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Abstract We propose a new simple convergence acceleration method for a wide
range class of convergent alternating series. It has some common features with
Smith’s and Ford’s modification of Levin’s and Weniger’s sequence transformations,
but its computational and memory cost is lower. We compare all three methods
and give some common theoretical results. Numerical examples confirm a similar
performance of all of them.
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1 Introduction

This paper concerns the convergence acceleration of a certain wide range class
of convergent alternating series. More precisely: (1) a new convergence accelera-
tion method is given and its certain theoretical properties are proved; (2) analogous
properties for the Smith’s and Ford’s [14] modification of Levin’s and Weniger’s
t-transformations (see also [15, Eq. (7.3–9)] or [3, § 2.7]) are proved and the
similarities, as well as differences between all three methods, are analyzed.

It is convenient to write the alternating series
∑∞

n=0 an in the form
∞∑

n=0

(−1)nαn, (1)

� Rafał Nowak
rafal.nowak@cs.uni.wroc.pl

1 Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wrocław,
Poland

ORIGINAL PAPER

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0563-6&domain=pdf
http://orcid.org/0000-0002-3803-8173
mailto: rafal.nowak@cs.uni.wroc.pl


592 Numer Algor (2019) 81:591–608

where αn are all positive or negative. In this paper, we use the notation

sn :=
n∑

k=0

(−1)kαk

for the partial sums of the series (1), whose limit, in case of convergence, we denote
by s.

The mentioned class of alternating series concerns convergent series (1) such that
αn has an asymptotic expansion (as n → ∞) of the form

αn ∼ xnnv
∞∑

j=0

gjn
−j/r , (2)

provided that x ∈ (0, 1], r ∈ N and g0 �= 0.
It should be remarked that the series (1) with αn satisfying relation (2) is con-

vergent, only if we make a certain additional assumption on numbers v and x.
Otherwise, we may deal with divergent series, whose summation may also be useful.
The detailed analysis of the convergence (and its acceleration) of the considered class
of series (and more general, too) can be found in Sidi’s book [12, §8, §9]. Namely,
the class of sequences {(−1)nαn} with αn satisfying (2) is a subset of more general
class b̃(r), given in [12, §6.6].

In the sequel, the quantities βn := αn+1
αn

play a very important role. One can verify
that the asymptotic expansion in (2) implies

βn ∼ x

⎡

⎣1 +
∞∑

j=r

hjn
−j/r

⎤

⎦ (n → ∞); (3)

see, e.g., [12, Thm. 6.6.4, p. 142].
From (3), we conclude that βn = x

[
1 + O(n−1)

]
, and thus

βn+1

βn+k

= 1 + O(n−2) (4)

for any k > 0.
In the simplest case of (2), v is a natural number and r = 1. This happens if

αn = xnP (n)/Q(n) (P, Q being polynomials in n). Moreover, the coefficients of
the polynomials P,Q can depend on x, as in the following example:

αn = xn(n + x2)

n + ln(x + 2) + 1
.

A much wider class of the series with r = 1 refers to the hypergeometric functions.
Indeed, condition (2) holds if the series (1) is identical, up to the constant factor, with
the function

p+1Fp(a1, a2, . . . , ap+1; b1, b2, . . . , bp; −x) =
∞∑

n=0

(−1)n
(a1)n · · · (ap+1)n xn

(b1)n · · · (bp)n n! ,
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which parameters a1, . . . , ap+1, b1, . . . , bp and x guarantee its alternation; notation
(z)n means the Pochhammer symbol defined by (z)0 := 1, (z)j := z(z + 1)(z +
2) · · · (z + j − 1), (j ≥ 1). The relation (3) is then evidently satisfied.

Further, the condition (2) also holds if the terms αn involve the roots in n like, for
e.g., αn = xn

√
n2 + 2. More examples with r > 1 (and v = −1) are, for instance:

αn = xn

n + √
n + 1

(r = 2), (5)

αn = xn

n + √
n + 3

√
n + 1

, (r = 6). (6)

Let us note that such and similar terms αn can be decomposed to a sum of several
terms α

(j)
n , for which the related quantities β

(j)
n := α

(j)

n+1/α
(j)
n satisfy the (3) with

r = 1. Indeed, one can decompose the expression in (5) as follows:

αn = xn(n − √
n + 1)

(n + 1)2 − n
= xn(n + 1)

n2 + n + 1
− xn

√
n

n2 + n + 1
,

and thus the series
∑∞

n=0(−1)nαn can be transformed to the sum
∑∞

n=0(−1)nα
(1)
n +

∑∞
n=0(−1)nα

(2)
n , where both quantities β

(j)
n , j = 1, 2, satisfy the relation (3) with

r = 1. However, since all the summation methods, considered here, can be applied
to the series (1) satisfying (3) with any natural number r , it is hard to say if using
these methods for each series

∑
(−1)nα

(j)
n separately, gives actually better results.

One can check this is not true in the case of (6); see Example 6.
The remainder of this paper is organized as follows. Section 2 deals with a cer-

tain classic convergence acceleration methods, such as Aitken’s Δ2 method and both
Levin and Weniger transformations; see [2], [5], and [16]. We consider there a cer-
tain choice of the remainder estimates, proposed by Smith and Ford in [14] (see also
[3, § 2.7]), in the case of Levin’s and Weniger’s method, which we denote by the
symbols L and W , respectively.

