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1 Introduction

Let C and D be non-empty, closed, and convex subsets of real Hilbert spaces H1 and
H2, respectively, and let T : H1 −→ H2 be a bounded linear operator from H1 into
H2. The split feasibility problem (SFP) is formulated as follow:

Find an element x∗ ∈ S = C ∩ T −1(D). (1)

This problem was first introduced by Censor and Elfving [10] for modeling inverse
problems. We also know that it plays an important role in medical image recon-
struction and signal processing (see [4, 5]). In view of its applications, several
iterative algorithms of solving (1) were presented in [4, 5, 11, 13, 24, 25, 29–32] and
references therein.

There are some generalizations of the SFP, for example, the multiple-set SFP
(MSSFP) (see [11, 17]), the split common fixed point problem (SCFPP) (see [12,
19]), the split variational inequality problem (SVIP) (see [13]), and the split common
null point problem (SCNPP) (see [6, 14, 26, 27]).

Let A : H1 −→ 2H1 and B : H2 −→ 2H2 be two multi-valued operators. The
SCNPP is stated as follow:

Find an element x∗ ∈
(

A−10

)⋂ (
T −1(B−10)

)
, (2)

where A−10 := {
x ∈ H1 : 0 ∈ Ax

}
and B−10 := {

x ∈ H2 : 0 ∈ Bx
}
.

In 2015, by using the metric resolvent of maximal monotone operator and the
hybrid projection method, Takahashi et al. [27] proved a strong convergence theorem
for finding a solution of SCNPP in Banach spaces.

Theorem 1.1 [27] Let E and F be uniformly convex and smooth Banach spaces and
let JE and JF be the normalized duality mappings on E and F , respectively. Let
A and B be maximal monotone operators of E into 2E∗

and F into 2F ∗
such that

A−10 �= ∅ and B−10 �= ∅, respectively. Let Qμ be the metric resolvent of B for
μ > 0. Let T : E −→ F be a bounded linear operator such that T �= 0, and let T ∗

be the adjoint operator of T . Suppose that S =
(

A−10

)⋂ (
T −1(B−10)

)
�= ∅. Let

x1 ∈ E, and let {xn} be a sequence generated by
⎧⎪⎪⎨
⎪⎪⎩

zn = xn − J−1
E T ∗JF (T xn − QμnT xn),

Cn = {z ∈ A−10 : 〈zn − z, JE(xn − zn)〉 ≥ 0},
Qn = {z ∈ A−10 : 〈xn − z, JE(x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx1,

(3)

where μn ∈ (0, ∞) satisfies that for some a, b ∈ R,

0 < a ≤ μn ≤ b <
1

‖T ‖2 , ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ S, where z0 = PSx1.



Numer Algor (2019) 81:813–832 815

We can see that in the iterative method (3), it is not easy to define Cn and Qn,
because we do not know the set of null pointsA−10 ofA. Therefore, it is very difficult
to find element xn+1 = PCn∩Qnx1.

In 2017, Dadashi [14] introduced a shrinking projection method for split common
null point problem in Hilbert space. He proved the following result:

Theorem 1.2 [14] Let E be a uniformly convex and smooth Banach space with dual-
ity mapping JE . Suppose that H is a Hilbert space and T : H −→ E is a bounded
linear operator such that T �= 0 and T ∗ denote the adjoint operator of T . Let A and
B be maximal monotone operators of H into 2H and ofE into 2E∗

, respectively, such

that S =
(

A−10

)⋂ (
T −1(B−10)

)
�= ∅. Let Jλ be the resolvent of A for λ > 0 and

Qμ the metric resolvent of B for μ > 0. Generate the sequence {xn} by the algorithm⎧⎪⎪⎨
⎪⎪⎩

zn = Jλn(xn − λnT
∗JE(T xn − QμnT xn)),

yn = αnxn + (1 − αn)zn,

Cn = {z ∈ Cn−1 : 〈yn − z, xn − yn〉 ≥ 0},
xn+1 = PCnx1,

(4)

where C1 = H and x1 ∈ H . If 0 < ‖T ‖ ≤ 2αn < 2, 0 < b ≤ μn and 0 < c ≤ λn <

1, then {xn} converges strongly to a point z0 ∈ S, where z0 = PSx1.

From the result of Dadashi, there are two open questions which are posed as
follows:

Question 1. Is it possible to remove the conditions about the boundedness of ‖T ‖
and the sequence {λn} ⊂ [c, 1)?

Question 2. Can we extend Theorem 1.2 for the case

S =
( N⋂

i=1

A−1
i 0

)⋂ (
T −1

( M⋂
j=1

B−1
j 0

))
�= ∅

where Ai and Bj are maximal monotone operators on the Banach
spaces E and F , respectively?

The purpose of this paper is to introduce a new parallel iterative method to answers
the above two open questions. The rest of this paper is organized as follows. In
Section 2, we list some related facts that will be use in the proof of our result. In
Section 3, we introduce a new parallel iterative algorithm and prove a strong conver-
gence theorem for this algorithm. Some applications of the main result are presented
in Section 4. Finally, in Section 5, we give two numerical examples for illustrating
our method and showing its performance.

