

ORIGINAL PAPER

A shrinking projection method for solving the split common null point problem in Banach spaces

Truong Minh Tuyen¹ · Nguyen Song Ha¹ · Nguyen Thi Thu Thuy²

Received: 16 December 2017 / Accepted: 2 July 2018 / Published online: 14 July 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper, in order to solve the split common null point problem, we investigate a new explicit iteration method, base on the shrinking projection method and ε -enlargement of a maximal monotone operator. We also give some applications of our main results for the problem of split minimum point, multiple-sets split feasibility, and split variational inequality. Two numerical examples also are given to illustrate the effectiveness of the proposed algorithm.

Keywords Split common null point problem · Maximal monotone operator · Metric resolvent · *ε*-enlargement

Mathematics Subject Classification (2010) 47H05 · 47H09 · 49J53 · 90C25

 \boxtimes Truong Minh Tuyen [tuyentm@tnus.edu.vn](mailto: tuyentm@tnus.edu.vn)

> Nguyen Song Ha [hans@tnus.edu.vn](mailto: hans@tnus.edu.vn)

Nguyen Thi Thu Thuy [thuy.nguyenthithu2@huts.edu.vn](mailto: thuy.nguyenthithu2@huts.edu.vn)

- ¹ Thai Nguyen University of Science, Thai Nguyen, Vietnam
- ² School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Hanoi, Vietnam

1 Introduction

Let *C* and *D* be non-empty, closed, and convex subsets of real Hilbert spaces H_1 and *H*₂, respectively, and let *T* : *H*₁ \longrightarrow *H*₂ be a bounded linear operator from *H*₁ into $H₂$. The split feasibility problem (SFP) is formulated as follow:

Find an element
$$
x^* \in S = C \cap T^{-1}(D)
$$
. (1)

This problem was first introduced by Censor and Elfving [\[10\]](#page-18-0) for modeling inverse problems. We also know that it plays an important role in medical image reconstruction and signal processing (see [\[4,](#page-18-1) [5\]](#page-18-2)). In view of its applications, several iterative algorithms of solving (1) were presented in $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ $[4, 5, 11, 13, 24, 25, 29-32]$ and references therein.

There are some generalizations of the SFP, for example, the multiple-set SFP (MSSFP) (see $[11, 17]$ $[11, 17]$ $[11, 17]$), the split common fixed point problem (SCFPP) (see $[12, 17]$ $[12, 17]$ [19\]](#page-18-9)), the split variational inequality problem (SVIP) (see [\[13\]](#page-18-4)), and the split common null point problem (SCNPP) (see [\[6,](#page-18-10) [14,](#page-18-11) [26,](#page-18-12) [27\]](#page-18-13)).

Let *A* : $H_1 \longrightarrow 2^{H_1}$ and *B* : $H_2 \longrightarrow 2^{H_2}$ be two multi-valued operators. The SCNPP is stated as follow:

Find an element
$$
x^* \in (A^{-1}0) \cap (T^{-1}(B^{-1}0)),
$$
 (2)

where $A^{-1}0 := \{x \in H_1 : 0 \in Ax\}$ and $B^{-1}0 := \{x \in H_2 : 0 \in Bx\}.$

In 2015, by using the metric resolvent of maximal monotone operator and the hybrid projection method, Takahashi et al. [\[27\]](#page-18-13) proved a strong convergence theorem for finding a solution of SCNPP in Banach spaces.

Theorem 1.1 [\[27\]](#page-18-13) *Let E and F be uniformly convex and smooth Banach spaces and let JE and JF be the normalized duality mappings on E and F, respectively. Let A and B be maximal monotone operators of E into* 2*E*[∗] *and F into* 2*F*[∗] *such that* $A^{-1}0 \neq \emptyset$ and $B^{-1}0 \neq \emptyset$, respectively. Let Q_{μ} be the metric resolvent of B for $\mu > 0$ *. Let* $T : E \longrightarrow F$ *be a bounded linear operator such that* $T \neq 0$ *, and let* T^* \vec{a} *be the adjoint operator of T* . Suppose that $S = \left(A^{-1}0\right) \bigcap \left(T^{-1}(B^{-1}0)\right) \neq \emptyset$. Let $x_1 \in E$ *, and let* $\{x_n\}$ *be a sequence generated by*

$$
\begin{cases}\nz_n = x_n - J_E^{-1} T^* J_F(T x_n - Q_{\mu_n} T x_n), \\
C_n = \{z \in A^{-1} 0 : \langle z_n - z, J_E(x_n - z_n) \rangle \ge 0\}, \\
Q_n = \{z \in A^{-1} 0 : \langle x_n - z, J_E(x_1 - x_n) \ge 0\}, \\
x_{n+1} = P_{C_n \cap Q_n} x_1,\n\end{cases} \tag{3}
$$

where $\mu_n \in (0, \infty)$ *satisfies that for some* $a, b \in \mathbb{R}$ *,*

$$
0 < a \le \mu_n \le b < \frac{1}{\|T\|^2}, \quad \forall n \in \mathbb{N}.
$$

Then the sequence $\{x_n\}$ *converges strongly to a point* $z_0 \in S$ *, where* $z_0 = P_S x_1$ *.*

We can see that in the iterative method (3) , it is not easy to define C_n and Q_n , because we do not know the set of null points A^{-1} 0 of A. Therefore, it is very difficult to find element $x_{n+1} = P_{C_n \cap Q_n} x_1$.

In 2017, Dadashi [\[14\]](#page-18-11) introduced a shrinking projection method for split common null point problem in Hilbert space. He proved the following result:

Theorem 1.2 [\[14\]](#page-18-11) *Let E be a uniformly convex and smooth Banach space with duality mapping* J_E *. Suppose that* H *is a Hilbert space and* $T : H \longrightarrow E$ *is a bounded linear operator such that* $T \neq 0$ *and* T^* *denote the adjoint operator of* T *. Let* A *and B be maximal monotone operators of H into* 2*^H and of E into* 2*E*[∗] *, respectively, such* ${\rm that}~ S=\left(A^{-1}0\right)\bigcap\left(T^{-1}(B^{-1}0)\right)\ne\emptyset.$ Let J_λ be the resolvent of A for $\lambda>0$ and Q_{μ} *the metric resolvent of B for* $\mu > 0$ *. Generate the sequence* {*x_n*} *by the algorithm*

$$
\begin{cases}\n z_n = J_{\lambda_n}(x_n - \lambda_n T^* J_E(T x_n - Q_{\mu_n} T x_n)), \\
y_n = \alpha_n x_n + (1 - \alpha_n) z_n, \\
 C_n = \{ z \in C_{n-1} : \langle y_n - z, x_n - y_n \rangle \ge 0 \}, \\
 x_{n+1} = P_{C_n} x_1,\n\end{cases} (4)
$$

where $C_1 = H$ *and* $x_1 \in H$ *. If* $0 < ||T|| \le 2\alpha_n < 2$, $0 < b \le \mu_n$ *and* $0 < c \le \lambda_n <$ 1*, then* $\{x_n\}$ *converges strongly to a point* $z_0 \in S$ *, where* $z_0 = P_S x_1$ *.*

From the result of Dadashi, there are two open questions which are posed as follows:

- Question 1. Is it possible to remove the conditions about the boundedness of $||T||$ and the sequence $\{\lambda_n\} \subset [c, 1]$?
- Question 2. Can we extend Theorem 1.2 for the case

$$
S = \bigg(\bigcap_{i=1}^N A_i^{-1}0\bigg)\bigcap\bigg(T^{-1}\bigg(\bigcap_{j=1}^M B_j^{-1}0\bigg)\bigg) \neq \emptyset
$$

where A_i and B_j are maximal monotone operators on the Banach spaces *E* and *F*, respectively?

