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1 Introduction

Let C and D be non-empty, closed, and convex subsets of real Hilbert spaces H; and
H;, respectively, and let T : H; —> H, be a bounded linear operator from H; into
H;. The split feasibility problem (SFP) is formulated as follow:

Find an element x* € S=CNT~ (D). 1)

This problem was first introduced by Censor and Elfving [10] for modeling inverse
problems. We also know that it plays an important role in medical image recon-
struction and signal processing (see [4, 5]). In view of its applications, several
iterative algorithms of solving (1) were presented in [4, 5, 11, 13, 24, 25, 29-32] and
references therein.

There are some generalizations of the SFP, for example, the multiple-set SFP
(MSSFP) (see [11, 17]), the split common fixed point problem (SCFPP) (see [12,
19]), the split variational inequality problem (SVIP) (see [13]), and the split common
null point problem (SCNPP) (see [6, 14, 26, 27]).

Let A: H; —> 2 and B : Hy —> 22 be two multi-valued operators. The
SCNPP is stated as follow:

Find an element x* € (A_lo) m (T_l(B_lO)), 2)

where A710:={x € H; : 0 € Ax} and B~'0:= {x € H,: 0 € Bx}.

In 2015, by using the metric resolvent of maximal monotone operator and the
hybrid projection method, Takahashi et al. [27] proved a strong convergence theorem
for finding a solution of SCNPP in Banach spaces.

Theorem 1.1 [27] Let E and F be uniformly convex and smooth Banach spaces and
let Jg and Jr be the normalized duality mappings on E and F, respectively. Let
A and B be maximal monotone operators of E into 25" and F into 2F" such that
A0 # ¢ and B='0 # @, respectively. Let Q. be the metric resolvent of B for
u>0.Let T : E—> F be abounded linear operator such that T # 0, and let T*

be the adjoint operator of T. Suppose that S = (AIO) N (Tl(Blo)) # (. Let
X1 € E, and let {x,} be a sequence generated by
20 =30 = Jg T*Tp(Txn = Qp, Tn),
Con=1{z€ A0 (2 — 2, JE(xa — zn)) 2 O},

0n=1z€A7'0: (x, —z, JE(x1 — x,) > O},
Xn+1 = Pc,no, X1,

3)

where wu, € (0, 00) satisfies that for some a, b € R,

O<a<su,<>b Vn € N.

<.
172

Then the sequence {x,} converges strongly to a point zy € S, where 79 = Psx].
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We can see that in the iterative method (3), it is not easy to define C,, and Q,,
because we do not know the set of null points A~'0 of A. Therefore, it is very difficult
to find element x, 1 = Pc,np,X1-

In 2017, Dadashi [14] introduced a shrinking projection method for split common
null point problem in Hilbert space. He proved the following result:

Theorem 1.2 [14] Let E be a uniformly convex and smooth Banach space with dual-
ity mapping Jg. Suppose that H is a Hilbert space and T : H — E is a bounded
linear operator such that T # 0 and T* denote the adjoint operator of T. Let A and
B be maximal monotone operators of H into 2" and of E into 2F " respectively, such

that S = [ A710 N T_I(B_IO) # (. Let J,, be the resolvent of A for A > 0 and

Q. the metric resolvent of B for . > 0. Generate the sequence {x,} by the algorithm
in = Jkn (xn — X T*JE(Tx, — Qu.n Txy)),
Yn = Xy + (1 —ay)zp,

Ch=1{z€Ch_1: (Yn—2,%Xn — yn) =0},
Xn+1 = Pc,x1,

“

where C1 = Hand x1 € H. If0 < ||T|| <20, <2,0<b < pupand0 <c < i, <
1, then {x,} converges strongly to a point zo € S, where 79 = Psx].

From the result of Dadashi, there are two open questions which are posed as
follows:

Question 1. Is it possible to remove the conditions about the boundedness of || T ||
and the sequence {A,} C [c, 1)?
Question 2. Can we extend Theorem 1.2 for the case

S= (éA;‘o) N (T_l(jé Bj_10>) oy

where A; and B; are maximal monotone operators on the Banach
spaces E and F, respectively?

The purpose of this paper is to introduce a new parallel iterative method to answers
the above two open questions. The rest of this paper is organized as follows. In
Section 2, we list some related facts that will be use in the proof of our result. In
Section 3, we introduce a new parallel iterative algorithm and prove a strong conver-
gence theorem for this algorithm. Some applications of the main result are presented
in Section 4. Finally, in Section 5, we give two numerical examples for illustrating
our method and showing its performance.

