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Abstract Let � be an open region in R
d , d ≥ 2, that is diffeomorphic to B

d .
Consider solving −�u + γ u = 0 on � with the Neumann boundary condition
∂u
∂n = b (·, u) over ∂�. The function b is a nonlinear function of u. The problem is
reformulated in a weak form, and then a spectral Galerkin method is used to create
a sequence of finite dimensional nonlinear problems. An error analysis shows that
under suitable assumptions, the solutions of the finite dimensional problems con-
verge to those of the original problem. To carry out the error analysis, the original
problem and the spectral method is converted to a nonlinear integral equation over
H 1/2 (�) , and the reformulation is analyzed using tools for solving nonlinear inte-
gral equations. Numerical examples are given to illustrate the method. In our error
analysis, we assume the existence and local uniqueness of a solution. For the case of
three dimensions and a nonlinearity b that is given by the Stefan–Boltzmann law, we
will provide an existence proof in the final section.
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1 Introduction

Consider solving the problem

− �u (s) + γ (s)u (s) = 0, s ∈ �, (1.1)

∂u(s)

∂ns

= b (s, u (s)) , s ∈ ∂�, (1.2)

in which the Neumann boundary condition is a function of the solution u. Let �

be an open region in R
d that is diffeomorphic to the unit ball Bd and assume that

its boundary ∂� is smooth and homeomorphic to S
d−1, d ≥ 2. The function γ is

assumed to be smooth and to satisfy additional conditions, specified below. Let ns

denote the exterior unit normal at s ∈ ∂�. For simplicity, assume ∂� is infinitely
differentiable, although that is stronger than needed. The function b (·, u) is generally
nonlinear in u, although the linear case is certainly also important. This problem
can be given a weak reformulation, much as with finite element methods, and from
this, we give a spectral method for its numerical solution. The spectral method is
defined using an explicitly given transformation � from B

d onto �. An earlier paper
using this numerical approach to solve elliptic equations with a Neumann boundary
condition is [8].

In Section 2, we derive the variational formulation of the nonlinear boundary
value problem and its discrete counterpart, based on trial spaces of multivariate
orthogonal polynomials over B

d . The resulting nonlinear equations are solved by
using the built in MATLAB function fsolve in combination with some bootstrap
method. In Section 3, we present two two-dimensional and two three-dimensional
numerical examples. For dimension 2, one example has a nonlinear term that is suf-
ficiently bounded such that the corresponding Nemytskii operator (see the definition
in Section 4) is continuous on an appropriate Sobolev space. The nonlinearity of the
other examples have a Stefan–Boltzmann type nonlinearity. For all given examples,
our proposed method shows rapid convergence. Section 4 provides a convergence
proof for our method assuming that a solution u∗ of the nonlinear boundary problem
(1.1)–(1.2) exists, an initial estimate is sufficiently close to u∗, and that the nonlinear
term generates a continuous Nemytskii operator. The analysis uses a reformulation
of (1.1)–(1.2) as a nonlinear integral equation. The error analysis assumes the nonlin-
ear function b (·, u) is restricted in how it increases as a function of u; but we define
and illustrate the numerical method without this limitation. So Section 4 explains the
convergence results from Section 3 for the case of the sufficiently bounded nonlin-
earity. One has to keep in mind that nonlinear problems will have multiple solutions
in general, so only local convergence results can be expected. For the case of the
Stefan–Boltzmann nonlinearity, we do not have a convergence proof for our method,
but in Section 5, we present a proof that the nonlinear variational problem given in
Section 2 has at least one positive solution and that our method provides positive
solutions to the corresponding discrete nonlinear variational problem.

The theory of the solvability of (1.1)–(1.2) has been studied by a number of
researchers. An important approach to this theory is to use the Green’s function for
solving the linear Neumann problem

− �u (s) + γ (s)u (s) = 0, s ∈ �, (1.3)
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∂u(s)

∂ns

= b (s) , s ∈ ∂�, (1.4)

with γ so chosen that there is a unique solution, e.g., assume γ ∈ C
(
�
)

and

min
s∈�

γ (s) > 0. (1.5)

More generally, assume γ is so chosen that the equation (1.3) is strongly elliptic. In
the error analysis of our method, the function γ is assumed, for simplicity, to be as
smooth as needed. The solution to (1.3)–(1.4) can be written as

u (s) =
∫

∂�

G (s, t) b (t) dt, s ∈ �; (1.6)

(see [17, §7.2]). For γ = 0 (see [27, §9.6; p. 269]). The Green’s function G (also
called a Neumann function) satisfies

G (s, t) =
{

O (log |s − t |) , d = 2,

O
(|s − t |−d+2) , d ≥ 3.

The operator
(
Ĝv
)
(s) =

∫

∂�

G (s, t) v (t) dt, s ∈ ∂�,

is a compact operator from L2 (∂�) → L2 (∂�) and from C (∂�) → C (∂�) (see
[25, §§7.3, 7.4]). This is also true for other spaces as will be discussed later. With
this operator, the solvability of (1.1 )–(1.2) can be converted to the solvability of the
nonlinear integral equation

u (s) =
∫

∂�

G (s, t) b (t, u (t)) dt, s ∈ ∂�, (1.7)

over the boundary ∂� for a variety of function spaces, e.g., C (∂�). Once a solution
is found over ∂�, the solution over all of � follows from using (1.7) with s ranging
over all of �.

The equation (1.7) can be analyzed as a fixed point problem, e.g., using the Banach
fixed point theorem over C (∂�) [5, p.208] and assuming (i) b (s, ξ) is sufficiently
small, and (ii) b (s, ξ) has a sufficiently small Lipschitz constant with respect to ξ .
Another approach is to use the theory of positive operators [22]. Using this approach,
a very powerful solvability theorem in C

(
�
)

is given by Amann [1, p. 47] (also see
Zeidler [31, §7.17]). Further results can be obtained using the theory of monotone
operators (e.g., see Zeidler [32, §28.3]). Most of these results are in the function
spaces C (∂�) or L2 (∂�); but we use other Sobolev spaces in Section 4 for the
error analysis of our numerical method. Most of these theoretical results require that
the function b (s, ξ) be bounded linearly in ξ , eliminating some important cases of
interest. Similar restrictions on b (·, u) are also required in the error analysis of our
numerical method.