2 Preliminaries

In this section, we recall some definitions and results that will be used later. Let E be
a real Banach space with the dual spaceE∗. For the sake of simplicity, the norms ofE



816 Numer Algor (2019) 81:813–832

and E∗ are denote by the symbol ‖.‖. We use 〈x, f 〉 instead of f (x) for f ∈ E∗ and

x ∈ E. When {xn} is a sequence in E, then xn → x (respectively xn ⇀ x, xn
∗
⇀ x)

will denote strong (respectively weak, weak∗) convergence of the sequence {xn} to
x. Let JE denote the normalized duality mapping from E into 2E∗

defined by

JEx = {
f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖f ‖2} ∀x ∈ E.

We always use SE to denote the unit sphere SE = {x ∈ E : ‖x‖ = 1}. Recall that a
Banach space E is said to be

(i) uniformly convex, if for any ε, 0<ε≤2, the inequalities ‖x‖≤1, ‖y‖≤1, and
‖x−y‖≥ε imply that there exists a δ=δ(ε)>0 such that ‖(x +y)/2‖≤1−δ;

(ii) strictly convex, if for x, y ∈ SE with x �= y, then

‖(1 − λ)x + λy‖ < 1 ∀λ ∈ (0, 1).

(iii) smooth, if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in SE . (In this case, the norm of E is said to be Gâteaux
differentiable. It is said to be uniformly Gâteaux differentiable if for each y ∈
SE , this limit attained uniformly for x ∈ SE).

It is well known that each uniformly convex Banach space E is strictly convex and
reflexive; E is uniformly convex if and only if E∗ is uniformly smooth; If E is
smooth, then duality mapping is single-valued (see [1, 15]).

Recall that a Banach spaceE has Kadec-Klee property if every sequence {xn} ⊂ E

such that xn ⇀ x and ‖xn‖ → ‖x‖, then xn → x. We know that if E is a uniformly
convex Banach space, then E has Kadec-Klee property.

We have the following properties of the normalized duality mapping JE (see [1,
15, 20]):

(i) E is reflexive if and only if JE is surjective;
(ii) If E∗ is strictly convex, then JE is single-valued;
(iii) If E is a smooth, strictly convex and reflexive Banach space, then JE is single-

valued bijection;
(iv) If E∗ is uniformly convex, then JE is uniformly continuous on each bounded

set of E.

Furthermore, if E is a smooth, strictly convex, and reflexive Banach space and C is a
non-empty, closed, and convex subset of E, then for each x ∈ E, there exists unique
z ∈ C such that

‖x − z‖ = inf
y∈C

‖x − y‖.
The mapping PC : E −→ C defined by PCx = z is called metric projection from E

into C.
Let A : E −→ 2E∗

be an operator. The effective domain of A is denoted by D(A),
that is, D(A) = {x ∈ E : Ax �= ∅}. Recall that A is called monotone operator if
〈x−y, u−v〉≥0 for all x, y ∈D(A) and for all u∈Ax, v∈A(y). A monotone operator
A on E is called maximal monotone if its graph is not properly contained in the
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graph of any other monotone operator on E. It is well known that if A is a maximal
monotone operator onE andE is a uniformly convex and smooth Banach space, then
R(JE + rA) = E∗ for all r > 0, where R(JE + rA) is the range of JE + rA (see [7,
22]). Thus, for all x ∈ E and r > 0, there exists unique xr ∈ E such that

0 ∈ JE(xr − x) + rAxr .

We define Jr by xr = Jrx and Jr is called metric resolvent of A.
The set of null point of A is defined by A−10 = {z ∈ E : 0 ∈ Az} and we know

that A−10 is a closed and convex subset of E (see [23]).
Let A : E −→ 2E∗

be a maximal monotone operator. In [9], for each ε ≥ 0,
Burachik and Svaiter defined Aε, an ε-enlargement of A, as follows

Aεx = {
u ∈ E∗ : 〈y − x, v − u〉 ≥ −ε, ∀y ∈ E, v ∈ Ay

}
.

It is easy to see that, A0x = Ax and if 0 ≤ ε1 ≤ ε2, then Aε1x ⊆ Aε2x for any
x ∈ E. The use of element in Aε instead of T allows an extra degree of freedom
which is very useful in various applications.

Let {Cn} be the sequence of closed, convex, and non-empty subsets of a reflexive
Banach space E. We define the subsets s-LinCn and w-LsnCn of E as follows:

(i) x ∈ s-LinCn if and only if there exists {xn} ⊂ E converges strongly to x and
that xn ∈ Cn for all n ≥ 1.

(ii) x ∈ w-LsnCn if and only if there exists a subsequence {Cnk
} of {Cn} and the

sequence {yk} ⊂ E such that yk ⇀ x and yk ∈ Cnk
for all k ≥ 1.

(iii) If s-LinCn = w-LsnCn = �0, then �0 is called the limits of {Cn} in the sense
of Mosco in [18] and it is denoted by �0 = M- lim

n→∞ Cn.

Next, we list some lemmas that will be used in the sequel for the proof of our main
result.