It should be remarked that the d(m) transformation of Levin and Sidi [6] (with
m = r) should also be an effective accelerator for the considered series (see, e.g.,
[12, §6]), as well as more general d̃(m) transformation developed by Sidi (see the
book [12, pp. 147–148] and the recent report [13]).

A new method of convergence acceleration (denoted here by the symbol S) is pre-
sented in Section 3, which is followed in Section 4 by a discussion about common
theoretical properties, including convergence acceleration theorem for all three meth-
ods L, W , and S. In Section 5, we give some examples examining the efficiency
of the new method compared to the methods L and W . All the examples except the
last two consider the convergent series (1) with αn satisfying the relation (2) with
r = 1. One can check that the transformation d(1) of Levin and Sidi, in the case
of these examples, is equivalent to the method L, provided the choice of parameters
Rl = l +1, which is quite reasonable for all of the considered examples in this paper.
Last two examples are the case with r > 1 and thus, besides the comparison of the
efficiency of the methods S, L, and W , we present the results obtained by the d̃(m)

transformation of Sidi (with m = r), as well.
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Finally, in Section 6, we discuss the further properties of the method S, such
as application to the summation of divergent alternating series. Some remarks on
efficient implementation of the method S are given therein, too.

2 Levin and Weniger transformations

The well-known Aitken’s Δ2 method transforms a given sequence {sn} into a new
sequence {s′

n}, defined by the formula

s′
n := snsn+2 − s2

n+1

sn+2 − 2sn+1 + sn
. (7)

If the elements sn of the sequence to be transformed are partial sums of alternating
series (1), then

s′
n = αn+2sn + αn+1sn+1

αn+2 + αn+1
. (8)

Thus, the new sequence element s′
n is a weighted average of the elements sn and

sn+1. These weights are positive. Therefore, the numerical realization of the Aitken’s
transformation has good stability properties.

It is important to note that the transformation (7) can be easily iterated. Namely,
one can use the sequence {s′

n} as a sequence to be transformed, and obtain a new
sequence {s′′

n}, and so on; see, e.g., [15, Eq. (5.1–15)]. However, if the elements sn
are the partial sums of series (1), the process of iterating of the transformation (8) is
more subtle. Indeed, in order to transform the sequence {s′

n}, one should replace αn

in (8) with the terms of the series s′
0 + ∑∞

n=0(s
′
n+1 − s′

n). Computing these terms
is not recommendable, since one may be facing with a loss of significance caused
by the cancelation of terms. All the methods studied in this paper do not have this
disadvantage, although they are somehow derived from Aitken’s transformation.

The idea of the Levin transformation [5] of the series
∑∞

n=0 an is based on the
assumption that the remainders of the partial sums have the following Poincaré-type
asymptotic expansion:

s − sm ∼ ωm

∞∑

j=0

dj

(m + b)j
(as m → ∞), (9)

where the shift parameter b > 0 and remainder estimates ωm should be chosen
suitably for the considered class of the series. Using the same notation as in [15],
Levin transformation can be expresses as follows:

s(k)
n =

Δk

[

(n + b)k−1 sn

ωn

]

Δk

[

(n + b)k−1 1

ωn

] =

k∑

j=0

(−1)j
(

k

j

)

(n + j + b)k−1 sn+j

ωn+j

k∑

j=0

(−1)j
(

k

j

)

(n + j + b)k−1 1

ωn+j

.

The choice of the remainder estimates has been widely discussed in the literature;
see, e.g., [4], [15, § 7.3], [3, § 2.7] or [7, § 5.3]. However, the parameter b is usually
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chosen to be 1. In a recent paper by Abdalkhani and Levin [1], the optimal value of
this parameter was discussed for a certain variant of Levin transformation.

In the case of considered alternating series
∑∞

n=0 an, the remainder has the
following asymptotic expansion

s − sm ∼ am

∞∑

j=0

γjm
−j/r as m → ∞, γ0 �= 0; (10)

see, e.g., [12, Thm. 6.6.6, pp. 145–147]. Thus, it is recommendable to use ωm :=
am+1, i.e., Ford’s and Smith’s [14] modification of Levin’s t-transformation; see
also [3, § 2.7]. In the sequel, we denote this method by the symbol L.

Any variant of Levin’s method transforms the sequence {sn} into a doubly indexed
sequence {s(k)

n }. By definition, the element s
(k)
n is an approximation of the limit s

resulting from the system of the equations for m = n, n + 1, . . . , n + k, where only
the terms with j < k are retained. Hence, the element s

(k)
n depends on all the values

αj with j ≤ k+n+1. For instance, in the case of method L, the element s
(1)
n satisfies

the following system of two equations:

s(1)
n − sn = an+1d0, s(1)

n − sn+1 = an+2d0

with unknown s
(1)
n and auxiliary coefficient d0. One can easily check that s

(1)
n is

exactly the value of s′
n given by Aitken’s transformation (8).