The purpose of this paper is to introduce a new parallel iterative method to answers the above two open questions. The rest of this paper is organized as follows. In Section [2,](#page-2-0) we list some related facts that will be use in the proof of our result. In Section [3,](#page-5-0) we introduce a new parallel iterative algorithm and prove a strong convergence theorem for this algorithm. Some applications of the main result are presented in Section [4.](#page-11-0) Finally, in Section [5,](#page-15-0) we give two numerical examples for illustrating our method and showing its performance.

2 Preliminaries

In this section, we recall some definitions and results that will be used later. Let *E* be a real Banach space with the dual space *E*∗. For the sake of simplicity, the norms of *E* and E^* are denote by the symbol $\Vert \cdot \Vert$. We use $\langle x, f \rangle$ instead of $f(x)$ for $f \in E^*$ and $x \in E$. When $\{x_n\}$ is a sequence in *E*, then $x_n \to x$ (respectively $x_n \to x$, $x_n \stackrel{*}{\to} x$) will denote strong (respectively weak, weak^{*}) convergence of the sequence $\{x_n\}$ to *x*. Let J_E denote the normalized duality mapping from *E* into 2^{E^*} defined by

$$
J_{E}x = \{ f \in E^* : \langle x, f \rangle = ||x||^2 = ||f||^2 \} \quad \forall x \in E.
$$

We always use S_E to denote the unit sphere $S_E = \{x \in E : ||x|| = 1\}$. Recall that a Banach space *E* is said to be

- (i) uniformly convex, if for any ε , $0 < \varepsilon \le 2$, the inequalities $||x|| \le 1$, $||y|| \le 1$, and *l*(*x*−*y*) \leq *z* imply that there exists a $\delta = \delta(\epsilon) > 0$ such that $\|(x + y)/2\| \leq 1 - \delta$;
- (ii) strictly convex, if for $x, y \in S_E$ with $x \neq y$, then

$$
||(1 - \lambda)x + \lambda y|| < 1 \quad \forall \lambda \in (0, 1).
$$

(iii) smooth, if the limit

$$
\lim_{t\to 0}\frac{\|x+ty\|-\|x\|}{t}
$$

exists for each x and y in S_E . (In this case, the norm of E is said to be Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable if for each $y \in$ *S_E*, this limit attained uniformly for $x \in S_E$).

It is well known that each uniformly convex Banach space *E* is strictly convex and reflexive; *E* is uniformly convex if and only if E^* is uniformly smooth; If *E* is smooth, then duality mapping is single-valued (see $[1, 15]$ $[1, 15]$ $[1, 15]$).

Recall that a Banach space *E* has Kadec-Klee property if every sequence $\{x_n\} \subset E$ such that $x_n \rightharpoonup x$ and $||x_n|| \rightharpoonup ||x||$, then $x_n \rightharpoonup x$. We know that if *E* is a uniformly convex Banach space, then *E* has Kadec-Klee property.

We have the following properties of the normalized duality mapping J_F (see [\[1,](#page-18-14) [15,](#page-18-15) [20\]](#page-18-16)):

- (i) E is reflexive if and only if J_E is surjective;
- (ii) If E^* is strictly convex, then J_E is single-valued;
- (iii) If E is a smooth, strictly convex and reflexive Banach space, then J_E is singlevalued bijection;
- (iv) If E^* is uniformly convex, then J_E is uniformly continuous on each bounded set of *E*.

Furthermore, if *E* is a smooth, strictly convex, and reflexive Banach space and *C* is a non-empty, closed, and convex subset of E , then for each $x \in E$, there exists unique $z \in C$ such that

$$
||x - z|| = \inf_{y \in C} ||x - y||.
$$

The mapping $P_C: E \longrightarrow C$ defined by $P_Cx = z$ is called metric projection from *E* into *C*.

Let $A: E \longrightarrow 2^{E^*}$ be an operator. The effective domain of *A* is denoted by $D(A)$, that is, $D(A) = \{x \in E : Ax \neq \emptyset\}$. Recall that A is called monotone operator if $\langle x-y, u-v \rangle$ ≥ 0 for all *x*, *y* ∈ *D(A)* and for all *u* ∈ *Ax*, *v* ∈ *A(y)*. A monotone operator *A* on *E* is called maximal monotone if its graph is not properly contained in the graph of any other monotone operator on *E*. It is well known that if *A* is a maximal monotone operator on *E* and *E* is a uniformly convex and smooth Banach space, then $R(J_E + rA) = E^*$ for all $r > 0$, where $R(J_E + rA)$ is the range of $J_E + rA$ (see [\[7,](#page-18-17) [22\]](#page-18-18)). Thus, for all $x \in E$ and $r > 0$, there exists unique $x_r \in E$ such that

$$
0 \in J_E(x_r - x) + rAx_r.
$$

We define J_r by $x_r = J_r x$ and J_r is called metric resolvent of A.

The set of null point of *A* is defined by $A^{-1}0 = \{z \in E : 0 \in Az\}$ and we know that $A^{-1}0$ is a closed and convex subset of *E* (see [\[23\]](#page-18-19)).

Let *A* : $E \longrightarrow 2^{E^*}$ be a maximal monotone operator. In [\[9\]](#page-18-20), for each $\varepsilon \ge 0$, Burachik and Svaiter defined A^{ε} , an ε -enlargement of *A*, as follows

$$
A^{\varepsilon}x = \{ u \in E^* : \langle y - x, v - u \rangle \ge -\varepsilon, \forall y \in E, v \in Ay \}.
$$

It is easy to see that, $A^{0}x = Ax$ and if $0 \le \varepsilon_1 \le \varepsilon_2$, then $A^{\varepsilon_1}x \subseteq A^{\varepsilon_2}x$ for any $x \in E$. The use of element in A^{ε} instead of *T* allows an extra degree of freedom which is very useful in various applications.

Let ${C_n}$ be the sequence of closed, convex, and non-empty subsets of a reflexive Banach space *E*. We define the subsets s- Li_nC_n and w-Ls_nC_n of *E* as follows:

- (i) $x \in s\text{-Li}_nC_n$ if and only if there exists $\{x_n\} \subset E$ converges strongly to *x* and that $x_n \in C_n$ for all $n \geq 1$.
- (ii) $x \in w\text{-}Ls_nC_n$ if and only if there exists a subsequence $\{C_{n_k}\}\$ of $\{C_n\}$ and the sequence $\{y_k\} \subset E$ such that $y_k \to x$ and $y_k \in C_{n_k}$ for all $k \ge 1$.
- (iii) If s-Li_nC_n = w-Ls_nC_n = Ω_0 , then Ω_0 is called the limits of $\{C_n\}$ in the sense of Mosco in [\[18\]](#page-18-21) and it is denoted by $\Omega_0 = M$ - $\lim_{n \to \infty} C_n$.

Next, we list some lemmas that will be used in the sequel for the proof of our main result.

Lemma 2.1 (see [\[2,](#page-18-22) [3,](#page-18-23) [16\]](#page-18-24)) *Let E be a smooth, strictly convex, and reflexive Banach space. Let C be a non-empty, closed, and convex subset of E and* let $x_1 \in E$ *and* $z \in C$ *. Then, the following conditions are equivalent:*

(i)
$$
z = P_C x_1;
$$

\n(ii) $\langle z - y, J_E(x_1 - z) \rangle \ge 0$ for all $y \in C$.