Lemma 2.1 (see [2, 3, 16]) Let E be a smooth, strictly convex, and reflexive Banach
space. Let C be a non-empty, closed, and convex subset of E and let x1 ∈ E and
z ∈ C. Then, the following conditions are equivalent:

(i) z = PCx1;
(ii) 〈z − y, JE(x1 − z)〉 ≥ 0 for all y ∈ C.

Lemma 2.2 (see [28]) Let E be a smooth, reflexive, and strictly convex Banach
space having the Kadec-Klee property. Let {Cn} be a sequence of non-empty, closed,
and convex subsets of E. If �0 = M- lim

n→∞ Cn exists and is non-empty, then {PCnx}
converges strongly to P�0x for each x ∈ E.

Lemma 2.3 (see [9]) The graph of Aε : R+ × E −→ 2E∗
is demiclosed, i.e., the

conditions below hold:

(i) If {xn} ⊂ E converges strongly to x0, {un ∈ Aεnxn} converges weak∗ to u0 in
E∗ and {εn} ⊂ R+ converges to ε, then u0 ∈ Aεx0;

(ii) If {xn} ⊂ E converges weak to x0, {un ∈ Aεnxn} converges strongly to u0 in
E∗ and {εn} ⊂ R+ converges to ε, then u0 ∈ Aεx0.
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3 Main results

Let E and F be uniformly convex and smooth Banach spaces and let JE and JF be
the normalized duality mappings on E and F , respectively. Let Ai, i = 1, 2, ..., N
and Bj , j = 1, 2, ...,M be maximal monotone operators of E into 2E∗

and F into

2F ∗
, respectively. Let J i

λ and Q
j
μ be the metric resolvents of Ai for λ > 0 and Bj

for μ > 0, respectively. Let T : E −→ F be a bounded linear operator such that

T �= 0 and let T ∗ be the adjoint operator of T . Suppose that S =
( N⋂

i=1

A−1
i 0

)⋂
(

T −1
( M⋂

j=1

B−1
j 0

))
�= ∅.

We consider the following problem:

Find an element x∗ ∈ S. (5)

In order to solve the problem (5), we introduce the following algorithm:

Algorithm 1 Let C0 = E, x0 ∈ E and let {xn} be a sequence generated by
JF (yj,n − T xn) + μnB

εn

j yj,n � 0, j = 1, 2, ...,M; (6)

zj,n = xn − rnJ
−1
E T ∗(JF (T xn − yj,n)), j = 1, 2, ...,M; (7)

Choose jn such that ‖zjn,n − xn‖ = max
j=1,...,M

‖zj,n − xn‖, let zn = zjn,n,

Dn = {
z ∈ E : 〈xn − z, JE(xn − zn)〉 ≥ rn‖T xn − yjn,n‖2 − rnμnεn

};
JE(ti,n − zn) + λnA

εn

i ti,n � 0, i = 1, 2, ..., N; (8)

Choose in such that ‖tin,n − zn‖ = max
i=1,...,N

‖ti,n − zn‖, let tn = tin,n;

Cn+1 = {
z ∈ Cn : 〈tn − z, JE(zn − tn)〉 ≥ −λnεn

} ⋂
Dn;

xn+1 = PCn+1x0,

where {λn}, {μn} ⊂ (0, ∞), {rn} ⊂ (0, ∞) and {εn} ⊂ (0, ∞).

We will prove strong convergence of the above sequence {xn} under the following
conditions:

(C1) min
{
inf
n

{λn}, inf
n

{μn}, inf
n

{rn}
} ≥ a > 0 and sup

n
{rn} < +∞;

(C2) (λn + μn)εn → 0, as n → ∞.

First, we have the following lemma:

Lemma 3.1 If {Cn} is a decreasing sequence of closed and convex subsets of a

reflexive Banach space E and �0 =
∞⋂

n=1

Cn �= ∅, then �0 = M- lim
n→∞ Cn.
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Proof Clearly, if x ∈ �0, then the sequence {xn} with xn = x for all n ≥ 1 converges
strongly to x. Thus, we have x ∈ s-LinCn and x ∈ w-LsnCn. It implies that �0 ⊆
s-LinCn and �0 ⊆ w-LsnCn.

If we take x ∈ s-LinCn then there exists sequence {xn} ⊂ E with xn ∈ Cn for all
n ≥ 1 such that xn → x as n → ∞. On the other hand, xn+k ∈ Cn for all n ≥ 1
and k ≥ 0 because {Cn} is a decreasing sequence. So, letting k → ∞ and using the
closedness property of Cn, we get that x ∈ Cn for all n ≥ 1. Thus, x ∈ �0 and hence
�0 ⊇ s-LinCn.

Next, let y ∈w-LsnCn, from the definition of w-LsnCn, there exists a subsequence
{Cnk

} of {Cn} and the sequence {yk} ⊂ E such that yk ⇀ x and yk ∈ Cnk
for all

k ≥ 1. From {Cn} is a decreasing sequence, we have

yk+p ∈ Cnk
(9)

for all k ≥ 1 and p ≥ 0. Due to the closedness and convexity of Cnk
, we have Cnk

is
weakly closed in E for all k ≥ 1. So, in (9), letting p → ∞, we obtain that y ∈ Cnk

for all k ≥ 1. Moreover, Ck ⊇ Cnk
, y ∈ Ck for all k ≥ 1. Therefore, y ∈ �0 and

hence �0 ⊇ w-LsnCn.
Consequently, we obtain that s-LinCn = w-LsnCn = �0. Thus, �0 =M- lim

n→∞ Cn.