One motivation for studying equations of type (1.1)–(1.2) are heat equations,
where the transport in the domain � is given by diffusion and on the surface ∂�

there is given incoming and radiation is outgoing Stefan–Boltzmann type radiation
(see [20]). For this type of nonlinearity, b (s, ξ) behaves like ξ4. For this problem
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(1.1)–(1.2), we give numerical examples in Section 3 and an existence proof in
Section 5.

2 The numerical method

Multiplying (1.1) by v (s) and integrating by parts over � leads to the weak
framework for (1.1)–(1.2): Find u ∈ H 1 (�) such that

A (u, v) =
∫

∂�

b (t, u (t)) v (t) dt, ∀v ∈ H 1 (�) , (2.1)

with the bilinear functional

A (v1, v2) =
∫

�

[�v1(s) · �v2(s) + γ (s)v1(s)v2(s)] ds. (2.2)

The meaning of the Sobolev space Hm (�) (and also Hm− 1
2 (∂�)), with m ≥ 0 an

integer is discussed below in Section 4.
Let Xn denote the approximation space over �, to be based on a transformation �

of Bd onto � and using �d
n, the polynomials of degree ≤ n in d variables (see [14]).

For the numerical method, find un ∈ Xn such that

A (un, v) =
∫

∂�

b (t, un (t)) v (t) dt, ∀v ∈ Xn. (2.3)

2.1 Transformation of �

As in earlier papers, assume that a mapping

� : Bd 1−1−→
onto

�

is known, and let 	 = �−1 : �
1−1−→
onto

B
d

denote the inverse mapping. Let J (x) ≡
(D�) (x), x ∈ B

d
, and K (s) ≡ (D	) (s), s ∈ �, denote the Jacobian matrix of

the transformations � and 	, respectively. Assume J (x) is nonsingular on B
d
, and

without loss of generality, assume

det J (x) > 0, x ∈ B
d
.

Differentiating the identity 	 (� (x)) = x over Bd leads to

K (s) J (x) = I, s = �(x) , (2.4)

K (�(x)) = J (x)−1 , x ∈ B
d
. (2.5)

Let v denote a general function defined over �. For the transformation s = � (x),
introduce the notation ṽ (x) = v (� (x)); or equivalently, v (s) = ṽ (	 (s)). Consider
the derivatives with respect to s of v (s). Let ∇s denote the gradient with respect to
the components of s; and do similarly for ∇x . Then

∇sv (s) = K (s)T ∇x ṽ (x) , x = 	 (s) , (2.6)

∇x ṽ (x) = J (x)T ∇sv (s) , s = �(x) , (2.7)
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with ∇x ṽ (x) the gradient of ṽ (x) written as a column vector, and analogously for
∇sv (s). An investigation of techniques for creating such mappings � is given in [7].

The convergence analysis will require comparing norms over � and B
d , which the

following lemma addresses. For simplicity, assume � ∈ C∞
(
B

d
)

, although this can

be relaxed. The proof is relatively straightforward.

Lemma 2.1 Let m ≥ 0 be an integer. A function v ∈ Hm (�) if and only if ṽ ∈
Hm
(
B

d
)
. Moreover,

c1,m ‖v‖Hm(�) ≤ ‖̃v‖Hm(Bd) ≤ c2,m ‖v‖Hm(�) , v ∈ Hm (�) , ṽ = v ◦ �,

with constants c1,m, c2,m > 0.

2.2 The approximation space

Let �d
n denote the polynomials of degree ≤ n over Rd . Define

Xn =
{
ψ ◦ �−1| ψ ∈ �d

n

}
. (2.8)

The following approximation theorem [19, Thm. 4.2] is needed for polynomial
approximation over the unit ball Bd .

Theorem 2.2 (Li and Xu) Let r ≥ 2 be an integer. Given v ∈ Hr
(
B

d
)
, there exists a

sequence of polynomials pn∈ �d
n such that

‖v − pn‖H 1(Bd) ≤ εn,r ‖v‖Hr(Bd) , n ≥ 1. (2.9)

The sequence εn,r = O
(
n−r+1

)
and is independent of v.

Combining Lemma 2.1 with the definition of Xn in (2.8), the result (2.9) can be
extended to the approximation of functions over � using Xn.

Let Nn denote the dimension of Xn and �d
n:

N ≡ Nn =
(

n + d

d

)
.

Let {ϕ1, . . . , ϕN } denote an orthonormal basis for �d
n, and let

{ψ1, . . . , ψN } =
{
ϕ1 ◦ �−1, . . . , ϕN ◦ �−1

}

denote a corresponding basis (usually not orthonormal) for Xn. For a discussion of
multivariate orthogonal polynomials, see [16] and [30]. A special choice of basis
polynomials {ϕ} and their efficient evaluation is discussed in [4].

2.3 The numerical method

For the numerical method (2.3), write

un (s) =
Nn∑

=1

αψ (s) .
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Solve for the coefficients {α} for which

Nn∑

=1

α

∫

�

[∇ψ(s) · ∇ψk(s) + γ (s) ψ (s) ψk (s)] ds

=
∫

∂�

b

(

s,

Nn∑

=1

αψ (s)

)

ψk(s) ds, k = 1, . . . , Nn.

(2.10)

The function ũn (x) ≡ un (� (x)), x ∈ B
d is the equivalent solution considered over

B
d ,

ũn (x) =
Nn∑

=1

αϕ (x) .

Using the transformation of variables s = �(x) in the system (2.10), the coefficients
{α| = 1, 2, . . . , Nn} are the solutions of

Nn∑

k=1

αk

∫

Bd

⎡

⎣
d∑

i,j=1

ãi,j (x)
∂ϕk(x)

∂xj

∂ϕ(x)

∂xi

+ γ (� (x))ϕk(x)ϕ(x)

⎤

⎦ det J (x) dx

=
∫

∂Bd

b

(

x,

Nn∑

k=1

αkϕk (x)

)

ϕ (x)
∣∣Jbdy (x)

∣∣ dx,  = 1, . . . , Nn

(2.11)
with

Ã (x) = J (x)−1 J (x)−T .

This change of variables is derived in [3] and [8]. The term
∣∣Jbdy (x)

∣∣ arises from the
transformation of an integral over ∂� to one over ∂Bd , say

∫

∂�

g (s) ψk(s) ds =
∫

∂Bd

g (� (x)) ϕk (x)
∣∣Jbdy (x)

∣∣ dx.

In one variable (d = 2), the boundary ∂� is often represented as a mapping

�(cos θ, sin θ) ≡ χ (θ) = (χ1 (θ) , χ2 (θ)) , 0 ≤ θ ≤ 2π.

