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Abstract A self-adaptive trust regionmethod is presented for finding the largest or small-
est B-eigenvalues of symmetric tensors. One of the important features of this method
is that B-eigenvalues problem of symmetric tensors is transformed into a homogenous
polynomial optimization. Global convergence of the proposed algorithm and second-
order necessary conditions of the optimal solutions are established, respectively.
Numerical experiments are listed to illustrate the efficiency of the proposed method.
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1 Introduction

Eigenvalues and eigenvectors of symmetric tensors were introduced in [14, 17, 19,
22–27, 29]. They have been applied in molecular conformation [7], blind source
separation [15], quantum physics [31], high-order Markov chains [4], etc.

� Qingdao Huang
huangqd@jlu.edu.cn

Mingyuan Cao
caomingyuan0918@163.com

Yueting Yang
yangyueting@163.com

1 College of Mathematics, Jilin University, No. 2699, Qianjin Street, Changchun 130000, China

2 College of Mathematics and Statistics, Beihua University, Jilin 132013, China

ORIGINAL PAPER

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0554-7&domain=pdf
http://orcid.org/0000-0002-5879-2720
mailto: huangqd@jlu.edu.cn
mailto: caomingyuan0918@163.com
mailto: yangyueting@163.com


408 Numer Algor (2019) 81:407–420

Let C(R) be the complex (real) field. An mth-order, n-dimensional real tensor A
is expressed as

A = (ai1i2···im), ai1i2···im ∈ R, 1 ≤ i1, · · · , im ≤ n,

and x is a real-valued n-vector.Axm−1 denotes an n-vector with its ith component as

(Axm−1)i =
n∑

i2,··· ,im=1

aii2···imxi2 · · · xim, for i = 1, 2, · · · , n.

Axm is a scalar defined by

Axm =
n∑

i1,i2,··· ,im=1

ai1i2···imxi1 · · · xim,

i.e., Axm = x TAxm−1 [25]. Tensor A is positive definite if Axm > 0 for all
x �= 0 and is symmetric if its entries ai1i2···im are invariant under any permutation of
i1, · · · , im. Following [2], if A is symmetric, Axm satisfies

∇(Axm) = mAxm−1.

In this paper, only symmetric tensors are under considered.
For a tensor A, if there exist λ ∈ R and x ∈ R

n satisfying

Axm−1 = λx,

xT x = 1,
(1)

then λ is called a Z-eigenvalue of A and x is called the corresponding Z-eigenvector,
(λ, x) is called a Z-eigenpairs of A [25].

If there exist λ ∈ R and a nonzero vector x ∈ R
n satisfying

Axm−1 = λx[m−1], (2)

where x[α] = [xα
1 , xα

2 , · · · , xα
n ]T. Then λ is called an H-eigenvalue of A and x

is called the corresponding H-eigenvector, (λ, x) is called an H-eigenpairs [16].
Obviously, (2) is a homogeneous polynomial equation.

Qi et al. [28] gave some Z-eigenvalues methods for solving a global polynomial
optimization problem. In this work, they proposed a direct Z-eigenvalues method
when the dimension is two, and a direct orthogonal transformation Z-eigenvalues
method in the case of third-order three-dimension. For general symmetric tensors, a
shifted high-order power method (PM) was presented for computing Z-eigenpairs in
[13]. Forced the objective to be (locally) convex/concave by a shift, convergency of
the proposed method was proved. Using fixed point analysis, the linear convergence
rate of PM is obtained. However, similarly to the case of matrix, the convergence of
PM is very slow if the largest eigenvalue is close to the second dominant eigenvalue
[5].

Hao et al. [9] found extreme Z-eigenvalues and the corresponding Z-eigenvectors
by the sequential subspace projection method (SSPM). Under certain assumptions,
global convergence and linear convergence were established for supersymmetric
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tensors. Preliminary numerical results showed that the SSPM is promising. Hao et
al. [10] proposed a feasible trust region method (FTR) for Z-eigenvalues of symmet-
ric tensors. Global convergence and local quadratic convergence of the FTR method
were established. Compared with PM and SSPM in their numerical experiments, FTR
obtained the extreme Z-eigenvalues with a higher probability.