Lemma 2.2 (see [\[28\]](#page-19-2)) *Let E be a smooth, reflexive, and strictly convex Banach space having the Kadec-Klee property. Let* {*Cn*} *be a sequence of non-empty, closed, and convex subsets of* E *. If* $\Omega_0 = M$ - $\lim_{n \to \infty} C_n$ *exists and is non-empty, then* $\{P_{C_n}x\}$ *converges strongly to* $P_{\Omega_0} x$ *for each* $x \in E$ *.*

Lemma 2.3 (see [\[9\]](#page-18-20)) *The graph of* A^{ε} : $\mathbb{R}_+ \times E \longrightarrow 2^{E^*}$ *is demiclosed, i.e., the conditions below hold:*

- (i) *If* { x_n } ⊂ *E converges strongly to* x_0 , { u_n ∈ $A^{\varepsilon_n}x_n$ } *converges weak* to* u_0 *in E*^{*} *and* $\{\varepsilon_n\} \subset \mathbb{R}_+$ *converges to* ε *, then* $u_0 \in A^\varepsilon x_0$ *;*
- (ii) *If* {*x_n*} ⊂ *E converges weak to x*₀*,* {*u_n* ∈ *A*^{$ε_n$}*x_n*} *converges strongly to u*₀ *in E*^{*} *and* $\{\varepsilon_n\} \subset \mathbb{R}_+$ *converges to* ε *, then* $u_0 \in A^{\varepsilon}x_0$ *.*

3 Main results

Let *E* and *F* be uniformly convex and smooth Banach spaces and let J_F and J_F be the normalized duality mappings on *E* and *F*, respectively. Let A_i , $i = 1, 2, ..., N$ and B_j , $j = 1, 2, ..., M$ be maximal monotone operators of *E* into 2^{E^*} and *F* into 2^{F^*} , respectively. Let J^i_λ and Q^j_μ be the metric resolvents of A_i for $\lambda > 0$ and B_j for $\mu > 0$, respectively. Let $T : E \longrightarrow F$ be a bounded linear operator such that *T* \neq 0 and let *T*^{*} be the adjoint operator of *T*. Suppose that $S = \left(\bigcap_{i=1}^{N} S_i\right)$ *N i*=1 $A_i^{-1}0$) \bigcap *M*

$$
\left(T^{-1}\left(\bigcap_{j=1}^M B_j^{-1}0\right)\right) \neq \emptyset.
$$

We consider the following problem:

Find an element
$$
x^* \in S
$$
. (5)

In order to solve the problem (5) , we introduce the following algorithm:

Algorithm 1 Let $C_0 = E$, $x_0 \in E$ and let $\{x_n\}$ be a sequence generated by

$$
J_F(y_{j,n} - Tx_n) + \mu_n B_j^{\varepsilon_n} y_{j,n} \ni 0, \ j = 1, 2, ..., M; \tag{6}
$$

$$
z_{j,n} = x_n - r_n J_E^{-1} T^* (J_F(Tx_n - y_{j,n})), \ j = 1, 2, ..., M; \tag{7}
$$

Choose j_n such that $||z_{j_n,n} - x_n|| = \max_{j=1,...,M} ||z_{j,n} - x_n||$, let $z_n = z_{j_n,n}$,

$$
D_n = \{ z \in E : \langle x_n - z, J_E(x_n - z_n) \rangle \ge r_n \| Tx_n - y_{j_n, n} \|^2 - r_n \mu_n \varepsilon_n \};
$$

\n
$$
J_E(t_{i,n} - z_n) + \lambda_n A_i^{\varepsilon_n} t_{i,n} \ni 0, \ i = 1, 2, ..., N;
$$

\nChoose i_n such that $||t_{i_n,n} - z_n|| = \max_{i=1,...,N} ||t_{i,n} - z_n||$, let $t_n = t_{i_n,n}$; (8)

$$
C_{n+1} = \{ z \in C_n : \langle t_n - z, J_E(z_n - t_n) \rangle \ge -\lambda_n \varepsilon_n \} \cap D_n;
$$

$$
x_{n+1} = P_{C_{n+1}} x_0,
$$

where $\{\lambda_n\}$, $\{\mu_n\} \subset (0, \infty)$, $\{r_n\} \subset (0, \infty)$ and $\{\varepsilon_n\} \subset (0, \infty)$.

We will prove strong convergence of the above sequence $\{x_n\}$ under the following conditions:

(C1)
$$
\min\left\{\inf_{n}\{\lambda_{n}\},\inf_{n}\{\mu_{n}\},\inf_{n}\{r_{n}\}\}\geq a>0 \text{ and } \sup_{n}\{r_{n}\} < +\infty;
$$

(C2)
$$
(\lambda_{n} + \mu_{n})\varepsilon_{n} \to 0 \text{, as } n \to \infty.
$$

First, we have the following lemma:

Lemma 3.1 *If* {*Cn*} *is a decreasing sequence of closed and convex subsets of a reflexive Banach space* E *and* $\Omega_0 = \bigcap_{n=1}^{\infty} C_n \neq \emptyset$, *then* $\Omega_0 = M$ - $\lim_{n \to \infty} C_n$. *n*=1

Proof Clearly, if $x \in \Omega_0$, then the sequence $\{x_n\}$ with $x_n = x$ for all $n \ge 1$ converges strongly to *x*. Thus, we have $x \in s\text{-Li}_nC_n$ and $x \in w\text{-Ls}_nC_n$. It implies that $\Omega_0 \subseteq$ s-Li_nC_n and $\Omega_0 \subseteq w$ -Ls_nC_n.

If we take *x* ∈ s-Li_nC_n then there exists sequence { x_n } ⊂ *E* with x_n ∈ C_n for all $n \geq 1$ such that $x_n \to x$ as $n \to \infty$. On the other hand, $x_{n+k} \in C_n$ for all $n \geq 1$ and $k \geq 0$ because $\{C_n\}$ is a decreasing sequence. So, letting $k \to \infty$ and using the closedness property of C_n , we get that $x \in C_n$ for all $n \ge 1$. Thus, $x \in \Omega_0$ and hence $Ω₀ ⊇ s-Li_nC_n$.

Next, let $y \in w - Ls_nC_n$, from the definition of w-Ls_nC_n, there exists a subsequence ${C_{n_k}}$ of ${C_n}$ and the sequence ${y_k} \subset E$ such that $y_k \rightharpoonup x$ and $y_k \in C_{n_k}$ for all $k \geq 1$. From $\{C_n\}$ is a decreasing sequence, we have

$$
y_{k+p} \in C_{n_k} \tag{9}
$$

for all $k \ge 1$ and $p \ge 0$. Due to the closedness and convexity of C_{n_k} , we have C_{n_k} is weakly closed in *E* for all $k \ge 1$. So, in [\(9\)](#page-6-0), letting $p \to \infty$, we obtain that $y \in C_{n_k}$ for all $k \geq 1$. Moreover, $C_k \supseteq C_{n_k}$, $y \in C_k$ for all $k \geq 1$. Therefore, $y \in \Omega_0$ and hence $\Omega_0 \supseteq w$ -Ls_n C_n .

Consequently, we obtain that s-Li_nC_n = w-Ls_nC_n = Ω_0 . Thus, $\Omega_0 = M$ - $\lim_{n \to \infty} C_n$.

Next, we have the following propositions:

Proposition 3.2 *The sequence* {*xn*} *generated by Algorithm 1 is well defined.*

Proof We will prove this proposition by several steps.

Step 1. C_n and D_n are the closed and convex subsets of E .

