIP)* has a unique solution, denoted by *x*^{*}. In particular, $x^* \in \Omega$, i.e., $x^* \in Sol(C, F) \subset C$, $Ax^* \in Sol(Q, G) \subset Q$. We will prove that ${x^k}$ converges in norm to $x[*]$. We divide the proof into several steps.

Step 1. The linesearchs corresponding to u^k , v^k (Step 3) and \overline{u}^k , \overline{v}^k (Step 6) are well defined.

If $v^k \neq u^k$ and suppose, to get a contradiction, that the following inequality holds for every nonnegative integer *n*

$$
\langle G(w^{k,n}), u^k - v^k \rangle < \frac{1}{2} \|u^k - v^k\|^2,
$$

where $w^{k,n} = (1 - \gamma^n)u^k + \gamma^n v^k$. Taking the limit as $n \longrightarrow \infty$, from $w^{k,n} \longrightarrow u^k$ as $n \longrightarrow \infty$, it follows that

$$
\langle G(u^k), u^k - v^k \rangle \le \frac{1}{2} \| u^k - v^k \|^2.
$$
 (3)

Since $v^k = P_O(u^k - G(u^k))$, we have

$$
\langle u^k - G(u^k) - v^k, u - v^k \rangle \le 0 \ \forall u \in Q.
$$

Choose $u = u^k \in Q$, we get

$$
\langle G(u^k), u^k - v^k \rangle \ge ||u^k - v^k||^2.
$$

Combining with [\(3\)](#page-4-0) yields

$$
||u^k - v^k||^2 \le \frac{||u^k - v^k||^2}{2}
$$

which contradicts to the fact that $u^k \neq v^k$.

Therefore, the linesearch corresponding to u^k and v^k (Step 3) is well defined.

By proving in the same way, we find that the linesearch corresponding to \overline{u}^k and \overline{v}^k (Step 6) is also well defined.

Step 2. (a) If
$$
v^k \neq u^k
$$
 for some $k \ge 0$, then $G(w^k) \neq 0$, $\sigma_k > 0$ and
\n
$$
||t^k - Ax^*||^2 \le ||u^k - Ax^*||^2 - (\sigma_k ||G(w^k)||)^2.
$$
\n(b) If $\overline{v}^k \neq \overline{u}^k$ for some $k \ge 0$, then $F(\overline{w}^k) \neq 0$, $\overline{\sigma}_k > 0$ and
\n
$$
||y^k - x^*||^2 \le ||\overline{u}^k - x^*||^2 - (\overline{\sigma}_k ||F(\overline{w}^k)||)^2.
$$

 $\textcircled{2}$ Springer

Algorithm 1

Step 0. Choose *η* ∈ (0, 1), *γ* ∈ (0, 1), 0 < μ < $\frac{2\beta}{L^2}$, { δ_k } ⊂ [<u>δ</u>, $\overline{\delta}$] ⊂ $(0, \frac{1}{\|A\|^2})$ $||A||^2 + 1$, ${\lambda_k} \subset (0, 1), \lim_{k \to \infty} \lambda_k = \lambda \in (0, 1), {\{\alpha_k\}} \subset (0, 1), \lim_{k \to \infty} \alpha_k = 0, \sum_{k=0}^{\infty}$ $\alpha_k = \infty$.

Step 1. Let $x^0 \in C$. Set $k := 0$. **Step 2.** Compute $u^k = P_Q(Ax^k)$ and

$$
v^k = P_Q(u^k - G(u^k)).
$$

If $v^k = u^k$, then set $t^k = u^k$ and go to **Step 5**. Otherwise, go to **Step 3**. **Step 3** Find n_k as the smallest nonnegative integer n such that

$$
w^{k,n} = (1 - \gamma^n)u^k + \gamma^n v^k,
$$

$$
\langle G(w^{k,n}), u^k - v^k \rangle \ge \frac{1}{2} ||u^k - v^k||^2.
$$

Set $\gamma_k = \gamma^{n_k}$, $w^k = w^{k, n_k}$. **Step 4** Compute

$$
t^k = P_Q(u^k - \sigma_k G(w^k))
$$

where

$$
\sigma_k = \frac{\langle G(w^k), u^k - w^k \rangle}{\|G(w^k)\|^2}.
$$

Step 5 Compute

$$
\overline{u}^k = P_C(x^k + \delta_k A^*(t^k - Ax^k))
$$

and

$$
\overline{v}^k = P_C(\overline{u}^k - F(\overline{u}^k)).
$$

If $\overline{v}^k = \overline{u}^k$, then set $y^k = \overline{u}^k$ and go to **Step 8**. Otherwise, go to **Step 6**. **Step 6** Find m_k as the smallest nonnegative integer m such that

$$
\overline{w}^{k,m} = (1 - \eta^m)\overline{u}^k + \eta^m \overline{v}^k,
$$

$$
\langle F(\overline{w}^{k,m}), \overline{u}^k - \overline{v}^k \rangle \ge \frac{1}{2} ||\overline{u}^k - \overline{v}^k||^2.
$$

Set $\eta_k = \eta^{m_k}, \overline{w}^k = \overline{w}^{k, m_k}.$ **Step 7** Compute

$$
y^k = P_C(\overline{u}^k - \overline{\sigma}_k F(\overline{w}^k))
$$

where

$$
\overline{\sigma}_k = \frac{\langle F(\overline{w}^k), \overline{u}^k - \overline{w}^k \rangle}{\|F(\overline{w}^k)\|^2}.
$$

Step 8 Compute $z^k = (1 - \lambda_k)\overline{u}^k + \lambda_k y^k$ and $x^{k+1} = P_C(z^k - \alpha_k \mu \Phi(z^k))$. **Step 9** Set $k := k + 1$, and go to **Step 2**.

Indeed, since $v^k \neq u^k$ then

$$
\langle G(w^k), u^k - w^k \rangle = \gamma^n \langle G(w^k), u^k - v^k \rangle \ge \frac{\gamma^n \| u^k - v^k \|^2}{2} > 0,
$$

which implies

$$
G(w^{k}) \neq 0, \quad \sigma_{k} = \frac{\langle G(w^{k}), u^{k} - w^{k} \rangle}{\|G(w^{k})\|^{2}} > 0.
$$

From $Ax^* \in Sol(Q, G)$ and $w^k \in Q$, we have $\langle G(Ax^*) , w^k - Ax^* \rangle \ge 0$. Using the pseudomonotonicity of *G*, we get

$$
\langle G(w^k), w^k - Ax^* \rangle \ge 0. \tag{4}
$$

It follows from [\(4\)](#page-6-0) that

$$
||t^{k} - Ax^{*}||^{2} = ||P_{Q}(u^{k} - \sigma_{k}G(w^{k})) - P_{Q}(Ax^{*})||^{2}
$$

\n
$$
\leq ||u^{k} - \sigma_{k}G(w^{k}) - Ax^{*}||^{2}
$$

\n
$$
= ||u^{k} - Ax^{*}||^{2} + \sigma_{k}^{2}||G(w^{k})||^{2} - 2\sigma_{k}\langle G(w^{k}), u^{k} - Ax^{*} \rangle
$$

\n
$$
\leq ||u^{k} - Ax^{*}||^{2} + \sigma_{k}^{2}||G(w^{k})||^{2} - 2\sigma_{k}\langle G(w^{k}), u^{k} - w^{k} \rangle
$$

\n
$$
= ||u^{k} - Ax^{*}||^{2} + \sigma_{k}^{2}||G(w^{k})||^{2} - 2\sigma_{k}^{2}||G(w^{k})||^{2}
$$

\n
$$
= ||u^{k} - Ax^{*}||^{2} - (\sigma_{k}||G(w^{k})||)^{2}.
$$

By using the same argument as in the proof of Step 2 (a), we get Step 2 (b).

