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Abstract
In this paper, we propose Linesearch methods for solving a bilevel split variational
inequality problem (BSVIP) involving a strongly monotone mapping in the upper-
level problem and pseudomonotone mappings in the lower-level one. A strongly
convergent algorithm for such a BSVIP is proposed and analyzed.
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1 Introduction

Let C and Q be two nonempty closed convex subsets of two real Hilbert spaces H1
and H2, respectively, and let A : H1 −→ H2 be a bounded linear operator. Given
mappings F1 : H1 −→ H1 and F2 : H2 −→ H2. The split variational inequality
problem (in short, SVIP) introduced first by Censor et al. [10] can be formulated as

Find x∗ ∈ C : 〈F1(x
∗), x − x∗〉 ≥ 0 ∀x ∈ C (1)

such that
y∗ = Ax∗ ∈ Q : 〈F2(y

∗), y − y∗〉 ≥ 0 ∀y ∈ Q. (2)
If the solution sets of variational inequality problems (1) and (2) are denoted by
Sol(C, F1) and Sol(Q, F2), respectively, then the SVIP becomes the problem of find-
ing x∗ ∈ Sol(C, F1) such that Ax∗ ∈ Sol(Q, F2). If we consider only the problem
(1) then (1) is a classical variational inequality problem, which was studied by many
authors, for example [2, 4, 14, 17, 19, 21, 29]. A special case of the SVIP, when

� Tran Viet Anh
tranvietanh@outlook.com

1 Department of Scientific Fundamentals, Posts and Telecommunications Institute of Technology,
Hanoi, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0583-2&domain=pdf
mailto: tranvietanh@outlook.com


F1 = F2 = 0, is the split feasibility problem (SFP), which has been studied inten-
sively and used to model the intensity-modulated radiation therapy [11–13, 24] and
further development of this topic [5–9, 24, 26].

The SVIP was introduced and investigated by Censor et al. [10] in the case when
F1 and F2 are inverse strongly monotone mappings. Specifically, they proposed the
following iteration method{

x0 ∈ H1 chosen arbitrarily,
xk+1 = P

F1,λ
C (xk + γA∗(P F2,λ

Q − I )(Axk)) ∀k ≥ 0,

where F1 is α1-inverse strongly monotone onH1, F2 is α2-inverse strongly monotone

on H2, γ ∈
(
0,

1

‖A‖2
)
, 0 ≤ λ ≤ 2min{α1, α2} and P

F1,λ
C and P

F2,λ
Q stand for

PC(I − λF1) and PQ(I − λF2), respectively. They proved that the sequence {xk}
converges weakly to a solution of the split variational inequality problem, provided
that the solution set of the SVIP is nonempty.

In this paper, we suppose that � : C −→ H1 is β-strongly monotone and L-
Lipschitz continuous on C, F : C −→ H1 and G : Q −→ H2 be pseudomonotone
mappings. Our main purpose is to investigate the following bilevel split variational
inequality problem (BSVIP)

Find x∗ ∈ � such that 〈�(x∗), x − x∗〉 ≥ 0 ∀x ∈ �, (BSV IP )

where � = {x∗ ∈ Sol(C, F ) : Ax∗ ∈ Sol(Q, G)}. Here, A is a bounded linear
operator between H1 and H2.

The remaining part of the paper is organized as follows. In Section 2, we collect some
basic definitions and preliminary results that are needed. Section 3 deals with the algo-
rithm and its convergence analysis. Finally, in Section 4, we illustrate the proposed
algorithm by considering some preliminary computational results and experiments.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. We denote
the strong convergence and the weak convergence of a sequence {xk} to x in H by
xk −→ x and xk ⇀ x, respectively. By PC , we denote the metric projection onto C.
Namely, for each x ∈ H, PC(x) is the unique element in C such that

‖x − PC(x)‖ ≤ ‖x − y‖ ∀y ∈ C.

Some important properties of the projection operator PC are gathered in the following
lemma.

Lemma 1 ([18])

(i) For given x ∈ H and y ∈ C, y = PC(x) if and only if

〈x − y, z − y〉 ≤ 0 ∀z ∈ C.

(2019) 81:1067–1087Numer Algor1068



(ii) PC is firmly nonexpansive, that is,

‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉 ∀x, y ∈ H.

Consequently, PC is nonexpansive, i.e.,

‖PC(x) − PC(y)‖ ≤ ‖x − y‖ ∀x, y ∈ H.

(iii) For all x ∈ H and y ∈ C, we have

‖PC(x) − y‖2 ≤ ‖x − y‖2 − ‖PC(x) − x‖2.

Let us also recall some well-known definitions, which will be used in this paper.
LetH1 andH2 be two Hilbert spaces and let A : H1 −→ H2 be a bounded linear

operator. The linear operator A∗ : H2 −→ H1 with the property

〈A(x), y〉 = 〈x, A∗(y)〉
for all x ∈ H1 and y ∈ H2, is called the adjoint operator.

The adjoint operator of a bounded linear operator A on a Hilbert space always
exists and is uniquely determined. Futhermore, A∗ is a bounded linear operator and
‖A∗‖ = ‖A‖.

The following definitions are commonly used in the variational inequality theory

Definition 1 ([15, 20, 23])
A mapping φ : C −→ H is said to be

(i) β-strongly monotone on C if there exists β > 0 such that

〈φ(x) − φ(y), x − y〉 ≥ β‖x − y‖2 ∀x, y ∈ C;
(ii) L-Lipschitz continuous on C if

‖φ(x) − φ(y)‖ ≤ L‖x − y‖ ∀x, y ∈ C;
(iii) monotone on C if

〈φ(x) − φ(y), x − y〉 ≥ 0 ∀x, y ∈ C;
(iv) pseudomonotone on C if

〈φ(y), x − y〉 ≥ 0 =⇒ 〈φ(x), x − y〉 ≥ 0 ∀x, y ∈ C.