2 Preliminaries

In this section, we recall some definitions and results that will be used later. Let E be
areal Banach space with the dual space E*. For the sake of simplicity, the norms of E

@ Springer



816 Numer Algor (2019) 81:813-832

and E* are denote by the symbol ||.||. We use (x, f) instead of f(x) for f € E* and

x € E. When {x,} is a sequence in E, then x;,, — x (respectively x, — x, x, A X)
will denote strong (respectively weak, weak*) convergence of the sequence {x,} to
x. Let Jr denote the normalized duality mapping from E into 2£ " defined by

Jex ={f e E*: (x, /) =IIxIP = IfI’} VxeE.

We always use Sg to denote the unit sphere Sg = {x € E : ||x|| = 1}. Recall that a
Banach space E is said to be

(1) uniformly convex, if for any €, 0 <& <2, the inequalities ||x|| <1, ||y]| <1, and
lx—y|| > e imply that there exists a § =8§(¢) >0 such that || (x +y)/2|| <1—6;
(i)  strictly convex, if for x, y € Sg with x # y, then

A=Mx+xry]l <1 Vre(,1).

(iii)  smooth, if the limit
fi 0=l
im ——
t—0 t
exists for each x and y in Sg. (In this case, the norm of E is said to be Gateaux
differentiable. It is said to be uniformly Gateaux differentiable if for each y €

SE, this limit attained uniformly for x € Sg).

It is well known that each uniformly convex Banach space E is strictly convex and
reflexive; E is uniformly convex if and only if E* is uniformly smooth; If E is
smooth, then duality mapping is single-valued (see [1, 15]).

Recall that a Banach space E has Kadec-Klee property if every sequence {x,} C E
such that x,, — x and ||x, || — ||x], then x, — x. We know that if E is a uniformly
convex Banach space, then E has Kadec-Klee property.

We have the following properties of the normalized duality mapping Jg (see [1,
15, 20]):

(i) E is reflexive if and only if JE is surjective;
(i) If E* is strictly convex, then Jg is single-valued;
(iii) If E is a smooth, strictly convex and reflexive Banach space, then Jg is single-
valued bijection;
(iv) If E* is uniformly convex, then Jg is uniformly continuous on each bounded
set of E.

Furthermore, if E is a smooth, strictly convex, and reflexive Banach space and C is a
non-empty, closed, and convex subset of E, then for each x € E, there exists unique
z € C such that

lx =zl = inf [lx — yl|.
yeC

The mapping Pc : E —> C defined by Pcx = z is called metric projection from E
into C.

LetA: E —> 2E" bean operator. The effective domain of A is denoted by D(A),
that is, D(A) = {x € E : Ax # (}. Recall that A is called monotone operator if
(x—y,u—v)>0forall x, ye D(A) and forall u € Ax, ve A(y). A monotone operator
A on E is called maximal monotone if its graph is not properly contained in the
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graph of any other monotone operator on E. It is well known that if A is a maximal
monotone operator on E and E is a uniformly convex and smooth Banach space, then
R(Jg+rA) = E*forall r > 0, where R(Jg +rA) is the range of Jg + r A (see [7,
22]). Thus, for all x € E and r > 0, there exists unique x, € E such that

0e Jg(x, —x) +rAx,.

We define J, by x, = J.x and J, is called metric resolvent of A.

The set of null point of A is defined by A=!0 = {z € E : 0 € Az} and we know
that A~10 is a closed and convex subset of E (see [23]).

Let A : E —> 2E" be a maximal monotone operator. In [9], for each ¢ > O,
Burachik and Svaiter defined A%, an e-enlargement of A, as follows

A%c:{ueE*: (y—x,v—u)>—e, VyeE, veAy}.

It is easy to see that, A% = Ax and if 0 < & < &5, then A®'x C A®x for any
x € E. The use of element in A® instead of T allows an extra degree of freedom
which is very useful in various applications.

Let {C,} be the sequence of closed, convex, and non-empty subsets of a reflexive
Banach space E. We define the subsets s-Li, C,, and w-Ls,, C,, of E as follows:

(i) x €s-Li,C, if and only if there exists {x,} C E converges strongly to x and
that x,, € C, foralln > 1.
(i) x € w-Ls,C, if and only if there exists a subsequence {Cy,, } of {C,} and the
sequence {yx} C E such that yy — x and y, € Cy, forall k > 1.
(iii) If s-Li, C,, = w-Ls, C,, = Qp, then g is called the limits of {C,} in the sense
of Mosco in [18] and it is denoted by 29 = M- nl—i>Holo C,.

Next, we list some lemmas that will be used in the sequel for the proof of our main
result.