Step 3. For all $k \geq 0$, we have

$$
\|\overline{u}^{k} - x^{*}\|^{2} \leq \|x^{k} - x^{*}\|^{2} - \delta_{k}(1 - \delta_{k} \|A\|^{2})\|t^{k} - Ax^{k}\|^{2} - \delta_{k} \|u^{k} - Ax^{k}\|^{2}.
$$

From Step 2 (a) and the fact that $t^k = u^k$ if $v^k = u^k$, we have

$$
||t^k - Ax^*|| \le ||u^k - Ax^*||. \tag{5}
$$

From the property of the projection mapping (Lemma 1 (iii)), we get

$$
||u^{k} - Ax^{*}||^{2} = ||P_{Q}(Ax^{k}) - Ax^{*}||^{2}
$$

\n
$$
\leq ||Ax^{k} - Ax^{*}||^{2} - ||P_{Q}(Ax^{k}) - Ax^{k}||^{2}
$$

\n
$$
= ||Ax^{k} - Ax^{*}||^{2} - ||u^{k} - Ax^{k}||^{2}. \tag{6}
$$

It follows from (5) and (6) that

$$
||t^{k} - Ax^{*}||^{2} - ||Ax^{k} - Ax^{*}||^{2} \le -||u^{k} - Ax^{k}||^{2}.
$$
 (7)

Then, from [\(7\)](#page-6-3), it follows that

$$
\langle A(x^{k} - x^{*}), t^{k} - Ax^{k} \rangle = \langle t^{k} - Ax^{*}, t^{k} - Ax^{k} \rangle - \|t^{k} - Ax^{k}\|^{2}
$$

=
$$
\frac{1}{2} \Big[(\|t^{k} - Ax^{*}\|^{2} - \|Ax^{k} - Ax^{*}\|^{2}) - \|t^{k} - Ax^{k}\|^{2} \Big]
$$

$$
\leq \frac{1}{2} (-\|u^{k} - Ax^{k}\|^{2} - \|t^{k} - Ax^{k}\|^{2}).
$$

Since $\delta_k > 0$, from the above inequality, we have

$$
2\delta_k \langle A(x^k - x^*), t^k - Ax^k \rangle \le -\delta_k \|u^k - Ax^k\|^2 - \delta_k \|t^k - Ax^k\|^2. \tag{8}
$$

 $\hat{\mathfrak{D}}$ Springer

Using the nonexpansiveness of P_C and [\(8\)](#page-6-4), we get

$$
\begin{split} \|\overline{u}^{k} - x^{*}\|^{2} &= \|P_{C}(x^{k} + \delta_{k}A^{*}(t^{k} - Ax^{k})) - P_{C}(x^{*})\|^{2} \\ &\leq \|(x^{k} - x^{*}) + \delta_{k}A^{*}(t^{k} - Ax^{k})\|^{2} \\ &= \|x^{k} - x^{*}\|^{2} + \delta_{k}^{2} \|A^{*}(t^{k} - Ax^{k})\|^{2} + 2\delta_{k} \langle x^{k} - x^{*}, A^{*}(t^{k} - Ax^{k})\rangle \\ &\leq \|x^{k} - x^{*}\|^{2} + \delta_{k}^{2} \|A^{*}\|^{2} \|t^{k} - Ax^{k}\|^{2} + 2\delta_{k} \langle A(x^{k} - x^{*}), t^{k} - Ax^{k}\rangle \\ &\leq \|x^{k} - x^{*}\|^{2} + \delta_{k}^{2} \|A\|^{2} \|t^{k} - Ax^{k}\|^{2} - \delta_{k} \|u^{k} - Ax^{k}\|^{2} - \delta_{k} \|t^{k} - Ax^{k}\|^{2} \\ &= \|x^{k} - x^{*}\|^{2} - \delta_{k} (1 - \delta_{k} \|A\|^{2}) \|t^{k} - Ax^{k}\|^{2} - \delta_{k} \|u^{k} - Ax^{k}\|^{2} .\end{split}
$$

Step 4. For all $k \geq 0$, we have

$$
||z^k - x^*||^2 \le ||\overline{u}^k - x^*||^2 - \lambda_k (1 - \lambda_k) ||y^k - \overline{u}^k||^2.
$$

Indeed, from $y^k = \overline{u}^k$ if $\overline{v}^k = \overline{u}^k$ and Step 2 (b), we have

$$
||y^k - x^*|| \le ||\overline{u}^k - x^*||. \tag{9}
$$

From [\(9\)](#page-7-0), we get

$$
||z^{k} - x^{*}||^{2} = ||(1 - \lambda_{k})\overline{u}^{k} + \lambda_{k}y^{k} - x^{*}||^{2}
$$

\n
$$
= ||(1 - \lambda_{k})(\overline{u}^{k} - x^{*}) + \lambda_{k}(y^{k} - x^{*})||^{2}
$$

\n
$$
= (1 - \lambda_{k})||\overline{u}^{k} - x^{*}||^{2} + \lambda_{k}||y^{k} - x^{*}||^{2} - \lambda_{k}(1 - \lambda_{k})||y^{k} - \overline{u}^{k}||^{2}
$$

\n
$$
\leq (1 - \lambda_{k})||\overline{u}^{k} - x^{*}||^{2} + \lambda_{k}||\overline{u}^{k} - x^{*}||^{2} - \lambda_{k}(1 - \lambda_{k})||y^{k} - \overline{u}^{k}||^{2}
$$

\n
$$
= ||\overline{u}^{k} - x^{*}||^{2} - \lambda_{k}(1 - \lambda_{k})||y^{k} - \overline{u}^{k}||^{2}.
$$

Step 5. For all $k \geq 0$, we have

$$
||z^{k} - \alpha_{k}\mu\Phi(z^{k}) - (x^{*} - \alpha_{k}\mu\Phi(x^{*}))|| \leq (1 - \alpha_{k}\tau)||z^{k} - x^{*}||,
$$

where

$$
\tau = 1 - \sqrt{1 - \mu(2\beta - \mu L^2)} \in (0, 1].
$$

It is clear that

$$
||z^{k} - \alpha_{k}\mu\Phi(z^{k}) - (x^{*} - \alpha_{k}\mu\Phi(x^{*}))|| = ||(1 - \alpha_{k})(z^{k} - x^{*})
$$

+
$$
\alpha_{k}[z^{k} - x^{*} - \mu(\Phi(z^{k}) - \Phi(x^{*}))]||
$$

$$
\leq (1 - \alpha_{k})||z^{k} - x^{*}|| + \alpha_{k}||z^{k}
$$

-
$$
x^{*} - \mu(\Phi(z^{k}) - \Phi(x^{*}))||.
$$
 (10)

Using β -strongly monotonicity and *L*-Lipschitz continuity on *C* of Φ , we get

$$
||z^{k} - x^{*} - \mu(\Phi(z^{k}) - \Phi(x^{*}))||^{2} = ||z^{k} - x^{*}||^{2} - 2\mu\langle z^{k} - x^{*}, \Phi(z^{k}) - \Phi(x^{*})\rangle
$$

+ $\mu^{2} ||\Phi(z^{k}) - \Phi(x^{*})||^{2}$

$$
\leq ||z^{k} - x^{*}||^{2} - 2\mu\beta ||z^{k} - x^{*}||^{2} + \mu^{2}L^{2} ||z^{k} - x^{*}||^{2}
$$

= $(1 - 2\mu\beta + \mu^{2}L^{2}) ||z^{k} - x^{*}||^{2}.$ (11)

2 Springer

Combining (10) and (11) , we obtain

$$
\|z^{k} - \alpha_{k}\mu\Phi(z^{k}) - (x^{*} - \alpha_{k}\mu\Phi(x^{*}))\| \le (1 - \alpha_{k})\|z^{k} - x^{*}\| + \alpha_{k}\sqrt{1 - \mu(2\beta - \mu L^{2})}\|z^{k} - x^{*}\|
$$

= $(1 - \alpha_{k}\tau)\|z^{k} - x^{*}\|$.