Next, we have the following propositions:

Proposition 3.2 The sequence {xn} generated by Algorithm 1 is well defined.

Proof We will prove this proposition by several steps.

Step 1. Cn and Dn are the closed and convex subsets of E.

Indeed, we rewrite Dn and Cn+1 in the forms

Dn = {z ∈ E : 〈z, JE(xn−zn)〉≤〈xn, JE(xn−zn)〉−rn‖T xn−yjn,n‖2+rnμnεn},
Cn+1 = Wn ∩ Dn,

for all n ≥ 0, where Wn := {z ∈ Cn : 〈z, JE(zn − tn)〉 ≤ 〈tn, JE(zn − tn)〉 + λnεn}.
We note that Dn and Wn are the closed half-spaces of E. Thus, Cn and Dn are the
closed and convex subsets of E.

Step 2. S ⊂ Dn for all n ≥ 0.

Let z ∈ S, from (7), we have

JE(xn − zn) = rnT
∗(JF (T xn − yjn,n)).

It implies that

〈xn − z, JE(xn − zn)〉 = rn〈xn − z, T ∗(JF (T xn − yjn,n))〉
= rn〈T xn − T z, JF (T xn − yjn,n)〉
= rn〈T xn − yjn,n + yjn,n − T z, JF (T xn − yjn,n)〉
= rn‖T xn − yjn,n‖2

+rn〈yjn,n − T z, JF (T xn − yjn,n)〉. (10)
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On the other hand, from (6) and z ∈ S, we have

1

μn

JF (T xn − yjn,n) ∈ B
εn

jn
yjn,n and 0 ∈ BjnT z.

Thus, from the definition of B
εn

jn
, we get that

rn〈yjn,n − T z, JF (T xn − yjn,n)〉 ≥ −rnμnεn. (11)

From (10) and (11), we obtain

〈xn − z, JE(xn − zn)〉 ≥ rn‖T xn − yjn,n‖2 − rnμnεn.

This follows that z ∈ Dn and hence S ⊂ Dn for all n ≥ 0.

Step 3. S ⊂ Cn for all n ≥ 0.

Indeed, obviously, S ⊂ C0 = E. Suppose that S ⊂ Cn for some n ≥ 1, we will
prove that S ⊂ Cn+1. Now, from (8) and z ∈ S, we have

1

λn

JE(zn − tn) ∈ A
εn

in
tn and 0 ∈ Ainz.

Hence, from the definition of A
εn

in
, we get that

〈tn − z, JE(zn − tn)〉 ≥ −λnεn.

It implies that z ∈ Wn. From the definition of Cn+1 = Wn ∩ Dn and step 2, we
have z ∈ Cn+1. Thus, S ⊂ Cn+1. Finally, by mathematical induction, we obtain that
S ⊂ Cn for all n ≥ 0. Hence, the sequence {xn} is well defined.

Proposition 3.3 If the conditions (C1) and (C2) are satisfied, then the sequences
{xn}, {zj,n}, j = 1, 2, ...,M and {ti,n}, i = 1, 2, ..., N in Algorithm 1 converge
strongly to a same point p0 ∈ E.

Proof We will prove this proposition by several steps.

Step 1. xn → p0 = P�0x0, where �0 =
∞⋂

n=1

Cn �= ∅.

Indeed, from step 1 and step 3 in the proof of Proposition 3.2 and the definition
of {Cn}, we have {Cn} is the sequence of decreasing of closed convex subsets of E

and S ⊂ �0 �= ∅. Thus, from Lemma 3.1, there exists the limit �0 =M- lim
n→∞ Cn. By

using Lemma 2.2, we have xn = PCnx0 → p0 = P�0x0 as n → ∞.

Step 2. {yj,n} is bounded for all j = 1, 2, ...,M .

Indeed, fixing z ∈ S and from (6), we have

1

μn

JF (T xn − yj,n) ∈ B
εn

j yj,n and 0 ∈ BjT z.

Thus, from the definition of B
εn

j , we get that

〈yj,n − z, JF (T xn − yj,n)〉 ≥ −μnεn,
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for all j = 1, 2, ...,M . It follows that

‖yj,n − T xn‖2 ≤ 〈T xn − z, JF (T xn − yj,n)〉 + μnεn

≤ 1

2
(‖T xn − z‖2 + ‖T xn − yj,n‖2) + μnεn,

which implies that

‖yj,n − T xn‖2 ≤ ‖T xn − z‖2 + 2μnεn,

for all j = 1, 2, ...,M and for all n ≥ 0.
Because of the boundedness of {xn}, the sequence {T xn} also is bounded. From

this and μnεn → 0, it ensures that there exists K > 0 such that

K = max
{
sup
n

{‖T xn − z‖2}, sup
n

{μnεn}
}

< ∞.

So, we obtain that

‖yj,n − T xn‖2 ≤ 3K,

which implies that {yj,n − T xn} is bounded and hence {yj,n} also is bounded for all
j = 1, 2, ...,M .

