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Abstract A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the kind A =
T (a) + E where T (a) = (aj−i )i,j∈Z+ , E = (ei,j )i,j∈Z+ is compact and the
norms‖a‖W = ∑

i∈Z |ai | and ‖E‖2 are finite. These properties allow to approxi-
mate any QT matrix, within any given precision, by means of a finite number of
parameters. QT matrices, equipped with the norm‖A‖QT = α‖a‖W + ‖E‖2, for
α = (1 + √

5)/2, are a Banach algebra with the standard arithmetic operations. We
provide an algorithmic description of these operations on the finite parametrization
of QT matrices, and we develop a MATLAB toolbox implementing them in a transpar-
ent way. The toolbox is then extended to perform arithmetic operations on matrices
of finite size that have a Toeplitz plus low-rank structure. This enables the devel-
opment of algorithms for Toeplitz and quasi-Toeplitz matrices whose cost does not
necessarily increase with the dimension of the problem. Some examples of applica-
tions to computing matrix functions and to solving matrix equations are presented,
and confirm the effectiveness of the approach.
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1 Introduction

Toeplitz matrices, i.e., matrices having constant entries along their diagonals, are
found in diverse settings of applied mathematics, ranging from imaging to Markov
chains, and from finance to the solution of PDEs. These matrices can be of large size,
and often they are infinite or semi-infinite in the original mathematical model.

As shown in [17], semi-infinite Toeplitz matrices do not form an algebra; in
particular, neither product nor inverses of semi-infinite Toeplitz matrices are still
Toeplitz structured in general. However, this property continues to hold up to a com-
pact operator from �2 onto itself, where �2 is the linear space formed by sequences
x = (xi)i>0 such that ‖x‖2 := (

∑+∞
i=1 |xi |2)1/2 < +∞. More precisely, the set of

semi-infinite Toeplitz matrices plus a compact �2 operator is a Banach algebra, that
is, a Banach space with the �2 operator norm, closed under matrix multiplication,
where the associated operator norm is sub-multiplicative. We refer to such matrices
as quasi-Toeplitz matrices, in short QT matrices. Their computational properties have
been investigated in [2, 7, 8, 13].

We provide a description of finitely representable QT matrices, together with
the analysis of the computational properties of their arithmetic; moreover, we
provide an implementation of QT matrices in the form of a MATLAB tool-
box called cqt-toolbox (fully compatible with GNU/Octave), where the
acronym cqt stands for “computing with quasi-Toeplitz matrices,” and show
some examples of applications. The software is available from Netlib (http://www.
netlib.org/numeralgo/) as the na50 package. It is distributed as a compressed
archive, and to install it, it is sufficient to decompress it and run addpath
/path/to/cqt-toolbox in MATLAB.

1.1 Motivation

Matrices of infinite size are encountered in several applications which describe the
behavior of systems with a countable number of states, and more generally when-
ever infinite dimensional objects are involved. Typical examples come from queuing
models where the number of states of the stochastic process is infinitely countable;
say, it can be represented by the set Z of relative integers or by the set Z+ of pos-
itive integers, so that the probability transition matrix is bi-infinite or semi-infinite,
respectively. In other models, like the random walk in the quarter plane [24, 31], in
the QBD processes [27], and in the more general MG1 and GM1 queues [32], the
set of states is discrete and bidimensional, i.e., defined by integer pairs (i, j) where
at least one component ranges in an infinite set. Sometimes, these pairs belong to
Z × Z

+ or to Z
+ × Z

+. In these cases, the probability transition matrix has a block
structure with infinitely many blocks and with blocks which have infinite size.

A typical feature shared by many models is that—sufficiently far form the
border—the transitions from a state to another depend on their relative positions and

http://www.netlib.org/numeralgo/
http://www.netlib.org/numeralgo/
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are independent of the single state (see for instance the tandem Jackson queue [22]
or the random walk in the quarter plane analyzed in [24, 31]). In these situations, the
transition probability matrix is block Toeplitz almost everywhere and its blocks are
Toeplitz except for some elements in the upper left corner. In particular, the blocks
can be written in the form T (a) + E, where T (a) = (aj−i ) is the Toeplitz matrix
associated with the sequence a = {ai}i∈Z, while E is a matrix having only a finite
number of nonzero entries containing the information concerning the boundary con-
ditions. The computation of interesting quantities related to these models, e.g., the
steady-state vector, requires to solve quadratic matrix equations whose coefficients
are given by the blocks of the transition probability matrix.

The numerical treatment of problems involving infinite matrices is usually per-
formed by truncating the size to a finite large value, by solving the finite problem
obtained this way and using this finite solution to approximate part of the solution of
the infinite problem.

In [30], the author analyzes this approach—called the finite section method—for
infinite linear systems, providing conditions that ensure the solution of the truncated
system to converge to the solution of the infinite one, as the size of the section tends
to +∞. The analogous strategy can be adopted for solving matrix equations or com-
puting matrix functions, but—in general—there is no guarantee of convergence. In
fact, in [1, 26, 28], bad effects of truncation are highlighted when solving infinite
quadratic matrix equations arising in the Markov chain framework. In [23], a method
is designed for a subclass of bidimensional random walks where the solution can
be represented in a special form. In particular, the authors point out the difficulty to
apply the matrix geometric method of Marcel Neuts [32], and therefore of solving a
quadratic matrix equation, due to the infinite size of the matrix coefficients and of
the solution.

Recently, a different approach has been introduced by studying structures that
allow finitely represented approximations of infinite matrices and that are preserved
by matrix operations. Working with this kind of structured matrices does not require
to truncate to finite size in order to carry out computations.

In [2, 7, 8, 13], the class QT of semi-infinite quasi-Toeplitz (QT) matrices has
been introduced. This set is formed by matrices of the kind A = T (a) + E where,
in general, a(z) = ∑

i∈Z aiz
i is a Laurent series such that ‖a‖W = ∑+∞

i=−∞ |ai |
is finite, and E is a compact correction. Each element of this class can be approxi-
mated — at any arbitrary precision — with the sum of a banded Toeplitz T (̃a) plus
a matrix Ẽ with finite support. QT matrices form a Banach algebra and enable the
implementation of an approximate matrix arithmetic which operates on the elements
of the class. Using this tool, one can deal with certain classical linear algebra issues
just plugging the new arithmetic into the procedures designed for matrices of finite
size.

Another intriguing aspect of QT arithmetic is that it can be easily adapted to finite
matrices of the form Toeplitz plus low rank. This paves the way for efficiently com-
puting functions of Toeplitz matrices, which has been recently raised some attention
(see [19] for applications concerning signal processing). In [25, 29], computing the
matrix exponential of large Toeplitz matrices is required for option pricing with the
Merton model.
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1.2 New contributions

In this paper, by continuing the work started in [2, 7, 8, 13], we analyze the represen-
tation of QT matrices by means of a finite number of parameters, in a sort of analogy
with the finite floating point representation of real numbers. Moreover, we investi-
gate some computational issues related to the definition and the implementation of a
matrix arithmetic in this class. Finally, we provide an effective implementation of the
class of finitely representable QT matrices together with the related matrix arithmetic
in the MATLAB toolbox cqt-toolbox.

In order to perform approximations of QT matrices with finitely representable
matrices, we introduce the following norm

‖A‖QT = α‖a‖W + ‖E‖2, α = 1 + √
5

2
.

This norm is different from the one used in [2, 7, 8, 13]: it is slightly more general,
and still makes the set QT a Banach algebra. It can be shown that any value of α �
1+√

5
2 would make this set a Banach algebra. Moreover, we will see that this choice

allows a complete control on the approximation errors and enables us to perform, in
a safe way, different computational operations like compression or matrix inversion.

The paper is organized as follows. In Section 2, we recall the definition and some
theoretical results about QT matrices, together with the norm ‖ · ‖QT . We introduce
the class of finitely representable QT matrices and provide a first description of the
cqt-toolbox.

Section 3 deals with the definition and the analysis of the arithmetic operations
in the algebra of finitely representable QT matrices. The first subsections deal with
addition, multiplication, inversion, and compression. Then, Section 3.5 describes
the extension of the arithmetic (and of the toolbox) to the case of finite QT matri-
ces. Section 4 provides some examples of applications, and Section 5 draws the
conclusions.