In that case,
∣∣Jbdy (x)

∣∣ is simply
∣∣χ ′ (θ)

∣∣ and the associated integral is

∫ 2π

0
g (χ (θ)) ϕk (cos θ, sin θ)

∣∣χ ′ (θ)
∣∣ dθ

The case for ∂� a surface in R
3 is given in the Appendix to this paper.

2.4 Numerical integration

The integrals in (2.11) are over Bd and S
d−1 = ∂Bd , and they need to be evaluated

numerically.
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2.4.1 The case d = 2

For integrals over B2, use polar coordinates to write
∫

B2
q (x) dx =

∫ 2π

0

∫ 1

0
rq̃ (r, θ) dr dθ.

with q̃ (r, θ) ≡ q (r cos θ, r sin θ). Approximate it by

∫

B2
q (x) dx ≈ Iη (q) ≡ 2π

2η + 1

η∑

l=0

2η∑

m=0

ωlrl q̃

(
rl,

2πm

2η + 1

)
. (2.12)

The formula uses the trapezoidal rule with 2η + 1 subdivisions for the integration
over [0, 2π ] in the azimuthal variable θ . The numbers rl and ωl denote, respectively,
the nodes and weights of the (η + 1)-point Gauss-Legendre quadrature formula on
[0, 1]. This quadrature over B2 is exact for all polynomials q ∈ �2

2η. For integrals

over ∂� = S
1, use the trapezoidal rule.

2.4.2 The case d = 3

For integrals over B3, use spherical coordinates to write
∫

B3
q (x) dx =

∫ 1

0

∫ 2π

0

∫ π

0
q̃(r, θ, φ) r2 sin(θ) dθ dφ dr

q̃ (r, θ, φ) = q (sin θ cos φ, sin θ sin φ, cos θ)

It is approximated by

Iη (q) ≡
2η+1∑

i=0

η∑

j=0

η∑

k=0

π

η + 1
ωj νkq̃

(
ζk + 1

2
, arccos(ξj ),

π i

2 (η + 1)

)
(2.13)

For the φ-integration, use the trapezoidal rule with 2η + 2 subdivisions, because
the function is 2π -periodic in φ. For the r-direction, use the transformation and
approximation

∫ 1

0
r2v(r) dr = 1

8

∫ 1

−1
(t + 1)2v

(
t + 1

2

)
dt ≈

η∑

k=0

1

8
ν′
k

︸︷︷︸
=:νk

v

(
ζk + 1

2

)

where the ν′
k and ζk are the weights and the nodes of the Gauss quadrature with η+1

nodes on [−1, 1] with respect to the inner product

(v, w) =
∫ 1

−1
(1 + t)2v(t)w(t) dt.

The weights and nodes also depend on η but this index is omitted here. For the θ -
direction, use the transformation

∫ π

0
sin(θ)v(θ) dθ =

∫ 1

−1
v(arccos(z)) dz ≈

η∑

j=0

ωjv(arccos(ξj ))
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where the ωj and ξj are the weights and nodes for the (η + 1)-point Gauss-Legendre
quadrature formula on [−1, 1]. This quadrature formula is exact for all polynomials
q ∈ �3

2η.

For the surface S2, there are many possible quadrature formulas for approximating

I (q) =
∫

S2
q (x) dx.

These are discussed at length in the classic text of Stroud [28], and a survey is given
in [6, Chap. 5].

A particularly simple and accurate formula is obtained by approximating I (q)

when written using spherical coordinates,

I (q) =
∫ 2π

0

∫ π

0
q (cos φ sin θ, sin φ sin θ, cos θ) sin θ dθ dφ

=
∫ 2π

0

∫ 1

−1
q
(

cos φ
√

1 − z2, sin φ
√

1 − z2, z
)

dz dφ. (2.14)

Approximate the φ-integration using the trapezoidal rule, and approximate the z-
integration using Gauss-Legendre quadrature. More precisely, given η > 1, apply
the trapezoidal rule with 2η subdivisions to the integration in φ, and apply Gauss-
Legendre quadrature with η nodes to the integration in z over [−1, 1]. Let

h = π

η
, φj = jh, j = 0, 1, . . . , 2η.

Let
{
z1, . . . , zη

}
and
{
w1, . . . , wη

}
denote the Gauss-Legendre nodes and weights,

respectively, over [−1, 1]. Then define

Iη (q) = h

2η−1∑

j=0

η∑

k=1

wkq

(
cos φj

√
1 − z2

k, sin φj

√
1 − z2

k, zk

)

= h

2η−1∑

j=0

η∑

k=1

wkq
(
cos φj sin θk, sin φj sin θk, cos θk

)
, (2.15)

where zj = cos θj , j = 1, . . . , η. It is shown in [6, Thm. 5.4] that Iη (q) has degree
of precision 2η − 1,

Iη (q) = I (q) , ∀q ∈ �2η−1

(
S

2
)

,

with �2η−1
(
S

2
)

denoting all spherical polynomials of degree ≤ 2η − 1.

2.5 Solving the nonlinear system

In our numerical examples, the nonlinear system (2.11) is solved for a small value of
the degree n, often with an initial guess associated with u

(0)
n = 0. As n is increased,

the approximate solution from a preceding n is used to generate an initial guess for
the new value of n. In some cases, this was combined with a homotopy procedure.
This approach to generating an initial guess for the iteration has worked in most cases
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we have computed, but will probably not be sufficient in many other cases. Finding
an initial guess for nonlinear problems is almost always difficult, and often it requires
some knowledge of the solution being sought.

The MATLAB program fsolve was used to solve the nonlinear system. In the
future, we plan to look at other numerical methods that take advantage of the special
structure of (2.11). To estimate the error, we use as a true solution a numerical
solution associated with a significantly larger value of n.

3 Numerical examples

Begin with some planar examples. To define the region �, begin with the boundary
mapping

ϕ (cos θ, sin θ) ≡ (p3 + p1 cos θ + p2 sin θ) (cos θ, sin θ) , 0 ≤ θ ≤ 2π, (3.1)

with p = (1, 2, 3). Using the interpolation/integration method of [7], this is extended
to a mapping � that is a polynomial of degree 2 in each component. Figure 1 illus-
trates the mapping, giving the images in � of the circles r = j/20, j = 1, . . . , 20
and the angular lines θ = jπ/20, j = 1, . . . , 40. The problem to be solved is

− �u (s) + u (s) = 0, s ∈ �, (3.2)

∂u (s)

∂ns

= − 1
10e−0.5u(s)2 + cos

(
1
5 s1s2

)
, s ∈ ∂�. (3.3)

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

s
1

s
2

Fig. 1 Illustration of the mapping � for the boundary mapping (3.1)
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The solution that was found is shown in Fig. 2. The numerical integration of the linear
system coefficients in (2.11) were carried out as described in (2.12) with η = 2n

where n is the degree of the approximating polynomial ũn (x). The estimated errors
are shown in Fig. 3, and the convergence appears to be exponential. Experimentally,
the condition numbers of the linear system on the left side of (2.10) are approximately
O
(
N2

n

)
.