Step 3. {zj,n} is bounded for all j = 1, 2, ...,M .

From (7), we have

JE(xn − zj,n) = rnT
∗JF (T xn − yj,n). (12)

Thus, by the boundedness of {T xn}, {yj,n} and {rn}, we also get that {zj,n} is bounded
for all j = 1, 2, ...,M .

Step 4. {ti,n} is bounded for all i = 1, 2, ..., N .

Indeed, fixing z ∈ S and from (8), we have

1

λn

JE(zn − ti,n) ∈ A
εn

i ti,n and 0 ∈ Aiz.

Thus, from the definition of A
εn

i , we get that

〈ti,n − z, JE(zn − ti,n)〉 ≥ −λnεn,

for all i = 1, 2, ..., N . It follows that

‖ti,n − zn‖2 ≤ 〈zn − z, JE(zn − ti,n)〉 + λnεn

≤ 1

2
(‖zn − z‖2 + ‖zn − ti,n‖2) + λnεn,

which implies that

‖ti,n − zn‖2 ≤ ‖zn − z‖2 + 2λnεn,

for all i = 1, 2, ..., N and for all n ≥ 0.
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Because of the boundedness of {zn} and λnεn → 0, it ensures that {ti,n} is bounded
for all i = 1, 2, ..., N .

Step 5. lim
n→∞ xn = lim

n→∞ zj,n = lim
n→∞ ti,n = p0.

From the definition of Dn, we have

〈xn − xn+1, JE(xn − zn)〉 ≥ rn(‖T xn − yjn,n‖2 − μnεn)

and hence,

‖T xn − yjn,n‖2 ≤ 1

a
(K1‖xn − xn+1‖ + μnεn) → 0,

where K1 = sup
n

{‖xn − zn‖} < ∞. This implies that

‖T xn − yjn,n‖ → 0.

So, from (12), we obtain

‖xn − zjn,n‖ → 0. (13)

From the definition of zjn,n, we have

‖xn − zj,n‖ → 0, (14)

for all j = 1, 2, ...,M . It follows from (12) that

‖JF (T xn − yj,n)‖ → 0, (15)

for all j = 1, 2, ...,M .
Next, from xn+1 ∈ Cn+1, we have

〈tn − xn+1, JE(zn − tn)〉 ≥ −λnεn.

Thus, we get that

‖zn − tn‖2 ≤ 〈zn − xn+1, JE(zn − tn)〉 + λnεn

≤ 1

2
(‖zn − xn+1‖2 + ‖zn − tn‖2) + λnεn,

which follows that

‖zn − tn‖2 ≤ ‖zn − xn+1‖2 + 2λnεn → 0.

This implies that

‖zn − tn‖ → 0.

By the definition of tn, we have

‖zn − ti,n‖ → 0, (16)

for all i = 1, 2, ..., N .
Finally, from xn → p0, (14) and (16), we obtain that

lim
n→∞ xn = lim

n→∞ zj,n = lim
n→∞ ti,n = p0, (17)

for all j = 1, 2, ...,M and for all i = 1, 2, ..., N .
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Now, we are in position to prove our main result.

Theorem 3.4 If the conditions (C1) and (C2) are satisfied, then the sequence {xn}
generated by Algorithm 1 converges strongly to PSx0 as n → ∞.

Proof We proceed with the following steps.

Step 1. p0 ∈ S.

Indeed, from (16) and the condition (C1), we have

A
εn

i ti,n � 1

λn

JE(zn − ti,n) → 0,

for all i = 1, 2, ..., N . This combines with ti,n → p0, εn → 0 and using Lemma 2.3,
we obtain that

p0 ∈ A−1
i 0, (18)

for all i = 1, 2, ..., N .
Obviously, T xn → Tp0 and from (15), we get that

yj,n → Tp0, (19)

for all j = 1, 2, ...,M .
From (6), (15) and the condition (C1), we have

B
εn

j yj,n � 1

μn

JE(T xn − yj,n) → 0, (20)

for all j = 1, 2, ...,M .
From (19), (20) and Lemma 2.3 imply that Tp0 ∈ B−1

j 0. Hence,

p0 ∈ T −1(B−1
j 0), (21)

for all j = 1, 2, ...,M . Therefore, from (18) and (21), we obtain p0 ∈ S.

Step 2. p0 = PSx0.

Indeed, let x† = PSx0. From p0 = P�0x0 and x† ∈ S ⊂ �0, we have

‖x0 − p0‖ ≤ ‖x0 − x†‖.
On the other hand, from the fact that p0 ∈ S, we have

‖x0 − x†‖ ≤ ‖x0 − p0‖.
Thus, we get ‖x0 − x†‖ = ‖x0 − p0‖. By the uniqueness of x†, it ensures that
p0 = x† = PSx0.
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Remark 3.5 When εn = 0 for all n, then Algorithm 1 can be rewritten in the
following form: Let C0 = E, x0 ∈ E and let {xn} be a sequence generated by

zj,n = xn − rnJ
−1
E T ∗(JF (T xn − Qj

μn
T xn)), j = 1, 2, ...,M;

Choose jn such that ‖zjn,n − xn‖ = max
j=1,...,M

‖zj,n − xn‖, let zn = zjn,n,

Dn = {z ∈ E : 〈xn − z, JE(xn − zn)〉 ≥ rn‖T xn − Qjn
μn

T xn‖2};
ti,n = J i

λn
zn, i = 1, 2, ..., N;

Choose in such that ‖tin,n − zn‖ = max
i=1,...,N

‖ti,n − zn‖, let tn = tin,n;

Cn+1 = {
z ∈ Cn : 〈tn − z, JE(zn − tn)〉 ≥ 0

}⋂
Dn;

xn+1 = PCn+1x0, (22)

where {λn}, {μn} ⊂ (0, ∞) and {rn} ⊂ (0, ∞).