Indeed, we rewrite D_n and C_{n+1} in the forms

 $D_n = \{z \in E : \langle z, J_E(x_n - z_n) \rangle \leq \langle x_n, J_E(x_n - z_n) \rangle - r_n ||Tx_n - y_{i_n,n}||^2 + r_n \mu_n \varepsilon_n \},$ $C_{n+1} = W_n \cap D_n$

for all $n \geq 0$, where $W_n := \{z \in C_n : \langle z, J_E(z_n - t_n) \rangle \leq \langle t_n, J_E(z_n - t_n) \rangle + \lambda_n \varepsilon_n \}.$ We note that D_n and W_n are the closed half-spaces of *E*. Thus, C_n and D_n are the closed and convex subsets of *E*.

Step 2. $S \subset D_n$ for all $n \geq 0$.

Let $z \in S$, from [\(7\)](#page-5-2), we have

$$
J_E(x_n - z_n) = r_n T^* (J_F(T x_n - y_{j_n,n})).
$$

It implies that

$$
\langle x_n - z, J_E(x_n - z_n) \rangle = r_n \langle x_n - z, T^* (J_F(T x_n - y_{j_n, n})) \rangle
$$

= $r_n \langle Tx_n - T z, J_F(T x_n - y_{j_n, n}) \rangle$
= $r_n \langle Tx_n - y_{j_n, n} + y_{j_n, n} - T z, J_F(T x_n - y_{j_n, n}) \rangle$
= $r_n ||Tx_n - y_{j_n, n}||^2$
+ $r_n \langle y_{j_n, n} - T z, J_F(T x_n - y_{j_n, n}) \rangle$. (10)

 \mathcal{D} Springer

On the other hand, from [\(6\)](#page-5-2) and $z \in S$, we have

$$
\frac{1}{\mu_n} J_F(Tx_n - y_{j_n,n}) \in B_{j_n}^{\varepsilon_n} y_{j_n,n} \quad \text{and} \quad 0 \in B_{j_n} T_z.
$$

Thus, from the definition of $B_{j_n}^{\varepsilon_n}$, we get that

$$
r_n \langle y_{j_n,n} - Tz, J_F(Tx_n - y_{j_n,n}) \rangle \geq -r_n \mu_n \varepsilon_n. \tag{11}
$$

From (10) and (11) , we obtain

$$
\langle x_n-z, J_E(x_n-z_n)\rangle \ge r_n \|Tx_n-y_{j_n,n}\|^2 - r_n \mu_n \varepsilon_n.
$$

This follows that $z \in D_n$ and hence $S \subset D_n$ for all $n \geq 0$.

Step 3. $S \subset C_n$ for all $n \geq 0$.

Indeed, obviously, $S \subset C_0 = E$. Suppose that $S \subset C_n$ for some $n \geq 1$, we will prove that *S* ⊂ C_{n+1} . Now, from [\(8\)](#page-5-2) and $z \in S$, we have

$$
\frac{1}{\lambda_n} J_E(z_n - t_n) \in A_{i_n}^{\varepsilon_n} t_n \quad \text{and} \quad 0 \in A_{i_n} z.
$$

Hence, from the definition of $A_{i_n}^{\varepsilon_n}$, we get that

$$
\langle t_n-z, J_E(z_n-t_n)\rangle\geq -\lambda_n\varepsilon_n.
$$

It implies that *z* ∈ *W_n*. From the definition of $C_{n+1} = W_n ∩ D_n$ and step 2, we have $z \in C_{n+1}$. Thus, $S \subset C_{n+1}$. Finally, by mathematical induction, we obtain that $S \subset C_n$ for all $n > 0$. Hence, the sequence $\{x_n\}$ is well defined. *S* ⊂ *C_n* for all *n* ≥ 0. Hence, the sequence { x_n } is well defined.

Proposition 3.3 *If the conditions (C1) and (C2) are satisfied, then the sequences* {*xn*}*,* {*zj,n*}*, j* = 1*,* 2*, ..., M and* {*ti,n*}*, i* = 1*,* 2*, ..., N in Algorithm 1 converge strongly to a same point* $p_0 \in E$ *.*

Proof We will prove this proposition by several steps.

Step 1.
$$
x_n \to p_0 = P_{\Omega_0} x_0
$$
, where $\Omega_0 = \bigcap_{n=1}^{\infty} C_n \neq \emptyset$.

Indeed, from step 1 and step 3 in the proof of Proposition 3.2 and the definition of $\{C_n\}$, we have $\{C_n\}$ is the sequence of decreasing of closed convex subsets of *E* and $S \subset \Omega_0 \neq \emptyset$. Thus, from Lemma 3.1, there exists the limit $\Omega_0 = M$ - lim_p C_n . By using Lemma 2.2, we have $x_n = P_{C_n} x_0 \rightarrow p_0 = P_{\Omega_0} x_0$ as $n \rightarrow \infty$.

Step 2. {*y_{j,n}*} is bounded for all $j = 1, 2, ..., M$.

Indeed, fixing $z \in S$ and from [\(6\)](#page-5-2), we have

$$
\frac{1}{\mu_n} J_F(Tx_n - y_{j,n}) \in B_j^{\varepsilon_n} y_{j,n} \quad \text{and} \quad 0 \in B_j T_z.
$$

Thus, from the definition of $B_j^{\varepsilon_n}$, we get that

$$
\langle y_{j,n}-z, J_F(Tx_n-y_{j,n})\rangle \geq -\mu_n\varepsilon_n,
$$

for all $j = 1, 2, ..., M$. It follows that

$$
||y_{j,n} - Tx_n||^2 \le \langle Tx_n - z, J_F(Tx_n - y_{j,n}) \rangle + \mu_n \varepsilon_n
$$

\n
$$
\le \frac{1}{2} (||Tx_n - z||^2 + ||Tx_n - y_{j,n}||^2) + \mu_n \varepsilon_n,
$$

which implies that

$$
||y_{j,n}-Tx_n||^2 \leq ||Tx_n-z||^2 + 2\mu_n \varepsilon_n,
$$

for all $j = 1, 2, ..., M$ and for all $n \ge 0$.

Because of the boundedness of $\{x_n\}$, the sequence $\{Tx_n\}$ also is bounded. From this and $\mu_n \varepsilon_n \to 0$, it ensures that there exists $K > 0$ such that

$$
K=\max\left\{\sup_n\{\|Tx_n-z\|^2\},\sup_n\{\mu_n\varepsilon_n\}\right\}<\infty.
$$

So, we obtain that

$$
||y_{j,n}-Tx_n||^2\leq 3K,
$$

which implies that $\{y_{j,n} - Tx_n\}$ is bounded and hence $\{y_{j,n}\}$ also is bounded for all $j = 1, 2, ..., M$.

Step 3. {*z_{j,n}*} is bounded for all $j = 1, 2, ..., M$.

From (7) , we have

$$
J_E(x_n - z_{j,n}) = r_n T^* J_F(T x_n - y_{j,n}).
$$
\n(12)

Thus, by the boundedness of $\{Tx_n\}$, $\{y_{i,n}\}$ and $\{r_n\}$, we also get that $\{z_{i,n}\}$ is bounded for all $j = 1, 2, ..., M$.

Step 4. $\{t_{i,n}\}$ is bounded for all $i = 1, 2, ..., N$.