3.1 Another planar example

The region � is given by means of the mapping �:

�(x) =
[
x1 − x2 + ax2

1 , x1 + x2

]T
, x ∈ B

2
, (3.4)

for a given 0 < a < 1. Figure 4a illustrates the mapping with a = 0.95, giving
the images in � of the circles r = j/10, j = 1, . . . , 10 and the angular lines θ =
jπ/10, j = 1, . . . , 20. It can be shown that � is a 1-1 mapping on the unit disk B

2
.

Another mapping, denoted here by �II , is illustrated in Fig. 4b. It is based on the
interpolation/integration method of [7, §3], and each component is a polynomial of
degree 2. The mappings � and �II agree on ∂�.

The problem to be solved is

− �u (s) + 2u (s) = 0, s ∈ �, (3.5)

∂u (s)

∂ns

= − (u (s))4 + cos
(

1
2 s1s2

)
, s ∈ ∂�. (3.6)

-5

s
1

0

5
64

s
2

20-2

-0.5

-1

0

0.5

1.5

1

Fig. 2 The solution to (3.2)–(3.3)
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2 4 6 8 10 12 14 16 18 20
10-5

10-4

10-3

10-2

10-1

100

n

Fig. 3 The error in solving (3.2)–(3.3)

The solution that was found is shown in Fig. 5. The estimated errors when using both
the mappings � and �II are shown in Fig. 6. The right side of (3.6) does not satisfy
the error analysis assumptions of (4.27), but the method still works well, converging
exponentially.

3.2 Two three-dimensional examples

We will consider two examples in R
3. The first region �1 is given by the mapping

�1(x) = [x1 − x2 + ax2
1 , x1 + x2, x3]T , x ∈ B

3
,

again with a = 0.95. This region is a three-dimensional extension of the mapping
given in (3.4). Every horizontal (parallel to the xy–plane) cut through �1 will have
the same shape as the one shown in Fig. 4. The problem we solve is

− �u(s) + 2u(s) = 0, s ∈ �1 (3.7)
∂u(s)

∂ns

= −u4(s) + cos
( s1s2s3

4

)
, s ∈ ∂�1 (3.8)

So, similar to (3.6), the boundary term is given by a Stefan–Boltzmann radiation term
and a smooth positive function, describing some incoming energy. The numerical
solutions un(s) are calculated for n = 1, . . . , 25 and u30(s) is used as a reference
solution. Figure 7 shows the approximate surface values, based on u30. Figure 8
shows the the estimated errors. The convergence appears to be exponential, similar
to the two-dimensional examples.
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−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

s
1

s
2

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

s
1

s
2

Fig. 4 Illustrations of mappings on B
2 for the region � given by (3.4)

For the second example, we use the region �2 defined by

�2(x) = [x1, 4x2, 2x3]T , x ∈ B
3
,

3
2

1

s
1

0
-1

-2-2

-1

0

s
2

1

0.3

0.4

0.5

0.6

0.7

0.8

2

Fig. 5 Solution to (3.5)–(3.6)
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0251015
10-6

10-5

10-4

10-3

10-2

10-1

n

Using 
Using 

II

Fig. 6 Errors when solving (3.5)–(3.6) with mappings � and �II

Fig. 7 Surface values of u30 for the numerical solution of (3.7)–(3.8)
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Fig. 8 Estimated errors when solving (3.7)–(3.8)

so the region �2 is an ellipse with semi-axes of length 1, 4, and 2. The equation we
solve is given by

− �u(s) + 2u(s) = 0, s ∈ �2 (3.9)
∂u(s)

∂ns

= −u4(s) + max{0, (ns)s1}, s ∈ ∂�1 (3.10)

The right-hand side is again a Stefan–Boltzmann term plus a source term given by

max{0, (ns)s1} = max{0, ns · [1, 0, 0]T }

Here, we take the normal component of an incoming radiation with constant direc-
tion −[1, 0, 0] and the maximum ensures that surface side that is in the shadow will
not receive a negative energy. This formula is correct, for example, if the region is
convex. In the moment where the surface creates shadows on the side of the incom-
ing radiation, these shadows have to be taken into account and the formula would
be much more complicated, taking the geometry of ∂� into account. But even for a
convex surface, the source term max{0, ns · [1, 0, 0]T } is only once continuously dif-
ferentiable and we expect that the solution u(s) to (3.9 )–(3.10) is only three times
differentiable. The solution along the surface of �2 is shown in Fig. 9. The speed of
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Fig. 9 Surface values of u30 for
the numerical solution of
(3.9)–(3.10)

convergence of our method should be reduced. This is confirmed in Fig. 10 where
we use again u30(s) as a reference solution. Figure 10 does not show exponential
convergence, but the logarithmic graph indicates a polynomial convergence.

4 Error analysis

The error analysis uses a reformulation of the nonlinear problem (1.1)–(1.2) as a
nonlinear integral equation, as discussed earlier in the introduction. The error analysis
makes limiting assumptions on the function b, as discussed later in this analysis, e.g.,
(4.27), while still covering many cases of interest. We begin with a review of notation
and results on the linear Neumann boundary value problem.

4.1 The linear Neumann problem

Our numerical method is analyzed in the context of the Sobolev spaces Hm (�) and

Hm− 1
2 (∂�), with m ≥ 0 an integer. We give a brief review of notation and results,

all well-known in the literature. The spaces Hm (�) are the completion of Cm
(
�
)

using the norm

‖v‖Hm(�) =

√√√√√
∑

|i|≤m

∥∥∥∥∥
∂ |i|v (s)

∂s
i1
1 · · · ∂s

id
d

∥∥∥∥∥

2

L2(�)
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Fig. 10 Estimated errors when solving (3.9)–(3.10)

and i = (i1, . . . , id), |i| = i1 + · · ·+ id . For Hm− 1
2 (∂�), begin with � = B

d , noting
∂Bd = S

d−1. For d = 2 and r ∈ R, v ∈ Hr
(
S

1
)

if

v (s) =
∞∑

j=−∞
aj e

ijθ , s = (cos θ, sin θ) ∈ S
1,

‖v‖Hr(S1) ≡
√√√√√√

|a0|2 +
∞∑

j=−∞
j �=0

|j |2r
∣∣aj

∣∣2 < ∞.