The following result is a direct consequence of Theorem 3.4.

Corollary 3.6 If the condition (C1) is satisfied, then the sequence {xn} generated by
(22) converges strongly to x† = PSx0.

4 Applications

4.1 Split minimum point problem

Let E be a Banach space and let f : E −→ (−∞, ∞] be a proper, lower semi-
continuous and convex function. The subdifferentiable of f is multi-valued mapping
∂f : E −→ 2E∗

which is defined by

∂f (x) = {g ∈ E∗ : f (y) − f (x) ≥ 〈y − x, g〉, ∀y ∈ E}
for all x ∈ E. We know that ∂f is maximal monotone operator [21] and x0 ∈
argmin

E

f (x) if and only if ∂f (x0) � 0.

The ε-subdifferential enlargement of ∂f is given by

∂εf (x) = {u ∈ E∗ : f (y) − f (x) ≥ 〈y − x, u〉 − ε, ∀y ∈ E},
for each ε ≥ 0. It is well know that ∂εf (x) ⊂ ∂εf (x), for any x ∈ E. Moreover, in
some particular cases, we have that ∂εf (x) � ∂εf (x) (see, example 2 and example
3 in [8]).

From the Theorem 3.4, we have the following theorem:

Theorem 4.1 Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the normalized duality mappings on E and F ,
respectively. Let fi, i = 1, 2, ..., N and gj , j = 1, 2, ...,M be proper, lower
semi-continuous, and convex functions of E into (−∞, ∞] and F into (−∞, ∞],
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respectively. Let T : E −→ F be a bounded linear operator such that T �= 0 and
let T ∗ be the adjoint operator of T . Suppose that

S =
( N⋂

i=1

(∂fi)
−10

)⋂ (
T −1

( M⋂
j=1

(∂gj )
−10

))
�= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by C0 = E, x0 ∈ E and

JF (yj,n − T xn) + μn∂
εngj (yj,n) � 0, j = 1, 2, ...,M;

zj,n = xn − rnJ
−1
E T ∗(JF (T xn − yj,n)), j = 1, 2, ...,M;

Choose jn such that ‖zjn,n − xn‖ = max
j=1,...,M

‖zj,n − xn‖, let zn = zjn,n,

Dn = {z ∈ E : 〈xn − z, JE(xn − zn)〉 ≥ rn‖T xn − yjn,n‖2 − rnμnεn};
JE(ti,n − zn) + λn∂

εnfi(ti,n) � 0, i = 1, 2, ..., N;
Choose in such that ‖tin,n − zn‖ = max

i=1,...,N
‖ti,n − zn‖, let tn = tin,n;

Cn+1 = {z ∈ Cn : 〈tn − z, JE(zn − tn)〉 ≥ −λnεn}
⋂

Dn;
xn+1 = PCn+1x0,

where {λn}, {μn} ⊂ (0, ∞), {rn} ⊂ (0, ∞) and {εn} ⊂ (0, ∞). If the conditions (C1)
and (C2) are satisfied, then the sequence {xn} converges strongly to x† = PSx0.

The following result is a direct consequence of the theorem above.

Corollary 4.2 Let E, F , JE , JF , fi , gj , T , T ∗ be as in Theorem 4.1. Suppose that

S =
( N⋂

i=1

(∂fi)
−10

)⋂ (
T −1

( M⋂
j=1

(∂gj )
−10

))
�= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by C0 = E, x0 ∈ E and

yj,n = argmin
y∈F

{
gj (y) + 1

2μn

‖y − T xn‖2
}

, j = 1, 2, ...,M;

zj,n = xn − rnJ
−1
E T ∗(JF (T xn − yj,n)), j = 1, 2, ...,M;

Choose jn such that ‖zjn,n − xn‖ = max
j=1,...,M

‖zj,n − xn‖, let zn = zjn,n,

Dn = {z ∈ E : 〈xn − z, JE(xn − zn)〉 ≥ rn‖T xn − yjn,n‖2};
ti,n = argmin

y∈E

{fi(x) + 1

2λn

‖x − zn‖2}, i = 1, 2, ..., N;
Choose in such that ‖tin,n − zn‖ = max

i=1,...,N
‖ti,n − zn‖, let tn = tin,n;

Cn+1 = {
z ∈ Cn : 〈tn − z, JE(zn − tn)〉 ≥ 0

}⋂
Dn;

xn+1 = PCn+1x0,

where {λn}, {μn} ⊂ (0, ∞) and {rn} ⊂ (0, ∞). If the condition (C1) is satisfied, then
the sequence {xn} converges strongly to x† = PSx0.
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4.2 Multiple-sets split feasibility problem

Let C be a non-empty, closed, and convex subset of E. Let iC be the indicator
function of C, that is,

iC(x) =
{
0, if x ∈ C,

∞, if x /∈ C.