The power method have been successfully generalized to find the largest H-
eigenvalue of a nonnegative irreducible tensor [21]. The convergence of the method
was established by Chang et al. [3] under primitivity, and by Fridland et al. [8] under
weak primitivity. The linear convergence rate of the method was achieved by Zhang
and Qi [35]. The R-linear convergence rate of the method was obtained by Hu et al.
[12] under weak primitivity. Li et al. [18] showed that the largest H-eigenvalue func-
tion of a symmetric tensor of even order is convex, continuous and semismooth on
the tensor space.

Cui et al. [1] introduced B-eigenvalues of symmetric tensors as follows

Axm−1 = λBxl−1,

Bxl = 1,
(3)

where l is positive integer, m is even, B is an lth−order, n-dimensional symmetric
tensor and is positive definite. λ ∈ C and x ∈ C

n are called B-eigenvalues and
the corresponding B-eigenvectors of (A,B) and (λ, x) ∈ C × C

n \ {0} is called a
B-eigenpairs of (A,B) .

If l = 2 and B is an identity matrix, then (3) reduces to (1).
If l = m,B satisfies Bxm−1 = [xm−1

1 , xm−1
2 , · · · , xm−1

n ]T and λ ∈ R, then (3)
reduces to (2).

Therefore, the problem (3) can be regarded as a unified form of H-eigenvalues
[25], Z-eigenvalues [25], and D-eigenvalues [29].

Motivated by the work of [10], we transform the B-eigenvalues problem into a
homogenous polynomial optimization on a unit hyper-sphere Bxl = 1. Besides,
we propose a new trust region algorithm with self-adaptive technique for comput-
ing extreme B-eigenvalues in this work. A new self-adaptive rule is used to update
the trust region radius and efficiently dealt with the so-called too successful itera-
tion. This strategy could be expected to improve the numerical performance of the
algorithm. Meanwhile, we show the global convergence of the proposed method.

The rest of this paper is organized as follows. In Section 2, a self-adaptive trust
region algorithm (SATR) for B-eigenvalues of (3) is proposed. Global convergence
results are established in Section 3. Numerical experiments are shown in Section 4.
The conclusions are drawn in Section 5.

2 Self-adaptive trust region algorithm for B-eigenvalues

Motivated by the idea of the trust region method for calculating extreme Z-
eigenvalues of symmetric tensors in [10], we propose a self-adaptive trust region
algorithm to compute B-eigenpairs (3).
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First, we reformulate (3) into a constrained optimization problem by the varia-
tional principle,

max
x∈Rn

Axm,

s.t. Bxl = 1,
(4)

with (Axm, x) being a B-eigenpairs of (A,B), where Axm =
n∑

i1,i2,··· ,im=1
ai1i2···im

xi1 · · · xim, Bxl =
n∑

i1,i2,··· ,il=1
bi1i2···il xi1 · · · xil .

We propose a self-adaptive trust region algorithm (SATR) for solving (4). The
problem (4) can be rewritten as follows:

max
x∈Rn

f (x) = 1
m
Axm,

s.t. 1
l
(Bxl − 1) = 0.

(5)

Consider the Lagrangian function of (5),

L(x, λ) = f (x) − λ

l
(Bxl − 1). (6)

It is clear that the KKT point x∗ and the related Lagrangian multiplier λ∗ =
∇f (x∗)Tx∗ of (5) exactly form a B-eigenpairs (λ∗, x∗) of (A,B). The search direc-
tion dk of a trust region type is obtained by solving the following trust region
subproblem at the current feasible point xk ,

max
d∈Rn

mk(d) = fk + gT
k d + 1

2d
TGkd,

s.t. (Bxl−1
k )Td = 0,

‖d‖ ≤ �k,

(7)

where

fk = f (xk),

gk = g(xk) = ∇f (xk) − λkBxl−1
k ,

Gk = G(xk) = ∇2f (xk) − (l − 1)λkBxl−2
k ,

are the function value, gradient, and Hessian of L(x, λ) at (xk, λk), respectively. �k

is the trust region radius. At each iteration, if the trial step dk is accepted, the iteration
xk + dk is enforced to be feasible by setting xk+1 = p(xk + dk), where

p(x) = x

(Bxl)1/l
. (8)