For d = 3, begin by considering the spherical harmonics Sk
n of degree n and order k

on S
2 (see [5, §7.5.5]). For r ∈ R, a function v ∈ Hr

(
S

2
)

if

v (s) =
∞∑

n=0

2n∑

k=0

an,kS
k
n (s) , s ∈ S

2,

‖v‖Hr(S2) ≡
√√√√

∞∑

n=0

(2n + 1)2r

2n+1∑

k=1

∣∣an,k

∣∣2 < ∞.

An analogous definition can be given for d > 3.
For the more general region �, we have v ∈ Hr (∂�) if ṽ ∈ Hr

(
S

d−1
)
, with

ṽ = v ◦ �. The norm of v within Hr (∂�) can be defined in a variety of ways, with

‖v‖Hr(∂�) = ‖̃v‖Hr(Sd−1)
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being the simplest. In whatever way ‖v‖Hr(∂�) is defined, we assume

c1,r ‖v‖Hr(∂�) ≤ ‖̃v‖Hr(Sd−1) ≤ c2,r ‖v‖Hr(∂�) (4.1)

for constants c1,r , c2,r > 0 independent of v.
Recalling the brief discussion of the reformulation (1.7), consider first the linear

Neumann problem
− �u + γ (s)u = 0, s ∈ �, (4.2)

∂u(s)

∂ns

= b (s) , s ∈ ∂�. (4.3)

with b ∈ H−1/2 (∂�) (see [11, p. 338]). Recalling the definition (2.2) for A, assume
A is strongly elliptic:

|A (v, v)| ≥ ce ‖v‖2
H 1(�)

, ∀v ∈ H 1 (�) , (4.4)

for some ce > 0. For simplicity, also assume γ ∈ C∞ (�), along with the earlier
assumptions following (1.4). It is straightforward to show A is bounded on H 1 (�)×
H 1 (�),

|A (v, w)| ≤ cA ‖v‖H 1 ‖w‖H 1 , v, w ∈ H 1 (�) (4.5)

for some 0 < cA < ∞. Introduce the linear functional

b (v) ≡ (v, b)L2 =
∫

∂�

v (s) b(s) ds, v ∈ H 1/2 (∂�) (4.6)

which is bounded over H 1/2 (∂�):

‖b‖H 1/2(∂�)→R
≤ c ‖b‖H−1/2(∂�)

for some c > 0.
The weak form of the Neumann problem (4.2)–(4.3) is as follows. Let b ∈

H−1/2 (∂�), and then find u ∈ H 1 (�) such that

A (u, v) = b(v), ∀v ∈ H 1 (�) . (4.7)

The Lax-Milgram theorem (cf. [5, §8.3], [12, §2.7], [13, p. 8]) implies the unique
existence of u ∈ H 1 (�), with

‖u‖H 1(�) ≤ 1

ce

‖b‖H−1/2(∂�)→R
.

The solution u can be written

u = Gb, b ∈ H−1/2 (∂�) �→ u ∈ H 1 (�) ,

with G : H−1/2 (∂�) → H 1 (�) a bounded operator (see [10, p. 308]).
More generally,

u = Gb, b ∈ Hm−1/2 (∂�) �→ u ∈ Hm+1 (�) , (4.8)

m ≥ 0 an integer, and G is a bounded mapping (see [18, p. 129]). We are usually
interested in the case m = 1. This formula is more commonly written in an integral
form,

u (s) =
∫

∂�

G (s, t) b (t) dt, s ∈ �, (4.9)
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as earlier in (1.6).This is the Green’s integral representation for the solution of (4.2)–
(4.3).

In addition, introduce the operator Ĝ, a ‘restriction’ of G:
(
Ĝv
)
(s) = (Gv) (s) , s ∈ ∂�, v ∈ H−1/2 (∂�) . (4.10)

Since Gv ∈ H 1 (�), the trace (Gv) ∈ H 1/2 (∂�), and moreover, the trace operator
is a bounded mapping from H 1 (�) onto H 1/2 (∂�).Thus Ĝ defines a (Neumann
to Dirichlet) bounded mapping from H−1/2 (∂�) into H 1/2 (∂�). Similarly, Ĝ is a
bounded mapping from Hm−1/2 (∂�) into Hm+1/2 (∂�), m ≥ 1. Since the unit ball
in Hm+1/2 (∂�) is compact in Hm−1/2 (∂�), it follows that Ĝ is a compact mapping
from Hm−1/2 (∂�) into Hm−1/2 (∂�), m ≥ 1 an integer. The case of most interest
here is m = 1.

The numerical solution of (4.2)–(4.3) is as follows. Find un ∈ Xn such that

A (un, v) =
∫

∂�

b (t) v (t) dt, ∀v ∈ Xn. (4.11)

This has a unique solution un ∈ Xn by means of the same theory as was used for
(4.7). We write

un (s) = Gnb (s) , s ∈ � (4.12)

with Gn : H 1/2 (∂�) → Xn ⊆ H 1 (�). Define Ĝn in analogy with Ĝ in (4.10). This
was present and analyzed earlier in [8], but a different approach to the error analysis
is taken here.

Looking at the approach of Osborn [26, §4], we can show the following.

Theorem 4.1 Let b ∈ H 1/2 (∂�). Then

‖Gb − Gnb‖H 1(�) ≤ c

n
‖b‖H 1/2(∂�) . (4.13)

Proof Let u = Gb and note u ∈ H 2 (�) from (4.8) with m = 1. Subtracting (4.11)
from (4.7), it follows that

A (u − un, v) = 0 ∀v ∈ Xn. (4.14)

From (4.4),
ce ‖u − un‖2

H 1(�)
≤ A (u − un, u − un) . (4.15)

Using (4.14),

A (u − un, u − un) = A (u − un, u)

= A (u − un, u − χ) , ∀χ ∈ Xn.

From (4.5),
A (u − un, u − χ) ≤ cA ‖u − un‖H 1 ‖u − χ‖H 1 .