Step 6. We show that the sequence $\{x^k\}$, $\{\overline{u}^k\}$, $\{z^k\}$ and $\{\Phi(z^k)\}$ are bounded. Since $\{\delta_k\} \subset [\underline{\delta}, \overline{\delta}] \subset \left(0, \frac{1}{\|A\|^2}\right)$ $||A||^2 + 1$) and $\lambda_k \in (0, 1)$, by combining these with Step 3 and Step 4, we obtain

$$
||z^{k} - x^{*}|| \le ||\overline{u}^{k} - x^{*}|| \le ||x^{k} - x^{*}||. \tag{12}
$$

Using the nonexpansiveness property of P_C , Step 5 and [\(12\)](#page-8-0), we find

$$
||x^{k+1} - x^*|| = ||P_C(z^k - \alpha_k \mu \Phi(z^k)) - P_C(x^*)||
$$

\n
$$
\leq ||z^k - \alpha_k \mu \Phi(z^k) - x^*||
$$

\n
$$
= ||z^k - \alpha_k \mu \Phi(z^k) - (x^* - \alpha_k \mu \Phi(x^*)) - \alpha_k \mu \Phi(x^*)||
$$

\n
$$
\leq ||z^k - \alpha_k \mu \Phi(z^k) - (x^* - \alpha_k \mu \Phi(x^*))|| + \alpha_k \mu ||\Phi(x^*)||
$$

\n
$$
\leq (1 - \alpha_k \tau) ||z^k - x^*|| + \alpha_k \mu ||\Phi(x^*)||
$$

\n
$$
\leq (1 - \alpha_k \tau) ||x^k - x^*|| + \alpha_k \mu ||\Phi(x^*)||.
$$
 (13)

So, by induction, we obtain, for every $k \geq 0$, that

$$
||x^{k} - x^{*}|| \le \max\left\{ ||x^{0} - x^{*}||, \frac{\mu ||\Phi(x^{*})||}{\tau} \right\}.
$$

Hence, the sequence $\{x^k\}$ is bounded and so are the sequences $\{\overline{u}^k\}$, $\{z^k\}$ and $\{\Phi(z^k)\}$ thank to (12) and the Lipschitz continuity of Φ .

Step 7. For all $k \geq 0$, we have

$$
||x^{k+1} - x^*||^2 \le (1 - \alpha_k \tau) ||z^k - x^*||^2 + 2\alpha_k \mu \langle \Phi(x^*), x^* - z^k + \alpha_k \mu \Phi(z^k) \rangle.
$$

Using the inequality

$$
||x - y||^2 \le ||x||^2 - 2\langle y, x - y \rangle \quad \forall x, y \in \mathcal{H}_1,
$$

and Step 5, we obtain successively

$$
||x^{k+1} - x^*||^2 = ||P_C(z^k - \alpha_k \mu \Phi(z^k)) - P_C(x^*)||^2
$$

\n
$$
\leq ||z^k - \alpha_k \mu \Phi(z^k) - x^*||^2
$$

\n
$$
= ||z^k - \alpha_k \mu \Phi(z^k) - (x^* - \alpha_k \mu \Phi(x^*)) - \alpha_k \mu \Phi(x^*)||^2
$$

\n
$$
\leq ||z^k - \alpha_k \mu \Phi(z^k) - (x^* - \alpha_k \mu \Phi(x^*))||^2 - 2\alpha_k \mu \langle \Phi(x^*), z^k - \alpha_k \mu \Phi(z^k) - x^* \rangle
$$

\n
$$
\leq (1 - \alpha_k \tau)^2 ||z^k - x^*||^2 + 2\alpha_k \mu \langle \Phi(x^*), x^* - z^k + \alpha_k \mu \Phi(z^k) \rangle
$$

\n
$$
\leq (1 - \alpha_k \tau) ||z^k - x^*||^2 + 2\alpha_k \mu \langle \Phi(x^*), x^* - z^k + \alpha_k \mu \Phi(z^k) \rangle.
$$

Step 8. (a) Suppose that $\{u^{k_i}\}$ is a subsequence of $\{u^k\}$ converging weakly to some \overline{u} and $||t^{k_i} - u^{k_i}|| \longrightarrow 0$ as $i \longrightarrow \infty$ then $\overline{u} \in Sol(O, G)$.

(b) Suppose that $\{\overline{u}^{k_i}\}$ is a subsequence of $\{\overline{u}^k\}$ converging weakly to some \widetilde{u} and $\|\widetilde{v}^{k_i} - \overline{u}^{k_i}\| \longrightarrow 0$ as $i \longrightarrow \infty$ then $\widetilde{u} \in \text{Sol}(C, F)$.

First, we see that since $\{u^k\} \subset Q$, $u^{k_i} \to \overline{u}$ and Q is closed and convex, it is also weakly closed, and thus $\overline{u} \in Q$. Since $u^{k_i} \rightharpoonup \overline{u}$, we obtain $\{u^{k_i}\}\$ is bounded. From [\(5\)](#page-6-1), we get $\{t^{k_i}\}\$ is also bounded.

Case *A*. Suppose that there exists a subsequence of $\{u^{k_i}\}$, denoted again by $\{u^{k_i}\}$ such that $t^{k_i} = u^{k_i}$ for all *i*. If $v^{k_i} \neq u^{k_i}$ then from Step 2, we have $||t^{k_i} - Ax^*||$ < *uki* − *Ax*^{*}*l*. This contradicts the fact that $t^{k_i} = u^{k_i}$. Thus, $v^{k_i} = u^{k_i}$ or $P_O(u^{k_i} - u^{k_i})$ $G(u^{k_i}) = u^{k_i}$ for all *i*. Then, by Lemma 1, we have

$$
\langle G(u^{k_i}), v - u^{k_i} \rangle \ge 0 \ \forall v \in \mathcal{Q}.\tag{14}
$$

From the weak convergence of the sequence $\{u^{k_i}\}\$ to \overline{u} , we get $\lim_{i\to\infty} G(u^{k_i}) = G(\overline{u})$. Thus, from (14) , we have

$$
\langle G(\overline{u}), v - \overline{u} \rangle \ge 0 \ \forall v \in Q,
$$

i.e. $\overline{u} \in Sol(O, G)$.