Indeed, fixing $z \in S$ and from [\(8\)](#page-5-2), we have

$$
\frac{1}{\lambda_n} J_E(z_n - t_{i,n}) \in A_i^{\varepsilon_n} t_{i,n} \quad \text{and} \quad 0 \in A_i z.
$$

Thus, from the definition of $A_i^{\varepsilon_n}$, we get that

$$
\langle t_{i,n}-z,\,J_E(z_n-t_{i,n})\rangle\geq -\lambda_n\varepsilon_n,
$$

for all $i = 1, 2, ..., N$. It follows that

$$
||t_{i,n} - z_n||^2 \le \langle z_n - z, J_E(z_n - t_{i,n}) \rangle + \lambda_n \varepsilon_n
$$

$$
\le \frac{1}{2} (||z_n - z||^2 + ||z_n - t_{i,n}||^2) + \lambda_n \varepsilon_n,
$$

which implies that

$$
||t_{i,n} - z_n||^2 \le ||z_n - z||^2 + 2\lambda_n \varepsilon_n,
$$

for all *i* = 1, 2, ..., *N* and for all $n \ge 0$.

Because of the boundedness of $\{z_n\}$ and $\lambda_n \varepsilon_n \to 0$, it ensures that $\{t_{i,n}\}$ is bounded for all $i = 1, 2, ..., N$.

Step 5. $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_{j,n} = \lim_{n\to\infty} t_{i,n} = p_0.$

From the definition of D_n , we have

$$
\langle x_n - x_{n+1}, J_E(x_n - z_n) \rangle \ge r_n (\|Tx_n - y_{j_n,n}\|^2 - \mu_n \varepsilon_n)
$$

and hence,

$$
||Tx_n - y_{j_n,n}||^2 \leq \frac{1}{a}(K_1||x_n - x_{n+1}|| + \mu_n \varepsilon_n) \to 0,
$$

where $K_1 = \sup_n \{ ||x_n - z_n|| \} < \infty$. This implies that

$$
||Tx_n-y_{j_n,n}||\to 0.
$$

So, from [\(12\)](#page-8-0), we obtain

$$
||x_n - z_{j_n,n}|| \to 0. \tag{13}
$$

From the definition of $z_{j_n,n}$, we have

$$
||x_n - z_{j,n}|| \to 0,\t\t(14)
$$

for all $j = 1, 2, ..., M$. It follows from [\(12\)](#page-8-0) that

$$
||J_F(Tx_n - y_{j,n})|| \to 0,
$$
\n(15)

for all $j = 1, 2, ..., M$.

Next, from $x_{n+1} \in C_{n+1}$, we have

$$
\langle t_n-x_{n+1}, J_E(z_n-t_n)\rangle\geq -\lambda_n\varepsilon_n.
$$

Thus, we get that

$$
||z_n - t_n||^2 \le \langle z_n - x_{n+1}, J_E(z_n - t_n) \rangle + \lambda_n \varepsilon_n
$$

$$
\le \frac{1}{2} (||z_n - x_{n+1}||^2 + ||z_n - t_n||^2) + \lambda_n \varepsilon_n,
$$

which follows that

$$
||z_n - t_n||^2 \le ||z_n - x_{n+1}||^2 + 2\lambda_n \varepsilon_n \to 0.
$$

This implies that

$$
||z_n-t_n||\to 0.
$$

By the definition of t_n , we have

$$
||z_n - t_{i,n}|| \to 0,\t\t(16)
$$

 \Box

for all $i = 1, 2, ..., N$.

Finally, from $x_n \to p_0$, [\(14\)](#page-9-0) and [\(16\)](#page-9-1), we obtain that

$$
\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_{j,n} = \lim_{n \to \infty} t_{i,n} = p_0,\tag{17}
$$

for all $j = 1, 2, ..., M$ and for all $i = 1, 2, ..., N$.

Now, we are in position to prove our main result.

Theorem 3.4 *If the conditions (C1) and (C2) are satisfied, then the sequence* $\{x_n\}$ *generated by Algorithm 1 converges strongly to* P_Sx_0 *as* $n \to \infty$ *.*

Proof We proceed with the following steps.

Step 1. $p_0 \in S$.

Indeed, from (16) and the condition $(C1)$, we have

$$
A_i^{\varepsilon_n}t_{i,n}\ni\frac{1}{\lambda_n}J_E(z_n-t_{i,n})\to 0,
$$

for all $i = 1, 2, ..., N$. This combines with $t_{i,n} \to p_0, \varepsilon_n \to 0$ and using Lemma 2.3, we obtain that

$$
p_0 \in A_i^{-1}0,\tag{18}
$$

for all $i = 1, 2, ..., N$.

Obviously, $Tx_n \to Tp_0$ and from [\(15\)](#page-9-2), we get that

$$
y_{j,n} \to T p_0,\tag{19}
$$

for all $j = 1, 2, ..., M$.

From (6) , (15) and the condition $(C1)$, we have

$$
B_j^{\varepsilon_n} y_{j,n} \ni \frac{1}{\mu_n} J_E(T x_n - y_{j,n}) \to 0,
$$
 (20)

for all $j = 1, 2, ..., M$.

From [\(19\)](#page-10-0), [\(20\)](#page-10-1) and Lemma 2.3 imply that $Tp_0 \in B_j^{-1}$ 0. Hence,

$$
p_0 \in T^{-1}(B_j^{-1}0),\tag{21}
$$

for all $j = 1, 2, ..., M$. Therefore, from [\(18\)](#page-10-2) and [\(21\)](#page-10-3), we obtain $p_0 \in S$.

Step 2. $p_0 = P_S x_0$.

Indeed, let $x^{\dagger} = P_Sx_0$. From $p_0 = P_{\Omega_0}x_0$ and $x^{\dagger} \in S \subset \Omega_0$, we have

$$
||x_0 - p_0|| \le ||x_0 - x^{\dagger}||.
$$

On the other hand, from the fact that $p_0 \in S$, we have

$$
||x_0 - x^{\dagger}|| \le ||x_0 - p_0||.
$$

Thus, we get $||x_0 - x^{\dagger}|| = ||x_0 - p_0||$. By the uniqueness of x^{\dagger} , it ensures that $p_0 = x^{\dagger} = P_0x_0$. $p_0 = x^{\dagger} = P_S x_0.$

Remark 3.5 When $\varepsilon_n = 0$ for all *n*, then Algorithm 1 can be rewritten in the following form: Let $C_0 = E$, $x_0 \in E$ and let $\{x_n\}$ be a sequence generated by

$$
z_{j,n} = x_n - r_n J_E^{-1} T^* (J_F(Tx_n - Q_{\mu_n}^j Tx_n)), \ j = 1, 2, ..., M;
$$

Choose j_n such that $||z_{j_n,n} - x_n|| = \max_{j=1,...,M} ||z_{j,n} - x_n||$, let $z_n = z_{j_n,n}$,

$$
D_n = \{z \in E : \langle x_n - z, J_E(x_n - z_n) \rangle \ge r_n ||Tx_n - Q_{\mu_n}^{j_n} Tx_n||^2 \};
$$

$$
t_{i,n} = J_{\lambda_n}^i z_n, \ i = 1, 2, ..., N;
$$

Choose i_n such that $||t_{i_n,n} - z_n|| = \max_{i=1,...,N} ||t_{i,n} - z_n||$, let $t_n = t_{i_n,n}$;

$$
C_{n+1} = \{z \in C_n : \langle t_n - z, J_E(z_n - t_n) \rangle \ge 0\} \bigcap D_n;
$$

$$
x_{n+1} = P_{C_{n+1}} x_0,
$$
 (22)

where $\{\lambda_n\}$, $\{\mu_n\} \subset (0, \infty)$ and $\{r_n\} \subset (0, \infty)$.

The following result is a direct consequence of Theorem 3.4.