Weniger transformation is based upon an assumption similar to (9), and is given
by

s(k)
n =

Δk

[

(n + b)k−1
sn

ωn

]

Δk

[

(n + b)k−1
1

ωn

] =

k∑

j=0

(−1)j
(

k

j

)

(n + j + b)k−1
sn+j

ωn+j

k∑

j=0

(−1)j
(

k

j

)

(n + j + b)k−1
1

ωn+j

. (11)

The only difference is that the powers (m + b)j are replaced by Pochhammer sym-
bols (m + b)j ; see [15, § 8.2]. Let us note that transformation (11) was invented
independently by Weniger and Sidi [11] and later used by Shelef [8] for the numeri-
cal inversion of Laplace transforms. Similarly to the method of Levin, we chose the
remainder estimates ωm = am+1, and denote this method by the symbol W .

One can check that both methods L and W produce the double indexed arrays of
elements s

(k)
n , for which s

(1)
n = s′

n, i.e., both transformations s
(1)
n are equivalent to

Aitken’s transformation. Further, both methods give the same values of s
(2)
n , which

usually are different than the ones obtained by the Aitken’s iterated Δ2 process.
The parameter b is usually chosen to be 1 for both methods L and W . We consider

the same value for all presented numerical examples.
There are well-known recurrence formulas allowing for the efficient realiza-

tion of the Levin and Weniger transformations; see, e.g., [15, § 7.2, § 8.3]. Both
formulas are quite similar and use certain three-term recurrence relations (see
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[15, Eqs. (7.3-2)–(7.2-6) and (8.3-1)–(8.3-5)]) satisfied by the following numerators
p

(k)
n and denominators q

(k)
n :

s(k)
n = p

(k)
n

q
(k)
n

(k, n = 0, 1, . . .). (12)

Their simplest variant may suffer from an overflow that very often appears during
the recursive computation of numerators p

(k)
n and denominators q

(k)
n . Hence, it is

recommendable to use so-called scaled versions of these recurrence formulas; see
[15, Eqs. (7.2-8), (8.3-7)]. For the case of {sn} being a sequence of partial sums of
the alternating series (1), let us write these three-term recurrence relations, for both
methods L and W , in the following way:

p(0)
n := sn, q(0)

n := 1, (13)

ϕ̃(k)
n :=

⎧
⎪⎪⎨

⎪⎪⎩

(n + b + 1)k−2(n + k + b)

(n + b)k−1
(method L),

n + b + 2k − 2

n + b
(method W),

(14)

r(k)
n := βn+kr

(k−1)
n + ϕ̃(k)

n r
(k−1)
n+1 (r ≡ p, q; k ≥ 1). (15)

Since the initial conditions (13) are the same for both methods, which is not com-
mon in the literature, the only difference comes from the choice of the function
ϕ̃

(k)
n in the three-term recurrence relation (15), satisfied by numerators p

(k)
n and

denominators q
(k)
n .

For the convenience of later analysis and comparison with the new method S, let
us observe that the quantities s

(k)
n , defined by (12), satisfy the recurrence relationship

s(k)
n = βn+1

βn+1 + ϕ
(k)
n

s(k−1)
n + ϕ

(k)
n

βn+1 + ϕ
(k)
n

s
(k−1)
n+1 (k > 0), (16)

where

ϕ(k)
n = ϕ̃(k)

n · βn+1

βn+k

· q
(k−1)
n+1

q
(k−1)
n

. (17)

It is quite remarkable that the above formulas permit to the compute the array s
(k)
n

without actually using the array of the numerators p
(k)
n . Such realization of Levin and

Weniger transformations has probably not been considered in the literature, yet.
The following lemma displays some asymptotic property of the last fraction in the

right-hand side of (17), which we will use later in the comparison involving all three
methods L, W , and S.

Lemma 1 The quantities q
(k)
n (k > 0), defined by (13)–(15), satisfy the relation

q
(k−1)
n+1

q
(k−1)
n

= 1 + O(n−2).
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Proof Using induction on k and the relation (3), one can check that the quantities
q

(k)
n have the following formal power series expansion in variable n−1/r :

q(k)
n ∼ i

(k)
0 +

∞∑

j=r

i
(k)
j n−j/r .

From this, we conclude the result.

It should also be remarked that, in case of alternating series satisfying the relation
(3), the functions ϕ

(k)
n , defined by (17), satisfy the relationship:

ϕ
(k)
n

ϕ̃
(k)
n

= 1 + O(n−2). (18)

It follows from (4) and Lemma 1.

3 Method S

The starting point for the derivation of the aforementioned method S is Aitken’s Δ2

sequence transformation, given by formula (8). However, the main idea is based upon
the relationship involving the dependence of the differences Δs′

n on the terms αn,
which allows us to use, and also iterate, the formulas similar to (8). For instance, the
simplest variant (which we denote by symbol S) produces the double indexed array
s
(k)
n of approximations of the limit s of the series (1) by using the following recursive

scheme:

s(0)
n := sn (n ≥ 0),

s(k)
n := (n + 1)αn+2 s

(k−1)
n + (n + 2k − 1)αn+1 s

(k−1)
n+1

(n + 1)αn+2 + (n + 2k − 1)αn+1
(k ≥ 1, n ≥ 0).