Case *B*. Suppose that there exists a subsequence of $\{u^{k_i}\}$, denoted again by $\{u^{k_i}\}$ such that $t^{k_i} \neq u^{k_i}$ for all *i*. Let $\{n_i\}$ be the sequence of the smallest nonnegative integers such that, for all *i*

$$
\langle G((1-\gamma^{n_i})u^{k_i}+\gamma^{n_i}v^{k_i}), u^{k_i}-v^{k_i}\rangle \geq \frac{\|u^{k_i}-v^{k_i}\|^2}{2},
$$

where $v^{k_i} = P_O(u^{k_i} - G(u^{k_i}))$, $w^{k_i} = (1 - \gamma_{k_i})u^{k_i} + \gamma_{k_i}v^{k_i}$, $\gamma_{k_i} = \gamma^{n_i}$. From Step 2 (a), we get

$$
||t^{k_i}-Ax^*||^2\leq ||u^{k_i}-Ax^*||^2-(\sigma_{k_i}||G(w^{k_i})||)^2,
$$

where

$$
\sigma_{k_i} = \frac{\langle G(w^{k_i}), u^{k_i} - w^{k_i} \rangle}{\|G(w^{k_i})\|^2}.
$$

Therefore,

$$
(\sigma_{k_i} || G(w^{k_i}) ||)^2 \le ||u^{k_i} - Ax^*||^2 - ||t^{k_i} - Ax^*||^2
$$

\n
$$
\le (||u^{k_i} - Ax^*|| + ||t^{k_i} - Ax^*||)||u^{k_i} - t^{k_i}||.
$$

This inequality together with the boundedness of two sequences $\{u^{k_i}\}\$, $\{t^{k_i}\}\$ and $\|t^{k_i}$ u^{k_i} $\| \longrightarrow 0$ imply

$$
\lim_{i \to \infty} \sigma_{k_i} \| G(w^{k_i}) \| = 0. \tag{15}
$$

Since $\{u^{k_i}\}\subset O$, then

$$
||v^{k_i} - u^{k_i}|| = ||P_Q(u^{k_i} - G(u^{k_i})) - P_Q(u^{k_i})||
$$

\n
$$
\leq ||G(u^{k_i})||.
$$

The above inequality together with the boundedness of $\{u^{k_i}\}\$ and $\{G(u^{k_i})\}\$ imply that $\{v^{k_i}\}$ is bounded. We also imply that $\{w^{k_i}\}$ is bounded. Therefore, $\{G(w^{k_i})\}$ is bounded. So from [\(15\)](#page-9-1) and $\langle G(w^{k_i}), u^{k_i} - w^{k_i} \rangle = \sigma_{k_i} ||G(w^{k_i})||^2$, we get

$$
\lim_{i \to \infty} \langle G(w^{k_i}), u^{k_i} - w^{k_i} \rangle = 0. \tag{16}
$$

 \mathcal{D} Springer

Since $w^{k_i} = (1 - \gamma_k)u^{k_i} + \gamma_k v^{k_i}$, we have

$$
\langle G(w^{k_i}), u^{k_i} - w^{k_i} \rangle = \gamma_{k_i} \langle G(w^{k_i}), u^{k_i} - v^{k_i} \rangle
$$

$$
\geq \frac{\gamma_{k_i} ||u^{k_i} - v^{k_i}||^2}{2}.
$$
 (17)

From (16) and (17) , we have

$$
\lim_{i \to \infty} \gamma_{k_i} \| u^{k_i} - v^{k_i} \|^2 = 0. \tag{18}
$$

From

$$
v^{k_i} = P_Q(u^{k_i} - G(u^{k_i})),
$$

we have

$$
\langle u^{k_i}-G(u^{k_i})-v^{k_i},v-v^{k_i}\rangle\leq 0\ \forall v\in Q.
$$

Therefore

$$
\langle G(u^{k_i}), v - v^{k_i} \rangle \ge \langle u^{k_i} - v^{k_i}, v - v^{k_i} \rangle \ \forall v \in \mathcal{Q}.
$$
 (19)

We now consider two distinct cases:

Case *B*.1. lim sup $\gamma_{k_i} > 0$. In this case, there exist $\bar{\gamma}$ and a subsequence of $\{\gamma_{k_i}\}\right\}$, denoted again by $\{\gamma_{k_i}\}\$ such that $\gamma_{k_i} \longrightarrow \overline{\gamma}$. Then, by [\(18\)](#page-10-1), we obtain that $\lim_{i \to \infty}$ $||u^{k_i} - v^{k_i}|| = 0$. Since $u^{k_i} \to \overline{u}$, then $v^{k_i} \to \overline{u}$.

Applying the Cauchy-Schwarz inequality, we get

$$
|\langle u^{k_i} - v^{k_i}, v - v^{k_i} \rangle| \le ||u^{k_i} - v^{k_i}|| \cdot ||v - v^{k_i}||. \tag{20}
$$

Since $||u^{k_i} - v^{k_i}|| \longrightarrow 0$ and the sequence $\{v^{k_i}\}\$ is bounded, from [\(20\)](#page-10-2), it ensures that $\lim_{i \to \infty} \langle u^{k_i} - v^{k_i}, v - v^{k_i} \rangle = 0$. So, using [\(19\)](#page-10-3), the weak convergence of two sequences $\{u^{k_i}\}, \{v^{k_i}\}\$ to \overline{u} , we get

$$
\langle G(\overline{u}), v - \overline{u} \rangle \ge 0 \ \forall v \in \mathcal{Q},
$$

i.e. $\overline{u} \in Sol(Q, G)$.

Case *B*.2. $\lim_{i \to \infty} \gamma_{k_i} = 0$. From the boundedness of $\{v^{k_i}\}\$, without loss of generality, we may assume that $v^{k_i} \rightharpoonup \overline{v}$ as $i \rightarrow \infty$. Since $\gamma^{m_i} = \gamma_{k_i} \rightharpoonup 0$ as $i \rightarrow \infty$, it follows that $m_i > 1$ for *i* sufficiently large and consequently, that

$$
\langle G(s^{k_i}), u^{k_i} - v^{k_i} \rangle < \frac{\| u^{k_i} - v^{k_i} \|^2}{2},\tag{21}
$$

where

$$
s^{k_i} = (1 - \gamma^{n_i - 1})u^{k_i} + \gamma^{n_i - 1}v^{k_i}.
$$

Choose $v = u^{k_i}$ in [\(19\)](#page-10-3), we have

$$
\langle G(u^{k_i}), u^{k_i} - v^{k_i} \rangle \ge ||u^{k_i} - v^{k_i}||^2. \tag{22}
$$

From (21) and (22) , we have

$$
\langle G(s^{k_i}), u^{k_i} - v^{k_i} \rangle < \frac{1}{2} \langle G(u^{k_i}), u^{k_i} - v^{k_i} \rangle,\tag{23}
$$

 $\textcircled{2}$ Springer

Since $\{u^{k_i}\}\$ and $\{v^{k_i}\}\$ are bounded and $\gamma_{k_i} \longrightarrow 0$, then

$$
\|s^{k_i}-u^{k_i}\|=\frac{\gamma_{k_i}}{\gamma}\|u^{k_i}-v^{k_i}\|\longrightarrow 0.
$$

From $u^{k_i} \rightharpoonup \overline{u}$ and $||s^{k_i} - u^{k_i}|| \rightharpoonup 0$, then we have $s^{k_i} \rightharpoonup \overline{u}$. Since $v^{k_i} \rightharpoonup \overline{v}$, then from (23) , we have

$$
\langle G(\overline{u}), \overline{u}-\overline{v}\rangle \leq \frac{1}{2}\langle G(\overline{u}), \overline{u}-\overline{v}\rangle.
$$

Thus,

$$
\langle G(\overline{u}), \overline{u} - \overline{v} \rangle \le 0. \tag{24}
$$