Combining this with (4.15) and canceling ‖u − un‖H 1 ,

‖u − un‖H 1(�) ≤ cA
ce

‖u − χ‖H 1(�) , ∀χ ∈ Xn. (4.16)
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From the comment following Theorem 2.2 with r = 2, this implies

‖u − un‖H 1(�) ≤ c1

n
‖u‖H 2(�)

‖Gb − Gnb‖H 1(�) ≤ c1

n
‖Gb‖H 2(�) (4.17)

for a constant c > 0.
In addition,

‖Gb‖H 2(�) ≤ c2 ‖b‖H 1/2(∂�) .

Combining this with (4.17) implies (4.13) for some constant c > 0.

Corollary 4.2
∥∥Ĝ − Ĝn

∥∥
H 1/2(∂�)→H 1/2(∂�)

≤ c

n
(4.18)

Proof From the trace theorem,
∥∥Ĝb − Ĝnb

∥∥
H 1/2(∂�)

≤ c ‖Gb − Gnb‖H 1(�) ,

for some c > 0. Combining this with (4.13),
∥∥Ĝb − Ĝnb

∥∥
H 1/2(∂�)

≤ c

n
‖b‖H 1/2(∂�) ,

proving (4.18)

4.2 The nonlinear Neumann problem

Consider solving
− �u + γ (s)u = 0, s ∈ �, (4.19)

∂u(s)

∂ns

= b (s, u (s)) , s ∈ ∂�, (4.20)

with the nonlinear Neumann boundary condition (4.20). We begin by assuming b ∈
C (∂� × R), with added assumptions given as we proceed (e.g., see (4.27) below).
Denote the solution being sought by u∗ ∈ H 2 (�), assumed to be unique in some
local neighborhood of u∗. An overview of the solvability theory for (4.19)–(4.20)
was given earlier in the introduction.

Using the operator G and the Green’s representation (4.9), the original solution u∗
satisfies

u∗ (s) =
∫

∂�

G (s, t) b
(
t, u∗ (t)

)
dt, s ∈ �. (4.21)

Introduce the “Nemytskii operator” N :

(N (v)) (t) = b (t, v (t)) , t ∈ ∂�, v ∈ L2 (∂�) .

(See [21, Chap. 1, §2], [32, §26.3] for its general properties). The equation (4.21) can
be written as

u∗ = GN
(
trace

(
u∗)) (4.22)
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with, as before, trace (u∗) denoting the restriction of u∗ to ∂�:

trace : Hm (�)
onto−→ Hm−1/2 (∂�) , m ≥ 1.

Note that knowing trace (u∗) over ∂� determines u∗ completely over all of � using
(4.21).

For the numerical method, following (4.11), find u∗
n ∈ Xn such that

A
(
u∗

n, v
) =
∫

∂�

b
(
t, u∗

n (t)
)
v (t) dt, ∀v ∈ Xn. (4.23)

Using (4.12), write

u∗
n = GnN

(
trace

(
u∗

n

))
. (4.24)

As noted before, u∗
n (s) over � is determined from its values over ∂�.

The error analysis is similar to that of [9], making use of the equations (4.22) and
(4.24). This reformulation of a partial differential equation problem as an integral
equation problem follows that of Osborn [26, §4.1]. We begin by analyzing the error
u∗ − u∗

n over ∂�, and then the error over � is analyzed.
The error analysis parallels that of [9]. It also was based on the construction of G

and Gn, although with different Green’s integral operators. Introduce the notation

û∗ = trace
(
u∗) ,

û∗
n = trace

(
u∗

n

)
.

Consider the equations

û∗ = ĜN
(
û∗) , (4.25)

û∗
n = ĜnN

(
û∗

n

)
, (4.26)

and consider them with respect to the Hilbert space H 1/2 (∂�). Equation (4.25) is a
fixed point problem, and as noted earlier following (4.10), Ĝ is a compact operator
from H 1/2 (∂�) into H 1/2 (∂�). This construction converts the numerical method
(4.24) to a corresponding method for finding a fixed point for a completely continu-
ous nonlinear integral operator, namely ĜN , and this latter numerical method can be
analyzed using the results given in [21, Chap. 3] and [2].

It is necessary to make assumptions about the Nemytskii operator N . For an open
set D ⊆ H 1/2 (∂�) containing the solution û∗, assume

v ∈ D =⇒ b (·, v) ∈ H 1/2 (∂�) ,

B ⊆ D and bounded in H 1/2 (∂�) =⇒ N (B) bounded in H 1/2 (∂�)

vn → v in H 1/2 (∂�) =⇒ b (·, vn) → b (·, v) in H 1/2 (∂�) .

(4.27)

These are somewhat restrictive, limiting the generality of our error analysis. To illus-
trate this limitation for functions of one variable, if b (·, v) = v2 and if v ∈ L2 (0, 1)

then b (·, v) may not belong to L2 (0, 1). The function v (s) ≡ 1/ 3
√

s is in L2 (0, 1),
whereas v (s)2 = 1/

3√
s2 does not belong to L2 (0, 1). The assumption (4.27) limits

the growth behavior of b (·, v) as a function of v. Examples of acceptable cases are

b (s, v) = exp
(−v2

)
and
(
1 + v2

)−1
.
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An analysis of when (4.27) is true can be based on [23] . Assume the function b can
be extended to b ∈ C

(
� × R

)
. Begin by noting that each function v ∈ H 1/2 (∂�)

can be extended to a function w ∈ H 1 (�), and in fact it can be written

w (s) =
∫

∂�

� (s, t) v (t) dt, s ∈ �, (4.28)

a Green’s function formula. Such an extension w can be constructed as the solution
to the Dirichlet problem

�w (s) = 0, s ∈ �, (4.29)

w (s) = v (s) , s ∈ ∂�. (4.30)

There is a unique solution w (s) in H 1 (�). Apply the result of Marcel and Mizel
[23, Thm. 2.2] to w, examining b (s, w (s)). If b (·, w (·)) belongs to H 1 (�), then
b (s, v (s)) ≡ trace b (s, w (s)) belongs to H 1/2 (∂�). Their result implies that (4.27)
is satisfied if ∣∣∣∣

∂b (s, v)

∂sj

∣∣∣∣ ≤ a1 (s) + c |v| ,
∣∣∣∣
∂b (s, v)

∂v

∣∣∣∣ ≤ a2 (s) ,

for s ∈ �, v ∈ R, with constant c and functions a1, a2 ∈ L2 (�).
The mapping ĜN is a compact nonlinear operator on an open domain D of

the Banach space X = H 1/2 (∂�). This follows from (i) the compactness of G
from H 1/2 (∂�) to itself, and (ii) the boundedness of N on bounded subsets of
D ⊆ H 1/2 (∂�).