The next lemmas will be used for proving the convergence of the proposed
algorithm described below.

Lemma 2 ([22, Remark 4.4]) Let {an} be a sequence of nonnegative real numbers.
Suppose that for any integer m, there exists an integer p such that p ≥ m and
ap ≤ ap+1. Let n0 be an integer such that an0 ≤ an0+1 and define, for all integer
n ≥ n0, by

τ(n) = max{k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1}.
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Then, {τ(n)}n≥n0 is a nondecreasing sequence satisfying lim
n−→∞ τ(n) = ∞ and the

following inequalities hold true:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1 ∀n ≥ n0.

Lemma 3 ([27, Lemma 2.5]) Assume {an} is a sequence of nonnegative real numbers
satisfying the condition

an+1 ≤ (1 − αn)an + αnξn, ∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {ξn} is a sequence in R such that

(i)
∞∑

n=0

αn = ∞;

(ii) lim sup
n−→∞

ξn ≤ 0.

Then, lim
n−→∞ an = 0.

3 The algorithm and convergence analysis

In this section, we propose a strong convergence algorithm for solving BSVIP by
using the linesearch technique for an equilibrium problem [25]. The linesearch tech-
nique has been used widely in descent methods for equilibrium problems as well as
for variational inequalities in order to avoid the Lipschitz continuity assumption [3,
16, 17, 20, 25]. We impose the following assumptions on the mappings F and G

associated with the problem (BSV IP ).

(A1): F : C −→ H1 be pseudomonotone on C.
(A2): lim

k−→∞ F(xk) = F(x) for every sequence {xk} converging weakly to x.

(A3): G : Q −→ H2 be pseudomonotone on Q.
(A4): lim

k−→∞ G(uk) = G(u) for every sequence {uk} converging weakly to u.

Let us make some remarks on the above assumptions.

i) Assumptions (A1) − (A4) are widely used in the theory of VIPs.
ii) In finite dimensional spaces, conditions (A3) and (A5) become the conditions

for the continuity of F1, F2.
iii) If F and G satisfy the properties (A1), (A2) and (A3), (A4) respectively, then

by [1, Lemma 6], the solution sets Sol(C, F ) and Sol(Q, G) of the variational
inequalities VIP(C, F ) and VIP(Q, G) are closed and convex. Therefore, the
solution set � = {x∗ ∈ Sol(C, F ) : Ax∗ ∈ Sol(Q, G)} of the SVIP is also
closed and convex.

iii) If {xk} ⊂ C is bounded then {F(xk)} is bounded. Indeed, suppose that
{F(xk)} is unbounded, that is, there exists a subsequence {xki } of {xk} such
that lim

i−→∞ ‖F(xki )‖ = +∞. Since {xki } is bounded then there exists a subse-

quence {xkij } of {xki } such that x
kij ⇀ x. Therefore, lim

k−→∞ F(x
kij ) = F(x).
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Thus, lim
k−→∞ ‖F(x

kij )‖ = ‖F(x)‖. Since lim
i−→∞ ‖F(xki )‖ = +∞, we have

lim
j−→∞ ‖F(x

kij )‖ = +∞, a contradiction. Therefore, {F(xk)} is bounded.

Our algorithm can be expressed as follows.
The following theorem shows validity and convergence of the algorithm.

Theorem 1 Suppose that the assumptions (A1) − (A5) and � �= ∅ hold. Then, the
sequence {xk} in Algorithm 1 converges strongly to the unique solution of the bilevel
split variational inequality problem (BSV IP ).

Proof Since � �= ∅, problem (BSV IP ) has a unique solution, denoted by x∗. In
particular, x∗ ∈ �, i.e., x∗ ∈ Sol(C, F ) ⊂ C, Ax∗ ∈ Sol(Q, G) ⊂ Q. We will prove
that {xk} converges in norm to x∗. We divide the proof into several steps.

Step 1. The linesearchs corresponding to uk, vk (Step 3) and uk, vk (Step 6) are
well defined.

If vk �= uk and suppose, to get a contradiction, that the following inequality holds for
every nonnegative integer n

〈G(wk,n), uk − vk〉 <
1

2
‖uk − vk‖2,

where wk,n = (1 − γ n)uk + γ nvk .
Taking the limit as n −→ ∞, from wk,n −→ uk as n −→ ∞, it follows that

〈G(uk), uk − vk〉 ≤ 1

2
‖uk − vk‖2. (3)

Since vk = PQ(uk − G(uk)), we have

〈uk − G(uk) − vk, u − vk〉 ≤ 0 ∀u ∈ Q.

Choose u = uk ∈ Q, we get

〈G(uk), uk − vk〉 ≥ ‖uk − vk‖2.
Combining with (3) yields

‖uk − vk‖2 ≤ ‖uk − vk‖2
2

which contradicts to the fact that uk �= vk .
Therefore, the linesearch corresponding to uk and vk (Step 3) is well defined.
By proving in the same way, we find that the linesearch corresponding to uk and

vk (Step 6) is also well defined.

Step 2. (a) If vk �= uk for some k ≥ 0, then G(wk) �= 0, σk > 0 and

‖tk − Ax∗‖2 ≤ ‖uk − Ax∗‖2 − (σk‖G(wk)‖)2.
(b) If vk �= uk for some k ≥ 0, then F(wk) �= 0, σk > 0 and

‖yk − x∗‖2 ≤ ‖uk − x∗‖2 − (σ k‖F(wk)‖)2.
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Algorithm 1

Step 0. Choose η ∈ (0, 1), γ ∈ (0, 1), 0 < μ <
2β

L2
, {δk} ⊂ [δ, δ] ⊂

(
0,

1

‖A‖2 + 1

)
,

{λk} ⊂ (0, 1), lim
k−→∞ λk = λ ∈ (0, 1), {αk} ⊂ (0, 1), lim

k−→∞ αk = 0,
∞∑

k=0

αk = ∞.