Lemma 2.1 (see [2, 3, 16]) Let E be a smooth, strictly convex, and reflexive Banach
space. Let C be a non-empty, closed, and convex subset of E and let x; € E and
z € C. Then, the following conditions are equivalent:

(i) z= Pcxy;
(i) (z—y,Je(x1 —2)) >0forally € C.

Lemma 2.2 (see [28]) Let E be a smooth, reflexive, and strictly convex Banach

space having the Kadec-Klee property. Let {C,} be a sequence of non-empty, closed,

and convex subsets of E. If Qo = M- lim C, exists and is non-empty, then { Pc,x}
n—od

converges strongly to Po,x for each x € E.

Lemma 2.3 (see [9]) The graph of A®* : Ry x E — 2E" is demiclosed, i.e., the
conditions below hold:

(1) If{x,} C E converges strongly to xo, {u, € A*"x,} converges weak™ to ugy in
E* and {&,} C R4 converges to ¢, then ug € Afxo;

(1) If {x,} C E converges weak to xo, {u, € A x,} converges strongly to ug in
E* and {e,} C Ry converges to ¢, then ug € A°xy.
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3 Main results

Let E and F be uniformly convex and smooth Banach spaces and let Jg and Jr be
the normalized duality mappings on E and F, respectively. Let A;, i = 1,2, ..., N
and B;, j = 1,2, ..., M be maximal monotone operators of E into 2E" and F into

2F respectively. Let J)f and Q{L be the metric resolvents of A; for A > 0 and B;
for u > 0, respectively. Let T : E — F be a bounded linear operator such that

N
T # 0 and let T* be the adjoint operator of T. Suppose that S = (ﬂ Ai_IO) ﬂ

() oo ‘

We consider the following problem:
Find an element x* € S. 5)

In order to solve the problem (5), we introduce the following algorithm:

Algorithm 1 Let Cy = E, x9 € E and let {x,} be a sequence generated by

JF(yj,n_Txn)'i'll«nB]s'n)’j,n 907 J= 1727""M; (6)
Zjon = %n — rad g T*(Tp(Txp — yju)), j =12, ... M; @)
Choose j, such that ||z, » — x|l = __r{laxM lzjn — xull, letz, = zj, s

. 2 .
D, = {Z €E: (xn—2, JEGn —z0)) Z 1l Txn — yj, ull” — rnﬂnsn}’
JE(tin — 2n) + M A0 20, i =1,2, .., N; 8)
Choose i, such that ||£;, , — zxll = r}lax tin — znll, lett, =ti, n;
i=1,...N

Cpi1 = {Z €eCp: (ty —2,JE(@n — ty)) > _)\ngn} mDn;

Xn+1 = Pc,, X0,

where {1, }, {n} C (0, 00), {r,} C (0, 00) and {&,} C (0, 00).
We will prove strong convergence of the above sequence {x,} under the following
conditions:
(C1) min { inf{A,}, inf{u,}, inf{r,,}} > a > 0 and sup{r,} < +o0;
n n n n

(C2) (A + pn)en — 0,as n — oo.

First, we have the following lemma:

Lemma 3.1 If {C,} is a decreasing sequence of closed and convex subsets of a

o
reflexive Banach space E and Qy = ﬂ C, # 0, then Qo = M- lim C,,.
n—oo

n=1
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Proof Clearly, if x € Qo, then the sequence {x,} with x,, = x for all n > 1 converges
strongly to x. Thus, we have x € s-Li,,C,, and x € w-Ls,C,. It implies that Q29 C
s-Li,,C,, and Q¢ C w-Ls,C,,.

If we take x € s-Li,C, then there exists sequence {x,} C E with x, € C, for all
n > 1 such that x, — x as n — o0. On the other hand, x,1x € C, foralln > 1
and k£ > 0 because {C,} is a decreasing sequence. So, letting k — oo and using the
closedness property of C,,, we get that x € C,, for all n > 1. Thus, x € ¢ and hence
Qo 2 s-Li,,Cy,.

Next, let y € w-Ls,,C,,, from the definition of w-Ls, C,,, there exists a subsequence
{Cp,} of {Cy} and the sequence {yx} C E such that yy — x and y; € C,, for all
k > 1. From {C,} is a decreasing sequence, we have

Yi+p € Cny 9

forall k > 1 and p > 0. Due to the closedness and convexity of C,,, we have Cy, is
weakly closed in E for all k > 1. So, in (9), letting p — oo, we obtain that y € Cy,
for all k > 1. Moreover, Cy 2 Cp,, y € Cy for all k > 1. Therefore, y € Q2 and
hence Q¢ 2 w-Ls,C,,.