In the Appendices, we provide some details on the Sieveking-Kung algorithm for
triangular Toeplitz matrix inversion (Appendix A.1) and on the main algorithms for
computing the Wiener-Hopf factorization (Appendix A.2).

2 The class of QT matrices

We start by introducing the set of semi-infinite matrices that we are going to
implement, recall its main properties, and provide an effective (approximate) finite
representation.

2.1 The Wiener class and semi-infinite Toeplitz matrices

We indicate with T := {z ∈ C : |z| = 1} the complex unit circle, and with W
the Wiener class formed by the functions a(z) = ∑+∞

i=−∞ aiz
i : T → C such that

∑+∞
i=−∞ |ai | < +∞, that is functions expressed by a Laurent series with absolutely

summable coefficients.
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The set W , endowed with the norm ‖a‖W := ∑
i∈Z |ai |, is a Banach algebra.

By the Wiener theorem, [14, Section 1.4], a Laurent series in W is invertible if and
only if a(z) �= 0 on the unit circle. Under the latter condition, there exist functions
u(z) = ∑∞

i=0 uiz
i, l(z) = ∑∞

i=0 liz
i ∈ W with u(z), l(z) �= 0 for |z| � 1 such that

the factorization

a(z) = u(z)zml(z−1), u(z) =
∞∑

i=0

uiz
i, l(z) =

∞∑

i=0

liz
i

holds where m is the winding number of a(z). The above decomposition is known as
Wiener-Hopf factorization. We refer the reader to the first chapter of the book [14]
for more details.

We associate an element a(z) = ∑
i∈Z aiz

i of the Wiener class with the semi-
infinite Toeplitz matrix T (a) = (ti,j ) such that ti,j = aj−i for i, j ∈ Z

+, or, in
matrix form

T (a) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1 a0
. . .

...
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Matrices T (a) naturally define operators from �2 into itself, where �2 is the set of

sequences x = (xi)i�1 such that ‖x‖2 = (
∑∞

i=1 |xi |2) 1
2 is finite. In particular, one

can show that ‖T (a)‖2 � ‖a‖W , where ‖T (a)‖2 denotes the operator norm induced
by the �2-norm on the operator T (a).

Given a(z) ∈ W , we denote a+(z) = ∑∞
i=1 aiz

i , a−(z) = ∑∞
i=1 a−iz

i , so that
we may write a(z) = a−(z−1) + a0 + a+(z). Moreover, given the power series
b(z) = ∑∞

i=0 biz
i ∈ W , we denote H(b) = (hi,j ) the semi-infinite Hankel matrix

defined by hi,j = bi+j−1, for i, j ∈ Z
+.

Despite W is closed under multiplication, the corresponding matrix class formed
by semi-infinite Toeplitz matrices of the kind T (a), for a ∈ W , is not. However,
it satisfies this property up to a compact correction [14] as stated by the following
result.

Theorem 2.1 Let a(z), b(z) ∈ W and set c(z) = a(z)b(z). Then,

T (a)T (b) = T (c) − H(a−)H(b+).

where H(a−) = (h−
i,j )i,j�1, H(b+) = (h+

i,j )i,j�1 with h−
i,j = a−(i+j+1) and h+

i,j =
bi+j+1. Moreover, the matrices H(a−) and H(b+) define compact operators on �2

and are such that ‖H(a−)‖2 � ‖a−‖W and ‖H(b+)‖2 � ‖b+‖W .

Assume that a(z) = ∑n+−n− aiz
i where 0 � n−, n+ < ∞. We recall that (see

[17, 18]) for a continuous symbol a(z), the matrix T (a) is invertible if and only if
a(z) �= 0 for |z| = 1 and the winding number of a(z) is 0. On the other hand,
from [18, Theorem 1.14], the latter condition implies that there exist polynomials
u(z) = ∑n+

i=0 uiz
i and l(z) = ∑n−

i=0 liz
i having zeros of modulus less than 1 such that
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a(z) = u(z)l(z−1). Therefore, we may conclude that if T (a) is invertible, then there
exists the Wiener-Hopf factorization a(z) = u(z)l(z−1) so that T (a) = T (u)T (l)T

and we may write
T (a)−1 = (T (l)T )−1T (u)−1. (1)

Observe that since u(z) and l(z) have zeros of modulus less than 1, by Wiener’s
theorem, they are invertible as power series. These arguments, together with Theorem
2.1, lead to the following result [17].

Theorem 2.2 If a(z) = ∑n+−n− aiz
i , then T (a) is invertible in �2 if and only if there

exists the Wiener-Hopf factorization a(z) = u(z)l(z−1), for u(z) = ∑n+
i=0 uiz

i and
l(z) = ∑n−

i=0 liz
i having zeros of modulus less than 1. Moreover, u−1(z), l−1(z) ∈ W

so that

a−1(z) = l(z−1)−1u(z)−1,

T (a)−1 = T (l−1)T T (u−1) = T (a−1) + E, E = H(l−1)H(u−1),

‖E‖2 � ‖l−1‖W ‖u−1‖W .

(2)

2.2 Quasi-Toeplitz matrices

We are ready to introduce the central notion of this paper.

Definition 2.3 We say that the semi-infinite matrix A is quasi-Toeplitz (QT) if it can
be written in the form

A = T (a) + E,

where a(z) = ∑+∞
i=−∞ aiz

i is in the Wiener class, and E = (ei,j ) defines a compact
operator on �2.

It is well known [17] that the class ofQT matrices, equipped with the �2 norm, is a
Banach algebra. However, the �2 norm can be difficult to compute numerically, so we
prefer to introduce a slightly different norm which still preserves the Banach algebra
property. Let α = (1+ √

5)/2 and set ‖A‖QT = α‖a‖W + ‖E‖2. Clearly, ‖A‖QT is
a norm which makes complete the linear space of QT matrices. Moreover, it is easy
to verify that this norm is sub-multiplicative, that is, ‖AB‖QT � ‖A‖QT ‖B‖QT for
any pair of QT matrices A, B. In this way, the linear space of QT matrices endowed
with the norm ‖ · ‖QT forms a Banach algebra that we denote by QT . Observe also
that ‖A‖2 � ‖A‖QT for any QT matrix A.

The next lemma ensures that every QT matrix admits finitely representable
approximations with arbitrary accuracy.

Lemma 2.4 Let A = T (a) + E ∈ QT and ε > 0. Then, there exist non negative
integers n−, n+, nr , nc such that the matrix Â = T (̂a) + Ê, defined by

â(z) =
n+∑

i=−n−
aiz

i, Êij =
{

Eij if 1 � i � nr and 1 � j � nc

0 otherwise
,

verifies ‖A − Â‖QT � ‖A‖QT · ε.
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Proof Since A ∈ QT then ‖a‖W = ∑
j∈Z |aj | < ∞. This means that there exist

n−, n+ such that

‖a − â‖W =
∑

j<−n−
|aj | +

∑

j>−n+
|aj | � ε‖A‖QT /α. (3)

Since E represents a compact operator, there exist k ∈ N, σi ∈ R
+, and ui, vi ∈ R

N

with unit 2-norm, i = 1, . . . , k, which verify ‖E − ∑k
i=1 σiuiv

T
i ‖2 � ε

2‖E‖2. The
condition ‖ui‖2 = ‖vi‖2 = 1 implies that there exist two integers nr and nc such
that the vectors

ũi (j) =
{

ui(j) if j > nr

0 otherwise
, ṽi (j) =

{
vi(j) if j > nc

0 otherwise
,

have 2-norms bounded by
ε‖A‖QT
4kmaxi σi

. Then, denoting by ûi := ui−ũi and v̂i := vi−ṽi ,

and setting Ê := ∑k
i=1 σiûi v̂

T
i , we find that

‖ûi v̂
T
i − uiv

T
i ‖2 = ‖ũiv

T
i + ûi ṽ

T
i ‖2 �

ε‖A‖
QT

2kmaxi σi

=⇒ ‖Ê −
k∑

i=1

σiuiv
T
i ‖2 �

ε

2
‖A‖

QT
.

To conclude, we have ‖E − Ê‖2 � ‖E − ∑k
i=1 σiuiv

T
i ‖2+‖ ∑k

i=1 σiuiv
T
i − Ê‖2 �

ε‖A‖
QT

. Thus, from the latter inequality and from (3), we get ‖A− Â‖QT = α‖a −
â‖W + ‖E − Ê‖2 � ε‖A‖QT .