And for the value of λk , we have

λk = ∇f (xk)
Txk = Axm

k . (9)

Assume that Uk is the n × (n − 1) column orthogonal matrix as the basis of the null
space Nxk

= {d | (Bxl−1
k )Td = 0} of xk . Let q = UT

k d, we have d = Ukq, ‖d‖ =
‖q‖, then using the null space method, we obtain the reduced trust region model of
subproblem (7)

max
q∈Rn−1

m̃k(q) = fk + g̃T
k q + 1

2q
TG̃kq,

s.t. ‖q‖ ≤ �k,
(10)
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where g̃k = UT
k gk, and G̃k = UT

k GkUk ∈ R
(n−1)×(n−1). By simple derivation, we

obtain mk(d) = m̃k(q) if q = UT
k d. It contributes to show the global convergence of

the method.
After obtaining a trial step dk of (7), whether the trail point xk + dk is accepted

and how to adjust the trust region radius depend on the ratio

rk = f (p(xk + dk)) − f (xk)

mk(dk) − mk(0)
, (11)

where the numerator and the denominator are called the actual increase and the pre-
dicted increase, respectively. Since q = 0 is in the feasible region of the problem
(10), the predicted increase always be nonnegative. Thus, if rk is negative, the new
objective value f (p(xk + dk)) is smaller than the current value f (p(xk)), therefore
the step must be rejected. Otherwise, if rk is close to 1, there is a good agreement
between the model mk(d) in (7) and the function f in (5) over this step. At this point,
it is safe to enlarge the trust region for the next iteration. If rk is positive but signif-
icantly smaller than 1, the parameter �k should increase with ratio rk increasing. If
rk is close to zero or negative, we shrink the trust region by reducing �k at the next
iteration.

In this paper, we consider a particular case that rk is significantly larger than one,
the iteration is called too successful iterations [6, 11, 30, 32]. It implies that the local
approximation of the objective function by the model function is not good. In order to
overcome this shortcoming, Lu et al. [20] introduced the L-function L(rk) to update
�k . That is

L(rk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + e
− rk+η1−2

(η1−2)2 , if rk ≥ 2 − η1;
2, if η1 ≤ rk < 2 − η1;
1−1/2eη1

1−eη1 − eη1

2 e
rk−η1
1−eη1 , if 0 < rk < η1;

0.125, if rk ≤ 0.

And then, let
�k+1 = L(rk)�k. (12)

The authors showed that the L-function L(rk) can adjust the trust region radius
adaptively and can deal with the situation of “too successful” as well.

Now we describe a self-adaptive trust region algorithm (SATR) for B-eigenvalues
(3) using the self-adaptive technique (12). Denote the set of all real symmetric mth-
order n-dimensional tensors by S[m,n]. S+[m,n] is the set of all real symmetric positive
definite mth-order n-dimensional tensors.

Algorithm 2.1 (SATR)
Step 1: Given x0 ∈ R

n,A ∈ S[m,n],B ∈ S
[l,n]
+ , 0 < η2 < η1 < 1, �0 > 0, ε ≥

0 and λ0 = Axm
0 . Set k := 0.

Step 2: Compute gk, Gk, Uk, g̃k and G̃k .
Step 3: Solve the subproblem (10) to get qk . Let dk = Ukqk .
Step 4: If ‖dk‖ ≤ ε, stop, output (λk, xk).
Step 5: Compute rk by (11). If rk ≥ η2, set xk+1 = p(xk +dk) and λk+1 = Axm

k+1;
else xk+1 = xk and λk+1 = λk .
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Step 6: Update the trust region radius �k+1 by using (12). Set k := k + 1 and go
to step 2.
In Step 3, the CG-Steihaug algorithm in [24] is used to solve the subproblem (10).