Consequently, we obtain that s-Li,, C,, = w-Ls,,C,, = Q9. Thus, ¢ :M_nl—i>n<>lo C.

O

Next, we have the following propositions:

Proposition 3.2 The sequence {x,} generated by Algorithm I is well defined.

Proof We will prove this proposition by several steps.
Step 1. C, and D, are the closed and convex subsets of E.

Indeed, we rewrite D,, and C,, 1 in the forms

Dy ={z€E: (2. JpGn—20) < (¥ JECn=20)) =1l TXn =Yy, +rnptnen),
Chy1 =W, N D,,

foralln > 0, where W, :={z € Cy : (2, JE(zn — 1)) < {tn, JE(Zn — 1)) + AnEn}.
We note that D,, and W,, are the closed half-spaces of E. Thus, C,, and D, are the
closed and convex subsets of E.

Step2. S C D, foralln > 0.
Let z € S, from (7), we have
JE(xXn — 20) = 1y T*(JE(Txp — yj,.0))-
It implies that
(Xn — 2, JEGn — 20)) = rnlxn — 2, T*(Jp(Txp — ¥j,.0)))
=1(Txy =Tz, JF(Tx0 — yj, n))
=1 {Txn = Yjyn +Yjun = T2, JE(T X0 — yj, n))
= rull Ton = yjpnll?
Fr0 (Yo — T2, JF(Txp — yj,.n)). (10)
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On the other hand, from (6) and z € S, we have
1
—Jp(Txy — yj,n) € B;")’jn,n and 0€ B;,Tz.
Hn "
Thus, from the definition of Bj: , we get that
rn(yj,,,n — Tz, JFr(Tx, — yjn,n)) > —I'nMUnén- (11)
From (10) and (11), we obtain
(xn — 2, JEQn — 20)) = 1l T X, — an,n”z — FnMnén.
This follows that z € D, and hence S C D,, foralln > 0.
Step3. S C C,foralln > 0.

Indeed, obviously, S C Cyp = E. Suppose that S C C,, for some n > 1, we will
prove that S C Cp,+1. Now, from (8) and z € S, we have

1
A_JE(Z” —t,) € Af:t,, and 0€ Az
n

Hence, from the definition of Af:, we get that
(th — 2, JE(Zn — tn)) = —An&y.

It implies that z € W,. From the definition of C,;1 = W, N D, and step 2, we
have z € Cy41. Thus, S C Cp41. Finally, by mathematical induction, we obtain that
S C C, for all n > 0. Hence, the sequence {x,} is well defined. O

Proposition 3.3 If the conditions (C1) and (C2) are satisfied, then the sequences
{xab {zjn), J = 1,2,..,M and {t; 4}, i = 1,2,..., N in Algorithm 1 converge
strongly to a same point pg € E.

Proof We will prove this proposition by several steps.

o0
Step 1. x, — po = Pg,xo, where Qo = ﬂ C, #0.

n=1

Indeed, from step 1 and step 3 in the proof of Proposition 3.2 and the definition
of {C,}, we have {C,} is the sequence of decreasing of closed convex subsets of E
and S C Qg # @. Thus, from Lemma 3.1, there exists the limit Qg =M- lim C,. By

n—oo

using Lemma 2.2, we have x, = Pc,xo — po = PgyXo as n — o0.
Step 2. {y;n}isboundedforall j =1,2,..., M.

Indeed, fixing z € S and from (6), we have

1
M_JF(Txn — Yjn) € Bj."yj,n and Oe B;Tz.
n

Thus, from the definition of B;”, we get that

(yj,n -2, Jp(Tx, — _Yj,n)) = —MUnén,
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forall j = 1,2, ..., M. It follows that

I

IA

(Txp — 2, JF(Txp — Yj,n)) + Unén
1
S UTxn = 224+ 1 Txn = yjnll®) + inén,

”yj,n —Txp

IA

which implies that
Vi = Txall> < 170w — 2I* + 20tnen,

forall j =1,2,..., M and for all n > 0.
Because of the boundedness of {x,}, the sequence {Tx,} also is bounded. From
this and u,e, — 0, it ensures that there exists K > 0 such that

K = max { sup{||Tx, — zl|*}, sup{pnen}} < occ.
n n

So, we obtain that

Iyjn — Txall* < 3K,

which implies that {y; , — Tx,} is bounded and hence {y; .} also is bounded for all
j=12,...,M.

Step 3. {z;,}isboundedforall j =1,2,..., M.
From (7), we have
Je(on — zj,n) =1y T*Jp(Txy = Yjn)- (12)

Thus, by the boundedness of {T'x,,}, {y;,»} and {r, }, we also get that {z ,} is bounded
forall j =1,2,..., M.