Corollary 3.6 If the condition (C1) is satisfied, then the sequence $\{x_n\}$ generated by [\(22\)](#page-11-1) *converges strongly to* $x^{\dagger} = P_S x_0$ *.*

4 Applications

4.1 Split minimum point problem

Let *E* be a Banach space and let $f : E \longrightarrow (-\infty, \infty]$ be a proper, lower semicontinuous and convex function. The subdifferentiable of *f* is multi-valued mapping $\partial f : E \longrightarrow 2^{E^*}$ which is defined by

$$
\partial f(x) = \{ g \in E^* : f(y) - f(x) \ge \langle y - x, g \rangle, \ \forall y \in E \}
$$

for all $x \in E$. We know that ∂f is maximal monotone operator [\[21\]](#page-18-25) and $x_0 \in$ $\argmin_{x} f(x)$ if and only if $\partial f(x_0) \ni 0$.

E The *ε*-subdifferential enlargement of *∂f* is given by

$$
\partial_{\varepsilon} f(x) = \{ u \in E^* : f(y) - f(x) \ge \langle y - x, u \rangle - \varepsilon, \ \forall y \in E \},
$$

for each $\varepsilon \geq 0$. It is well know that $\partial_{\varepsilon} f(x) \subset \partial^{\varepsilon} f(x)$, for any $x \in E$. Moreover, in some particular cases, we have that $\partial_{\varepsilon} f(x) \subsetneq \partial^{\varepsilon} f(x)$ (see, example 2 and example 3 in [\[8\]](#page-18-26)).

From the Theorem 3.4, we have the following theorem:

Theorem 4.1 *Let E and F be uniformly convex and uniformly smooth Banach spaces and let* J_E *and* J_F *be the normalized duality mappings on E and F*, *respectively. Let* f_i , $i = 1, 2, ..., N$ *and* g_j , $j = 1, 2, ..., M$ *be proper, lower semi-continuous, and convex functions of E into* $(-\infty, \infty]$ *and F into* $(-\infty, \infty]$ *,*

respectively. Let $T : E \longrightarrow F$ *be a bounded linear operator such that* $T \neq 0$ *and let* T^* *be the adjoint operator of* T *. Suppose that*

$$
S = \left(\bigcap_{i=1}^N (\partial f_i)^{-1} 0\right) \bigcap \left(T^{-1}\left(\bigcap_{j=1}^M (\partial g_j)^{-1} 0\right)\right) \neq \emptyset.
$$

Let $x_1 \in E$ *and let* $\{x_n\}$ *be a sequence generated by* $C_0 = E$ *,* $x_0 \in E$ *and*

$$
J_F(y_{j,n} - Tx_n) + \mu_n \partial^{\varepsilon_n} g_j(y_{j,n}) \ni 0, \ j = 1, 2, ..., M;
$$

\n
$$
z_{j,n} = x_n - r_n J_E^{-1} T^*(J_F(Tx_n - y_{j,n})), \ j = 1, 2, ..., M;
$$

\nChoose j_n such that $||z_{j_n,n} - x_n|| = \max_{j=1,...,M} ||z_{j,n} - x_n||$, let $z_n = z_{j_n,n}$,
\n
$$
D_n = \{z \in E : \langle x_n - z, J_E(x_n - z_n) \rangle \ge r_n ||Tx_n - y_{j_n,n}||^2 - r_n \mu_n \varepsilon_n\};
$$

\n
$$
J_E(t_{i,n} - z_n) + \lambda_n \partial^{\varepsilon_n} f_i(t_{i,n}) \ni 0, \ i = 1, 2, ..., N;
$$

\nChoose i_n such that $||t_{i_n,n} - z_n|| = \max_{i=1,...,N} ||t_{i,n} - z_n||$, let $t_n = t_{i_n,n}$;
\n
$$
C_{n+1} = \{z \in C_n : \langle t_n - z, J_E(z_n - t_n) \rangle \ge -\lambda_n \varepsilon_n\} \bigcap D_n;
$$

\n
$$
x_{n+1} = P_{C_{n+1}} x_0,
$$

where $\{\lambda_n\}$, $\{\mu_n\} \subset (0, \infty)$, $\{r_n\} \subset (0, \infty)$ *and* $\{\varepsilon_n\} \subset (0, \infty)$ *. If the conditions (C1) and* (C2) are satisfied, then the sequence $\{x_n\}$ converges strongly to $x^{\dagger} = P_S x_0$.

The following result is a direct consequence of the theorem above.

Corollary 4.2 *Let E, F, J_E, J_F, f_i, g_j, T, T*^{*} *be as in Theorem 4.1. Suppose that*

$$
S = \left(\bigcap_{i=1}^N (\partial f_i)^{-1} 0\right) \bigcap \left(T^{-1}\left(\bigcap_{j=1}^M (\partial g_j)^{-1} 0\right)\right) \neq \emptyset.
$$

Let $x_1 \in E$ *and let* $\{x_n\}$ *be a sequence generated by* $C_0 = E$ *,* $x_0 \in E$ *and*

$$
y_{j,n} = \underset{y \in F}{\operatorname{argmin}} \left\{ g_j(y) + \frac{1}{2\mu_n} \|y - Tx_n\|^2 \right\}, \ j = 1, 2, ..., M; \n z_{j,n} = x_n - r_n J_E^{-1} T^*(J_F(Tx_n - y_{j,n})), \ j = 1, 2, ..., M; \nChoose j_n such that $||z_{j_n,n} - x_n|| = \max_{j=1,...,M} ||z_{j,n} - x_n||, \ let z_n = z_{j_n,n}, \n D_n = \{z \in E : \langle x_n - z, J_E(x_n - z_n) \rangle \ge r_n ||Tx_n - y_{j_n,n}||^2 \}; \n t_{i,n} = \underset{y \in E}{\operatorname{argmin}} \{ f_i(x) + \frac{1}{2\lambda_n} ||x - z_n||^2 \}, \ i = 1, 2, ..., N; \n Choose i_n such that $||t_{i_n,n} - z_n|| = \max_{i=1,...,N} ||t_{i,n} - z_n||, \ let t_n = t_{i_n,n}; \n C_{n+1} = \{ z \in C_n : \langle t_n - z, J_E(z_n - t_n) \rangle \ge 0 \} \bigcap D_n; \n x_{n+1} = P_{C_{n+1}} x_0,$$
$$

where $\{\lambda_n\}$, $\{\mu_n\} \subset (0, \infty)$ *and* $\{r_n\} \subset (0, \infty)$ *. If the condition (C1) is satisfied, then the sequence* $\{x_n\}$ *converges strongly to* $x^{\dagger} = P_Sx_0$ *.*

 $\textcircled{2}$ Springer

4.2 Multiple-sets split feasibility problem

Let C be a non-empty, closed, and convex subset of E . Let i_C be the indicator function of *C*, that is,

$$
i_C(x) = \begin{cases} 0, & \text{if } x \in C, \\ \infty, & \text{if } x \notin C. \end{cases}
$$

It is easy to see that i_C is the proper, semi-continuous, and convex function, so its subdifferentiable ∂i_C is a maximal monotone operator. We know that

$$
\partial i_C(u) = N(u, C) = \{ f \in E^* : \langle u - y, f \rangle \ge 0 \quad \forall y \in C \},
$$

where $N(u, C)$ is the normal cone of C at u .

We denote metric resolvent of ∂i_C by J_r with $r > 0$. Suppose $u = J_r x$ for $x \in E$, that is

$$
\frac{J_E(x-u)}{r} \in \partial i_C(u) = N(u, C).
$$

Thus, we have

$$
\langle u-y, J_E(x-u)\rangle \ge 0,
$$

for all $y \in C$. From Lemma 2.2, we get that $u = P_C x$.