Step 1. Let x0 ∈ C. Set k := 0.
Step 2. Compute uk = PQ(Axk) and

vk = PQ(uk − G(uk)).

If vk = uk , then set tk = uk and go to Step 5. Otherwise, go to Step 3.
Step 3 Find nk as the smallest nonnegative integer n such that

wk,n = (1 − γ n)uk + γ nvk,

〈G(wk,n), uk − vk〉 ≥ 1

2
‖uk − vk‖2.

Set γk = γ nk , wk = wk,nk .
Step 4 Compute

tk = PQ(uk − σkG(wk))

where

σk = 〈G(wk), uk − wk〉
‖G(wk)‖2 .

Step 5 Compute
uk = PC(xk + δkA

∗(tk − Axk))

and
vk = PC(uk − F(uk)).

If vk = uk , then set yk = uk and go to Step 8. Otherwise, go to Step 6.
Step 6 Find mk as the smallest nonnegative integer m such that

wk,m = (1 − ηm)uk + ηmvk,

〈F(wk,m), uk − vk〉 ≥ 1

2
‖uk − vk‖2.

Set ηk = ηmk , wk = wk,mk .
Step 7 Compute

yk = PC(uk − σkF (wk))

where

σk = 〈F(wk), uk − wk〉
‖F(wk)‖2 .

Step 8 Compute zk = (1 − λk)u
k + λky

k and xk+1 = PC(zk − αkμ�(zk)).
Step 9 Set k := k + 1, and go to Step 2.

Indeed, since vk �= uk then

〈G(wk), uk − wk〉 = γ n〈G(wk), uk − vk〉 ≥ γ n‖uk − vk‖2
2

> 0,
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which implies

G(wk) �= 0, σk = 〈G(wk), uk − wk〉
‖G(wk)‖2 > 0.

From Ax∗ ∈ Sol(Q, G) and wk ∈ Q, we have 〈G(Ax∗), wk − Ax∗〉 ≥ 0. Using the
pseudomonotonicity of G, we get

〈G(wk), wk − Ax∗〉 ≥ 0. (4)

It follows from (4) that

‖tk − Ax∗‖2 = ‖PQ(uk − σkG(wk)) − PQ(Ax∗)‖2
≤ ‖uk − σkG(wk) − Ax∗‖2
= ‖uk − Ax∗‖2 + σ 2

k ‖G(wk)‖2 − 2σk〈G(wk), uk − Ax∗〉
≤ ‖uk − Ax∗‖2 + σ 2

k ‖G(wk)‖2 − 2σk〈G(wk), uk − wk〉
= ‖uk − Ax∗‖2 + σ 2

k ‖G(wk)‖2 − 2σ 2
k ‖G(wk)‖2

= ‖uk − Ax∗‖2 − (σk‖G(wk)‖)2.
By using the same argument as in the proof of Step 2 (a), we get Step 2 (b).

Step 3. For all k ≥ 0, we have

‖uk −x∗‖2 ≤ ‖xk −x∗‖2 − δk(1− δk‖A‖2)‖tk −Axk‖2 − δk‖uk −Axk‖2.
From Step 2 (a) and the fact that tk = uk if vk = uk , we have

‖tk − Ax∗‖ ≤ ‖uk − Ax∗‖. (5)

From the property of the projection mapping (Lemma 1 (iii)), we get

‖uk − Ax∗‖2 = ‖PQ(Axk) − Ax∗‖2
≤ ‖Axk − Ax∗‖2 − ‖PQ(Axk) − Axk‖2
= ‖Axk − Ax∗‖2 − ‖uk − Axk‖2. (6)

It follows from (5) and (6) that

‖tk − Ax∗‖2 − ‖Axk − Ax∗‖2 ≤ −‖uk − Axk‖2. (7)

Then, from (7), it follows that

〈A(xk − x∗), tk − Axk〉 = 〈tk − Ax∗, tk − Axk〉 − ‖tk − Axk‖2

= 1

2

[
(‖tk − Ax∗‖2 − ‖Axk − Ax∗‖2) − ‖tk − Axk‖2

]
≤ 1

2
(−‖uk − Axk‖2 − ‖tk − Axk‖2).

Since δk > 0, from the above inequality, we have

2δk〈A(xk − x∗), tk − Axk〉 ≤ −δk‖uk − Axk‖2 − δk‖tk − Axk‖2. (8)
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Using the nonexpansiveness of PC and (8), we get

‖uk − x∗‖2 = ‖PC(xk + δkA
∗(tk − Axk)) − PC(x∗)‖2

≤ ‖(xk − x∗) + δkA
∗(tk − Axk)‖2

= ‖xk − x∗‖2 + δ2k‖A∗(tk − Axk)‖2 + 2δk〈xk − x∗, A∗(tk − Axk)〉
≤ ‖xk − x∗‖2 + δ2k‖A∗‖2‖tk − Axk‖2 + 2δk〈A(xk − x∗), tk − Axk〉
≤ ‖xk − x∗‖2 + δ2k‖A‖2‖tk − Axk‖2 − δk‖uk − Axk‖2 − δk‖tk − Axk‖2
= ‖xk − x∗‖2 − δk(1 − δk‖A‖2)‖tk − Axk‖2 − δk‖uk − Axk‖2.