Step4. {t;,}isboundedforalli =1,2,..., N.

Indeed, fixing z € S and from (8), we have

1
T £(zn — ti,n) e Af”ti,n and 0 € A;z.
n

Thus, from the definition of A", we get that
<ti,n -2, JE(zn — ti,n)) > —Anén,

foralli =1, 2, ..., N. It follows that
&

IA

(zn — 2, JE(Zn — tin)) + Anéy

1 2 2
= E(”Zn —zlI“ + llzn — ti,n” ) + An&n,

”ti,n —Zn

A

which implies that
2 2
”ti,n —zall” = llzn — zlI” + 24,85,

foralli =1,2,..., N and forall n > 0.
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Because of the boundedness of {z,} and X,,&,, — 0, it ensures that {#; ,,} is bounded
foralli =1,2,...,N.

Step 5. lim x, = lim z;, = lim t;, = po.
n—oo n—oo n—oo
From the definition of D,,, we have
(n = Xnt1. JEGn — 20)) = P (1T %0 = ¥jpnll* = fnn)

and hence,
1
1750 = jonl® < —(Killtn = Zusa | + pngn) = 0,
where K| = sup{||x, — zn||} < oco. This implies that
n

ITxn = ¥jynll = 0.

So, from (12), we obtain
X — zj,.nll = O. (13)

From the definition of z, ,,, we have

lxn —zjnll = O, (14)
forall j = 1,2, ..., M. It follows from (12) that
N Jr(Txy — yj)ll = O, (15)

forall j =1,2,..., M.
Next, from x,,41 € C,+1, we have
(tn — Xn41, JE(Zn — tn)) = —Anén.
Thus, we get that
Izn = tal® < (zn = Xn1. JE@n — 1)) + Anen

< 2 (lzn = ns1 12+ llzn = ) + An
=5 n n+1 Zn n n€n,
which follows that
Izn = tall* < llzn = Xnt1 1 + 2Anen — 0.
This implies that
lzw — tall = O.
By the definition of #,,, we have
lzn — tiull — O, (16)

foralli=1,2,...,N.
Finally, from x,, — po, (14) and (16), we obtain that

lim x, = lim z;, = lim #, = po, a7)
n—00 n—0o0 n—00
forall j =1,2,...,Mandforalli =1,2,..., N. O
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Now, we are in position to prove our main result.

Theorem 3.4 If the conditions (C1) and (C2) are satisfied, then the sequence {x,}

generated by Algorithm I converges strongly to Psxg as n — o0.

Proof We proceed with the following steps.
Stepl. pg € S.
Indeed, from (16) and the condition (C1), we have

1
Afnll‘,n = A—JE(Zn - ti,n) — 0,

n

foralli =1, 2, ..., N. This combines with ; , — po, &, — 0 and using Lemma 2.3,

we obtain that

po € A7, (18)
foralli=1,2,...,N.
Obviously, Tx, — T pg and from (15), we get that
yin = Tpo, (19)
forall j =1,2,..., M.
From (6), (15) and the condition (C1), we have
En 1
Bj Yjn 3 _JE(Txn_yj,n)_)Oa (20)
Mn
forall j =1,2,.... M.
From (19), (20) and Lemma 2.3 imply that Tpg € Bj_lo. Hence,
poeT~(B;0), 21)
forall j = 1,2, ..., M. Therefore, from (18) and (21), we obtain pg € S.
Step 2. po = Psxo.
Indeed, let x* = Pgxq. From pg = Pq,x0 and xT e § c Qp, we have
lIxo — poll < llxo — x|
On the other hand, from the fact that pg € S, we have
llxo = x"Il < flx0 — poll.
Thus, we get ||xg — xt = llxo — poll. By the uniqueness of xT, it ensures that
po = xt = Pgxo. O]
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Remark 3.5 When ¢, = 0 for all n, then Algorithm 1 can be rewritten in the
following form: Let Co = E, xo € E and let {x,} be a sequence generated by

—1 i .

Zjn = Xn — g T*(Jp(Tx, — Q'{LnTxn))a J=12,...M;

Choose j, such that ||z, ,» — xnll = I?axM lzjn — xull, letzy, = zj, n,
ji=1...,

Dy=1{z€E: (xy— 2, Jp(n — 20)) = rallTxy — QU Txy|*}:

tin=J] 20, i =1,2,..,N;

Choose iy, such that ||f;, , — zxll = r}lax tin — zull, lett, =t n;
’ i=1,...N

Cor1 ={2€Cu: (tn— 2. Je(zn — 1)) = O} () Dus
Xn+1 = Pc, X0, (22)

where {A,}, {1n} C (0, 00) and {r,} C (0, 00).
The following result is a direct consequence of Theorem 3.4.