This result makes it possible to draw an analogy between the representation of
semi-infinite quasi Toeplitz matrices and floating point numbers. When representing
a real number a in floating point format fl(a), it is guaranteed that

fl(a) = a + E, |E | � |a| · ε,

where ε is the so-called unit roundoff.
We design a similar framework for QT matrices. More precisely, analogously to

the operator “fl(·),” we introduce a “truncation” operatorQT (·) that works separately
on the Toeplitz and on the compact correction, as described by Lemma 2.4. So, for a
QT matrix A = T (a) + Ea , we have

QT (A) = T (̂a) + Êa = A + E, ‖E‖ � ‖A‖QT · ε, (4)

where ε is some prescribed tolerance set a priori (analogously to the unit roundoff),
andQT (A) is given by the sum of a banded Toeplitz matrix T (̂a) and a semi-infinite
matrix Êa , with finite support.

Matrices of the kindQT (A) form the class of finitely representable quasi-Toeplitz
matrices, where, unlike the case of floating point numbers, the lengths of the repre-
sentations are not constant and may vary in order to guarantee a uniform bound to
the relative error in norm.

The cqt-toolbox collects tools for operating with finitely representable quasi-
Toeplitz matrices. The Toeplitz part is stored into two vectors containing the
coefficients of the symbol with non positive and with non negative indices, respec-
tively. The compact correction is represented in terms of two matrices Ûa ∈ R

nr×k
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and V̂a ∈ R
nc×k such that Êa(1 : nr, 1 : nc) = ÛaV̂ T

a coincides with the upper left
corner of the correction.

In order to define a new finitely representableQT matrix, one has to call the cqt
constructor, in the following way:

In the above command, the vectors pos and neg contain the coefficients of the
symbol a(z) with non positive and non negative indices, respectively, and E is a finite
section of the correction representing its nonzero part. For example, to define a matrix
A = T (a) + E as follows:

A =

⎡

⎢
⎢
⎢
⎣

1 2 1
−3 4 1 1

−1 2 1 1
. . .

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎦

= T (a) + E,

⎧
⎨

⎩

a(z) = −z−1 + 2 + z + z2,

E =
[ −1 1

−2 2

]

one needs to type the following MATLAB commands:

Notice that the constant coefficient contains both vectors, pos and neg. If the user
supplies two different values, the toolbox returns an error. It is also possible to specify
the correction in the factorized form E = UV T .

Removing the ; from the last expression will cause MATLAB to print a brief
description of the infinite matrix.

The different parts composing aQT matrix A can be fetched independently using
the instructions symbol and correction. For the previous example, we have the
following:
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The command [U, V] = correction(A) allows to retrieve the correction in
factorized form. The rank of the latter can be obtained with the command cqtrank.

3 Arithmetic operations

When performing floating point operations, it is guaranteed that

fl(a 	 b) = a 	 b + E, |E | � (a 	 b) · ε,

where 	 is any basilar arithmetic operation (sum, subtraction, multiplication, and
division).

Extending the analogy, the matrix arithmetic in the set of finitely representable QT
matrices is implemented in a way that the outcome of A 	 B, for any pair of finitely
representable A, B ∈ QT and 	 ∈ {+,-,*,/,\}, is represented by QT (A 	 B)

such that
A 	 B = QT (A 	 B) + E, ‖E‖QT � ε‖A 	 B‖QT . (5)

Notice that the outcome of an arithmetic operation between finitely representable
QT matrices might not be finitely representable, that is why we need to apply the
QT (·) operator on it.

Another benefit of theQT (·) operator is that it optimizes the memory usage, since
it minimizes the number of parameters required to store the data up to the required
accuracy. The practical implementation of QT (·) is reported in Section 3.4.

We now describe how the arithmetic operations are performed in the
cqt-toolbox. These overloaded operators correspond to the built-in functions of
MATLAB, i.e., they can be invoked with the usual operators +,-,*,/,\. Since we
represent only the nonzero sections of infinite objects, we rely on operations between
matrices and vectors that might be of non compatible sizes, e.g., sum of vectors with
different lengths. This has to be interpreted as filling the missing entries with zeros.

3.1 Addition

Given two finitely representable QT matrices A = T (a) + Ea and B = T (b) + Eb,
the matrix C = A + B is defined by the symbol c(z) = a(z) + b(z) and by the
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correction Ec = Ea + Eb. Hence, the symbol c(z) is computed with two sums of
vectors. The factorization Ec = UcV

T
c is given by

Uc = [Ua, Ub], Vc = [Va, Vb]. (6)

Then, applying the compression technique, where Uc and Vc are replaced by
matrices Ûc and V̂c, respectively, having a lower number of columns and such that
‖Ec − ÛcV̂ T

c ‖2 is sufficiently small, we get

QT (A + B) = A + B + E, ‖E‖QT � ε‖A + B‖QT .

The compression technique will be described in Section 3.4.
We refer to E as the local error of the addition. Observe that if the operands A and

B are affected themselves by an error EA and EB , respectively, that is, the original QT
matrices A and B are represented by approximations Â and B̂, respectively such that

Â = A + EA, B̂ = B + EB, (7)

then the computed matrixQT (Â+ B̂) differs from A+B by the total error given by

QT (Â + B̂) − (A + B) = EA + EB + E, (8)

where EA + EB is the inherent error caused by the approximated input, while E is the
local error. Equation (8) says that the global error is the sum of the local error and the
inherent error, and can be used to perform error analysis in the QT matrix arithmetic.

3.2 Multiplication

In view of Theorem 2.1, we may write

C = AB = T (c) − H(a−)H(b+) + T (a)Eb + EaT (b) + EaEb = T (c) + Ec,

where c(z) = a(z)b(z) and

Ec = T (a)Eb + EaT (b) + EaEb − H(a−)H(b+).

The symbol c(z) is obtained by computing the convolution of the vectors representing
the symbols a(z) and b(z), respectively.

For the correction part, denoting by Ea = UaV
T
a , Eb = UbV

T
b , H(a−) = MaN

T
a ,

H(b+) = MbN
T
b the decompositions of the matrices involved, we may write Ec =

UcV
T
c with

Uc = [T (a)Ub, Ua, −Ma] , Vc =
[
Vb, T (b)T Va + Vb(U

T
b Va), Nb(M

T
b Na)

]
.

Notice that the products T (a)Ub and T (b)T Va generate matrices with infinite rows
and finite support. The computation of the nonzero parts of the latter requires only
a finite section of T (a) and T (b)T , respectively. These operations are carried out
efficiently relying on the fast Fourier transform (FFT).

The compressed outcome QT (AB) satisfies the equation

QT (AB) = AB + E, ‖E‖QT � ε‖AB‖QT ,
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where E is the local error of the operation. If the operands A and B are affected
by errors EA and EB , respectively, such that (7) holds, then the global error in the
computed product is given by

QT (ÂB̂) − AB = E + AEB + BEA + EAEB (9)

where AEB + BEA + EAEB is the inherent error caused by the approximated input,
while E is the local error of the approximated multiplication. In a first-order analysis,
we may replace the inherent error with AEB + BEA neglecting the quadratic part
EAEB .

3.3 Inversion

Let A = T (a)+Ea ∈ QT be a finitely representable QT matrix such that the symbol

a(z) =
n+

a∑

i=−n−
a

aiz
i

admits the Wiener-Hopf factorization in the form a(z) = u(z)l(z−1), so that T (a) =
T (u)T (l)T is invertible and T (a)−1 = (T (l)−1)T T (u)−1. Assume also that Ea is
given in the factored form Ea = UaV

T
a where Ua and Va are matrices formed by k

columns and have null entries if the row index is greater than ma .
Thus, we may write A = T (a)(I + T (a)−1Ea) so that, if I + T (a)−1Ea is

invertible, then also A is invertible and

A−1 = (I + T (a)−1Ea)
−1T (a)−1, T (a)−1 = (T (l)−1)T T (u)−1. (10)

Observe also that by Theorem 2.1, we may write T (u)−1 = T (u−1) and T (l)−1 =
T (l−1).