(19)

The above formula reduces for k = 1 and gives s
(1)
n (n > 0) identical with s′

n related

to Aitken’s transformation (8), and thus identical with s
(1)
n obtained by both methods

L and W (cf. (16)), as well.
According to (19), the element s

(k)
n is a weighted average of elements s

(k−1)
n and

s
(k−1)
n+1 . We would like to note that this formula (for k > 1) can be derived by using the

following brief analysis, which we will discuss in more details in Section 4. Observ-
ing, at least experimentally, that for k = 1, we obtain the differences Δs

(1)
n being

proportional to n−2αn (more precisely Δs
(1)
n /αn = O(n−2)), one can try to con-

sider the change of the coefficients in the weighted average s
(2)
n in order to obtain

Δs
(2)
n ∼ n−4αn, and so on; here, and in the sequel, the forward difference operator Δ

acts upon the lower index n. It is possible if one indeed replaces αn in formula (19)
(having k = 1) with αn/(n + 1)2, which is exactly the formula (19) with k = 2. In
general, for k > 1, one should replace αn with αn/(n + 1)2k−2, which gives exactly
the formula (19).
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The following facts are evident or easy to check: (1) the recursive scheme, which
defines the method S, differs from the ones for the methods L and W . The quan-
tities s

(k)
n can be determined in a straightforward way, i.e., without computing their

numerators and denominators (cf. (12)); (2) s
(k)
n is a function of the terms αn, αn+1,

. . . , αn+k+1; (3) unlike the methods L and W , the formula (19), which defines the
method S, is not a consequence of any assumption on the asymptotic behavior of the
remainder estimates, such as, e.g., (9). Formula (19) is also not a result of any general
expression for the partial sums of the series, nor of the system of equations followed
from it. It is not even known if such an expression or a system of equations exists;
(4) in general, the quantities s

(k)
n , k > 1, are different from the ones computed by the

method L or W (or Aitken’s iterated Δ2 process). Indeed, the methods L and W give

s(2)
n = (n + 1)(1 + βn+1)βn+2s

(1)
n + (n + 3)(1 + βn+2)s

(1)
n+1

(n + 1)(1 + βn+1)βn+2 + (n + 3)(1 + βn+2)
,

which is the same as s
(2)
n computed by the method S, if the quantities βn, related to

the series (1), satisfy a certain functional equation.
The justification of the efficiency of the method S is discussed in Section 4. More

precisely, it refers to a more general method, which we denote in the sequel by the
symbol Sϕ , given by the following formula:

s(k)
n = βn+1

βn+1 + ϕ
(k)
n

s(k−1)
n + ϕ

(k)
n

βn+1 + ϕ
(k)
n

s
(k−1)
n+1 (k > 0) (20)

(cf. (16)), where the arbitrary functions ϕ
(k)
n are such that

ϕ(k)
n = 1 + (2k − 2)n−1 + O(n−2) (k > 0) (21)

and βn+1 + ϕ
(k)
n �= 0 (which usually follows from the former condition), n, k > 0.

The above conditions are satisfied if, for instance,

ϕ(k)
n = ϕ̃(k)

n (k > 0), (22)

where ϕ̃
(k)
n are given by (14) related to the methods L and W . Moreover, if ϕ̃

(k)
n

corresponds to the method W (with b = 1), the formula (20) is equivalent to (19),
and thus the method Sϕ becomes the method S. On the other hand, one can also

consider such functions ϕ
(k)
n , as [(n + 3)/(n + 1)]k−1 or [(n + 2)/(n + 1)]2k−2, for

which the condition (21) can be easily checked. Then, using (20) appears to be more
costly, but may have some advantages like better numerical stability. We believe it is
worth doing more analysis on this. Let us remark that in both mentioned variants of
the functions, ϕ

(k)
n , ϕ

(1)
n = 1 holds for all n, and thus s

(1)
n = s′

n, like in methods L
and W .

4 General theoretical results

It is notable that the similarities between all three methods L, W , and S follow from
(16) and (20), which vary depending on the choice of the functions ϕ

(k)
n ; cf. (17), (21)
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and (22). For instance, the difference between the choice involving the function (17)
(which gives the methods L, W) and (22) (method S) is well depicted by the relation
(18).

Let us note that the statement of Theorem 1 that follow, in the case of alternating
series (1) with αn satisfying (2) with r = 1, is very similar to the classic results for
Levin’s and Weniger’s transformations; see, e.g., Weniger’s report [15, §13] For the
detailed analysis of the convergence acceleration of the alternating series (1) with αn

satisfying (2) with r = 1 and the application of Levin’s transformations to it, we refer
to papers by Sidi [9, 10].

For our consideration, the relation (18) plays the main role in deriving a theoretical
properties common for the new method Sϕ and both methods L and W . For the sake

of analysis of all three methods, let us use common symbol s(k)
n to denote the elements

of the array computed by them. It is important that in all three cases, the quantities
s
(k)
n satisfy the three-term recurrence relation (20), where the functions ϕ

(k)
n depend

on the considered method; cf. (16).
In order to study the convergence acceleration performed by the mentioned meth-

ods, it is recommendable to investigate the differences Δs
(k)
n . Indeed, the quantities

Δs
(k)
n (together with the element s

(k)
0 ), k > 0, are the terms of the series result-

ing from the corresponding sequence transformation. The efficiency of the method
depends on whether these series (for consecutive k) converge to limit s faster and
faster. Hence, it is reasonable to compare the differences Δs

(k)
n to the original terms

αn+1. For this reason, let us define the following quantities:

D(k)
n := (−1)n+k+1Δs

(k)
n

αn+1
, B(k)

n := βn+1

βn+1 + ϕ
(k)
n

. (23)

Lemma 2 The quantities D
(k)
n , B

(k)
n satisfy the following relationship:

D(k)
n = βn+1

(
1 − B

(k)
n+1

)
D

(k−1)
n+1 − B(k)

n D(k−1)
n (n ≥ 0, k > 0).