Corollary 3.6 If the condition (C1) is satisfied, then the sequence {x,} generated by
(22) converges strongly to xT = Pgx.

4 Applications
4.1 Split minimum point problem

Let E be a Banach space and let f : E —> (—o00, 00] be a proper, lower semi-
continuous and convex function. The subdifferentiable of f is multi-valued mapping
df : E —> 2E" which is defined by

Af(x)={g € E*: f(y)—f(x)=(y—x,8), Vy € E}
for all x € E. We know that df is maximal monotone operator [21] and xo €
argmin f (x) if and only if 9f (xg) > O.
E

The e-subdifferential enlargement of df is given by
def(x)={ue€E": f(y) = f(x)=(y—x,u)—¢e VyeE}

for each ¢ > 0. It is well know that 9, f (x) C 9% f(x), for any x € E. Moreover, in
some particular cases, we have that 9, f (x) C 9° f(x) (see, example 2 and example
3 in [8]).

From the Theorem 3.4, we have the following theorem:

Theorem 4.1 Let E and F be uniformly convex and uniformly smooth Banach
spaces and let Jg and Jg be the normalized duality mappings on E and F,
respectively. Let f;, i = 1,2,..,N and g;, j = 1,2,..., M be proper, lower
semi-continuous, and convex functions of E into (—oo, oo] and F into (—o0, 00],
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respectively. Let T : E —> F be a bounded linear operator such that T # 0 and

let T* be the adjoint operator of T. Suppose that

N M
S = (ﬂ(aﬁr‘O) N (T-‘ ( ﬁ(ag»”O)) # 0.
i=1 j=1
Let x1 € E and let {x,} be a sequence generated by Co = E, xo € E and

JF(yj,n —Txy,) +Mna£ngj(yj,n) 50, j=1,2,...M;
Zjm =% — 1ad g T Up(Txy — yjn))s j=1,2, ..., M;

Choose j, such that ||z, n — Xpll = I?axM lzjn — Xnll, let zy = zj, ns

.....

Dy={z€E: (xy — 2, JEGn — 20)) = rall Txn — yj, nll> = Futinén);

JE(tin — 2n) + 20" fi(tin) 30, i =1,2,..., N;

Choose iy such that ||t;, , — znll = r?axN tin — znll, letty, = ti, n;

l

Cov1={z€Cy: {th — 2, Je(zn — 1y)) = _)"ngn}ﬂDn;

Xp+1 = Pc, X0,

where {,,}, {in} C (0, 00), {r,} C (0, 00) and {e,} C (0, 00). If the conditions (CI)
and (C2) are satisfied, then the sequence {x,} converges strongly to x' = Psxq.

The following result is a direct consequence of the theorem above.

Corollary 4.2 Let E, F, Jg, JF, fi, g, T, T* be as in Theorem 4.1. Suppose that

S = <é(aﬁ)—lo> N (T—1<jé(agj)—1o)) £ .

Let x1 € E and let {x,} be a sequence generated by Co = E, xo € E and
1
24in
Zjin =%n —1nd g T*UIp(Txy — yin))s j=1,2, .., M;

Yjn = argmin {gj(y) + ly — Txnllz}, j=12.,M;
yeF

Choose j, such that ||z, n — Xpll = r{laxM Nzjn — xull, let zy = 2, ns

.....

Dy=1{z€E: (xg— 2, JEGn — 20)) = ral Txn — ¥j, nllI*};

1
tin = argmin{fi(x) + —|lx — zz |1}, i = 1,2, ..., N;
yeE 2)Ln

Choose iy such that ||t;, n — zxl = max ||t; , — zull, letty, =1, n;
i N

.....

Cor1 ={2€Cu: (tn— 2. JEGn — 1)) = O} () Du:

Xn+1 = C,,_Hx()v

where {An}, {1} C (0, 00) and {r,} C (0, 00). If the condition (C1) is satisfied, then

the sequence {x,} converges strongly to x* = Pgxq.
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4.2 Multiple-sets split feasibility problem

Let C be a non-empty, closed, and convex subset of E. Let ic be the indicator
function of C, that is,

ey = |0 ifrec,
W) =1, ifx ¢ C.

It is easy to see that i¢ is the proper, semi-continuous, and convex function, so its
subdifferentiable di¢ is a maximal monotone operator. We know that
dicw)=Nu,C)={f€E*: u—y, f)>0 VyeC},

where N (u, C) is the normal cone of C at u.
We denote metric resolvent of dic by J, with r > 0. Suppose u = J,x for x € E,
that is

M € dicu) = N(u, C).