Step 4. For all k ≥ 0, we have

‖zk − x∗‖2 ≤ ‖uk − x∗‖2 − λk(1 − λk)‖yk − uk‖2.
Indeed, from yk = uk if vk = uk and Step 2 (b), we have

‖yk − x∗‖ ≤ ‖uk − x∗‖. (9)

From (9), we get

‖zk − x∗‖2 = ‖(1 − λk)u
k + λky

k − x∗‖2
= ‖(1 − λk)(u

k − x∗) + λk(y
k − x∗)‖2

= (1 − λk)‖uk − x∗‖2 + λk‖yk − x∗‖2 − λk(1 − λk)‖yk − uk‖2
≤ (1 − λk)‖uk − x∗‖2 + λk‖uk − x∗‖2 − λk(1 − λk)‖yk − uk‖2
= ‖uk − x∗‖2 − λk(1 − λk)‖yk − uk‖2.

Step 5. For all k ≥ 0, we have

‖zk − αkμ�(zk) − (x∗ − αkμ�(x∗))‖ ≤ (1 − αkτ)‖zk − x∗‖,
where

τ = 1 −
√
1 − μ(2β − μL2) ∈ (0, 1].

It is clear that

‖zk − αkμ�(zk) − (x∗ − αkμ�(x∗))‖ = ‖(1 − αk)(z
k − x∗)

+αk[zk − x∗ − μ(�(zk) − �(x∗))]‖
≤ (1 − αk)‖zk − x∗‖ + αk‖zk

−x∗ − μ(�(zk) − �(x∗))‖. (10)

Using β-strongly monotonicity and L-Lipschitz continuity on C of �, we get

‖zk − x∗ − μ(�(zk) − �(x∗))‖2 = ‖zk − x∗‖2 − 2μ〈zk − x∗, �(zk) − �(x∗)〉
+μ2‖�(zk) − �(x∗)‖2

≤ ‖zk−x∗‖2−2μβ‖zk−x∗‖2+μ2L2‖zk−x∗‖2
= (1 − 2μβ + μ2L2)‖zk − x∗‖2. (11)
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Combining (10) and (11), we obtain

‖zk − αkμ�(zk) − (x∗ − αkμ�(x∗))‖ ≤ (1 − αk)‖zk − x∗‖ + αk

√
1 − μ(2β − μL2)‖zk − x∗‖

= (1 − αkτ)‖zk − x∗‖.

Step 6. We show that the sequence {xk}, {uk}, {zk} and {�(zk)} are bounded.
Since {δk} ⊂ [δ, δ] ⊂

(
0,

1

‖A‖2 + 1

)
and λk ∈ (0, 1), by combining these

with Step 3 and Step 4, we obtain

‖zk − x∗‖ ≤ ‖uk − x∗‖ ≤ ‖xk − x∗‖. (12)

Using the nonexpansiveness property of PC , Step 5 and (12), we find

‖xk+1 − x∗‖ = ‖PC(zk − αkμ�(zk)) − PC(x∗)‖
≤ ‖zk − αkμ�(zk) − x∗‖
= ‖zk − αkμ�(zk) − (x∗ − αkμ�(x∗)) − αkμ�(x∗)‖
≤ ‖zk − αkμ�(zk) − (x∗ − αkμ�(x∗))‖ + αkμ‖�(x∗)‖
≤ (1 − αkτ)‖zk − x∗‖ + αkμ‖�(x∗)‖
≤ (1 − αkτ)‖xk − x∗‖ + αkμ‖�(x∗)‖. (13)

So, by induction, we obtain, for every k ≥ 0, that

‖xk − x∗‖ ≤ max
{
‖x0 − x∗‖, μ‖�(x∗)‖

τ

}
.

Hence, the sequence {xk} is bounded and so are the sequences {uk}, {zk} and {�(zk)}
thank to (12) and the Lipschitz continuity of �.

Step 7. For all k ≥ 0, we have

‖xk+1−x∗‖2 ≤ (1−αkτ)‖zk −x∗‖2+2αkμ〈�(x∗), x∗−zk +αkμ�(zk)〉.
Using the inequality

‖x − y‖2 ≤ ‖x‖2 − 2〈y, x − y〉 ∀x, y ∈ H1,

and Step 5, we obtain successively
‖xk+1 − x∗‖2 = ‖PC(zk − αkμ�(zk)) − PC(x∗)‖2

≤ ‖zk − αkμ�(zk) − x∗‖2
= ‖zk − αkμ�(zk) − (x∗ − αkμ�(x∗)) − αkμ�(x∗)‖2
≤ ‖zk − αkμ�(zk) − (x∗ − αkμ�(x∗))‖2 − 2αkμ〈�(x∗), zk − αkμ�(zk) − x∗〉
≤ (1 − αkτ)2‖zk − x∗‖2 + 2αkμ〈�(x∗), x∗ − zk + αkμ�(zk)〉
≤ (1 − αkτ)‖zk − x∗‖2 + 2αkμ〈�(x∗), x∗ − zk + αkμ�(zk)〉.

Step 8. (a) Suppose that {uki } is a subsequence of {uk} converging weakly to
some u and ‖tki − uki ‖ −→ 0 as i −→ ∞ then u ∈ Sol(Q, G).

(b) Suppose that {uki } is a subsequence of {uk} converging weakly to
some ũ and ‖yki − uki ‖ −→ 0 as i −→ ∞ then ũ ∈ Sol(C, F ).
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First, we see that since {uk} ⊂ Q, uki ⇀ u and Q is closed and convex, it is also
weakly closed, and thus u ∈ Q. Since uki ⇀ u, we obtain {uki } is bounded. From
(5), we get {tki } is also bounded.

Case A. Suppose that there exists a subsequence of {uki }, denoted again by {uki }
such that tki = uki for all i. If vki �= uki then from Step 2, we have ‖tki − Ax∗‖ <

‖uki − Ax∗‖. This contradicts the fact that tki = uki . Thus, vki = uki or PQ(uki −
G(uki )) = uki for all i. Then, by Lemma 1, we have

〈G(uki ), v − uki 〉 ≥ 0 ∀v ∈ Q. (14)

From the weak convergence of the sequence {uki } to u, we get lim
i−→∞ G(uki ) = G(u).