Thus, from Theorem 3.4, we have the following theorem:

Theorem 4.3 *Let E*, *F*, *J_E*, *J_F*, *T*, *T*^{*} *be as in Theorem 4.1. Let* L_i , $i = 1, 2, ..., N$ *and* K_j , $j = 1, 2, ..., M$ *be nonempty, closed and convex subsets of* E *and* F *, respec-*

tively. Suppose that $S = \bigcap_{i=1}^{N} S_i$ *N i*=1 L_i) $\bigcap \left(T^{-1} \big(\bigcap_{i=1}^m \right)$ *M j*=1 (K_j) $\neq \emptyset$. Let $x_1 \in E$ and let ${x_n}$ *be a sequence generated by* $C_0 = E$ *,* $x_0 \in E$ *and*

$$
z_{j,n} = x_n - r_n J_E^{-1} T^*(J_F(Tx_n - P_{K_j} Tx_n)), \ j = 1, 2, ..., M;
$$

\nChoose j_n such that $||z_{j_n,n} - x_n|| = \max_{j=1,...,M} ||z_{j,n} - x_n||$, let $z_n = z_{j_n,n}$,
\n
$$
D_n = \{z \in E : \langle x_n - z, J_E(x_n - z_n) \rangle \ge r_n ||Tx_n - P_{K_{j_n}} Tx_n||^2 \};
$$

\n $t_{i,n} = P_{L_i} z_n, \ i = 1, 2, ..., N;$
\nChoose i_n such that $||t_{i_n,n} - z_n|| = \max_{i=1,...,N} ||t_{i,n} - z_n||$, let $t_n = t_{i_n,n}$;
\n
$$
C_{n+1} = \{z \in C_n : \langle t_n - z, J_E(z_n - t_n) \rangle \ge 0\} \bigcap D_n;
$$

\n $x_{n+1} = P_{C_{n+1}} x_0,$

where ${r_n} \subset (0, \infty)$ *. If the condition (C1) is satisfied, then the sequence* ${x_n}$ *converges strongly to* $x^{\dagger} = P_S x_0$ *.*

4.3 The split variational inequality problem

Let *C* be a non-empty, closed, and convex subset of *E* and let $A: C \longrightarrow E^*$ be a monotone operator which is hemi-continuous (that is for any $c \in C$ and $t_n \to 0^+$ we have $A(x + t_n y) \rightharpoonup Ax$ for all $y \in E$ such that $x + t_n y \in C$). Then, a point $u \in C$ is called a solution of the variational inequality for *A*, if

$$
\langle y - u, Au \rangle \ge 0 \quad \forall y \in C.
$$

We denote by VI*(C, A)* the set of all solutions of the variational inequality for *A*.

Define a mapping *TA* by

$$
T_A x = \begin{cases} Ax + N(x, C), & \text{if } x \in C, \\ \emptyset, & \text{if } x \notin C. \end{cases}
$$

By Rockafellar [\[22\]](#page-18-18), we know that T_A is maximal monotone, and $T_A^{-1}0 = VI(C, A)$.

For any $y \in E$ and $r > 0$, we know that the variational inequality VI(C, rA + *J_E*(\bullet − *y*)) has a unique solution. Suppose that *x* = VI(*C*, *r*A*x* + *J_E*(*x* − *y*)), that is,

$$
\langle z - x, rA(x) + J_E(x - y) \rangle \ge 0 \quad \forall z \in C.
$$

From the definition of *N (x, C)*, we have

$$
-rAx - J_E(x - y) \in N(x, C) = rN(x, C),
$$

which implies that

$$
\frac{J_E(y-x)}{r} \in Ax + N(x, C) = T_A x.
$$

Thus, we obtain that $x = J_r y$, where J_r is metric resolvent of T_A .

Now, let *E* and *F* be two uniformly convex and smooth Banach spaces and let K_i , $i = 1, 2, ..., N$ and L_j , $j = 1, 2, ..., M$ be closed and convex subsets of *E* and *F*, respectively. Let A_i : $K_i \longrightarrow E^*$ and B_i : $L_i \longrightarrow F^*$ be monotone operators which are hemi-continuous. Let $T : E \longrightarrow F$ be a bounded linear operator *N*

such that
$$
T \neq 0
$$
. Suppose that $S = \left(\bigcap_{i=1}^{N} VI(K_i, A_i)\right) \bigcap \left(T^{-1}\left(\bigcap_{j=1}^{M} VI(B_j, L_j)\right)\right) \neq \emptyset$.

We consider the following split variational inequality problem:

Find an element
$$
x^* \in S
$$
. (23)

To solve the problem [\(23\)](#page-14-0), we define the operators T_{A_i} and T_{B_j} as following

$$
T_{A_i}x = \begin{cases} A_i x + N(x, K_i) \text{ if } x \in K_i, \\ \emptyset \text{ if } x \notin K_i, \end{cases} \text{ and } T_{B_j}x = \begin{cases} B_j x + N(x, L_j) \text{ if } x \in L_j, \\ \emptyset \text{ if } x \notin L_j, \end{cases}
$$

for all $i = 1, 2, ..., N$ and $j = 1, 2, ..., M$. For any $r > 0$, we denote by J_r^i and Q_r^j the metric resolvents of T_{A_i} and T_{B_i} , respectively.

From the above argument, the problem [\(23\)](#page-14-0) is equivalent to the split common null point problem for maximal monotone operators T_{A_i} and T_{B_i} . Thus, from Theorem 3.4, we have the following result:

Theorem 4.4 *Let* $C_0 = E$ *,* $x_1 \in E$ *and let* $\{x_n\}$ *be a sequence generated by*

$$
t_{j,n} = VI(L_j, \mu_n B_j + J_F(\bullet - Tx_n)), \ j = 1, 2, ..., M;
$$

\n
$$
z_{j,n} = x_n - r_n J_E^{-1} T^* (J_F(Tx_n - t_{j,n})), \ j = 1, 2, ..., M;
$$

\nChoose j_n such that $||z_{j_n,n} - x_n|| = \max_{j=1,...,M} ||z_{j,n} - x_n||$, let $z_n = z_{j_n,n}$,
\n
$$
D_n = \{z \in E : \langle x_n - z, J_E(x_n - z_n) \rangle \ge r_n ||Tx_n - Q_{\mu_n}^{j_n} Tx_n||^2 \};
$$

\n
$$
y_{i,n} = VI(K_i, \lambda_n A_i + J_E(\bullet - z_n)), \ i = 1, 2, ..., N;
$$

\nChoose i_n such that $||y_{i_n,n} - z_n|| = \max_{i=1,...,N} ||y_{i,n} - z_n||$, let $y_n = y_{i_n,n}$;
\n
$$
C_{n+1} = \{z \in C_n : \langle y_n - z, J_E(z_n - y_n) \rangle \ge 0\} \bigcap D_n;
$$

\n
$$
x_{n+1} = P_{C_{n+1}} x_0,
$$
\n(24)

where $\{\lambda_n\}$, $\{\mu_n\}$ *and* $\{r_n\}$ *satisfy the following the condition (C1). Then, the sequence* ${x_n}$ *converges strongly to a point* $x^{\dagger} \in S$ *, where* $x^{\dagger} = P_S x_1$ *.*

5 Numerical test

In this section, we apply our result in Theorem 4.3 to solve the multiple-set feasibility problem.