One good property of the CG-Steihaug algorithm is that the solution computed has
a sufficient increase property, which was proved by Yuan [34]. Moreover, the CG-
Steihaug algorithm is suitable for solving large scale problem [33]. And the global
convergence of the corresponding trust region method can be ensured.

3 Convergence of algorithm 2.1

In this section, we prove the global convergence of Algorithm 2.1.
To facilitate analyzing, let h(x) = f (p(x)) = f ( x

(Bxl)1/l ). The gradient and
Hessian of h(x) are

∇h(x) = (
I

(Bxl)1/l
− x(Bxl−1)T

(Bxl)1+1/l
)∇f (p(x)),

∇2h(x) = ∇2f (p(x))∇p(x)

(Bxl)1/l
− (Bxl−1)∇f (p(x))T

(Bxl)1+1/l
− (Bxl−1)T∇f (p(x))I

(Bxl)1+1/l

− (l − 1)(Bxl−2)∇f (p(x))xT + x(Bxl−1)T∇2f (p(x))∇p(x)

(Bxl)1+1/l

+ (l + 1)x(Bxl−1)T∇f (p(x))T(Bxl−1)

(Bxl)2(1+1/l)
,

respectively.
Now, some lemmas are given to prove the global convergence of Algorithm 2.1.

Lemma 3.1 (i) For all x, y satisfying xTBxl−1 = 1, yTByl−1 = 1, then

‖G(x)‖ ≤ M,

‖g(x) − g(y)‖ ≤ L0‖x − y‖,
‖G(x) − G(y)‖ ≤ L1‖x − y‖,

(13)

where M, L0, and L1 are positive constants.
(ii) There exists a bounded set of �, for all x, y satisfying xTBxl−1 ∈

�, yTByl−1 ∈ �, then

‖∇2h(x) − ∇2h(y)‖ ≤ L2‖x − y‖,
where L2 is a positive constant.

Proof It is obvious that g(x), G(x), and ∇2h(x) are smooth and bounded, which
implies that the proof is completed.
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Lemma 3.2 Consider the error between the function h(xk + dk) and the model
mk(dk), then

|mk(dk) − h(xk + dk)| ≤ 1

2
L2‖dk‖3. (14)

Proof From Taylor theorem, we have

h(xk + dk) = h(xk) + ∇h(xk)
Tdk + 1

2
dT
k ∇2h(xk + θkdk)dk, θk ∈ (0, 1).

By using (Bxl−1
k )Tdk = 0, we obtain ∇h(xk)

Tdk = ∇f (xk)
T[I − xk(Bxl−1

k )T]dk =
∇f (xk)

Tdk, g
T
k dk = [∇f (xk)

T−λk(Bxl−1
k )T]dk = ∇f (xk)

Tdk. Then ∇h(xk)
Tdk =

gT
k dk . It follows from (7) and Lemma 3.1 that

|mk(dk) − h(xk + dk)| = |1
2
dT
k Gkdk − 1

2
dT
k ∇2h(xk + θkdk)dk|

= |1
2
dT
k ∇2h(xk)dk − 1

2
dT
k ∇2h(xk + θkdk)dk|

≤ 1

2
L2‖dk‖3,

which completes the proof.

Lemma 3.3 The predicted increase of the problem (7) satisfies

mk(dk) − mk(0) ≥ σ‖gk‖min{�k,
‖gk‖
‖Gk‖}. (15)

Proof The proof of Lemma 3.3 is similar to that in [10], so, here it is omitted.