It is easy to see that iC is the proper, semi-continuous, and convex function, so its
subdifferentiable ∂iC is a maximal monotone operator. We know that

∂iC(u) = N(u, C) = {f ∈ E∗ : 〈u − y, f 〉 ≥ 0 ∀y ∈ C},
where N(u, C) is the normal cone of C at u.

We denote metric resolvent of ∂iC by Jr with r > 0. Suppose u = Jrx for x ∈ E,
that is

JE(x − u)

r
∈ ∂iC(u) = N(u, C).

Thus, we have

〈u − y, JE(x − u)〉 ≥ 0,

for all y ∈ C. From Lemma 2.2, we get that u = PCx.
Thus, from Theorem 3.4, we have the following theorem:

Theorem 4.3 Let E, F , JE , JF , T , T ∗ be as in Theorem 4.1. Let Li, i = 1, 2, ..., N
andKj , j = 1, 2, ...,M be nonempty, closed and convex subsets ofE and F , respec-

tively. Suppose that S =
( N⋂

i=1

Li

)⋂(
T −1

( M⋂
j=1

Kj

))
�= ∅. Let x1 ∈ E and let

{xn} be a sequence generated by C0 = E, x0 ∈ E and

zj,n = xn − rnJ
−1
E T ∗(JF (T xn − PKj

T xn)), j = 1, 2, ...,M;
Choose jn such that ‖zjn,n − xn‖ = max

j=1,...,M
‖zj,n − xn‖, let zn = zjn,n,

Dn = {z ∈ E : 〈xn − z, JE(xn − zn)〉 ≥ rn‖T xn − PKjn
T xn‖2};

ti,n = PLi
zn, i = 1, 2, ..., N;

Choose in such that ‖tin,n − zn‖ = max
i=1,...,N

‖ti,n − zn‖, let tn = tin,n;

Cn+1 = {
z ∈ Cn : 〈tn − z, JE(zn − tn)〉 ≥ 0

}⋂
Dn;

xn+1 = PCn+1x0,

where {rn} ⊂ (0, ∞). If the condition (C1) is satisfied, then the sequence {xn}
converges strongly to x† = PSx0.

4.3 The split variational inequality problem

Let C be a non-empty, closed, and convex subset of E and let A : C −→ E∗ be a
monotone operator which is hemi-continuous (that is for any c ∈ C and tn → 0+ we
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have A(x + tny) ⇀ Ax for all y ∈ E such that x + tny ∈ C). Then, a point u ∈ C is
called a solution of the variational inequality for A, if

〈y − u, Au〉 ≥ 0 ∀y ∈ C.

We denote by VI(C, A) the set of all solutions of the variational inequality for A.
Define a mapping TA by

TAx =
{

Ax + N(x,C), if x ∈ C,

∅, if x /∈ C.

By Rockafellar [22], we know that TA is maximal monotone, and T −1
A 0 = VI(C, A).

For any y ∈ E and r > 0, we know that the variational inequality VI(C, rA +
JE(• − y)) has a unique solution. Suppose that x = VI(C, rAx + JE(x − y)),
that is,

〈z − x, rA(x) + JE(x − y)〉 ≥ 0 ∀z ∈ C.

From the definition of N(x,C), we have

−rAx − JE(x − y) ∈ N(x,C) = rN(x, C),

which implies that

JE(y − x)

r
∈ Ax + N(x,C) = TAx.

Thus, we obtain that x = Jry, where Jr is metric resolvent of TA.
Now, let E and F be two uniformly convex and smooth Banach spaces and let

Ki, i = 1, 2, ..., N and Lj , j = 1, 2, ...,M be closed and convex subsets of E

and F , respectively. Let Ai : Ki −→ E∗ and Bj : Lj −→ F ∗ be monotone
operators which are hemi-continuous. Let T : E −→ F be a bounded linear operator

such that T �= 0. Suppose that S =
( N⋂

i=1

VI(Ki, Ai)

) ⋂(
T −1

( M⋂
j=1

VI(Bj , Lj )

))

�= ∅.
We consider the following split variational inequality problem:

Find an element x∗ ∈ S. (23)

To solve the problem (23), we define the operators TAi
and TBj

as following

TAi
x =

{
Aix + N(x,Ki) if x ∈ Ki,

∅ if x /∈ Ki,
and TBj

x =
{

Bjx + N(x,Lj ) if x ∈ Lj ,

∅ if x /∈ Lj ,

for all i = 1, 2, ..., N and j = 1, 2, ...,M . For any r > 0, we denote by J i
r and Q

j
r

the metric resolvents of TAi
and TBj

, respectively.
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From the above argument, the problem (23) is equivalent to the split common null
point problem for maximal monotone operators TAi

and TBj
. Thus, from Theorem

3.4, we have the following result:

Theorem 4.4 Let C0 = E, x1 ∈ E and let {xn} be a sequence generated by

tj,n = VI(Lj , μnBj + JF (• − T xn)), j = 1, 2, ...,M;
zj,n = xn − rnJ

−1
E T ∗(JF (T xn − tj,n)), j = 1, 2, ...,M;

Choose jn such that ‖zjn,n − xn‖ = max
j=1,...,M

‖zj,n − xn‖, let zn = zjn,n,

Dn = {z ∈ E : 〈xn − z, JE(xn − zn)〉 ≥ rn‖T xn − Qjn
μn

T xn‖2};
yi,n = VI(Ki, λnAi + JE(• − zn)), i = 1, 2, ..., N;
Choose in such that ‖yin,n − zn‖ = max

i=1,...,N
‖yi,n − zn‖, let yn = yin,n;

Cn+1 = {
z ∈ Cn : 〈yn − z, JE(zn − yn)〉 ≥ 0

} ⋂
Dn;

xn+1 = PCn+1x0, (24)

where {λn}, {μn} and {rn} satisfy the following the condition (C1). Then, the sequence
{xn} converges strongly to a point x† ∈ S, where x† = PSx1.

5 Numerical test

In this section, we apply our result in Theorem 4.3 to solve the multiple-set feasibility
problem.

Example 5.1 Consider the following problem:

Find an element x∗ ∈ S =
( 100⋂

i=1

Li

)⋂ (
T −1

( 50⋂
j=1

Kj

))
, (25)

where

Li = [0, i] × [−i, 2i − 1] × [1 − i, 1 + i] ⊂ R
3, i = 1, 2, . . . , 100,

Kj = [1 − j, j ] × [0, 1 + j ] ⊂ R
2, j = 1, 2, . . . , 50,

and T : R3 → R
2 is defined by

T (x1, x2, x3) = (4x1, 4x3) ∀x = (x1, x2, x3) ∈ R
3.

It is easy to see that

S = [0, 1/4] × [−1, 1] × [0, 1/2].
Next, the Xu’ algorithms [29] can be applied to the same above problem. They are

formulated as follows:

xn+1 = T100T99 . . . T1xn n ≥ 1, (26)
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where

Ti := PLi

(
xn − γ

50∑
j=1

βjT
∗(I − PKj

)T xn

)
, i = 1, 2, . . . , 100.

xn+1 =
100∑
i=1

λiPLi

(
xn − γ

50∑
j=1

βjT
∗(I − PKj

)T xn

)
, n ≥ 1 (27)

and

xn+1 = PL[n+1]

(
xn − γ

50∑
j=1

βjT
∗(I − PKj

)T xn

)
, n ≥ 1 (28)

where λi > 0 for all i such that
N∑

i=1

λi = 1, βj > 0 for all j , 0 < γ < 2/L

with L = ‖T ‖2
50∑
i=1

βj and C[n] = CnmodN and the mod function takes values in

{1, 2, . . . , N}.

Remark 5.2 In [29], Xu showed that the sequence {xn} is defined by (26), (27) and
(28) converges weakly to an element x† ∈ S. Moreover, it is clear to see that if the
sequence {xn} converges strongly to x† ∈ S, then x† = PSx0.

If we choose the starting point x0 = (−1, −2, 3), then x† = (0, −1, 1/2) = PSx0.
We test our algorithm with rn = 1 for all n ≥ 1. It is not hard to show that ‖T ‖ = 4.

Hence, if we take βj = 1 for all j , then L = ‖T ‖2
50∑
i=1

βj = 800. Thus, we can

apply Xu’s algorithm with the collections of the parameters λi = 1/100 for all i and
γ = 1/1000. In these cases, we obtain the following figure result:
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where, the function TOL is defined by TOLn := ‖xn − x†‖ is the error between the
approximation solution xn and exactly solution x† of considered problem.

Example 5.3 Now, we consider problem (25) with

Li = [0, i] × [−i, 2i − 1] × [1 − i, 1 + i] ⊂ R
3, i = 1, 2, . . . , 100,

Kj = [1 − j, j ] × [1 − j, 2j ] × [0, 1 + j ] ⊂ R
3, j = 1, 2, . . . , 50,

and the bounded linear operator T : R3 → R
3 is defined by

T x =
⎛
⎝5 10 5
2 3 1
0 2 4

⎞
⎠

⎛
⎝x1

x2
x3

⎞
⎠ ,

for all x = (x1, x2, x3) ∈ R
3.

It is not difficult to verify that ‖T ‖ = 15.
Obviously, S �= ∅ because of the point (0, 0, 0) ∈ S. We test our algorithm with

rn = 100 for all n ≥ 1. We use Xu’s algorithm with the collections of the parameters
βj = 1 for all j , L = 11250, λi = 1/100 for all i and γ = 1/10, 000. With the
starting point x0 = (3, −2, 5), we obtain the following figure result:
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where, the function TOL is defined by

TOLn := 1

100

100∑
i=1

‖xn − PLi
xn‖2 + 1

50

50∑
j=1

‖T xn − PKj
T xn‖2.

The above figures of numerical examples show that our new algorithm enjoys a
faster rate of convergence and needs less computation time than algorithms (26), (27),
and (28).
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