Thus, from (14), we have

〈G(u), v − u〉 ≥ 0 ∀v ∈ Q,

i.e. u ∈ Sol(Q, G).
Case B. Suppose that there exists a subsequence of {uki }, denoted again by {uki }

such that tki �= uki for all i. Let {ni} be the sequence of the smallest nonnegative
integers such that, for all i

〈G((1 − γ ni )uki + γ ni vki ), uki − vki 〉 ≥ ‖uki − vki ‖2
2

,

where vki = PQ(uki − G(uki )), wki = (1 − γki
)uki + γki

vki , γki
= γ ni .

From Step 2 (a), we get

‖tki − Ax∗‖2 ≤ ‖uki − Ax∗‖2 − (σki
‖G(wki )‖)2,

where

σki
= 〈G(wki ), uki − wki 〉

‖G(wki )‖2 .

Therefore,

(σki
‖G(wki )‖)2 ≤ ‖uki − Ax∗‖2 − ‖tki − Ax∗‖2

≤ (‖uki − Ax∗‖ + ‖tki − Ax∗‖)‖uki − tki ‖.
This inequality together with the boundedness of two sequences {uki }, {tki } and ‖tki −
uki ‖ −→ 0 imply

lim
i−→∞ σki

‖G(wki )‖ = 0. (15)

Since {uki } ⊂ Q, then

‖vki − uki ‖ = ‖PQ(uki − G(uki )) − PQ(uki )‖
≤ ‖G(uki )‖.

The above inequality together with the boundedness of {uki } and {G(uki )} imply
that {vki } is bounded. We also imply that {wki } is bounded. Therefore, {G(wki )} is
bounded. So from (15) and 〈G(wki ), uki − wki 〉 = σki

‖G(wki )‖2, we get
lim

i−→∞〈G(wki ), uki − wki 〉 = 0. (16)
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Since wki = (1 − γki
)uki + γki

vki , we have

〈G(wki ), uki − wki 〉 = γki
〈G(wki ), uki − vki 〉

≥ γki
‖uki − vki ‖2

2
. (17)

From (16) and (17), we have

lim
i−→∞ γki

‖uki − vki ‖2 = 0. (18)

From
vki = PQ(uki − G(uki )),

we have
〈uki − G(uki ) − vki , v − vki 〉 ≤ 0 ∀v ∈ Q.

Therefore
〈G(uki ), v − vki 〉 ≥ 〈uki − vki , v − vki 〉 ∀v ∈ Q. (19)

We now consider two distinct cases:
Case B.1. lim sup

i−→∞
γki

> 0. In this case, there exist γ and a subsequence of

{γki
}, denoted again by {γki

} such that γki
−→ γ . Then, by (18), we obtain that

lim
i−→∞ ‖uki − vki ‖ = 0. Since uki ⇀ u, then vki ⇀ u.

Applying the Cauchy-Schwarz inequality, we get

|〈uki − vki , v − vki 〉| ≤ ‖uki − vki ‖.‖v − vki ‖. (20)

Since ‖uki −vki ‖ −→ 0 and the sequence {vki } is bounded, from (20), it ensures that
lim

i−→∞〈uki −vki , v−vki 〉 = 0. So, using (19), the weak convergence of two sequences

{uki }, {vki } to u, we get

〈G(u), v − u〉 ≥ 0 ∀v ∈ Q,

i.e. u ∈ Sol(Q, G).
Case B.2. lim

i−→∞ γki
= 0. From the boundedness of {vki }, without loss of generality,

we may assume that vki ⇀ v as i −→ ∞. Since γ mi = γki
−→ 0 as i −→ ∞, it

follows that mi > 1 for i sufficiently large and consequently, that

〈G(ski ), uki − vki 〉 <
‖uki − vki ‖2

2
, (21)

where
ski = (1 − γ ni−1)uki + γ ni−1vki .

Choose v = uki in (19), we have

〈G(uki ), uki − vki 〉 ≥ ‖uki − vki ‖2. (22)

From (21) and (22), we have

〈G(ski ), uki − vki 〉 <
1

2
〈G(uki ), uki − vki 〉, (23)
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Since {uki } and {vki } are bounded and γki
−→ 0, then

‖ski − uki ‖ = γki

γ
‖uki − vki ‖ −→ 0.

From uki ⇀ u and ‖ski − uki ‖ −→ 0, then we have ski ⇀ u. Since vki ⇀ v, then
from (23), we have

〈G(u), u − v〉 ≤ 1

2
〈G(u), u − v〉.

Thus,
〈G(u), u − v〉 ≤ 0. (24)

From (22), we have
〈G(uki ), uki − vki 〉 ≥ 0. (25)

Since uki ⇀ u, vki ⇀ v, from (25), we have

〈G(u), u − v〉 ≥ 0.

Combine with (24), we have

〈G(u), u − v〉 = 0. (26)

From (26), we get

lim
i−→∞〈G(uki ), uki − vki 〉 = 〈G(u), u − v〉 = 0.

Thus from (22), we get
lim

i−→∞ ‖uki − vki ‖ = 0

Since uki ⇀ u, then vki ⇀ u. From ‖uki − vki ‖ −→ 0 and the boundedness of
sequence {vki }, we get lim

i−→∞〈uki − vki , v − vki 〉 = 0. So, using (19) and the weak

convergence of two sequences {uki }, {vki } to u, we get

〈G(u), v − u〉 ≥ 0 ∀v ∈ Q.

i.e. u ∈ Sol(Q, G).
By using the same argument as in the proof of Step 8 (a), we get Step 8 (b).

Step 9. We prove that {xk} converges strongly to the unique solution x∗ of the
problem BSV IP .

Let us consider two cases.