Lemma 3.4 Let the sequence {xk} be generated by Algorithm 2.1. If there is a pos-
itive number ε satisfying ‖gk‖ ≥ ε for all k, then there exists a positive constant �̄,
for all k such that

�k ≥ �̄. (16)

Proof Suppose that the conclusion is not true, there exists an infinite set K ⊂ N ,
such that

lim
k∈K,k→∞

�k = 0. (17)

Since ‖gk‖ ≥ ε for all k, by Lemma 3.1 and Lemma 3.3, we have

mk(dk) − mk(0) ≥ σ‖gk‖min{�k,
‖gk‖
‖Gk‖} ≥ σεmin{�k,

ε

M
}. (18)
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From (14) and (18),

|rk − 1| = |f (p(xk + dk)) − f (xk)

mk(dk) − mk(0)
− 1|

= |h(xk + dk) − mk(dk)

mk(dk) − mk(0)
|

≤
1
2L2‖dk‖3

σεmin{�k,
ε
M

}

≤
1
2L2�

3
k

σεmin{�k,
ε
M

} . (19)

Taking limit from both side of (19), and from (17), we have

lim
k∈K,k→∞

rk = 1. (20)

By (12), we know that �k+1 will not shrink, i.e., �k+1 ≥ �k for all sufficiently large
k, which contradicts with (17). Therefore, (16) is true.

Theorem 3.1 Let the sequence {xk} be generated by Algorithm 2.1. Then

lim inf
k→∞ ‖gk‖ = 0. (21)

Proof The proof is deduced by contradiction. There exists a constant ε > 0 , such
that

‖gk‖ ≥ ε, for all k. (22)

From (20), for sufficiently large k, we have rk ≥ η1 . Combined with (15) and (22),
then

h(xk+1) − h(xk) = rk[mk(dk) − mk(0)]
≥ η1[mk(dk) − mk(0)] (23)

≥ ση1‖gk‖min{�k,
‖gk‖
‖Gk‖}

≥ ση1εmin{�k,
ε

τ
},

where τ = max{1 + ‖Gk‖}. Since {h(xk)} is monotonic increase and bounded over
the hyper-sphere, and h(xk+1) − h(xk) → 0, by the inequality from above , then

lim
k→∞ �k = 0,

which contradicts to Lemma 3.4. Hence (21) holds.

Theorem 3.2 Let the sequence {xk} be generated by Algorithm 2.1. Then

lim
k→∞ ‖gk‖ = 0. (24)
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Moreover, for any cluster point x∗ of {xk}, the second-order necessary conditions
hold, i.e., g(x∗) = 0 and

dTG∗d ≤ 0 (25)

for all vectors d satisfying dT(Bx∗(l−1)) = 0, where G∗ = G(x∗).

Proof Consider any index t satisfying ‖gt‖ �= 0 . For every point x in the ball
B(xt , δ) = {x | xTBxl−1 = 1, ‖x − xt‖ ≤ δ}, from (i) in Lemma 3.1 we obtain

‖g(x)‖ ≥ ‖gt‖ − ‖g(x) − gt‖ ≥ ‖gt‖ − L0‖x − xt‖, x ∈ B(xt , δ).

Set δ = ‖gt‖
2L0

, we have

‖g(x)‖ ≥ ‖gt‖ − L0δ = 1

2
‖gt‖. (26)

Therefore, the ball B(xt , δ) can not contain the whole sequence {xk} from (21) in
Theorem 3.1.

Suppose that s ≥ t and xs+1 is the first iteration after xt outside B(xt , δ). We have

{xt , · · · , xs} ∈ B(xt , δ)

and

f (xs+1) − f (xt ) =
s∑

k=t

(f (xk+1) − f (xk))

≥
s∑

k=t,xk �=xk+1

η2(mk(d) − mk(0))

≥
s∑

k=t,xk �=xk+1

η2σ‖gk‖min{�k,
‖gk‖
‖Gk‖}

≥
s∑

k=t,xk �=xk+1

1

2
η2σ‖gt‖min{�k,

‖gt‖
2M

},

where the above inequalities hold by Step 5 in Algorithm 2.1, (15) and (26),
respectively. If �k >

‖gt‖
2M , for all k = t, · · · , s,

f (xs+1) − f (xt ) ≥ 1

4M
η2σ‖gt‖2. (27)

If �k ≤ ‖gt‖
2M , for all k = t, · · · , s, we have

f (xs+1) − f (xt ) ≥ 1

2
η2σ‖gt‖

s∑

k=t,xk �=xk+1

�k ≥ 1

2
η2σ‖gt‖δ

= 1

4L0
η2σ‖gt‖2. (28)
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Since f (x) is smooth on the unit hyper-sphere, the value f (x∗) must be finite . As
the sequence f (xk) is nondecreasing, we have f (x∗) − f (xk) → 0, then

0 ← f (x∗) − f (xt ) ≥ f (xs+1) − f (xt ) ≥ η2σ‖gt‖2 min{ 1

4M
,

1

4L0
}.