Let V ⊆ D be a bounded open set containing an isolated fixed point solution û∗
of the nonlinear integral equation (4.25). An important concept is that of the “index”
of û∗ ( see Krasnoselskii [21, p. 109]). An important property is for the index of û∗
to have a nonzero index. For some intuition as to stability implications of a fixed
point having a nonzero index (see [2, Property P5, p. 802]). In essence, if small
perturbations of the function v − GN (v) leads to small perturbations in the fixed
point û∗, then the isolated fixed point û∗ has a nonzero index.

Theorem 4.3 Assume the function b satisfies (4.27). Assume the problem (4.25) has
a solution û∗ that is unique within some open neighborhood V ⊆ H 1/2 (∂�) of û∗,
and further assume that û∗ has nonzero index. Then for all sufficiently large n, (4.26)
has one or more solutions û∗

n within V , and all such û∗
n converge to û∗ as n → ∞.

Proof This is an application of the methods of [21, Chap. 3, Sec. 3] or [2, Thm.
3]. A sufficient requirement is the norm convergence of Gn to G, given in (4.18);
[2, Thm. 3] uses a weaker form of (4.18). The assumption that a solution û∗ exists
is linked to an original assumption that (4.19)–(4.20) has a unique solution in some
open neighborhood V ∗ about u∗, V ∗ ⊆ H 1 (�).
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The most standard case of a nonzero index involves a consideration of the Fréchet
derivative of N (see [5, §5.3]). In particular, the linear operator N ′ (v) is given by

(
N ′ (v) w

)
(x) = ∂b (x, z)

∂z

∣∣∣∣
z=v(x)

× w(x) (4.31)

Theorem 4.4 Assume the function b satisfies (4.27). Assume the problem (4.25) has
a solution û∗ that is unique within some open neighborhood V of û∗; and further
assume that I − ĜN ′ (̂u∗) is invertible over H 1/2 (∂�). Then û∗ has a nonzero index.
Moreover, for all sufficiently large n there is a unique solution û∗

n to (4.26) within V ,
and û∗

n converges to û∗ with
∥∥û∗ − û∗

n

∥∥
H 1/2(∂�)

≤ c
∥∥(Ĝ − Ĝn

)
N
(
û∗)∥∥

H 1/2(∂�)

≤ c

n

∥∥N
(
û∗)∥∥

H 1/2(∂�)
(4.32)

Proof Again, this is an immediate application of results in [21, Chap. 3, Sec. 3] or
[2, Thm. 4].

The assumption that I − ĜN ′ (̂u∗) is invertible is comparable to the standard
assumption that the solution β for a one-variable fixed point problem

x = h (x)

satisfies 1 − h′ (β) �= 0. (For further information, see [2, Prop. P4, P5]).
To improve on (4.32), we need to bound

∥∥(Ĝ − Ĝn

)
ĝ
∥∥

H 1/2(∂�)
when given ĝ ∈

Hm+1/2 (∂�) for some integer m ≥ 1. This can be done by constructing a suitably
smooth extension function over �. For example, construct an extension function g ∈
Hm+1 (�) as the solution of

�g (s) = 0, s ∈ �,

g (s) = ĝ (s) , s ∈ ∂�.
(4.33)

From Lemma 2.1 and Theorem 2.2, there exists a sequence of polynomials pn∈ �d
n

such that ∥∥∥g − pn ◦ �−1
∥∥∥

H 1(�)
≤ δn,m ‖g‖Hm+1(�) , n ≥ 1. (4.34)

The sequence δn,m = O
(
n−m
)

and it is independent of g.Then

‖ĝ − χ̂n‖H 1/2(∂�) ≤ εn,m ‖g‖Hm+1(�) , n ≥ 1. (4.35)

with χn = pn ◦ �−1, χ̂n = trace (χn). The quantity ‖g‖Hm+1(�) can be bounded in
terms of ‖ĝ‖Hm+1/2(∂�). To do this, note that the solution to (4.33) can be written as

g (s) =
∫

∂�

� (s, t) ĝ (t) dt, s ∈ �,

as was done above in (4.28)–(4.30). This is a bounded operator from Hm+1/2 (∂�)

to Hm+1 (�) ,

‖g‖Hm+1(�) ≤ cm ‖ĝ‖Hm+1/2(∂�)

for some cm > 0 (see [18, p. 129]). Using this leads to the following:
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Corollary 4.5 Assume N (u∗) ∈ Hm+1/2 (∂�), for some m ≥ 1. Then
∥∥û∗ − û∗

n

∥∥
H 1/2(∂�)

≤ O
(
n−m
) ∥∥N

(
û∗)∥∥

Hm+1/2(∂�)
. (4.36)

4.2.1 The error over �

Let u∗ and u∗
n denote the solutions of (4.24) and (4.22) over � that correspond to û∗

and û∗
n respectively. Begin by subtracting (4.24) from (4.22):

u∗ − u∗
n = GN

(
trace

(
u∗))− GnN

(
trace

(
u∗

n

))

= (G − Gn)N
(
û∗)+ Gn

[
N
(
û∗)− N

(
û∗

n

)]
(4.37)

This can be used to prove convergence of u∗
n to u∗ in H 1 (�) by examining each of

the two right-hand terms.
Note that (4.13) implies the family of operators Gn are uniformly bounded from

H 1/2 (∂�) into H 1 (∂�),

‖Gn‖H 1/2(∂�)→H 1(�) ≤ cG, n ≥ 1,

and thus
∥∥Gn

[
N (trace (u∗)) − N

(
trace

(
u∗

n

))]∥∥
H 1(�)

≤ cG

∥∥N (trace (u∗)) − N
(
trace

(
u∗

n

))∥∥
H 1/2(∂�)

.
(4.38)

Theorem 4.3 and the assumption (4.27) imply this converges to zero. The first term
on the right side of (4.37), (G − Gn)N (trace (u∗)), also converges to zero, using
Theorem 4.1. Thus u∗

n → u∗ in H 1 (�).
To improve this for smoother u∗ requires further assumptions about N . Begin by

assuming u∗ ∈ Hm+1 (�), m ≥ 1, corresponding to û∗ ∈ Hm+1/2 (∂�). For the
derivative operator N ′ (v) of (4.31), assume it is a well-defined linear operator over
some open neighborhood U of trace (u∗), for every v ∈ U ⊆ H 1/2 (∂�); and further
assume N ′ (v) is uniformly bounded over U . Then (4.38) implies
∥∥Gn

[
N
(
trace

(
u∗))− N

(
trace

(
u∗

n

))]∥∥
H 1(�)

≤ c
∥∥trace

(
u∗)− trace

(
u∗

n

)∥∥
H 1/2(∂�)

≤ O
(
n−m
)
,

using (4.36) and (4.27).
For the remaining term in (4.37), recall that u∗ ∈ Hm+1 (∂�), and then recall the

bound (4.16). Applying Theorem 2.2, we have
∥∥(G − Gn) u∗∥∥

H 1(�)
≤ cn−m

∥∥u∗∥∥
Hm+1(�)

,

for some constant c > 0. Together with (4.38) and (4.37), this leads to a bound for∥
∥u∗ − u∗

n

∥∥
H 1(�)

,
∥∥u∗ − u∗

n

∥∥
H 1(�)

= O
(
n−m
)
, u∗ ∈ Hm+1 (�) , m ≥ 1.