Proof It follows from (20) that

s(k)
n = s

(k−1)
n+1 − B(k)

n Δs(k−1)
n ,

and thus
Δs(k)

n =
(

1 − B
(k)
n+1

)
Δs

(k−1)
n+1 + B(k)

n Δs(k−1)
n .

Now, by multiplying both hand sides by (−1)n+k+1/αn+1, we obtain the result.

As mentioned in the previous section, the quantities s
(2)
n can be identical for all

three methods if βn satisfies a certain functional equation. Indeed, for any series (1),
the quantities s

(2)
n , defined by (20), are the same as the ones for the methods L and

W , if one takes the following function ϕ
(2)
n written in terms of βn:

ϕ(2)
n = (n + 3)(1 + βn+2)βn+1

(n + 1)(1 + βn+1)βn+2
.
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For k > 2, the analysis of such similarities seems to be meaningless. However, it is
quite notable that for the choice of the functions ϕ

(k)
n , such as (17), (14), and (20),

which defines the method Sϕ , leads to the method L or W . Undoubtedly much more

important is the meaning of the condition (21) involving the functions ϕ
(k)
n , which

are, for all three methods, such that

ϕ(k)
n

[
1 − (2k − 2)n−1

]
= 1 + O(n−2); (24)

cf. (21), (22), and (18). Namely, it is summarized in the following theoretical results.

Theorem 1 Let s(k)
n be the two-dimensional array computed by the method Sϕ , given

in (20), applied to the series (1) with αn satisfying (2). Then, the differences Δs
(k)
n

satisfy the following relation:

(−1)n+k+1Δs
(k)
n

αn+1
∼ n−2k

∞∑

j=0

d
(k)
j n−j/r as n → ∞. (25)

Proof The proof follows by induction on k. Since Δs
(0)
n = Δsn = (−1)n+1αn+1,

the series in (25) (for k = 0) simplifies to the constant d
(0)
0 = 1. Now, let k > 0 be

given. Taking into account the relation (3) in the definition of the quantities B
(k)
n , we

conclude that

B(k)
n = ξ + g

(k)
1 n−1 + g

(k)
2 n−(r+1)/r . . . , where ξ := x

x + 1
, (26)

and thus

B
(k)
n+1 = ξ + g

(k)
1 (n + 1)−1 + g

(k)
2 (n + 1)−(r+1)/r + . . . = B(k)

n + O(n−2). (27)

In the same way, one may check that ϕ
(k)
n+1 = ϕ

(k)
n + O(n−2). Moreover, from (4), it

immediately follows that βn+1/βn+2 = 1 + O(n−2). Hence, we get

βn+1(1 − B
(k)
n+1) = βn+1

ϕ
(k)
n+1

βn+2 + ϕ
(k)
n+1

= βn+1

βn+2
ϕ

(k)
n+1B

(k)
n+1 = ϕ(k)

n B(k)
n + O(n−2).

(28)
From the principle of the induction, it follows that

D(k−1)
n = d

(k−1)
0 n−2k+2 + d

(k−1)
1 n−2k+2−1/r + . . . ,

D
(k−1)
n+1 = d

(k−1)
0 (n + 1)−2k+2 + d

(k−1)
1 (n + 2)−2k+2−1/r + . . .

= [1 − (2k − 2)n−1 + O(n−2)]D(k−1)
n .
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Therefore, in view of (24), we conclude that

D(k)
n = (

ϕ(k)
n B(k)

n + O(n−2)
)
D

(k−1)
n+1 − B(k)

n D(k−1)
n

= ϕ(k)
n B(k)

n

(
1 − (2k − 2)n−1 + O(n−2)

)
D(k−1)

n − B(k)
n D(k−1)

n

= (
(1 + O(n−2))B(k)

n − B(k)
n + O(n−2)

)
D(k−1)

n = O(n−2)D(k−1)
n ,

and the proof is complete.

The evident meaning of the above result is as follows: the larger is the value of k,
the less are the absolute values of the differences Δs

(k)
n (at least for sufficiently great

values of n), and thus, the faster is the convergence of s
(k)
n to s. Similar results, but

only for the methods L and W (and with r = 1 in (2)), can be found in the Weniger’s
report [15, Thms. 13-5, 13-9, pp. 114, 117].

It is also worth considering the influence of the choice of the functions ϕ
(k)
n on the

asymptotic behavior of the differences Δs
(k)
n that appear in Theorem 1. Of course,

this dependence is related to the values d
(k)
j , which, in general, are usually unknown.

This is somewhat displayed in the following result.