Therefore, lim
t→∞ ‖gt‖ = 0, i.e., any cluster point x∗ of {xk} satisfies g(x∗) = 0.

Now, we prove (25) by contradiction. Suppose that there exists a positive
eigenvalue ξ such that

ωTG∗ω = ξ, where ωTBx∗(l−1) = 0, ‖ω‖ = 1. (29)

Assume that gT
k ω ≥ 0, otherwise let ω = −ω. Consider d = tω for some 0 ≤ t ≤

�k , then

mk(d) − mk(0) = gT
k d + 1

2
dTGkd = tgT

k ω + 1

2
t2ωTGkω

≥ 1

2
‖d‖2ωTGkω. (30)

From Lemma 3.1, there exists an infinite subsequence T , satisfying k ∈ T , for a
convergent subsequence {xk} with Gk → G∗, if xk is sufficiently close to x∗, we
have ωTGkω → ξ.

Consider the following two cases. The one case is rk ≥ η1, k ∈ T . By (30), then

f (xk+1) − f (xk) ≥ η1(mk(d) − mk(0)) ≥ 1

4
η1ξ‖dk‖2, k ∈ T . (31)

It follows from f (xk+1) − f (xk) → 0 that ‖dk‖ → 0. Therefore, dk = 0 will be the
optimal solution of (7) for sufficiently large k, namely, qk = 0 is the optimal solution
of (10). We have that g̃k = 0 and G̃k is negative semidefinite. When k is sufficiently
large, then g̃∗ = 0, G̃∗ is negative semidefinite. This is contradict to (29). For the
other case, if rk < η1, k ∈ T , we have lim

k→∞ �k = 0. In fact

|1 − rk| = |h(xk + dk) − mk(dk)

mk(dk) − mk(0)
|,

using (14) and (30) indicates that rk → 1, which contradicts to rk < η1.
For both cases, we all get contradiction (25) is obtained. The proof is completed.

4 Numerical experiments

This section mainly includes two aspects of numerical experiments conclusions. One
part is to compare the SATR method with the FTR method if B is chosen as an
identity matrix (l = 2) in the problem (3). In this case, the problem (3) reduces to
(2). On the other hand, we consider the case of l > 2. We list the numerical results
for solving B-eigenvalues of (3) to illustrate the efficiency of the proposed method.

All experiments were done on a PC with CPU 2.40GHz and 2.00GB RAM
using MATLAB R2009b. In the implementation of Algorithm 2.1, we set parameters
�0 = 2, ε = 10−5, η1 = 0.75, η2 = 0.1. The parameters η1 = 0.75 and η2 = 0.1
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are chosen according to experience. One could also set them by oneself. Other sug-
gestions were recommended in [24]. All methods share the same start points and
stopping criterion.

The basis matrix Uk is generated by the Householder transformation. If (xk)1 is
the first element of xk ∈ R

n, e1 = (1, 0, 0, · · · , 0)T, then we have the Householder
transformation matrix Hk satisfies H 2

k = I and Hkxk = −sign((xk)1)e1. Moreover,

Hk = I − 2ωkω
T
k , where ωk = xk + sign((xk)1)e1

‖xk + sign((xk)1)e1‖ .

The matrix Uk can be chosen as following

[−sign((xk)1)xk, Uk] = Hk.

The tensor A of Example 1 is originally from [15] and the tensors A of examples
2–4 are originally from [23]. Hao et al. [10] utilized the examples 3 and 4 showing
the effective of FTR algorithm for solving Z-eigenvalues of symmetric tensors.