Equation (10) provides a way to compute A−1, represented in the QT form, which
consists essentially in computing the coefficients of u(z), l(z) and of their inverses,
and then to invert a special QT matrix, that is, I + T (a)−1Ea =: I + E.

Here, we assume that the coefficients of the polynomials u(z), l(z) and of the
power series u(z)−1 and l(z)−1 are available. In the Appendix, we provide more
details on how to perform their computation. Once we have computed u(z)−1 and
l(z)−1, by Theorem 2.1, we may write

T (a)−1 = T (b) − H(l−1)H(u−1), b(z) = l(z−1)−1u(z)−1, (11)

where the coefficients of b(z) are computed by convolution of the coefficients of
u(z)−1 and of l(z−1)−1.

Concerning the inversion of I + E, where E = T (a)−1Ea , we find that E =
T (a)−1UaV

T
a =: UV T , forU = T (a)−1Ua , V = Va . Consider the k×k matrix Sk =

Ik +V T U which has finite support since V T U = V T
a T (a)−1Ua and both Ua and Va

have a finite number of nonzero rows. If Sk is invertible, then it can be easily verified
that I − US−1

k V T is the inverse of I + UV T , that is, by the Shermann-Morrison
formula,

(I + UV T )−1 = I − US−1
k V T , Sk = Ik + V T U. (12)
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Now, combining (10), (11), and (12), we may provide the following representation
of the inverse:

B := A−1 = T (b) − H(l−1)H(u−1) − T (l−1)T T (u−1)UaS
−1
k V T

a T (l−1)T T (u−1).

Thus, we may write B in QT form as

B := T (b) + UbV
T
b , b(z) = l(z−1)−1u(z)−1,

where

Ub =
[
H(l−1), T (l−1)T T (u−1)UaS

−1
k

]
and Vb = −

[
H(u−1), T (u−1)T T (l−1)Va

]
.

In order to analyze the approximation errors in computing A−1 as a finitely repre-
sentable QT matrix, we assume that the computed values of the Wiener-Hopf factors
u(z) and l(z) are affected by some error and that also in the process of computing
the inverse of a power series we introduce again some error. Therefore, we denote
by û(z) and l̂(z) the computed values obtained in place of u(z) and l(z), respectively
in the Wiener-Hopf factorization of a(z) and set eul(z) = a(z) − û(z)̂l(z−1) for the
residual error. Moreover, denote by δu(z) = u(z) − û(z), δl(z) = l(z) − l̂(z) the
absolute errors so that we may write the residual error as

eul = lδu + ûδl
.= l̂δu + ûδl .

We indicate with v(z) and w(z) the power series reciprocal of û(z) and l̂(z),
respectively, i.e., such that û(z)v(z) = 1 and l̂(z)w(z) = 1, while we denote with
v̂(z) and ŵ(z) the polynomials obtained by truncating v(z) and w(z) to a finite
degree. Set eu(z) = v̂(z)̂u(z) − 1, el(z) = ŵ(z)̂l(z) − 1 for the corresponding resid-
ual errors. We approximate a(z)−1 with the Laurent polynomial b̂(z) = ŵ(z−1)̂v(z)

up to the error einv = a(z)̂b(z) − 1. Finally, we write
.= and �̇ if the equal-

ity and the inequality, respectively, are valid up to quadratic terms in the errors
eul(z), eu(z), and el(z). This way, we may approximate the matrix B = T (a)−1 =
T (a−1) − H(l−1)H(u−1) with the matrix B̂ = T (̂b) − H(ŵ)H (̂v).

It is not complicated to relate B − B̂ to the errors einv(z), eul(z), eu(z), and el(z)

as expressed in the following proposition where, for the sake of notational simplicity,
we omit the variable z.

Proposition 3.1 The error E = T (a)−1 − B̂, where B̂ = T (̂b)−H(ŵ)H (̂v), is such
that E = −T (a−1einv) + Ee, Ee = H(l−1 − ŵ)H(u−1) + H(ŵ)H(u−1 − v̂), and

‖T (a−1einv)‖2 � ‖a−1‖W ‖einv‖W , ‖Ee‖2 � ‖l−1 − ŵ‖W ‖u−1‖W + ‖u−1 − v̂‖W ‖ŵ‖W .

Moreover, for the errors einv , eu, el , and eul defined above, it holds that

einv
.= eu + el + a−1eul

.= eu + el + u−1δu + l−1δl. (13)

For the errors l−1 − ŵ and u−1 − v̂ it holds that

l−1 − ŵ = (l−1 − l̂−1) + (w − ŵ) = −̂l−1[l−1δl + el]
u−1 − v̂ = (u−1 − û−1) + (v − v̂) = −û−1[u−1δu + eu]. (14)
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Proof By linearity, we have E = T (a − b̂) − H(l−1)H(u−1) + H(ŵ)H (̂v) =
−T (a−1einv) + Ee, where Ee = H(l−1 − ŵ) + H(ŵ)H(u−1 − v̂), which, together
with Theorem 2.1, proves the first part of the proposition. Observe that a−1 =
(eul + û̂l)−1 .= (̂ûl)−1(1 − (̂ûl)−1eul) so that, since û−1 = v and l̂−1 = w, we may
write

b̂ − a−1 = ŵv̂ − wv + (̂ûl)−2eul = (ŵ − w)̂v + w(̂v − v)(̂ûl)−2 + (̂ûl)−2eul.

Thus, since ŵ − w = l̂−1el
.= l−1el , and v̂ − v = û−1eu

.= u−1eu, we arrive at

b̂ − a−1 .= a(el + eu + aeul),

which proves (13). Equation (14) is an immediate consequence of the definitions of
el and eu.

Proposition 3.1 enables one to provide an upper bound to ‖T (a)−1 − B̂‖ in terms
of el , eu, δl , and δu as shown in the following corollary.

Corollary 3.2 For the error E = T (a)−1 − B̂, it holds

‖E‖QT �̇(α‖a−1‖+‖u−1‖W ‖l−1‖W )W (‖eu‖W +‖el‖W +‖u−1‖W ·‖δu‖W +‖l−1‖W ·‖δl‖W ).

A similar analysis can be performed for the errors in the computed inverse of
A = T (a) + Ea . We omit the details.

We are ready to introduce a procedure to approximate the inverse of T (a), which
is reported in Algorithm 1.

If the UL factorization cannot be computed, then the routine returns an error. The
thresholds in the computation are adjusted to ensure that the final error is bounded
by ε. The symbol b(z) of T (a)−1 is returned, along with v̂(z) and ŵ(z) such that
T (a)−1 = T (̂b) + H(̂v)H(ŵ) + E , where E = −T (a−1einv) + Ee, Ee = H(�−1 −
ŵ)H(u−1) + H(ŵ)H(u−1 − v̂), and ‖E‖�̇(α‖a−1‖W + ‖u−1‖W ‖l−1‖W )ε.

Algorithm 1 Invert a semi-infinite Toeplitz matrix with symbol a(z) — up to a
certain error ε

1: procedure INVERTTOEPLITZ(a(z), ε)
2: try
3: [û(z), l̂(z)] ← WIENERHOPF(a(z), ε

4 )

4: catch
5: ERROR(“Could not compute UL factorization”)
6: end try
7: v̂(z) ← INVERSEPOWERSERIES(û(z), ε/‖u−1‖W )

8: ŵ(z) ← INVERSEPOWERSERIES(l̂(z), ε/‖l−1‖W )

9: b(z) ← v̂(z)ŵ(z−1)

10: return b(z), v̂(z), ŵ(z)

11: end procedure
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From Corollary 3.2, we find that ‖E‖QT � (α‖a−1‖W + ‖l−1‖W ‖u−1‖W )ε.
Thus, the correctness of the algorithm relies on Corollary 3.2 and on the existence
of black boxes, which we will describe in the Appendix, that implement the func-
tions WIENERHOPF(·) and INVERSEPOWERSERIES(·). Relying on (10), a similar
algorithm and analysis can be given for the computation of (T (a) + Ea)

−1.

3.4 Truncation and compression

Wenowdescribe in detail the implementationof the operatorQT on a finitely generated
QT matrix. The truncation of a QT matrix A = T (a) + Ea is performed as follows:

(i) Compute ‖A‖QT .
(ii) Obtain a truncated version â(z) of the symbol a(z) by discarding the tails of

the Laurent series. This has to be done ensuring that ‖a − â‖W � ‖A‖QT · ε
2α .