Case 1: There exists k0 such that the sequence {‖xk−x∗‖} is decreasing for k ≥ k0.
In this case the limit of {‖xk − x∗‖} exists. So, it follows from Step 7 and
(12) that

(‖xk+1 − x∗‖2 − ‖xk − x∗‖2) − 2αkμ〈�(x∗), x∗ − zk + αkμ�(zk)〉
≤ ‖zk − x∗‖2 − ‖xk − x∗‖2
≤ ‖uk − x∗‖2 − ‖xk − x∗‖2
≤ 0. (27)

(2019) 81:1067–1087Numer Algor1078



Since the limit of {‖xk − x∗‖} exists, lim
k−→∞ αk = 0 and {zk}, {�(zk)} are bounded,

it follows from (27) that

lim
k−→∞(‖zk − x∗‖2 − ‖xk − x∗‖2) = 0, (28)

lim
k−→∞(‖uk − x∗‖2 − ‖xk − x∗‖2) = 0. (29)

Thus, from (28) and (29), we conclude that

lim
k−→∞(‖uk − x∗‖2 − ‖zk − x∗‖2) = 0. (30)

From {δk} ⊂ [δ, δ] ⊂
(
0,

1

‖A‖2 + 1

)
and Step 3, we obtain

δ(1 − δ‖A‖2)‖tk − Axk‖2 + δ‖uk − Axk‖2 ≤ ‖xk − x∗‖2 − ‖uk − x∗‖2. (31)

From (29) and (31), it follows that

lim
k−→∞ ‖tk − Axk‖ = 0, lim

k−→∞ ‖uk − Axk‖ = 0. (32)

From (32), we have
lim

k−→∞ ‖tk − uk‖ = 0. (33)

Since the projection operator PC is nonexpansive and {xk} ⊂ C, we can write

‖xk − uk‖ = ‖PC(xk) − PC(xk + δkA
∗(tk − Axk))‖

≤ ‖xk − xk − δkA
∗(tk − Axk)‖

= ‖δkA
∗(tk − Axk)‖

≤ δk‖A∗‖‖tk − Axk‖
≤ δ‖A‖‖tk − Axk‖.

It follows from the above inequality and lim
k−→∞ ‖tk − Axk‖ = 0 that

lim
k−→∞ ‖xk − uk‖ = 0. (34)

From Step 4 and (30) and lim
k−→∞ λk = λ ∈ (0, 1), we obtain

lim
k−→∞ ‖yk − uk‖ = 0. (35)

Note that, for any k ≥ 0,

‖zk − uk‖ = λk‖yk − uk‖
≤ ‖yk − uk‖.

Taking into account the last inequality together with (35), we have

lim
k−→∞ ‖zk − uk‖ = 0. (36)

Note that
‖xk − zk‖ ≤ ‖xk − uk‖ + ‖uk − zk‖ ∀k,
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which together with (34) and (36) implies that

lim
k−→∞ ‖xk − zk‖ = 0. (37)

Take a subsequence {zki } of {zk} such that
lim sup
k−→∞

〈�(x∗), x∗ − zk〉 = lim
i−→∞〈�(x∗), x∗ − zki 〉.

Since {zki } ce that zki converges weakly to some z ∈ H1.
Therefore,

lim sup
k−→∞

〈�(x∗), x∗ − zk〉 = lim
i−→∞〈�(x∗), x∗ − zki 〉

= 〈�(x∗), x∗ − z〉. (38)

From (36), (37) and zki ⇀ z, we conclude that uki and xki converge weakly to z. It
follows from (35) that lim

i−→∞ ‖yki − uki ‖ = 0. So, using uki ⇀ z and Step 8 (b), we

get z ∈ Sol(C, F ).
Next, we prove that Az ∈ Sol(Q, G).
From xki ⇀ z, we get Axki ⇀ Az. This together with (32) implies that uki ⇀ Az.

From (33), we obtain lim
i−→∞ ‖tki − uki ‖ = 0. Thus, using the weak convergence of

sequence {uki } to Az and Step 8 (a), we get Az ∈ Sol(Q, G).
From z ∈ Sol(C, F ) and Az ∈ Sol(Q, G), we have z ∈ �. Since x∗ is the solution
of Problem (BSV IP ), we have 〈�(x∗), z − x∗〉 ≥ 0. So, from (38), we get

lim sup
k−→∞

〈�(x∗), x∗ − zk〉 ≤ 0.

From (12) and Step 7, we obtain

‖xk+1 − x∗‖2 ≤ (1 − αkτ)‖xk − x∗‖2 + αkτξk,

where

ξk = 2μ〈�(x∗), x∗ − zk + αkμ�(zk)〉
τ

.

Using lim
k−→∞ αk = 0, the boundedness of {�(zk)} and lim sup

k−→∞
〈�(x∗), x∗ − zk〉 ≤ 0,

we get

lim sup
k−→∞

ξk ≤ 0.

By Lemma 3, we have lim
k−→∞ ‖xk − x∗‖2 = 0, i.e., xk −→ x∗ as k −→ ∞.

Case 2: Suppose that for any integer m, there exists an integer k such that k ≥ m

and ‖xk − x∗‖ ≤ ‖xk+1 − x∗‖. According to Lemma 2, there exists a
nondecreasing sequence {τ(k)} of N such that lim

k−→∞ τ(k) = ∞ and the

following inequalities hold for all (sufficiently large) k ∈ N.

‖xτ(k) − x∗‖ ≤ ‖xτ(k)+1 − x∗‖, ‖xk − x∗‖ ≤ ‖xτ(k)+1 − x∗‖. (39)
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From (13), we get

‖xτ(k) − x∗‖ ≤ ‖xτ(k)+1 − x∗‖
≤ (1 − ατ(k)τ )‖zτ(k) − x∗‖ + ατ(k)μ‖�(x∗)‖. (40)

From (40) and (12), we obtain

ατ(k)τ‖zτ(k) − x∗‖ − ατ(k)μ‖�(x∗)‖ ≤ ‖zτ(k) − x∗‖ − ‖xτ(k) − x∗‖
≤ ‖uτ(k) − x∗‖ − ‖xτ(k) − x∗‖
≤ 0.