Example 1 Let A ∈ S[4,3] defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,
a1223 = 0.1862, a1133 = 0.3847, a1222 = 0.2972, a1123 = −0.2939,
a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,

a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

Example 2

Ai1,i2,i3,i4 = (−1)i1

i1
+ (−1)i2

i2
+ (−1)i3

i3
+ (−1)i4

i4
.

Example 3

Ai1,i2,i3,i4 = arctan((−1)i1
i1

n
) + · · · + arctan((−1)i4

i4

n
).

Example 4

Ai1,i2,i3 = (−1)i1

i1
+ (−1)i2

i2
+ (−1)i3

i3
.

The numerical results are listed in Tables 1 and 2. Ex. is the number of example.
m records the order and n is the dimension. k is the number of iterations, λmax means
the largest Z-eigenvalue returned by SATR or FTR in Table 1, λ′

max is the largest B-
eigenvalue obtained by SATR in Table 2. CPU stands for the CPU time (in seconds).

In Table 1, we compare the numerical results of SATR and FTR, when we choose
B as an identity matrix in (3).

As we can see in Table 1, the two methods reach the same Z-eigenvalues for
problems with different dimensions. SATR is faster than FTR for Examples 1–4.
The number of iterations of SATR is less than that of FTR. For the cases that
n = 100, n = 200, and n = 500, the CPU time of SATR is better than that of FTR.
Particularly, with the dimension n increased, the superiority of SATR is more obvious
on the CPU time.
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Table 1 Numerical results of examples 1-4 for Z-eigenvalues

Ex. m n SATR (k/λmax/CPU) FTR (k/λmax/CPU)

1 4 n = 3 5/0.8893/0.0100 8/0.8893/0.0313

2 4 n = 10 8/43.3/0.1875 11/43.3/0.2500

3 4 n = 5 8/13.1/0.0781 11/13.1/0.0938

3 4 n = 10 8/49.5/0.1563 11/49.5/0.2031

4 3 n = 10 7/17.8/0.0781 10/17.8/0.0781

4 3 n = 20 7/34.2/0.0250 10/34.2/0.0625

4 3 n = 30 7/50.1/0.1875 10/50.1/0.0938

4 3 n = 40 7/65.9/0.2581 10/65.9/0.3125

4 3 n = 50 7/81.6/0.4212 10/81.6/0.5772

4 3 n = 60 7/97.2/0.5148 10/97.2/0.7800

4 3 n = 70 7/113.2/0.4836 10/113.2/0.7956

4 3 n = 80 7/128/0.6921 10/128/0.9843

4 3 n = 100 7/158.2/1.3750 10/158.2/1.7344

4 3 n = 200 7/311.3/5.1875 10/311.3/7.4375

4 3 n = 500 7/765.4/77.7188 10/765.4/110.8438

In Table 2, we list the numerical results of largest B-eigenvalue by SATR method.
Here B is chosen as a special lth-order n-dimensional tensor and l = m

B = bi1i2···il =
{
2, if i1 = i2 = · · · = il,

0, otherwise.

Since m is even when we compute B-eigenvalues in (3) , we only give the numerical
results of Examples 1–3.

From Table 2, we can see that SATR method is efficient for computing B-
eigenvalues of (3). Moreover, as the dimension of problem grows larger, the CPU
time cost of algorithm becomes increase, see the results of Example 2 and Example 3.

Table 2 Numerical results of Examples 1–3 for B-eigenvalues

Ex. n k λ′
max CPU

1 n = 3 5 1.3 0.0468

2 n = 10 7 9.0 0.0312

2 n = 20 7 51.9 0.1248

2 n = 30 7 131.3 1.1700

3 n = 5 6 14.7 0.0625

3 n = 10 6 46.8 0.0720
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5 Conclusions

In this paper, we consider a B-eigenvalues problem of symmetric tensors. And we
propose the SATR method for solving it. Global convergence of the SATR method is
established . Some numerical experiments illustrate that the SATR method is faster
than FTRmethod when the problem (3) is reduce to (2). Other numerical results show
that specific to B-eigenvalues of symmetric tensors, the SATR method is effective.
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