(iii) Compute a compressed version Êa of the correction using the SVD and
dropping negligible rows and columns. Allow a truncation error bounded by
‖A‖QT · ε

2 .

The above choices of thresholds provide an approximation Â to A such that
‖A − Â‖QT � ‖A‖QT · ε. Notice that the use of the QT norm in the steps (ii)
and (iii) enables to recognize unbalanced representations and to completely drop the
negligible part.

When performing step (i), the only nontrivial step is to evaluate ‖Ea‖2. To this
end, we compute an economy size SVD factorization of Ea = UaV

T
a . This will also

be useful in step (iii) to perform the low-rank compression.
In particular, we compute the QR factorizations Ua = QURU , Va = QV RV ,

so that UaV
T
a = QURURT

V QT
V . Then, we compute the SVD of the matrix in the

middle RURT
V = UR�V T

R . We thus obtain an SVD of the form Ea = U�V T , where
U = QUUR and V = QV VR . This is computed with O(nk2) flops, where n is
the dominant dimension of the correction’s support. The value of ‖Ea‖2 is obtained
reading off the largest singular value, i.e., the (1, 1) entry of �.

Concerning step (ii), we repeatedly discard the smallest of the extremal coeffi-
cients of a(z), until the truncation errors do not exceed the specified threshold. In
particular, we rely on Algorithm 2 using ε

2α ‖A‖QT as second argument.
In step (iii), we first truncate the rank of Ea by dropping singular values smaller

than ε
4 · ‖A‖QT . To perform this step, we reuse the economy SVD computed at

step (i). Then, we adopt a strategy similar to the one of Algorithm 2 to drop the last
rows of U and V . We set an initial threshold ε̂ = ε

4‖A‖QT , and we drop either the
last row Un of U or Vm of V if the norm of Un� (resp. Vm�) is smaller than the
selected threshold. We then update ε̂ := ε̂ − ‖Un�‖ (similarly for Vm�) and repeat
the procedure until ε̂ > 0. This leads to a slightly pessimistic estimate, but ensures
that the total truncation is within the desired bound.
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Algorithm 2 Truncate the symbol a(z) = ∑
n−�j�n+ aj z

j to a given threshold ε

1: procedure TRUNCATESYMBOL(a(z), ε)
2: ifMIN(|an+|, |an−|) < ε then
3: if |an+| < |an−| then
4: a(z) = a(z) − an+zn+

5: ε ← ε − |an+|
6: else
7: a(z) = a(z) − an−zn−

8: ε ← ε − |an−|
9: end if
10: a(z) ← TRUNCATESYMBOL(a(z), ε).
11: end if
12: return a(z)

13: end procedure

3.4.1 Hankel compression

When computing the multiplication of two Toeplitz matrices T (a) and T (b), it is nec-
essary to store a low-rank approximation of H(a−)H(b+) (see Theorem 2.1). In fact,
storing H(a−) and H(b+) directly can be expensive whenever the Hankel matrices
have large sizes, e.g., when we multiply two QT matrices having wide Toeplitz band-
widths. However, the numerical rank of the correction is often observed to be much
lower than the dominant size of the correction’s support. In such cases, we exploit
the Hankel structure to cheaply obtain a compressed representation Ec = UcV

T
c . We

call this task Hankel compression.
We propose two similar strategies for addressing Hankel compression. The first is

to rely on a Lanczos-type method, in the form of the Golub-Kahan bidiagonalization
procedure [33]. This can be implemented by using matrix-vector products of the form
y = Ax or y = AT x, where A = H(a−)H(b+) is a product of two Hankel matrices.
The product y = Ax can be computed in O(n log n) time using the FFT. Since the
Hankel matrices are symmetric, the multiplication by AT is obtained swapping the
role of a− and b+.

This approach has an important advantage: the rank can be determined adaptively
while the Lanczos process builds the basis, and assuming that Lanczos converges in
O(k) steps, with k being the numerical rank of A, then the complexity isO(kn log n)

flops: much lower than a full QR factorization or SVD.
A second (similar) strategy is to use random sampling techniques [20], which rely

on the evaluation of the product AU , with U being a matrix with normally distributed
entries. If the columns of AU span the range of A, then we extract an orthonormal
basis of it, and we use it to cheaply compute the SVD of A [20]. In the implementa-
tion, the number of columns of U is chosen adaptively, enlarging it until a sufficient
accuracy is reached. The product AU can be efficiently computed using the FFT, and
it is possible to obtain BLAS3 speeds by re-blocking.
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Fig. 1 On the left, timings required to compress a product of two n × n Hankel matrices with decaying
coefficients, for different values of n, and using different strategies. The tests with the dense singular value
decomposition have been run only up to n = 4096. The other methods have been tested up to n = 216.
On the right, the accuracies, up to size 4096, in the 2-norm achieved by setting the truncation threshold to
10−14

Both strategies are implemented in the package, and the user can select the Lanczos-
type algorithm running cqtoption(’compression’, ’lanczos’) or the one
based on random sampling with the command: cqtoption(’compression’,
’random’).

The performance of the two approaches is very similar. In Fig. 1, the timings for the
compression of the product of two n × n Hankel matrices are reported. The symbol has
been chosen drawing from a uniform distribution enforcing an exponential decay as
follows:

a(z) =
∑

j∈Z+
aj z

j , aj ∼ λ(0, e− j
10 ), (15)

where λ(a, b) is the uniform distribution on [a, b]. In the example reported in Fig. 1,
the numerical rank (up to machine precision) of the product of the Hankel matrices
generated according to (15) is 90. The break-even point with a full SVD is around 500
in this example, and this behavior is typical. Therefore, we use a dense singular value
decomposition for small matrices (n � 500), and we resort to Lanczos or random
sampling (depending on user’s preferences) otherwise.

In the right part of Fig. 1, we report also the accuracies by taking the relative resid-
ual ‖UV T − H(a−)H(b+)‖2/‖H(a−)H(b+)‖2. Since the norms are computed as
dense matrices, we only test this up to n = 4096. The truncation threshold in this
example is set to 10−14.

3.5 Finite quasi-Toeplitz matrices

The representation and the arithmetic, introduced so far, are here adapted for handling
finite size matrices of the form Toeplitz plus correction. Clearly, all the matrices of
finite size can be represented in this way. This approach is convenient only if the
corrections of the matrices involved in our computations are either sparse or low rank.
Typically, this happens when the input data of the computation are banded Toeplitz
matrices.
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In what follows, given a Laurent series a(z), we indicate with Tn,m(a) the n × m

Toeplitz matrix obtained selecting the first n rows and m columns from T (a). Given
a power series f (z) = ∑

j�0 fj z
j , we denote by Hn,m(f ) the n × m Hankel matrix

whose nonzero anti-diagonal elements correspond to f1, f2, . . . , fmin{n,m}. Finally,
given a Laurent polynomial a(z) = ∑m−1

j=−n+1 aj z
j , we indicate with ã(z) the shifted

Laurent polynomial zn−ma(z).
In order to extend the approach, it is essential to look at the following variant of

Theorem 2.1, for finite Toeplitz matrices [34].

Theorem 3.3 (Widom) Let a(z) = ∑m−1
−n+1 aj z

j , b(z) = ∑p−1
−m+1 bj z

j and set
c(z) = a(z)b(z). Then,

Tn,m(a)Tm,p(b) = T (c) − Hn,m(a−)Hm,p(b+) − JnHn,m(̃a+)Hm,p(̃b−)Jp

where Jn =
⎡

⎢
⎣

1

. .
.

1

⎤

⎥
⎦ ∈ R

n×n is the flip matrix.

An immediate consequence of Theorem 3.3 is the following extension of the
Wiener-Hopf factorization for square Toeplitz matrices.

Corollary 3.4 Let a(z) = ∑n−1
−n+1 aj z

j and let a(z) = u(z)l(z−1) be its Wiener-
Hopf factorization. Then,

Tn,n(a) = Tn,n(u)Tn,n(l)
T + JnHn,n(u)Hn,n(l)Jn.