Then, it follows from the boundedness of {zk} and lim
k−→∞ αk = 0 that

lim
k−→∞ (‖zτ(k) − x∗‖ − ‖xτ(k) − x∗‖) = 0,

lim
k−→∞ (‖uτ(k) − x∗‖ − ‖xτ(k) − x∗‖) = 0. (41)

From (41) and the boundedness of {xk}, {uk}, {zk}, we obtain
lim

k−→∞(‖zτ(k) − x∗‖2 − ‖xτ(k) − x∗‖2) = 0,

lim
k−→∞(‖uτ(k) − x∗‖2 − ‖xτ(k) − x∗‖2) = 0.

As proved in the first case, we obtain

lim sup
k−→∞

〈�(x∗), x∗ − zτ(k)〉 ≤ 0.

Then, the boundedness of {�(zk)} and lim
k−→∞ αk = 0 yield

lim sup
k−→∞

〈�(x∗), x∗ − zτ(k) + ατ(k)μ�(zτ(k))〉

= lim sup
k−→∞

[〈�(x∗), x∗ − zτ(k)〉 + ατ(k)μ〈�(x∗), �(zτ(k))〉]

= lim sup
k−→∞

〈�(x∗), x∗ − zτ(k)〉
≤ 0. (42)

From (12), Step 7 and (39), we get

‖xτ(k)+1 − x∗‖2 ≤ (1 − ατ(k)τ )‖xτ(k) − x∗‖2 + 2ατ(k)μ〈�(x∗), x∗ − zτ(k) + ατ(k)μ�(zτ(k))〉
≤ (1 − ατ(k)τ )‖xτ(k)+1 − x∗‖2 + 2ατ(k)μ〈�(x∗), x∗ − zτ(k) + ατ(k)μ�(zτ(k))〉.

In particular, since ατ(k) > 0

‖xτ(k)+1 − x∗‖2 ≤ 2μ

τ
〈�(x∗), x∗ − zτ(k) + ατ(k)μ�(zτ(k))〉. (43)

From (39) and (43), we have

‖xk − x∗‖2 ≤ 2μ

τ
〈�(x∗), x∗ − zk + αkμ�(zk)〉. (44)
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Taking the limit in (44) as k −→ ∞, and using (42), we obtain that

lim sup
k−→∞

‖xk − x∗‖2 ≤ 0.

Therefore, xk −→ x∗ as k −→ ∞. This completes the proof of Theorem 1.

Let us analyze the condition
∞∑

k=0

αk = ∞, which was given in Algorithm 1.

Example 1 Choose � is the identical mapping, F = G = 0, C = R, Q = R. In this
case, the bilevel split variational inequality problem becomes the problem of finding
the minimum-norm solution of the split feasibility problem. One can find the solution
set of the split split feasibility problem � = R and, therefore, the minimum-norm
solution x∗ of the split feasibility problem is x∗ = 0.

Choose αk = 1

(k + 2)2
for all k ≥ 0. An elementary computation shows that

{αk} ⊂ (0, 1), lim
k→∞ αk = 0. Since

∞∑
k=0

αk < ∞, condition
∞∑

k=0

αk = ∞ is violated.

The iterative sequence {xk} produced by Algorithm 1 for μ = 1 and x0 = 1 is
given by

xk+1 = (1 − αk)x
k ∀k ≥ 0.

Thus, by induction, for every k ≥ 1, we have

xk =
k−1∏
j=0

(1 − αj )

=
k−1∏
j=0

(
1 − 1

(j + 2)2

)

=
k−1∏
j=0

(j + 1)(j + 3)

(j + 2)2

= k + 2

2(k + 1)
.

Therefore, lim
k→∞ xk = 1

2
. This means that {xk} does not converge to the the minimum-

norm solution x∗ = 0 of the split feasibility problem. Hence, condition
∞∑

k=0

αk = ∞
cannot be dropped.
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Remark In Example 1, conditions {αk} ⊂ (0, 1) and
∞∑

k=0

αk = ∞ guarantee the

strong convergence of {xk} to the the minimum-norm solution x∗ = 0. In other
words, condition lim

k→∞ αk = 0 can be dropped.

Indeed, using the inequality

1 + x ≤ ex ∀x ∈ R,

we have

xk =
k−1∏
j=0

(1 − αj )

≤
k−1∏
j=0

e−αj

= e
−

k−1∑
j=0

αj

.

It follows from the above inequality and {αk} ⊂ (0, 1) that

0 < xk ≤ e
−

k−1∑
j=0

αj

∀k. (45)

From
∞∑

k=0

αk = ∞, we have lim
k→∞

k−1∑
j=0

αj = ∞. Consequently, (45) implies that

lim
k→∞ xk = 0.

4 Numerical Results

To illustrate Theorem 1, we consider the following example:

Example 2 Let H1 = R
4 with the norm ‖x‖ = (x2

1 + x2
2 + x2

3 + x2
4)

1
2 for x =

(x1, x2, x3, x4)
T ∈ R

4 and H2 = R
2 with the standard norm ‖y‖ = (y2

1 + y2
2)

1
2 . Let

A(x) = (x1 + x3 + x4, x2 + x3 − x4)
T for all x = (x1, x2, x3, x4)

T ∈ R
4 then A is a

bounded linear operator from R
4 into R

2 with ‖A‖ = √
3. For y = (y1, y2)

T ∈ R
2,

let B(y) = (y1, y2, y1 + y2, y1 − y2)
T , then B is a bounded linear operator from

R
2 into R

4 with ‖B‖ = √
3. Moreover, for any x = (x1, x2, x3, x4)

T ∈ R
4 and

y = (y1, y2)
T ∈ R

2, 〈A(x), y〉 = 〈x, B(y)〉, so B = A∗ is an adjoint operator of A.