From (22) , we have

$$
\langle G(u^{k_i}), u^{k_i} - v^{k_i} \rangle \ge 0. \tag{25}
$$

Since $u^{k_i} \rightharpoonup \overline{u}$, $v^{k_i} \rightharpoonup \overline{v}$, from [\(25\)](#page-11-0), we have

$$
\langle G(\overline{u}), \overline{u}-\overline{v}\rangle \geq 0.
$$

Combine with [\(24\)](#page-11-1), we have

$$
\langle G(\overline{u}), \overline{u} - \overline{v} \rangle = 0. \tag{26}
$$

From (26) , we get

$$
\lim_{i \to \infty} \langle G(u^{k_i}), u^{k_i} - v^{k_i} \rangle = \langle G(\overline{u}), \overline{u} - \overline{v} \rangle = 0.
$$

Thus from (22) , we get

$$
\lim_{i \to \infty} \|u^{k_i} - v^{k_i}\| = 0
$$

Since $u^{k_i} \rightharpoonup \overline{u}$, then $v^{k_i} \rightharpoonup \overline{u}$. From $||u^{k_i} - v^{k_i}|| \rightharpoonup 0$ and the boundedness of sequence $\{v^{k_i}\}$, we get $\lim_{i \to \infty} \langle u^{k_i} - v^{k_i}, v - v^{k_i} \rangle = 0$. So, using [\(19\)](#page-10-3) and the weak convergence of two sequences $\{u^{k_i}\}, \{v^{k_i}\}\$ to \overline{u} , we get

$$
\langle G(\overline{u}), v - \overline{u} \rangle \ge 0 \ \forall v \in Q.
$$

i.e. $\overline{u} \in Sol(O, G)$.

By using the same argument as in the proof of Step 8 (a), we get Step 8 (b).

Step 9. We prove that ${x^k}$ converges strongly to the unique solution x^* of the problem *BSV IP*.

Let us consider two cases.

Case 1: There exists k_0 such that the sequence $\{\|x^k - x^*\|\}$ is decreasing for $k \geq k_0$. In this case the limit of $\{\Vert x^k - x^* \Vert\}$ exists. So, it follows from Step 7 and (12) that

$$
(\|x^{k+1} - x^*\|^2 - \|x^k - x^*\|^2) - 2\alpha_k \mu \langle \Phi(x^*), x^* - z^k + \alpha_k \mu \Phi(z^k) \rangle
$$

\n
$$
\le \|z^k - x^*\|^2 - \|x^k - x^*\|^2
$$

\n
$$
\le \|\overline{u}^k - x^*\|^2 - \|x^k - x^*\|^2
$$

\n
$$
\le 0.
$$
\n(27)

Since the limit of $\{ \|x^k - x^*\| \}$ exists, $\lim_{k \to \infty} \alpha_k = 0$ and $\{z^k\}$, $\{\Phi(z^k)\}\$ are bounded, it follows from [\(27\)](#page-11-3) that

$$
\lim_{k \to \infty} (\|z^k - x^*\|^2 - \|x^k - x^*\|^2) = 0,
$$
\n(28)

$$
\lim_{k \to \infty} (\|\overline{u}^k - x^*\|^2 - \|x^k - x^*\|^2) = 0.
$$
 (29)

Thus, from (28) and (29) , we conclude that

$$
\lim_{k \to \infty} (\|\overline{u}^k - x^*\|^2 - \|z^k - x^*\|^2) = 0.
$$
\n(30)

From $\{\delta_k\} \subset [\underline{\delta}, \overline{\delta}] \subset \left(0, \frac{1}{\|A\|^2}\right)$ $||A||^2 + 1$) and Step 3, we obtain

$$
\underline{\delta}(1 - \overline{\delta}||A||^2)||t^k - Ax^k||^2 + \underline{\delta}||u^k - Ax^k||^2 \le ||x^k - x^*||^2 - ||\overline{u}^k - x^*||^2. \tag{31}
$$

From (29) and (31) , it follows that

$$
\lim_{k \to \infty} \|t^k - Ax^k\| = 0, \quad \lim_{k \to \infty} \|u^k - Ax^k\| = 0.
$$
 (32)

From (32) , we have

$$
\lim_{k \to \infty} \|t^k - u^k\| = 0. \tag{33}
$$

Since the projection operator P_C is nonexpansive and $\{x^k\} \subset C$, we can write

$$
||x^{k} - \overline{u}^{k}|| = ||P_{C}(x^{k}) - P_{C}(x^{k} + \delta_{k}A^{*}(t^{k} - Ax^{k}))||
$$

\n
$$
\leq ||x^{k} - x^{k} - \delta_{k}A^{*}(t^{k} - Ax^{k})||
$$

\n
$$
= ||\delta_{k}A^{*}(t^{k} - Ax^{k})||
$$

\n
$$
\leq \delta_{k}||A^{*}|| ||t^{k} - Ax^{k}||
$$

\n
$$
\leq \overline{\delta}||A|| ||t^{k} - Ax^{k}||.
$$

It follows from the above inequality and $\lim_{k \to \infty} ||t^k - Ax^k|| = 0$ that

$$
\lim_{k \to \infty} \|x^k - \overline{u}^k\| = 0. \tag{34}
$$

From Step 4 and [\(30\)](#page-12-4) and $\lim_{k \to \infty} \lambda_k = \lambda \in (0, 1)$, we obtain

$$
\lim_{k \to \infty} \|y^k - \overline{u}^k\| = 0. \tag{35}
$$

Note that, for any $k \geq 0$,

$$
||zk - \overline{u}k|| = \lambda_k ||yk - \overline{u}k||
$$

\n
$$
\leq ||yk - \overline{u}k||.
$$

Taking into account the last inequality together with (35) , we have

$$
\lim_{k \to \infty} \|z^k - \overline{u}^k\| = 0. \tag{36}
$$

Note that

$$
||x^k - z^k|| \le ||x^k - \overline{u}^k|| + ||\overline{u}^k - z^k|| \quad \forall k,
$$

which together with (34) and (36) implies that

$$
\lim_{k \to \infty} \|x^k - z^k\| = 0. \tag{37}
$$

Take a subsequence $\{z^{k_i}\}\$ of $\{z^k\}$ such that

$$
\limsup_{k \to \infty} \langle \Phi(x^*), x^* - z^k \rangle = \lim_{i \to \infty} \langle \Phi(x^*), x^* - z^{k_i} \rangle.
$$

Since $\{z^{k_i}\}\)$ ce that z^{k_i} converges weakly to some $\overline{z} \in \mathcal{H}_1$. Therefore,

$$
\limsup_{k \to \infty} \langle \Phi(x^*), x^* - z^k \rangle = \lim_{i \to \infty} \langle \Phi(x^*), x^* - z^{k_i} \rangle
$$

= $\langle \Phi(x^*), x^* - \overline{z} \rangle.$ (38)

From [\(36\)](#page-12-7), [\(37\)](#page-13-0) and $z^{k_i} \rightharpoonup \overline{z}$, we conclude that \overline{u}^{k_i} and x^{k_i} converge weakly to \overline{z} . It follows from [\(35\)](#page-12-5) that $\lim_{i \to \infty} ||y^{k_i} - \overline{u}^{k_i}|| = 0$. So, using $\overline{u}^{k_i} \to \overline{z}$ and Step 8 (b), we get $\overline{z} \in Sol(C, F)$.

Next, we prove that $A\overline{z} \in Sol(Q, G)$.