The above results introduce an additional term with respect to their counterparts
for semi-infinite matrices. In particular, if the lengths of the symbols involved are
small, compared to the dimension of the matrices, then the support of the non-
Toeplitz component is split into two parts located in the upper left corner and in the
lower right corner, respectively. This suggests to consider two separate corrections.

Handling two separate corrections is convenient as long as they do not overlap.
When this is the case, we represent finite quasi-Toeplitz matrices by storing two
additional matrices that represent the lower right correction in factorized form. More
precisely, A ∈ R

n×m is represented with two vectors, storing the symbol, and with
the matrices Ua, Va, Wa, Za such that UaV

T
a and JnWaZ

T
a Jm correspond to the cor-

rections in the corners. As a practical example, we report two possible options for
defining the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 3

−2
. . .

. . .

. . .
. . .

. . .

. . .
. . . 3
−2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
1 1

1 2 3
2 4 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
12×12.
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Once again, we also give the possibility to directly specify the corrections in the
factorized form.

The arithmetic operations described for semi-infinite QT matrices can be analo-
gously extended to this case. In the next section, we describe in more detail how to
handle the corrections when performing these operations.

In particular, when the corrections overlap, we switch to a single correction format,
as in the semi-infinite case, where the support of the correction corresponds to the
dimension of the matrix. In practice, this is done by storing it as an upper left correc-
tion, setting the lower right to the empty matrix. For this approach to be convenient,
the rank of the correction needs to stay small compared to the size of the matrix. In
fact, only the sparsity is lost, but the data-sparsity of the format is still exploitable.

3.5.1 Handling the corrections in the computations

Let A = T (a) + UaV
T
a + JnWaZ

T
a Jn and B = T (b) + UbV

T
b + JnWbZ

T
b Jn. For

simplicity, we assume that A and B are square, with dimension n × n. Analogous
statements hold in the rectangular case, which has been implemented in the toolbox.

As we already pointed out, we need to check that, while manipulating finite QT
matrices, the corrections do not overlap. More precisely, if the top-left correction of
A is of dimension i

(A)
u × j

(A)
u and the bottom one is i

(A)
l × j

(A)
l , then we ask that

at least one between i
(A)
u + i

(A)
l and j

(A)
u + j

(A)
l is smaller than n (and analogous

conditions for B). The possible configurations of the two corrections are reported in
Fig. 2. This property might not be preserved in the outcome of arithmetic operations.

Therefore, we need to understand how the supports of the corrections behave
under sum and multiplications. Concerning the sum, the support of the correction in
A + B is contained in the union of the two supports in A and B. The multiplica-
tion is slightly more involved. First, we check if the products V T

a JnWb and ZT
a JnUb

are both zero; that, is they do not “interact.” This happens when j
(A)
u + i

(B)
l and

j
(A)
l + i

(B)
u are both smaller than n. Second, we need to consider all the addends con-

tributing to the correction; to this end, we note that the product of the top corrections
has support i(A)

u × j
(B)
u and the product of the bottom ones i

(A)
l × j

(B)
l . Moreover, the

Fig. 2 Possible shapes of the corrections in the the representation of a finite QT matrix. The corrections
are disjoint in cases a) – c), but not in case d). In this last case, it is convenient to store the correction
entirely as a top correction
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multiplication of the Toeplitz part by the correction enlarges the support of the lat-
ter by the bandwidth of the former. Finally, the Hankel products have a support that
depends on the length of the symbols. If the first condition is met and all these con-
tributions satisfy the non-overlapping property for the sum, we keep the format with
two separate corrections. Otherwise, we merge them into a single one. An analogous
analysis is valid for the inversion, since it is implemented by a combination of sum
and multiplications by means of the Woodbury formula.

3.6 Other basic operations

By exploiting the structure of the data, it is possible to devise efficient implemen-
tations of common operations, such as the computation of matrix functions, norms,
and extraction of submatrices.

The functions reported in Table 1 have been implemented in the toolbox rely-
ing on the QT arithmetic. For a detailed description of the various functions, the
user can invoke the help command. For instance, the matrix exponential is imple-
mented using the Padé formula combined with a scaling and squaring strategy. An
implementation based on the Taylor expansion is also available by calling expm(A,
’taylor’).

In particular, the extraction of finite submatrices can be useful to inspect parts of
infinite QT matrices and also to obtain finite sections.

Remark 3.5 All the arithmetic operations, with the only exception of the inversion,
can be performed in O(n log n) time relying on the FFT. The current implementa-
tion of the Wiener-Hopf factorization (see the Appendix), required for the inversion,
needs O(b3) where b is the numerical bandwidth of the Toeplitz part—but this com-
plexity can be lowered. For instance, one can obtain a sub-quadratic complexity
combining the FFT-based polynomial inversion with a superfast Toeplitz solver for
the computation of the Wiener-Hopf factorization. This is not currently implemented
in the toolbox and will be investigated in future work.

Table 1 List of implemented functions in cqt-toolbox

Function Description

A(I,J) Extract submatrices of a QT matrix, for integer vectors I and J .

Aˆp Integer power of a QT matrix.

cr Cyclic reduction for quadratic matrix equations.

expm Computation of the matrix exponential eA.

funm Computations of matrix functions by contour integration.

norm Computation of the QT norm and, only in the finite case, of the p-norms for p = 1, 2,∞.

sqrtm Computation of the matrix square root (Denman–Beavers iteration).

ul Compute the UL factorization of any QT matrix.
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4 Examples of applications

In this section, we show some applications and examples of computations with QT
matrices. Here, we focus on the computation of matrix functions and solving matrix
equations. Other examples related to matrix equations have already been shown in
[2, 8].

In all our experiments, we have set the truncation tolerance to ε := 10−15. The
algorithm used for compression is the Lanczos method. Accuracy and timings are
analogous if the random sampling-based compression is used.

The tests have been performed on a laptop with an i7-7500U CPU running at
2.70 GHz with 16 GB of memory, using MATLAB R2017a.

4.1 Exponential of Toeplitz matrices

Recently, there has been a growing interest in the computation of functions of
Toeplitz matrices. For instance, in [29], the authors consider the problem of option
pricing using the Merton model. This requires computing the exponential of a dense
non-symmetric Toeplitz matrix. A fast method for this problem has been developed
in [25].

We refer to [29, Example 3] for the details on the model; the Toeplitz matrix
obtained has symbol a(z) with coefficients

aj =
⎧
⎨

⎩

φ(0) + 2b − r − λ j = 0
φ(j
ξ ) + b + jc j = ±1
φ(j
ξ ) otherwise

, b = ν2

2
2
ξ

, c = 2r − 2λκ − ν2

4
ξ

where

φ(η) := λ
ξ

e−(η−μ)2/(2σ 2)

√
2πσ

.

Fig. 3 Timings for the computation of the matrix exponential on the Merton model. The rank of the
correction is reported in the last column of the table
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The values of the parameters are chosen as in [25]; for the Toeplitz matrix of size
n × n, we have the following:

r =0.05, λ=0.01, μ=−0.9, ν =0.25, σ =0.45, κ = e
μ+σ2

2 −1, 
ξ = 4

n + 1
.

In Fig. 3, we report the timings for the computation of the matrix exponential eTn

for different values of n. The CPU time is compared with the function O(n log n).
The accuracy for the cases where n � 4096, where we could compare with expm, is
reported in Fig. 4.

In particular, we report the relative error in the Frobenius norm
‖expm(A) − E‖F /‖expm(A)‖F , where E is the approximation of eA computed by
the toolbox using the Taylor approximant. We compare it with the quantity ‖A‖F · ε,
which is a lower bound for the condition number of the matrix exponential times the
truncation threshold used in the computations (see [21]). From Fig. 4, one can see
that the errors are bounded by ‖A‖F · ε and 10 · ‖A‖F · ε.

We have used a scaling and squaring scheme, combined with a Taylor approximant
of order 12, to compute the matrix exponential. In this case, where the bandwidth
of the Toeplitz part is non-negligible, this approach is more efficient than a Padé
approximant that requires an inversion (see Remark 3.5).