Theorem 2 Let the quantities s
(k)
n be as in the previous theorem. Then, the following

relation links the quantities ϕ
(k)
n with D

(k)
n , given in (21) and (23), respectively:

D
(k)
n

D
(k)
n+1

= ϕ(k+1)
n [1 + O(n−2)].

Proof By replacing k with k + 1 in Lemma 2, we have that

βn+1

(
1 − B

(k+1)
n+1

) D
(k)
n+1

D
(k)
n

= B(k+1)
n + D

(k+1)
n

D
(k)
n

.

Hence, by Theorem 1, the quotient D
(k+1)
n

D
(k)
n

is of order O(n−2), and thus, replacing k

with k + 1 in (28) yields

D
(k)
n

D
(k)
n+1

=
βn+1

(
1 − B

(k+1)
n+1

)

B
(k+1)
n + O(n−2)

= ϕ
(k+1)
n B

(k+1)
n + O(n−2)

B
(k+1)
n + O(n−2)

.

Now, the result follows from (26).

As we mentioned in the previous section, for each method L, W , and S, we have
ϕ

(1)
n = 1. Let us remark that Δs

(1)
n /αn+1 simplifies then to

Δs
(1)
n

αn+1
= (−1)nβn+1Δ

(
1

1 + βn+1

)

, (29)

which for many series can be easily expressed just in terms of n. For example, if αn
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Remark 1 The result in Theorem 1 cannot be obtained using the asymptotic expan-
sion (10) (following from Sidi’s theorem [12, Thm. 6.6.6, pp. 145–147]) without any
further analysis of the values γj , j ≥ 1, given therein. For example, in the case of
k = 1, assuming that γ1 �= 0 one could conclude, after some simple algebra, that

s(1)
n − s = O

(
(−x)nnν−1−1/r

)
as n → ∞,

and thus that (−1)nΔs
(1)
n /αn+1 = O(n−1−1/r ), where x and ν have the same mean-

ing as in (2). This result may be confusing (for r > 1), since from Theorem 1 we
know that

(−1)nΔs(1)
n /αn+1 = O(n−2) as n → ∞.

The reason of this is of course wrong assumption on nonvanishing value of γ1. The
very simple example (with r = 2) is αn = 1/

√
n + 1, where one could check that

(−1)nΔs
(1)
n

αn+1
= −1

8
n−2 + 13

16
n−3 + O(n−4) as n → ∞.

Hence, one should consider Sidi’s theorem [12, Thm. 6.6.6, pp. 145–147], which
refers in fact to the more general case (not only to the alternating series considered
in this paper), with more careful treatment.

5 Numerical examples

Let us consider the method S, defined by (19), and the mentioned variants of Levin
and Weniger transformations, defined by formulas (13)–(15) and denoted by symbols
L and W , respectively.

If the terms αn of the series (1) to be transformed are sufficiently simple, and if
k is rather small, one can try to find explicit expression for the quantities D

(k)
n and

verify the statements of Theorems 1 and 2, given in the previous section. Let us recall
that for k = 0, 1 all three methods produce the same values of s

(k)
n , while, for k = 2,

it is evidently true only for the methods of Levin and Weniger.
For instance, if αn = 1/(n + 1), then we have

D(1)
n = − n + 2

(n + 3)(2n + 5)(2n + 7)
= −1

4
n−2 + O(n−3),

D(2)
n =

⎧
⎪⎪⎨

⎪⎪⎩

− n + 2

(n + 3)(2n2 + 14n + 25)(2n2 + 10n + 13)
,

− (n + 2)(10n3 + 91n2 + 273n + 264)

(2n + 9)(2n2 + 13n + 22)(2n + 5)(2n2 + 9n + 11)(2n + 7)(n + 3)

(the first formula corresponds to the methods L and W; second—to the method S).
This is in agreement with Theorem 1, since

D(2)
n =

⎧
⎪⎪⎨

⎪⎪⎩

−1

4
n−4 + O(n−5) (methods L, W),

− 5

16
n−4 + O(n−5) (method S).
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The comparison of the leading coefficients of the asymptotic expansions of the values
D

(2)
n shows that the methods L and W yield a little bit better result than the method

S. In contrast, the method S is better than the others for k = 3. Indeed, one may
check that

D(3)
n =

⎧
⎪⎪⎨

⎪⎪⎩

− 3

16
n−6 + O(n−7) (methods L, W),

− 9

64
n−6 + O(n−7) (method S).

Further comparison, i.e., for k > 3, seems to be pointless.
For

αn := (2n + 2)!
4nn!(n + 2)! xn

the expression for D
(1)
n is rather complicated, i.e.,

D(1)
n = − (n + 3)(2n + 5)(n3 + 3n − 1)x2

W(n)W(n + 1)
= − x2

2(x + 1)2
n−2 + O(n−3),

where W(n) := (n + 3)(2n + 5)x + 2(n + 2)(n + 4). However, one can check that

1

ϕ
(2)
n+1

D
(1)
n

D
(1)
n+1

= 1 − 17 + 15x

2 + 2x
n−2 + O(n−3),

which is in agreement with Theorem 2.
We compared the performance of the methods L, W , and S numerically, by apply-

ing them to several alternating series (1) of different types. For each example below,
we present as follows: the form of the series (including the values x, v, r in the rela-
tion (2)) and its limit s, the accuracy of the quantities s

(k)
0 , k = 3, 4, . . ., for all three

methods (first row corresponds to the method S, second row—L, third row—W).
First five examples are the case of r = 1 and last two are not.