From $x^{k_i} \rightharpoonup \overline{z}$, we get $Ax^{k_i} \rightharpoonup A\overline{z}$. This together with [\(32\)](#page-12-3) implies that $u^{k_i} \rightharpoonup A\overline{z}$. From [\(33\)](#page-12-8), we obtain $\lim_{i \to \infty} ||t^{k_i} - u^{k_i}|| = 0$. Thus, using the weak convergence of sequence $\{u^{k_i}\}\$ to $A\overline{z}$ and Step 8 (a), we get $A\overline{z} \in Sol(Q, G)$.

From $\overline{z} \in Sol(C, F)$ and $A\overline{z} \in Sol(O, G)$, we have $\overline{z} \in \Omega$. Since x^* is the solution of Problem *(BSVIP)*, we have $\langle \Phi(x^*)$, $\overline{z} - x^* \rangle \ge 0$. So, from [\(38\)](#page-13-1), we get

$$
\limsup_{k \to \infty} \langle \Phi(x^*), x^* - z^k \rangle \le 0.
$$

From (12) and Step 7, we obtain

$$
||x^{k+1} - x^*||^2 \le (1 - \alpha_k \tau) ||x^k - x^*||^2 + \alpha_k \tau \xi_k,
$$

where

$$
\xi_k = \frac{2\mu \langle \Phi(x^*), x^* - z^k + \alpha_k \mu \Phi(z^k) \rangle}{\tau}.
$$

Using $\lim_{k \to \infty} \alpha_k = 0$, the boundedness of $\{\Phi(z^k)\}\$ and $\limsup_{k \to \infty} \langle \Phi(x^*), x^* - z^k \rangle \le 0$, we get

$$
\limsup_{k\longrightarrow\infty}\xi_k\leq 0.
$$

By Lemma 3, we have $\lim_{k \to \infty} ||x^k - x^*||^2 = 0$, i.e., $x^k \to x^*$ as $k \to \infty$.

Case 2: Suppose that for any integer *m*, there exists an integer *k* such that $k \ge m$ and $||x^k - x^*|| \le ||x^{k+1} - x^*||$. According to Lemma 2, there exists a nondecreasing sequence $\{\tau(k)\}\$ of $\mathbb N$ such that $\lim_{k \to \infty} \tau(k) = \infty$ and the following inequalities hold for all (sufficiently large) $k \in \mathbb{N}$.

$$
\|x^{\tau(k)} - x^*\| \le \|x^{\tau(k)+1} - x^*\|, \|x^k - x^*\| \le \|x^{\tau(k)+1} - x^*\|. \tag{39}
$$

From (13) , we get

$$
||x^{\tau(k)} - x^*|| \le ||x^{\tau(k)+1} - x^*||
$$

\n
$$
\le (1 - \alpha_{\tau(k)}\tau)||z^{\tau(k)} - x^*|| + \alpha_{\tau(k)}\mu||\Phi(x^*)||. \tag{40}
$$

From (40) and (12) , we obtain

$$
\alpha_{\tau(k)} \tau \| z^{\tau(k)} - x^* \| - \alpha_{\tau(k)} \mu \| \Phi(x^*) \| \le \| z^{\tau(k)} - x^* \| - \| x^{\tau(k)} - x^* \|
$$

\n
$$
\le \| \overline{u}^{\tau(k)} - x^* \| - \| x^{\tau(k)} - x^* \|
$$

\n
$$
\le 0.
$$

Then, it follows from the boundedness of $\{z^k\}$ and $\lim_{k \to \infty} \alpha_k = 0$ that

$$
\lim_{k \to \infty} (\|z^{\tau(k)} - x^*\| - \|x^{\tau(k)} - x^*\|) = 0,
$$
\n
$$
\lim_{k \to \infty} (\|\overline{u}^{\tau(k)} - x^*\| - \|x^{\tau(k)} - x^*\|) = 0.
$$
\n(41)

From [\(41\)](#page-14-1) and the boundedness of $\{x^k\}$, $\{\overline{u}^k\}$, $\{z^k\}$, we obtain

$$
\lim_{k \to \infty} (\|z^{\tau(k)} - x^*\|^2 - \|x^{\tau(k)} - x^*\|^2) = 0,
$$

$$
\lim_{k \to \infty} (\|\overline{u}^{\tau(k)} - x^*\|^2 - \|x^{\tau(k)} - x^*\|^2) = 0.
$$

As proved in the first case, we obtain

$$
\limsup_{k \to \infty} \langle \Phi(x^*), x^* - z^{\tau(k)} \rangle \le 0.
$$

Then, the boundedness of $\{\Phi(z^k)\}\$ and $\lim_{k \to \infty} \alpha_k = 0$ yield

$$
\limsup_{k \to \infty} \langle \Phi(x^*), x^* - z^{\tau(k)} + \alpha_{\tau(k)} \mu \Phi(z^{\tau(k)}) \rangle
$$
\n
$$
= \limsup_{k \to \infty} [\langle \Phi(x^*), x^* - z^{\tau(k)} \rangle + \alpha_{\tau(k)} \mu \langle \Phi(x^*), \Phi(z^{\tau(k)}) \rangle]
$$
\n
$$
= \limsup_{k \to \infty} \langle \Phi(x^*), x^* - z^{\tau(k)} \rangle
$$
\n
$$
\leq 0.
$$
\n(42)

From [\(12\)](#page-8-0), Step 7 and [\(39\)](#page-13-2), we get

$$
||x^{\tau(k)+1} - x^*||^2 \le (1 - \alpha_{\tau(k)}\tau) ||x^{\tau(k)} - x^*||^2 + 2\alpha_{\tau(k)}\mu\langle\Phi(x^*), x^* - z^{\tau(k)} + \alpha_{\tau(k)}\mu\Phi(z^{\tau(k)})\rangle
$$

$$
\le (1 - \alpha_{\tau(k)}\tau) ||x^{\tau(k)+1} - x^*||^2 + 2\alpha_{\tau(k)}\mu\langle\Phi(x^*), x^* - z^{\tau(k)} + \alpha_{\tau(k)}\mu\Phi(z^{\tau(k)})\rangle.
$$

In particular, since $\alpha_{\tau(k)} > 0$

$$
||x^{\tau(k)+1} - x^*||^2 \le \frac{2\mu}{\tau} \langle \Phi(x^*), x^* - z^{\tau(k)} + \alpha_{\tau(k)}\mu \Phi(z^{\tau(k)}), \tag{43}
$$

From (39) and (43) , we have

$$
||x^{k} - x^{*}||^{2} \le \frac{2\mu}{\tau} \langle \Phi(x^{*}), x^{*} - z^{k} + \alpha_{k}\mu \Phi(z^{k}) \rangle.
$$
 (44)

Taking the limit in [\(44\)](#page-14-3) as $k \rightarrow \infty$, and using [\(42\)](#page-14-4), we obtain that

$$
\limsup_{k \to \infty} \|x^k - x^*\|^2 \le 0.
$$

Therefore, $x^k \longrightarrow x^*$ as $k \longrightarrow \infty$. This completes the proof of Theorem 1. \Box

Let us analyze the condition
$$
\sum_{k=0}^{\infty} \alpha_k = \infty
$$
, which was given in Algorithm 1.

Example 1 Choose Φ is the identical mapping, $F = G = 0$, $C = \mathbb{R}$, $Q = \mathbb{R}$. In this case, the bilevel split variational inequality problem becomes the problem of finding the minimum-norm solution of the split feasibility problem. One can find the solution set of the split split feasibility problem $\Omega = \mathbb{R}$ and, therefore, the minimum-norm solution x^* of the split feasibility problem is $x^* = 0$.