4.2 Computing the square root of a semi-infinite matrix

We show another application to the computation of the square root of an infinite QT
matrix A. We consider the infinite matrix A = T (a) + Ea , where

a(z) = 1

4

(
z−2 + z−1 + 1 + 2z + z2

)
,

and Ea is a rank 3 correction in the top-left corner of norm 1
5 and support rang-

ing from 32 to 1024 rows and columns. The square root can be computed using the
Denman–Beavers iteration, which is implemented in the toolbox and accessible using

Fig. 4 Relative error with the Frobenius norm of the computed matrix exponential, compared with a lower
bound for the condition number of the matrix exponential multiplied by the truncation threshold used in
the computation (ε := 10−15)
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B = sqrtm(A);. We report the timings and the residual ‖B2 − A‖QT of the com-
puted approximations in Table 2. Moreover, the rank and support of the correction in

A
1
2 are reported in the last three columns of the table. One can see that the rank stays

bounded, and that the support does not increase much. The CPU time takes negligible
values even for large support of the correction.

4.3 Solving quadratic matrix equations

Finally, we consider an example arising from the analysis of a random walk on the
semi-infinite strip {0, . . . , m}×N. We assume the randomwalk to be a Markov chain,
and that movements are possible only to adjacent states; that is, from (i, j), one can
reach only (i′, j ′) with |i − i′|, |j − j ′| � 1, with probabilities of moving up/down
and left/right not depending on the current state. Then, the transition matrix P is an
infinite quasi-Toeplitz-block-quasi-Toeplitz matrix of the form

P =
⎡

⎢
⎣

Â0 A1
A−1 A0 A1

. . .
. . .

. . .

⎤

⎥
⎦ ,

and the problem of computing the invariant vector π requires to solve the m × m

quadratic matrix equation A−1 + A0G + A1G
2 = G [12]. The matrices Ai are non

negative tridiagonal Toeplitz matrices with corrections to the elements in position
(1, 1) and (m, m), and satisfy (A−1 + A0 + A1)e = e, where e is the vector of all
ones.

The solution G can be computed, for instance, using cyclic reduction (see the
Appendix for the details)—a matrix iteration involving matrix products and inver-
sions. We consider an example where the transition probabilities are chosen in a way
that gives the following symbols:

a−1(z)= 1

4
(2z−1+2+2z), a0(z)= 1

10
(z−1+2z), a1(z)= 1

6
(3z−1+6+2z),

properly rescaled in order to make A−1 + A0 + A1 a row-stochastic matrix. The top
and bottom corrections are chosen to ensure stochasticity on the first and last rows.

Table 2 Timings and residuals for the computations of the square root of an infinite Toeplitz matrix with
a square top-left correction of variable support

Initial corr. support Time (s) Residual Rank Corr. rows Corr. cols

32 0.1 5.11 × 10−14 34 268 285

64 0.1 5.53 × 10−14 38 296 316

128 0.12 5.1 × 10−14 39 357 379

256 0.12 5.14 × 10−14 39 476 507

512 0.17 5.13 × 10−14 39 726 744

1024 0.22 5.16 × 10−14 39 1226 1271

The final rank and correction support in the matrix A
1
2 are reported in the last three columns
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Fig. 5 On the left, timings for the solution of the quadratic equation A−1 + A0G + A1G
2 = G arising

from the random walk on an infinite strip. On the right, the timings and the ranks of the final correction
are reported in the table

We compare the performances of a dense iteration (without exploiting any
structure)—with the same one implemented using cqt-toolbox, and also with
a fast O(m log2 m) method which exploits the tridiagonal structure relying on the
arithmetic of hierarchical matrices (HODLR) [9, 10]. In Fig. 5, one can see that the
timings of the dense solver are lower for small dimensions—but the ones using the
toolbox do not suffer from the increase in the dimension. The dense solver was tested
only up to dimension m = 4096.

The implementation relying on cqt-toolbox is faster already for dimension
512 and has the remarkable property that the time does not depend on the dimension.
This is to be expected, since the computations are all done on the symbol (which is
dimension independent), and on the corrections, which only affect top and bottom
parts of the matrices.

The residual of the quadratic matrix equation ‖A−1 + A0G + A1G
2‖ is bounded

in the QT norm by approximately 7 × 10−12 in all the tests, independently of the
dimension, when the cqt-toolbox solver is used.

5 Conclusions

We have analyzed the class of quasi-Toeplitz matrices and introduced a suitable
norm and a way to approximate any QT matrix by means of a finitely representable
matrix within a given relative error bound. Within this class, we have introduced and
analyzed, in all the computational aspects, a matrix arithmetic. We have provided
an implementation of QT matrices and of their matrix arithmetic in the form of a
Matlab toolbox. The software cqt-toolbox, available from Netlib (http://www.
netlib.org/numeralgo/) as the na50 package, has been tested with both semi-infinite
QT matrices and with finite matrices represented as the sum of a Toeplitz matrix

http://www.netlib.org/numeralgo/
http://www.netlib.org/numeralgo/
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and a correction. This software has shown to be very efficient in computing matrix
functions and solving matrix equations encountered in different applications.

Appendix

Here, we report the main algorithms that we have implemented to perform inversion
of QT matrices, namely, the Sieveking-Kung algorithm [3] for inverting triangular
Toepliz matrices (or power series), and an algorithm based on cyclic reduction [12] to
compute the Wiener-Hopf factorization of a symbol a(z). We also provide a general
view of the available algorithms for the Wiener-Hopf factorization [4, 5, 16], with
an outline of their relevant computational properties. Choosing the more convenient
algorithm for this factorization depends on several aspects like the degree of a(z),
and the location of its zeros, and this is an issue to be better understood.

A.1 The Sieveking-Kung algorithm

We shortly recall the Sieveking-Kung algorithm for computing the first k + 1 coef-
ficients v0, . . . , vk of v(z) = ∑∞

i=0 viz
i such that v(z)u(z) = 1, or equivalently, the

first k entries in the first row of T (u)−1. For more details, we refer the reader to the
book [3].

For notational simplicity, denote Vq the q×q leading submatrix of T (u). Consider
V2q and partition it into four square blocks of size q:

V2q =
[

Vq Sq

0 Vq

]

so that

V −1
2q =

[
V −1

q −V −1
q SqV −1

q

0 V −1
q

]

.

Since the inverse of an upper triangular Toeplitz matrix is still upper triangular and
Toeplitz, it is sufficient to compute the first row of V −1

2q . The first half clearly coin-

cides with the first row of V −1
q , and the second half is given by −eT

1 V −1
q SqV −1

q ,

where ei is the vector with the i-th component equal to 1 and with the remaining
components equal to zero.

Thus, the algorithm works this way: for a given (small) q, compute the first q

components by solving the system V T
q x = e1. Then, by subsequent doubling steps,

compute 2q, 4q, 8q, . . ., components until some stop condition is satisfied. Observe
that, denoting vq(z) the polynomial obtained at step q, the residual error rq(z) =
a(z)vq(z) − 1 can be easily computed so that the stop condition ‖rq‖

W
� ε‖a‖W

can be immediately implemented. Concerning the convergence speed, it must be
pointed out that the equation r2q(z) = rq(z)2 holds true (see [3]), implying that the
convergence to zero of the norm of the residual error is quadratic.

This approach has a low computational cost since the products Toeplitz matrix by
vector can be implemented by means of FFT for an overall cost of the Sieveking-
Kung algorithm of O(n log n) arithmetic operations.
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This algorithm, here described in matrix form, can be equivalently rephrased in
terms of polynomials and power series.

A.2 The Wiener-Hopf factorization

We recall and synthesize the available algorithms for computing the coefficients of
the polynomials u(z) and l(z) such that a(z) = u(z)l(z−1) is the Wiener-Hopf fac-
torization of a(z). Denote ξi the zeros of a(z) ordered so that |ξi | � |ξi+1|. This way,
|ξn+| < 1 < |ξ1+n+|; moreover, u(ξi) = 0 for i = 1, . . . , n+ while l(ξ−1

i ) = 0 for
i = n+ + 1, . . . , n+ + n−.

A first approach is based on reducing the problem to solving a quadratic matrix
equation. Let p � max(n−, n+), reblock the matrices in the equation T (a) =
T (u)T (l−1) into p × p blocks and obtain

⎡

⎢
⎣

A0 A1
A−1 A0 A1

. . .
. . .

. . .

⎤

⎥
⎦ =

⎡

⎢
⎣

U0 U1
U0 U1

. . .
. . .

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎣

L0
L1 L0

L1 L0
. . .