Let us remark that d̃(m) transformation of Sidi (with m = r and σ̂ = 0) is also
effective accelerator of the considered series; see, e.g., [12, §6.6.4, pp. 147–148]. The
accuracy of the quantities d̃

(m,k)
0 for k = 3, 4, . . . is given (in the fourth row) in the

case of last two examples, since only then d̃(m) transformation is not equivalent to
the method L. We choose σ̂ = 0, since for the considered series

∑∞
n=0 an, we have

an/Δan ∈ Ã
(σ,m)

0 with σ = 0;

see [12, Thm. 6.6.5] and [12, §6.6.1] for the details on the class Ã
(σ,m)

0 .
Here, the accuracy of the approximation s̃ of the sum s �= 0 is measured by

− log10 |s̃/s − 1|, i.e., by the number of exact significant decimal digits. As it was
mentioned before, the classic methods of Levin and Weniger give the same values of
s
(k)
n for k = 0, 1, 2.
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All the numerical experiments were made using IEEE 754 double extended pre-
cision, i.e., 80-bit floating-point arithmetic, which means about 19 decimal digits
precision.

Let use note that in the following examples, it appears that the numerical results
produced by the method S seem to be similar to those obtained by the classic Levin
and Weniger transformations, as well as the Sidi’s generalization of them.

Example 1 (x = 1, v = −2, r = 1)

∞∑

n=0

(−1)n

n2 + 1
= 0.63601 45274 91066 581

3.6 5.1 6.1 7.0 8.7 9.2 10.4 11.6 12.5 14.1 14.6 17.1 16.8
3.9 5.6 6.1 7.4 9.1 9.7 11.1 12.8 13.4 14.8 16.6 17.2 18.7
5.1 5.1 6.2 7.6 9.2 10.2 10.9 11.7 12.7 13.6 14.5 15.5 16.4

Example 2 (x = 1, v = −3/2, r = 1)

3F2

(
1, 1, 3

2 ; 2, 2; −1
)

=
∞∑

n=0

(−1)n(2n + 1)!
4n[(n + 1)!]2

= 4 ln
(
0.5 + √

0.5
) = 0.75290 56258 83839 086

4.0 5.2 7.1 7.7 8.9 10.4 11.1 13.1 13.4 14.8 15.7 16.9 18.0
4.1 5.4 7.0 8.1 9.1 10.4 13.9 12.9 14.0 15.8 16.7 17.7 19.0
4.7 5.9 7.5 10.2 10.2 11.2 12.3 13.4 14.5 15.5 16.6 17.6 18.7

Example 3 (x = 1, v = −1, r = 1)

∞∑

n=0

(−1)n

n + 1
= ln 2 = 0.69314 71805 59945 309

3.9 5.3 7.0 7.6 9.5 10.0 11.4 12.4 13.5 14.7 15.7 17.1 17.9
4.0 5.3 7.0 8.1 9.1 10.5 12.3 12.8 14.1 17.0 16.6 17.8 18.8
4.9 5.9 7.2 8.6 10.1 11.6 13.1 14.6 16.1 17.6 19.0 19.0 19.0

Example 4 (x = 2/3, v = −1/2, r = 1)

2F1

(
3
2 , 2; 3; − 2

3

)
=

∞∑

n=0

(−1)n(2n + 2)!
6nn!(n + 2)! = 0.59032 00617 95601 049

4.2 5.3 6.6 8.3 9.7 10.8 13.2 13.5 15.0 16.3 17.4 18.3 18.4
4.1 5.1 6.2 7.5 8.8 10.2 11.8 13.9 15.0 16.2 17.9 19.0 18.6
4.3 6.4 7.8 9.4 11.1 12.8 14.6 16.4 18.0 19.0 18.8 18.8 18.6
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Example 5 (x = 1/2, v = 1/2, r = 1)

∞∑

n=0

(
− 1

2

)n √
n + 1 = 0.56602 56214 93012 046

4.7 7.2 7.8 9.9 10.8 12.6 13.8 15.4 16.9 18.5 18.1 18.1 18.1
4.4 5.7 7.2 8.8 10.5 12.4 14.9 17.6 17.6 18.1 18.1 18.1 18.1
5.5 7.0 8.4 9.8 11.1 12.3 13.5 14.6 15.8 17.0 19.0 18.1 18.1

Example 6 (x = 1, v = −1, r = 6)

∞∑

n=0

(−1)n

n + √
n + 3

√
n + 1

= 0.81139 68270 43132 432 (30)

4.4 5.9 7.2 7.8 8.6 9.4 10.3 11.1 11.9 12.7 13.5 14.2 15.0
4.5 5.8 6.8 7.6 8.3 9.1 9.9 10.6 11.3 12.1 12.8 13.5 14.1
5.2 6.3 7.8 8.7 10.0 10.6 12.5 12.4 14.4 14.2 15.8 16.0 17.3
4.5 5.6 7.1 7.6 9.0 9.9 10.8 12.4 13.0 14.0 16.4 16.1 17.2

It should be remarked that, although the quantities βn = αn+1/αn for the considered
series satisfy the relation (3) with r = 6, it is possible to find the decomposition
αn = ∑6

i=1(−1)ηi α
(i)
n , such that each β

(i)
n := α

(i)
n+1/α

(i)
n satisfies (3) with r = 1.