Thus, we have
(u—y, Je(x —u)) >0,

for all y € C. From Lemma 2.2, we get that u = Pcx.
Thus, from Theorem 3.4, we have the following theorem:

Theorem 4.3 Let E, F, Jg, Jg, T, T* be as in Theorem4.1. Let L;, i =1,2,.... N

and K, j =1,2,..., M be nonempty, closed and convex subsets of E and F, respec-
N M

tively. Suppose that S = <m Li> m <T_1< ﬂ Kj)) # (. Let x1 € E and let
i=1

Jj=1
{x,} be a sequence generated by Co = E, xo € E and
Zjn = %n — rad g ' T*(Jp(Txy — Px,Txy)), j = 1,2, .., M;

Choose j, such that ||z, n» — Xnll = nllaxM lzjn — xnll, let zn = zj, n,
/:

,,,,,

Dy ={z€E: (xn — 2, JEGn — 2n)) = 1allTxn — Pk, Tx, |2
ti,n = PL,-Zn, I = 1, 2, veey N;

Choose iy, such that ||t;, , — zy|l = max ||t;, — zall, lett, =t u;
i=1,...N

,,,,,

Cop1={2€Cn: (tn— 2. JE(n — 1)) = O} () Du:
Xn+1 = Pc,, X0,

where {r,} C (0,00). If the condition (Cl) is satisfied, then the sequence {x,}
converges strongly to xT = Pgxq.

4.3 The split variational inequality problem

Let C be a non-empty, closed, and convex subset of E andlet A : C —> E* be a
monotone operator which is hemi-continuous (that is for any ¢ € C and t, — 07 we
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have A(x +t,y) — Ax forall y € E such that x 4+ ¢,y € C). Then, apointu € C is
called a solution of the variational inequality for A, if

(y —u, Au)y >0 VyeC.

We denote by VI(C, A) the set of all solutions of the variational inequality for A.
Define a mapping T4 by

Tux — Ax+ N(x,C), if x e C,
i ) if x ¢ C.

By Rockafellar [22], we know that T4 is maximal monotone, and TX] 0= VI(C, A).

For any y € E and r > 0, we know that the variational inequality VI(C,rA +
Je(e — y)) has a unique solution. Suppose that x = VI(C,rAx + Jg(x — y)),
that is,

(z—x,rAX)+Jg(x —y)) >0 VzeC.
From the definition of N (x, C), we have

—rAx —JE(x —y) e N(x,C) =rN(x, C),
which implies that

Je(y —x)
r

€ Ax+ N(x,C) = Txx.

Thus, we obtain that x = J, y, where J, is metric resolvent of T4.

Now, let E and F be two uniformly convex and smooth Banach spaces and let
Ki,i=12,..,Nand Lj, j = 1,2,..., M be closed and convex subsets of E
and F, respectively. Let A; : K; — E*and B; : L; — F* be monotone
operators which are hemi-continuous. Let 7 : E — F be a bounded linear operator

N M
such that T # 0. Suppose that § = (ﬂ VI(K;, A,»)) ﬂ (T—l ( ﬂ VI(B;, Lj)))

i=1 j=1
# 0.
We consider the following split variational inequality problem:

Find an element x* € S. (23)
To solve the problem (23), we define the operators T4, and Tp ; as following

Bjx+N(x,L;)ifx € L,

T _ Aix + N(x, K;)if x € K;,
4 Pifx ¢ L,

T vifx ¢ K, andTBjx={

foralli =1,2,..,Nand j = 1,2, ..., M. For any r > 0, we denote by J,i and Q{
the metric resolvents of T4, and Tp;, respectively.
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From the above argument, the problem (23) is equivalent to the split common null
point problem for maximal monotone operators T4, and Tg;. Thus, from Theorem
3.4, we have the following result:

Theorem 4.4 Let Co = E, x1 € E and let {x,} be a sequence generated by
tin = V[(Lj, anBj + Jrp(e —Txy)), j=1,2,..., M;
2jn =0 = radg T*UE(Toxn = 150)), J = 1,2, .00, M;

Choose j, such that ||z, n» — Xpll = r{laXM Nzjn — xull, let zy = 2, n»
j:

Dy=1{z€E: (xy—2,Jg(n — 20)) = ral Txy — Qi Tx,|*}:
)’i,n ZVI(KZ5A'}1AZ+JE(._ZH))7 l = 1725 L) N;
Choose in such that ||yi, n = znll = max |lyin = zull. let yn = Yi,.n:

.....