Choose $\alpha_k = \frac{1}{(k+2)^2}$ for all $k \ge 0$. An elementary computation shows that

$$
\{\alpha_k\} \subset (0, 1), \lim_{k \to \infty} \alpha_k = 0. \text{ Since } \sum_{k=0}^{\infty} \alpha_k < \infty, \text{ condition } \sum_{k=0}^{\infty} \alpha_k = \infty \text{ is violated.}
$$

The iterative sequence $\{x^k\}$ produced by Algorithm 1 for $\mu = 1$ and $x^0 = 1$ is given by

$$
x^{k+1} = (1 - \alpha_k)x^k \ \forall k \ge 0.
$$

Thus, by induction, for every $k \geq 1$, we have

$$
x^{k} = \prod_{j=0}^{k-1} (1 - \alpha_{j})
$$

=
$$
\prod_{j=0}^{k-1} \left(1 - \frac{1}{(j+2)^{2}}\right)
$$

=
$$
\prod_{j=0}^{k-1} \frac{(j+1)(j+3)}{(j+2)^{2}}
$$

=
$$
\frac{k+2}{2(k+1)}.
$$

Therefore, $\lim_{k \to \infty} x^k = \frac{1}{2}$. This means that $\{x^k\}$ does not converge to the the minimumnorm solution $x^* = 0$ of the split feasibility problem. Hence, condition \sum^{∞} *k*=0 $\alpha_k = \infty$ cannot be dropped.

Remark In Example 1, conditions $\{\alpha_k\} \subset (0, 1)$ and $\sum_{k=1}^{\infty} \alpha_k = \infty$ guarantee the

strong convergence of $\{x^k\}$ to the the minimum-norm solution $x^* = 0$. In other words, condition $\lim_{k \to \infty} \alpha_k = 0$ can be dropped.

Indeed, using the inequality

$$
1 + x \le e^x \quad \forall x \in \mathbb{R},
$$

we have

$$
x^{k} = \prod_{j=0}^{k-1} (1 - \alpha_{j})
$$

\n
$$
\leq \prod_{j=0}^{k-1} e^{-\alpha_{j}}
$$

\n
$$
= e^{\sum_{j=0}^{k-1} \alpha_{j}}
$$

\n
$$
= e^{\sum_{j=0}^{k-1} \alpha_{j}}
$$

It follows from the above inequality and $\{\alpha_k\} \subset (0, 1)$ that

$$
0 < x^k \le e^{-\sum_{j=0}^{k-1} \alpha_j} \forall k. \tag{45}
$$

From $\sum_{n=1}^{\infty}$ *k*=0 $\alpha_k = \infty$, we have $\lim_{k \to \infty}$ \sum *k*−1 *j*=0 $\alpha_j = \infty$. Consequently, [\(45\)](#page-16-1) implies that $\lim_{k \to \infty} x^k = 0.$

4 Numerical Results

To illustrate Theorem 1, we consider the following example:

Example 2 Let $\mathcal{H}_1 = \mathbb{R}^4$ with the norm $||x|| = (x_1^2 + x_2^2 + x_3^2 + x_4^2)^{\frac{1}{2}}$ for $x =$ $(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$ and $\mathcal{H}_2 = \mathbb{R}^2$ with the standard norm $||y|| = (y_1^2 + y_2^2)^{\frac{1}{2}}$. Let $A(x) = (x_1 + x_3 + x_4, x_2 + x_3 - x_4)^T$ for all $x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$ then *A* is a bounded linear operator from \mathbb{R}^4 into \mathbb{R}^2 with $||A|| = \sqrt{3}$. For $y = (y_1, y_2)^T \in \mathbb{R}^2$, let $B(y) = (y_1, y_2, y_1 + y_2, y_1 - y_2)^T$, then *B* is a bounded linear operator from \mathbb{R}^2 into \mathbb{R}^4 with $\|B\| = \sqrt{3}$. Moreover, for any $x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$ and $y = (y_1, y_2)^T \in \mathbb{R}^2$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$, so $B = A^*$ is an adjoint operator of *A*.

Let

$$
C = \{(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4 : x_1 - x_2 - x_3 \ge 1\}
$$

and *F* : *C* $\longrightarrow \mathbb{R}^4$ be defined by $F(x) = (\Vert x \Vert^2 + 2)a$ for all $x \in C$, where $a = (1, -1, -1, 0)^T \in \mathbb{R}^4$. It is easy to verify that *F* is pseudomonotone on *C*.

Choose $x = (3, 1, 0, 4)^T \in C$, $y = (4, 1, 0, 0)^T \in C$. It is easy to see that

 $\langle F(x) - F(y), x - y \rangle = -9 < 0.$

Hence, *F* is not monotone on *C*.

Suppose that there exists $L > 0$ such that

$$
||F(x) - F(y)|| \le L||x - y|| \quad \forall x, y \in C.
$$
 (46)

Choose $x = (1, 0, 0, k)^T \in C$ ($k > 0$) and $y = (1, 0, 0, 0)^T \in C$. From [\(46\)](#page-17-0), we obtain √

$$
\sqrt{3k} \le L \ \forall k > 0,
$$

which is a contradiction.

It is easy to see that the solution set $Sol(C, F)$ of $VIP(C, F)$ is given by

$$
\text{Sol}(C, F) = \{ (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4 : x_1 - x_2 - x_3 = 1 \}.
$$

Now let $Q = \{(u_1, u_2)^T \in \mathbb{R}^2 : u_1 - u_2 \ge 2\}$ and define another mapping G : $Q \longrightarrow \mathbb{R}^2$ as follows:

$$
G(u) = (\|u\|^2 + 3)b
$$

1^T \in m²

for all $u \in Q$, where $b = (1, -1)^T \in \mathbb{R}^2$.

It is easy to see that *G* is pseudomonotone on *Q*, not monotone on *Q*, not Lipschitz on *Q* and that the solution set $Sol(Q, G)$ of $VIP(Q, G)$ is given by

$$
\text{Sol}(Q, G) = \{ (u_1, u_2)^T \in \mathbb{R}^2 : u_1 - u_2 = 2 \}.
$$

We consider the case when $\Phi(x) = x$ for all $x \in C$. This mapping Φ is 1-Lipschitz continuous and 1-strongly monotone on *C*, and in this situation, by choosing $\mu = 1$, the Problem *(BSV IP)* becomes the problem of finding the minimum-norm solution of the SVIP.

The solution set Ω of the SVIP is given by

$$
\Omega = \{x = (x_1, x_2, x_3, x_4)^T \in \text{Sol}(C, F) : A(x) \in \text{Sol}(Q, G)\}
$$

= $\{x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4 : x_1 - x_2 - x_3 = 1, (x_1 + x_3 + x_4) - (x_2 + x_3 - x_4) = 2\}$
= $\{x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4 : x_1 - x_2 - x_3 = 1, x_1 - x_2 + 2x_4 = 2\}$
= $\{(a + 2 - 2b, a, 1 - 2b, b)^T : a, b \in \mathbb{R}\}.$

Suppose $x = (a + 2 - 2b, a, 1 - 2b, b)^T \in \Omega$ then

$$
||x|| = \sqrt{(a+2-2b)^2 + a^2 + (1-2b)^2 + b^2}
$$

= $\sqrt{2(a+1-b)^2 + 7(b-\frac{4}{7})^2 + \frac{5}{7}}$
 $\geq \sqrt{\frac{5}{7}}$.