Example 5.1 Consider the following problem:

Find an element
$$
x_* \in S = \left(\bigcap_{i=1}^{100} L_i\right) \bigcap \left(T^{-1}\left(\bigcap_{j=1}^{50} K_j\right)\right),
$$
 (25)

where

$$
L_i = [0, i] \times [-i, 2i - 1] \times [1 - i, 1 + i] \subset \mathbb{R}^3, \quad i = 1, 2, ..., 100,
$$

\n
$$
K_j = [1 - j, j] \times [0, 1 + j] \subset \mathbb{R}^2, \quad j = 1, 2, ..., 50,
$$

and $T : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by

$$
T(x_1, x_2, x_3) = (4x_1, 4x_3) \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3.
$$

It is easy to see that

$$
S = [0, 1/4] \times [-1, 1] \times [0, 1/2].
$$

Next, the Xu' algorithms [\[29\]](#page-19-0) can be applied to the same above problem. They are formulated as follows:

$$
x_{n+1} = T_{100} T_{99} \dots T_1 x_n \quad n \ge 1,
$$
\n⁽²⁶⁾

where

$$
T_i := P_{L_i}\Big(x_n - \gamma \sum_{j=1}^{50} \beta_j T^*(I - P_{K_j})Tx_n\Big), \quad i = 1, 2, ..., 100.
$$

$$
x_{n+1} = \sum_{i=1}^{100} \lambda_i P_{L_i} \left(x_n - \gamma \sum_{j=1}^{50} \beta_j T^* (I - P_{K_j}) T x_n \right), \quad n \ge 1 \tag{27}
$$

and

$$
x_{n+1} = P_{L_{[n+1]}}\bigg(x_n - \gamma \sum_{j=1}^{50} \beta_j T^*(I - P_{K_j}) Tx_n\bigg), \quad n \ge 1 \tag{28}
$$

where $\lambda_i > 0$ for all *i* such that \sum *N i*=1 *λ_i* = 1, *β_j* > 0 for all *j*, 0 < γ < 2/*L*

with $L = ||T||^2 \sum$ 50 *i*=1 β_j and $C_{[n]} = C_{n \mod N}$ and the mod function takes values in {1*,* 2*,...,N*}.

Remark 5.2 In [\[29\]](#page-19-0), Xu showed that the sequence $\{x_n\}$ is defined by [\(26\)](#page-15-1), [\(27\)](#page-16-0) and [\(28\)](#page-16-1) converges weakly to an element $x^{\dagger} \in S$. Moreover, it is clear to see that if the sequence $\{x_n\}$ converges strongly to $x^{\dagger} \in S$, then $x^{\dagger} = P_Sx_0$.

If we choose the starting point $x_0 = (-1, -2, 3)$, then $x^{\dagger} = (0, -1, 1/2) = P_S x_0$. We test our algorithm with $r_n = 1$ for all $n \ge 1$. It is not hard to show that $||T|| = 4$. Hence, if we take $\beta_j = 1$ for all *j*, then $L = ||T||^2 \sum$ 50 apply Xu's algorithm with the collections of the parameters $\lambda_i = 1/100$ for all *i* and $\beta_j = 800$. Thus, we can $\gamma = 1/1000$. In these cases, we obtain the following figure result:

where, the function TOL is defined by $TOL_n := ||x_n - x^{\dagger}||$ is the error between the approximation solution x_n and exactly solution x^{\dagger} of considered problem.

Example 5.3 Now, we consider problem [\(25\)](#page-15-2) with

$$
L_i = [0, i] \times [-i, 2i - 1] \times [1 - i, 1 + i] \subset \mathbb{R}^3, \quad i = 1, 2, ..., 100,
$$

$$
K_j = [1 - j, j] \times [1 - j, 2j] \times [0, 1 + j] \subset \mathbb{R}^3, \quad j = 1, 2, ..., 50,
$$

and the bounded linear operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

$$
Tx = \begin{pmatrix} 5 & 10 & 5 \\ 2 & 3 & 1 \\ 0 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},
$$

for all $x = (x_1, x_2, x_3) \in \mathbb{R}^3$.

It is not difficult to verify that $||T|| = 15$.

Obviously, $S \neq \emptyset$ because of the point $(0, 0, 0) \in S$. We test our algorithm with $r_n = 100$ for all $n \geq 1$. We use Xu's algorithm with the collections of the parameters *β_i* = 1 for all *j*, *L* = 11250, $λ_i$ = 1/100 for all *i* and $γ$ = 1/10*,* 000. With the starting point $x_0 = (3, -2, 5)$, we obtain the following figure result:

where, the function TOL is defined by

$$
\text{TOL}_n := \frac{1}{100} \sum_{i=1}^{100} \|x_n - P_{L_i} x_n\|^2 + \frac{1}{50} \sum_{j=1}^{50} \|Tx_n - P_{K_j} Tx_n\|^2.
$$

The above figures of numerical examples show that our new algorithm enjoys a faster rate of convergence and needs less computation time than algorithms [\(26\)](#page-15-1), [\(27\)](#page-16-0), and [\(28\)](#page-16-1).

References

- 1. Agarwal, R.P., O'Regan, D., Sahu, D.R.: Fixed point theory for Lipschitzian-type mappings with applications. Springer (2009)
- 2. Alber, Y.I.: Metric and generalized projections in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50 (1996)
- 3. Alber, Y.I., Reich, S.: An iterative method for solving a class of nonlinear operator in Banach spaces. Panamer. Math. J. **4**, 39–54 (1994)
- 4. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. **18**(2), 441–453 (2002)
- 5. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. **18**, 103–120 (2004)
- 6. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. **13**, 759–775 (2012)
- 7. Browder, F.E.: Nonlinear maximal monotone operators in Banach spaces. Math. Ann. **175**, 89–113 (1968)
- 8. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. **5**, 159–180 (1997)
- 9. Burachik, R.S., Svaiter, B.F.: *ε*-Enlargements of maximal monotone operators in Banach spaces. Set-Valued Anal. **7**, 117–132 (1999)
- 10. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms. **8**(2-4), 221–239 (1994)
- 11. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Probl. **21**, 2071–2084 (2005)
- 12. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. **16**, 587–600 (2009)
- 13. Censor, Y., Gibali, A., Reich, R.: Algorithms for the split variational inequality problems. Numer. Algo. **59**, 301–323 (2012)
- 14. Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. **99**(2), 299–306 (2017)
- 15. Goebel, K., Kirk, W.A.: Topics in metric fixed point theory. Cambridge Stud. Adv Math., vol. 28. Cambridge Univ. Press, Cambridge (1990)
- 16. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. **13**, 938–945 (2002)
- 17. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. **8**, 367–371 (2007)
- 18. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. **3**, 510–585 (1969)
- 19. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. **26**(5), 055007 (2010)
- 20. Reich, S.: Book review: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Amer. Math. Soc. **26**, 367–370 (1992)
- 21. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. **33**(1), 209–216 (1970)
- 22. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. **149**, 75–88 (1970)
- 23. Takahashi, W.: Convex analysis and approximation of fixed points. Yokohama Publishers Yokohama (2000)
- 24. Takahashi, W.: The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. **15**, 1349– 1355 (2014)
- 25. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. **16**(7), 1449–1459 (2015)
- 26. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization **65**(2), 281–287 (2016)
- 27. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. **104**, 357–365 (2015)
- 28. Tsukada, M.: Convergence of best approximations in a smooth Banach space. J. Approx. Theory. **40**, 301–309 (1984)
- 29. Xu, H.K.: A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. **22**, 2021–2034 (2006)
- 30. Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. **105018**, 26 (2010)
- 31. Yang, Q.: The relaxed CQ algorithm for solving the problem split feasibility problem. Inverse Probl. **20**, 1261–1266 (2004)
- 32. Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. **74**, 4105–4111 (2011)