. . .

⎤

⎥
⎥
⎥
⎦

where, by using the MATLAB notation,

A0 = toeplitz([a0, . . . , a−p+1], [a0, . . . , ap−1]),
A1 = toeplitz([ap, ap−1, . . . , a1], [ap, 0, . . . , 0]),
A−1 = toeplitz([a−p, 0, . . . , 0], [a−p, . . . , a−1]),

and ai = 0 if i is out of range.
Set W = U0L0, R = −U1U

−1
0 , G = −L−1

0 L1 and get the factorization
⎡

⎢
⎣

A0 A1

A−1 A0 A1
. . .

. . .
. . .

⎤

⎥
⎦ =

⎡

⎢
⎣

I −R

I −R

.. .
. . .

⎤

⎥
⎦

⎡

⎢
⎣

W

W

.. .

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎣

I

−G I

−G I

. . .
. . .

⎤

⎥
⎥
⎥
⎦

.

Multiplying the above equation to the right by the block column vector with entries
I, G, G2, G3, . . . or multiplying to the left by the block row vector with entries
I, R, R2, R3, . . . one finds that the matrices R and G are solutions of the equations

A1G
2 + A0G + A−1 = 0, R2A−1 + RA0 + A1 = 0 (16)

and have eigenvalues ξ1, . . . , ξn+ and ξ−1
n++1, . . . , ξ

−1
n++n− , respectively, so that they

have spectral radius less than 1. For more details in this regard, we refer the reader to
[6].

Observe that, since

G = −

⎡

⎢
⎢
⎢
⎣

l0
l1 l0
...

. . .
. . .

lp−1 . . . l1 l0

⎤

⎥
⎥
⎥
⎦

−1 ⎡

⎢
⎣

lp . . . l1
. . .

...

lp

⎤

⎥
⎦

then Gep−n−+1 = −ln−L−1
0 e1, while eT

1 G = −l−1
0 (lp, . . . , l1). That is, the first row

ofG provides the coefficients of the factor l(z) normalized so that l0 = −1. Similarly,
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one finds that Re1 = −u−1
0 (up, up−1, . . . , u1)

T , and eT
p−n++1R = −un+eT

1 U−1
0 .

That is, the first column of R provides the coefficients of the factor u(x) normalized
so that u0 = −1. In order to determine the normalizing constant w such that a(z) =
u(z)wl(z−1), it is sufficient to impose the condition un+wl0 = an+ so that we can
choose w = −an+/un+ .

This argument provides the following algorithm to compute the coefficients of
l(x) and of u(x) such that a(z) = u(z)wl(1/z), where u0 = l0 = −1:

1. Assemble the matrices A−1, A0, A1.
2. Determine R and G that solve (16) using cyclic reduction.
3. Compute û = Re1, set u = (−1, ûp, . . . , û1) and v̂ = eT

1 G, set l =
(−1, v̂p, . . . , v̂1).

4. Set w = −an+/un+

Observe that the above algorithm can be easily modified in order to compute, for
a given q, the first q coefficients of the triangular Toeplitz matrices U−1 ad L−1 such
that

A−1 = 1

w
L−1U−1.

In fact, the first p coefficients are given by

L−1
0 e1 = − 1

ln−
Gep−n−+1,

eT
1 U−1

0 = − 1
un+

eT
p−n++1R.

While the remaining coefficients can be computed by means of the Sieveking-Kung
algorithm described in the previous section.

The method described in this section requires the computation of the solutions
G and R of (16). One of the most effective methods to perform this computation
is the cyclic reduction (CR) algorithm. We refer the reader to [12] for a review of
this method and to [11] for the analysis of the specific structural and computational
properties of the matrices generated in this way. Here, we provide a short outline of
the algorithm, applied to the (16) which we rewrite in the form AG2 + BG + C = 0
and R2C + RB + A = 0, respectively. The algorithm CR computes the following
matrix sequences:

B(k+1) = B(k) − A(k)S(k)C(k) − C(k)S(k)B(k), S(k) = (B(k))−1,

A(k+1) = −A(k)S(k)A(k), C(k+1) = −C(k)S(k)C(k),

B̂(k+1) = B̂(k) − C(k)(B(k))−1A(k), B̃(k+1) = B̃(k) − A(k)(B(k))−1C(k).

(17)

It is proved that under mild conditions, the sequences can be computed with no
breakdown and that limk −A(B̂k))−1 = R, limk −̃(B(k))−1C = G. More precisely,
the following relations hold

G = −(B̃(k))−1C − (̃B(k))−1A(k)G2k

R = −A(B̂(k))−1 − R2k
C(k)̂(B(k))−1

and it can be proved that ‖(B̂(k))−1‖ and ‖(B̃(k))−1‖ are uniformly bounded by a
constant and that A(k), C(k) converge double exponentially to zero. Since the spectral
radii of R and of G are less than 1, this fact implies that convergence is quadratic.
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Moreover, the approximation errors given by the matrices (B̃(k))−1A(k)G2k
and

R2k
C(k)(B̂(k))−1 are explicitly known in a first-order error analysis. In fact, the

matrices (B̃(k))−1, (B̂(k))−1, A(k), and C(k) are explicitly computed by the algorithm
and G is approximated. This fact allows us to implement effectively the Wiener-
Hopf computation required in the inversion procedure described in Algorithm 1 of
Section 3.3.

The cost of cyclic reduction is O(p3) arithmetic operations per step. In [11], it is
shown that all the above matrix sequences are formed by matrices having displace-
ment rank bounded by small constants. This fact enables one to implement the above
equation with a linear cost, up to logarithmic factors, by means of FFT.

A.2.1 A different approach

Another approach to compute the factor l and u relies on the following property [4].

Theorem A.1 Let a(z)−1 = h(z) = ∑∞
i=−∞ hiz

i . Define the Toeplitz matrix of size
q � max(m, n) Tq = (hj−i ). Then, Tq is invertible and its last row and column
define the coefficient vectors of l(z) and u(z), respectively up to a normalization
constant.

Proof The relation a(z)−1 = l−1(z−1)u−1(z) can be rewritten in matrix form as

(hj−i ) = T (u−1)T (l−1)T .

Multiply to the right by the infinite vector obtained by completing (l0, . . . , lq−1)

with zeros. Since the product of T (l−1)T with the latter is a vector with all null
components except the first one, equal to 1, considering q components of the result
yields

Tq(h)(l0, . . . , lq−1)
T = (T (u−1))e1 = u−1

0 eq

whence we deduce that (l0, . . . , lq−1)
T = Tq(h)−1u−1

0 eq . Similarly, we do for the
last row.

This property is at the basis of the following computations:

1. Set q = max(m, n) compute hi for i = −q, q such that h(z)a(z) = 1 by means
of evaluation/interpolation.

2. Form Tq(h) = (hj−i )i,j=1,q and compute last row and last column of Tq(h)−1.

This algorithm may require a large number of interpolation points when a(z) has
some zero of modulus close to 1, in the process of evaluation/interpolation.

A.2.2 Yet another approach

The same property provides a third algorithm for computing l(z) and u(z) which
relies on a different computation of hi , i = −q, . . . , q. The idea is described below

Consider the equation
a(z)h(z) = 1.
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Multiply it by a(−z) and, since a(−z)a(z) = a1(z
2), for a polynomial a1(z), get

a1(z
2)h(z) = a(−z).

Repeating the procedure k times yields

ak(z
2k

)h(z) = ak−1(−z2
k−1

) · · · a1(−z2)a(−z).

If a(z) has roots of modulus different from 1, then ak(z) quickly converges to either
a constant or a scalar multiple of z, since its zeros are the 2k powers of the zeros of
a(z). In this case, h(z) can be computed by means of a product of polynomials with
the same degree (independent of the iterations).

A.2.3 Newton’s iteration

Newton’s iteration can be applied to the nonlinear system a(z) = u(z)l(z−1) where
the unknowns are the coefficients of the polynomials u(z) and l(z). The Jacobian
matrix has a particular structure given in terms of displacement rank which can be
exploited to implement Newton’s iteration at a low cost. Details in this regard are
given in the papers [16] and [15].
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14. Böttcher, A., Grudsky, S.M.: Spectral properties of banded Toeplitz matrices. SIAM, PA (2005)
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