Let
C = {(x1, x2, x3, x4)T ∈ R

4 : x1 − x2 − x3 ≥ 1}
and F : C −→ R

4 be defined by F(x) = (‖x‖2 + 2)a for all x ∈ C, where
a = (1, −1, −1, 0)T ∈ R

4. It is easy to verify that F is pseudomonotone on C.
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Choose x = (3, 1, 0, 4)T ∈ C, y = (4, 1, 0, 0)T ∈ C. It is easy to see that

〈F(x) − F(y), x − y〉 = −9 < 0.

Hence, F is not monotone on C.
Suppose that there exists L > 0 such that

‖F(x) − F(y)‖ ≤ L‖x − y‖ ∀x, y ∈ C. (46)

Choose x = (1, 0, 0, k)T ∈ C (k > 0) and y = (1, 0, 0, 0)T ∈ C. From (46), we
obtain √

3k ≤ L ∀k > 0,
which is a contradiction.

It is easy to see that the solution set Sol(C, F ) of V IP (C, F ) is given by

Sol(C, F ) = {(x1, x2, x3, x4)T ∈ R
4 : x1 − x2 − x3 = 1}.

Now let Q = {(u1, u2)T ∈ R
2 : u1 − u2 ≥ 2} and define another mapping G :

Q −→ R
2 as follows:

G(u) = (‖u‖2 + 3)b
for all u ∈ Q, where b = (1, −1)T ∈ R

2.
It is easy to see thatG is pseudomonotone onQ, not monotone onQ, not Lipschitz

on Q and that the solution set Sol(Q, G) of V IP (Q, G) is given by

Sol(Q, G) = {(u1, u2)T ∈ R
2 : u1 − u2 = 2}.

We consider the case when �(x) = x for all x ∈ C. This mapping � is 1-Lipschitz
continuous and 1-strongly monotone on C, and in this situation, by choosing μ = 1,
the Problem (BSV IP ) becomes the problem of finding the minimum-norm solution
of the SVIP.

The solution set � of the SVIP is given by

� = {x = (x1, x2, x3, x4)
T ∈ Sol(C, F ) : A(x) ∈ Sol(Q, G)}

= {x = (x1, x2, x3, x4)
T ∈ R

4 : x1 − x2 − x3 = 1, (x1 + x3 + x4) − (x2 + x3 − x4) = 2}
= {x = (x1, x2, x3, x4)

T ∈ R
4 : x1 − x2 − x3 = 1, x1 − x2 + 2x4 = 2}

= {(a + 2 − 2b, a, 1 − 2b, b)T : a, b ∈ R}.
Suppose x = (a + 2 − 2b, a, 1 − 2b, b)T ∈ � then

‖x‖ =
√

(a + 2 − 2b)2 + a2 + (1 − 2b)2 + b2

=
√
2(a + 1 − b)2 + 7

(
b − 4

7

)2 + 5

7

≥
√
5

7
.

The above equality holds if and only if b = 4

7
and a = −3

7
. So the minimum-norm

solution x∗ of the SVIP is x∗ =
(3
7
, −3

7
, −1

7
,
4

7

)T

.

Select a random starting point x0 = (−3, 2, −7, −4)T ∈ C for the Algorithm 1.

We choose αk = 1

k + 2
, λk = k + 1

3k + 2
, δk = k + 1

5k + 6
. An elementary computation
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Table 1 Algorithm 1 for Example 2, with αk = 1

k + 2
, λk = k + 1

3k + 2
, δk = k + 1

5k + 6
, ε = 10−7 and

starting point x0 = (−3, 2,−7,−4)T

Iter(k) xk
1 xk

2 xk
3 xk

4

0 −3.00000 2.00000 −7.00000 −4.00000

1 −1.16667 0.66667 −3.20833 −0.75000

2 −0.57407 0.24074 −2.01936 0.14646

3 −0.31674 0.06674 −1.45101 0.46449

4 −0.16780 −0.03220 −1.13559 0.59323

5 −0.05892 −0.10774 −0.95118 0.64646

· · · · · · · · · · · · · · ·
4936 0.42799 −0.42820 −0.14381 0.57161

4937 0.42799 −0.42820 −0.14381 0.57161

4938 0.42800 −0.42820 −0.14381 0.57161

4939 0.42800 −0.42820 −0.14381 0.57161

4940 0.42800 −0.42820 −0.14381 0.57161

shows that {αk} ⊂ (0, 1), lim
k−→∞ αk = lim

k−→∞
1

k + 2
= 0,

∞∑
k=0

αk =
∞∑

k=0

1

k + 2
= ∞,

{λk} ⊂ (0, 1), lim
k−→∞ λk = 1

3
∈ (0, 1), {δk} ⊂

[1
6
,
1

5

]
⊂

(
0,

1

4

)
=

(
0,

1

‖A‖2 + 1

)
.

We have computational results in Table 1
The approximate solution obtained after 4940 iterations (with elapsed time

9.9318 s) is (see Table 1)

x4940 = (0.42800,−0.42820, −0.14381, 0.57161)T ,

which is a good approximation to the minimum-norm solution x∗ =(3
7
, −3

7
, −1

7
,
4

7

)T

.

We perform the iterative schemes in MATLAB R2012a running on a laptop with
Intel(R) Core(TM) i3-3217U CPU @ 1.80GHz, 2 GB RAM.

5 Conclusion

In this paper, we have presented an iterative algorithm for solving strongly variational
inequality problems with the split variational inequality problem constraints. The
proposed algorithm is a combination of the linesearch method and the hybrid steepest
descent method for the variational inequality problem [28]. The strong convergence
of the iterative sequence generated by the proposed iterative algorithm to the unique
solution of BSVIP is obtained.
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