The above equality holds if and only if $b = \frac{4}{7}$ and $a = -\frac{3}{7}$. So the minimum-norm solution *x*[∗] of the SVIP is $x^* = \left(\frac{3}{7}\right)$ $\frac{3}{7}, -\frac{3}{7}, -\frac{1}{7}, \frac{4}{7}$ 7 $\big)^T$.

Select a random starting point $x^0 = (-3, 2, -7, -4)^T \in C$ for the Algorithm 1. We choose $\alpha_k = \frac{1}{k+2}$, $\lambda_k = \frac{k+1}{3k+2}$, $\delta_k = \frac{k+1}{5k+6}$. An elementary computation

Iter(k)	x_1^k	x_2^k	x_3^k	x_4^k
θ	-3.00000	2.00000	-7.00000	-4.00000
1	-1.16667	0.66667	-3.20833	-0.75000
$\overline{2}$	-0.57407	0.24074	-2.01936	0.14646
3	-0.31674	0.06674	-1.45101	0.46449
$\overline{4}$	-0.16780	-0.03220	-1.13559	0.59323
5	-0.05892	-0.10774	-0.95118	0.64646
.	\cdots	.	.	.
4936	0.42799	-0.42820	-0.14381	0.57161
4937	0.42799	-0.42820	-0.14381	0.57161
4938	0.42800	-0.42820	-0.14381	0.57161
4939	0.42800	-0.42820	-0.14381	0.57161
4940	0.42800	-0.42820	-0.14381	0.57161

Table 1 Algorithm 1 for Example 2, with $\alpha_k = \frac{1}{k+2}$, $\lambda_k = \frac{k+1}{3k+2}$, $\delta_k = \frac{k+1}{5k+6}$, $\varepsilon = 10^{-7}$ and starting point $x^0 = (-3, 2, -7, -4)^T$

shows that $\{\alpha_k\} \subset (0, 1)$, $\lim_{k \to \infty} \alpha_k = \lim_{k \to \infty}$ $\frac{1}{k+2} = 0, \sum_{k=0}^{\infty} \alpha_k = \sum_{k=0}^{\infty} \frac{1}{k+1}$ *k*=0 *k*=0 $\frac{1}{k+2} = \infty$, ${\lambda_k} \subset (0, 1), \lim_{k \to \infty} \lambda_k = \frac{1}{3} \in (0, 1), {\delta_k} \subset \left[\frac{1}{6}, \frac{1}{5}\right]$ 5 $\Big] \subset \Big(0, \frac{1}{4} \Big)$ 4 $= (0, \frac{1}{\|A\|^2})$ $||A||^2 + 1$. We have computational results in Table [1](#page-18-0)

The approximate solution obtained after 4940 iterations (with elapsed time 9.9318 s) is (see Table [1\)](#page-18-0)

$$
x^{4940} = (0.42800, -0.42820, -0.14381, 0.57161)^T,
$$

which is a good approximation to the minimum-norm solution $x^* =$ $\frac{3}{2}$ $\frac{3}{7}, -\frac{3}{7}, -\frac{1}{7}, \frac{4}{7}$ 7 $\big)^T$.

We perform the iterative schemes in MATLAB R2012a running on a laptop with Intel(R) Core(TM) i3-3217U CPU @ 1.80GHz, 2 GB RAM.

5 Conclusion

In this paper, we have presented an iterative algorithm for solving strongly variational inequality problems with the split variational inequality problem constraints. The proposed algorithm is a combination of the linesearch method and the hybrid steepest descent method for the variational inequality problem [\[28\]](#page-20-3). The strong convergence of the iterative sequence generated by the proposed iterative algorithm to the unique solution of BSVIP is obtained.

Acknowledgements The author is very grateful to the reviewers for useful comments and advices which helped to improve the quality of this paper.

Funding information The research of the author is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2017.315.

References

- 1. Anh, P.K., Anh, T.V., Muu, L.D.: On bilevel split pseudomonotone variational inequality problems with applications. Acta Math. Vietnam. **42**, 413–429 (2017)
- 2. Anh, P.K., Hieu, D.V.: Parallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problems. Vietnam J. Math. **44**, 351–374 (2016)
- 3. Anh, P.N., Hien, N.D.: Hybrid proximal point and extragradient algorithms for solving equilibrium problems. Acta Math. Vietnam. **39**, 405–423 (2014)
- 4. Anh, T.V.: A strongly convergent subgradient Extragradient-Halpern method for solving a class of bilevel pseudomonotone variational inequalities. Vietnam J. Math. **45**, 317–332 (2017)
- 5. Anh, T.V.: An extragradient method for finding minimum-norm solution of the split equilibrium problem. Acta Math. Vietnam. **42**, 587–604 (2017)
- 6. Anh, T.V.: A parallel method for variational inequalities with the multiple-sets split feasibility problem constraints. J. Fixed Point Theory Appl. **19**, 2681–2696 (2017)
- 7. Anh, T.V., Muu, L.D.: A projection-fixed point method for a class of bilevel variational inequalities with split fixed point constraints. Optimization **65**, 1229–1243 (2016)
- 8. Buong, N.: Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer. Algorithms **76**, 783–798 (2017)
- 9. Ceng, L.C., Ansari, Q.H., Yao, J.C.: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. **75**, 2116–2125 (2012)
- 10. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms **59**, 301–323 (2012)
- 11. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. **51**, 2353–2365 (2006)
- 12. Censor, Y., Segal, A.: Iterative projection methods in biomedical inverse problems. In: Censor, Y., Jiang, M., Louis, A.K. (eds.) Mathematical Methods in Biomedical Imaging and Intensity-Modulated Therapy, IMRT, Edizioni della Norale, Pisa, pp. 65–96 (2008)
- 13. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Prob. **21**, 2071–2084 (2005)
- 14. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. **148**, 318–335 (2011)
- 15. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in hilbert spaces. J. Nonlinear Convex Anal. **6**, 117–136 (2005)
- 16. Dinh, B.V., Muu, L.D.: Algorithms for a class of bilevel programs involving pseudomonotone variational inequalities. Acta Math. Vietnam. **38**, 529–540 (2013)
- 17. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementary problems. Springer, New York (2003)
- 18. Goebel, K., Kirk, W.A.: Topics in metric fixed point theory. In: Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press (1990)
- 19. Khanh, P.D.: Convergence rate of a modified extragradient method for pseudomonotone variational inequalities. Vietnam J. Math. **45**, 397–408 (2017)
- 20. Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2000)
- 21. Liu, Y.: A modified hybrid method for solving variational inequality problems in Banach spaces. J. Nonlinear Funct. Anal. 2017, Article ID 31 (2017)
- 22. Mainge, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point ´ problems. SIAM J. Control Optim. **47**, 1499–1515 (2008)
- 23. Oettli, W.: A remark on vector valued equilibria and generalized monotonicity. Acta Math. Vietnam. **22**, 213–221 (1997)
- 24. Qin, X., Yao, J.C.: Projection splitting algorithm for nonself operator. J. Nonlinear Convex Anal. **18**, 925–935 (2017)
- 25. Tran, D.Q., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization **57**, 749–776 (2008)
- 26. Sahu, D.R., Yao, J.C.: A generalized hybrid steepest descent method and applications. J. Nonlinear Var. Anal. **1**, 111–126 (2017)
- 27. Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. **66**, 240–256 (2002)
- 28. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms for Feasibility and Optimization and their Applications, pp. 473–504. Elsevier, New York (2001)
- 29. Yu, X., Shahzad, N., Yao, Y.: Implicit and explicit algorithms for solving the split feasibility problem. Optim. Lett. **6**, 1447–1462 (2012)