Cop1={z€Cn: (yn—2.JE@n — yu)) = O} [ | Du:
Xn+1 = PC,,Jrlev (24)

where {A,}, {itn} and {r,} satisfy the following the condition (C1). Then, the sequence
{x,} converges strongly to a point xT € S, where xT = Pgx;.

5 Numerical test

In this section, we apply our result in Theorem 4.3 to solve the multiple-set feasibility
problem.

Example 5.1 Consider the following problem:

100 50

Find an element x, € S = (ﬂ L,-) ﬂ (T_l(

i=1 j=

K)o
1

Li=1[0,i]x[—i,2i —1]x[1—i,1+i]CR® i=1,2,...,100,
Ki=[1-j,jl1x[0,1+j1CcR? j=12,...,50,

and T : R® — R? is defined by

where

T(x1,x2,x3) = (4x1,4x3) Vx = (x1,x2,x3) € R3.
It is easy to see that
S=10,1/4] x [—1, 1] x [0, 1/2].

Next, the Xu’ algorithms [29] can be applied to the same above problem. They are
formulated as follows:

Xn+1 = TrooTo9 ... Tix, n =1, (26)
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where
50
T, = Py, (x,, —y Y BT - PKj)Tx,,), i=1,2,...,100.
j=1
100 50
Xnt1 =ZA,-PLi<xn—yZﬂjT*(l—PKj)Txn), n>1 27)
i=1 j=1
and
50
Xnal = Py, (xn —y Y BiT*U - PK,.)Txn>, n=>1 (28)
j=1
N
where A; > 0 for all i such that "% = 1, 8; > Oforall j,0 < y < 2/L
i=1
50
with L = ||T||2 Z Bj and C) = Cpmodn and the mod function takes values in
i=1
{1,2,...,N}.

Remark 5.2 In [29], Xu showed that the sequence {x,} is defined by (26), (27) and
(28) converges weakly to an element xT € S. Moreover, it is clear to see that if the
sequence {x,} converges strongly to x" € S, then x = Pgx.

If we choose the starting point xo = (—1, —2, 3), then x = 0, —1,1/2) = Psxo.

We test our algorithm with r, = 1 for all n > 1. It is not hard to show that ||T|| = 4.
50

Hence, if we take ; = 1 for all j, then L = ||T>)_ g; = 800. Thus, we can

i=1
apply Xu’s algorithm with the collections of the parameters A; = 1/100 for all i and
y = 1/1000. In these cases, we obtain the following figure result:

10 TSR RS s s g s s e NPT RREIIR -
BEEIEAE - =ttt - il it slbol it - oa o - - oo a
v ¥ S AL A A TR S v
107° -
107 =
= 10 4
0
i
T
1
© 10 N -
N —e— OurAlgo. 1: 7=1
.
. . = =
o . : : Algo. 5.2:4-0.001, B=1 L
AN - B - Algo. 5.3:1=0.001, 4=0.01, =1
N
—g—  Algo. 5.4:4=0.001, B=1
. N - Alg = ISA
10 < -
N
N
N
107" pN -
__________________________________
1078 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Number of interations
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where, the function TOL is defined by TOL,, := ||x, — x| is the error between the
approximation solution x,, and exactly solution x ' of considered problem.

Example 5.3 Now, we consider problem (25) with

Li=[0,i]x[—i,2i =11 x[1—i,14+i]cR? i=1,2...,100,

Kij=1[1—j,jI1x[l—j2j1x[0,14+j1CR} j=12,...,50,

and the bounded linear operator T : R3 — R3 is defined by

5105 X1
Tx=12 31 x|,
024 X3

forall x = (x1, x2, x3) € R3.

It is not difficult to verify that | T'|| = 15.

Obviously, S # @ because of the point (0, 0, 0) € S. We test our algorithm with
r, = 100 for all n > 1. We use Xu’s algorithm with the collections of the parameters
Bj = lforall j, L = 11250, A; = 1/100 for all i and y = 1/10, 000. With the
starting point xo = (3, —2, 5), we obtain the following figure result:

5
10 T

B
....—. BORBOREOES

10° 45 danaia’

—e— Our Algo. 1:1.=100

- - - Algo. 5.2:4=0.0001, B=1
107 - B - Algo. 5.3:4=0.0001, =001, BI=1 1
-y~ Algo. 5.4:y=0.0001, f=1

Il Il Il Il Il Il Il Il Il
0 10 20 30 40 60 70 80 90 100

50
Number of interations

where, the function TOL is defined by

100

50
1 1
TOL, = oo ; 6 = Proxall® + 55 2 170 — P, Tl

50 &

The above figures of numerical examples show that our new algorithm enjoys a
faster rate of convergence and needs less computation time than algorithms (26), (27),
and (28).
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