However, we checked that applying the method S to all of the decomposed series
∑∞

n=0(−1)nα
(i)
n separately does not give better results.

Example 7 (x = 1, v = e − 7/2, r = 2)

∞∑

n=0

(−1)nne

n + (n + 1)7/2
= −0.02049 06107 716

2.2 3.0 4.0 5.1 6.1 7.2 8.4 9.6 10.7 11.9 13.4 14.5 15.8
2.3 3.3 4.6 6.6 6.8 8.0 9.7 10.0 10.9 12.0 13.0 13.8 14.7
3.1 3.6 4.4 5.2 6.1 7.0 7.9 8.7 9.5 10.4 11.2 12.0 12.9
2.3 3.8 4.5 5.7 6.4 8.1 8.5 10.4 10.7 12.8 12.9 15.3 15.1

6 Some additional remarks

It should be noted that assumption (2) does not imply the convergence of the series
(1). It ensures only the correctness of all the theorems given in Section 4. However, if
the series is divergent, the method S can still be used. Such a summation of divergent
series can also be performed by the classic transformations of Levin and Weniger,
which is well discussed in the mentioned report of Weniger [15].

For instance, the power series 1 − x + x2 − x3 + . . . has the limit (1 + x)−1 if
|x| < 1, and diverges if x = 1 (here, one can consider the so-called antilimit 1/2). It
is easy to check that the method S gives s

(1)
n = 1/2 for all n ≥ 0.
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The power series 1−2x+3x2−4x3+. . ., which converges to (1+x)−2 if |x| < 1,
is a more complicated example. For x = 1, one should expect that the method S will
give the approximations of the number 1/4. Indeed, although the consecutive approx-
imations s

(0)
n = sn are equal to 1, −1, 2, −2, 3, −3, . . ., one obtains the following

approximations s
(k)
n (for k = 1, 2, 3), converging to 1/4:

s(1)
n = 1

4

[

1 + (−1)n+1

(2n + 5)

]

,

s(2)
n = 1

4

[

1 − 3 (−1)n+1

(2n + 3)(2n + 5)(2n + 7)

]

,

s(3)
n = 1

4

[

1 − 3(n − 3)(−1)n+1

(2n + 3)(2n + 5)(2n + 7)(2n + 9)(2n2 + 11n + 13)

]

.

This should be compared with the following results obtained using the method L:

s(2)
n = 1

4

[

1 − (−1)n+1

2n3 + 16n2 + 40n + 31

]

,

s(3)
n = 1

4

[

1 − 3 (−1)n+1

4n5 + 62n4 + 372n3 + 1084n2 + 1544n + 867

]

.

It should be also remarked that the method W gives significantly better results, since
s
(3)
n = 1/4 for all n ≥ 0.

It is notable that in a more general case, namely for the hypergeometric series

(1 + x)−ρ = 1F0(ρ, −x) =
∞∑

n=0

(ρ)n

n! (−x)n

(ρ ∈ R \ {−1}), we are dealing with the convergence for x = 1 if and only if ρ < 0.
However, the method S transforms in the first step (which is equivalent to Aitken
and the first step of Levin and Weniger transformations), the above series into the
hypergeometric series

1

ρ + 1
2F1

(
ρ, 1

2 (ρ − 1); 1
2 (ρ + 3); −1

)
,

which converges if ρ < 2; one can prove this by using formula (29). The analysis
of the next steps of the method S seems to be quite difficult, but undoubtedly some
of them give the series converging to 2−ρ . From this and the previous examples,
it appears that the results produced by the method S seem to be similar to those
obtained by the classic Levin and Weniger transformations, in the case of summation
of divergent series, as well.
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Finally, it should also be remarked that method S can be programmed quite effi-
ciently. For that purpose, it is recommendable to write the recurrence scheme (19) in
the following way:

s(k)
n = s

(k−1)
n + t

(k)
n s

(k−1)
n+1

1 + t
(k)
n

,

where t
(k)
n := n+2k−1

(n+1)βn+1
. Then, the computation of the value s

(k)
n costs two divisions,

two multiplications, and two additions, where at least, each one of them has only one
floating point argument; this calculation does not include the cost of computing the
numbers βn, since these values are being used many times and for many series they
are often much more simple than the terms αn. On the other hand, the methods L
and W , in their simplest variants, can be programmed such that computation of s

(k)
n

costs one division, four multiplications, and two additions. However, for the sake of
numerical stability, it is recommendable to use a certain scaled version of three-term
recurrence formulas defining these methods (see [15, Eqs. (7.2-8), (8.3-7)]), which
indeed significantly increases their complexity.

Again, let us remark that programming the method S (using the above formula)
does not involve the computation of separate two-dimensional arrays of numerators
and denominators as it is in the case of Levin and Weniger transformations (and Sidi’s
generalizations, as well). Thus, the new method is significantly cheaper if we take
into account the memory usage.
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