4.3 A nonhomogeneous boundary value problem

Consider solving the problem

− �u (s) + γ (s)u (s) = f (s) , s ∈ �, (4.39)
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∂u(s)

∂ns

= b (s, u (s)) , s ∈ ∂�. (4.40)

Break this apart into two problems. First solve

− �v (s) + γ (s)v (s) = f (s) , s ∈ �, (4.41)

∂v(s)

∂ns

= 0, s ∈ ∂�. (4.42)

This can be solved approximately using the methods given in [8].
Next, let the solution u be written as

u = v + w (4.43)

Then w satisfies
− �w (s) + γ (s)w (s) = 0, s ∈ �, (4.44)

∂w(s)

∂ns

= b (s, v (s) + w (s)) , s ∈ ∂�. (4.45)

Solve this problem by the method of this paper.

5 An existence theorem for the three-dimensional Stefan–Boltzmann
problem

In two of our numerical examples, (3.5)–(3.6) and (3.9 )–(3.10), we used the right-
hand side of the form u4 that is motivated by the Stefan–Boltzmann law for radiation,
[20]. In the following, we present an existence proof for the weak equation (2.1) for
three-dimensional domains if the right-hand side includes a Stefan–Boltzmann type
nonlinearity. But as we will note later, the proof for the two-dimensional case follows
in a similar way (it requires actually a simpler function space). The proof follows
the method used by Delfour, Payre, and Zolésios, [15]. In the following, we will
allow a slightly more general second derivative operator than we have used in the
previous sections, this accommodates anisotropic heat flows, but does not present any
additional technical complications compared to the pure Laplace operator. A solution
u of (2.1) is given as the unique minimum of a coercive functional G that we define
in this section. (See [32] for the definition of a coercive functional). The proof will
also show that this solution u to equation (2.1) is non-negative which corresponds to
the interpretation that u represents the absolute temperature.

For a simple connected domain � ⊂ R
3 with smooth boundary ∂�, we consider

the boundary value problem

3∑

i,j=1

∂

∂si

(
ai,j (s)

∂

∂sj
u(s)

)
+ γ (s)u(s) = f (s), s ∈ � (5.1)

∂u

∂nA

(s) = b(s)u4(s) + c(s), s ∈ ∂�. (5.2)

This problem describes a diffusive heat flow inside the body � with a heat source
given by f (s) and on the boundary, we have the emission of energy according
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to the Stefan–Boltzmann law and incoming radiation given by c(s). The conormal
derivative ∂u/∂nA is defined by

∂u

∂nA

(s) =
3∑

i,j=1

ai,j (s)
∂u

∂sj
cos(∠(ei, n))

where n is the outward normal at x ∈ ∂� and ei is the i. standard unit vector.
We first describe the assumption for the coefficients. We assume that f , c, γ ≥ 0.

For the coefficient b we assume strict positivity

b (s) ≥ b0 > 0, s ∈ ∂�. (5.3)

Furthermore, we assume that the matrix A(s) := [ai,j (s)]i,j=1,2,3 is symmetric and
positive definite

ξT A(s)ξ ≥ m‖ξ‖2
2, ξ ∈ R

3, s ∈ � (5.4)

where m > 0 and ‖ · ‖2 denotes the Euclidean norm in R
3. Finally, we assume that

the coefficients b(s), c(s), f (s), and γ (s), are continuous functions and ai,j (s) is at
least on time continuously differentiable on their respective domain.

To derive a weak formulation of the problem (5.1)–(5.2), we assume that we have
a C2(�) solution u(s) and multiply equation (5.1) by v(s) ∈ C1(�). Integration over
� and using integrating by parts leads to

∫

�

3∑

i,j=1

ai,j (s)
u(s)

∂sj

∂v(s)

∂si
+ γ (s)u(s)v(s) ds −

∫

∂�

u(s)

∂nA

v(s) dS

=
∫

�

f (s)v(s) ds

Using equation (5.2) this leads to

∫

�

3∑

i,j=1

ai,j (s)
u(s)

∂sj

∂v(s)

∂si
+ γ (s)u(s)v(s)ds +

∫

∂�

b(s)u4(s)v(s)dS

=
∫

∂�

c(s)v(s) dS +
∫

�

f (s)v(s) ds (5.5)

A weak solution u ∈ H 1(�) of (5.1)–(5.2) is a function such that (5.5) is true for all
v ∈ H 1(�). The first problem is that in R

3 we only have H 1(�) ↪→ H 1/2(∂�) ↪→
L4(∂�), so we would need v(s) ∈ L∞(∂�) to ensure that the integral

∫

∂�

b(s)u4(s)v(s) dS

exists, but this is not true for all v ∈ H 1(�). In the following, we will give another
derivation of (5.5), based on the minimization of a functional F . Once we have found
the right domain of F , the above problem will be solved too.

We start by introducing an appropriate function space:

X (�) =
{
u ∈ H 1 (�) | u|∂� ∈ L5 (∂�)

}
(5.6)
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This function space is necessary in the three-dimensional case for the functional F ,
defined further below, to be well defined. In two dimensions, we have H 1(�) ↪→
H 1/2(∂�) ↪→ Lp(∂�) for all p ≥ 1. So in the two-dimensional case X(�) =
H 1(�). We can turn X(�) into a Banach space by using the norm

‖u‖X := ‖u‖H ∗(�) + ‖u|∂�‖L5(∂�)

Here, the first term is given by

‖u‖H ∗(�) :=
(∫

�

3∑

i=1

(
∂u

∂si
(s)

)2

ds

)1/2

Note that the first term alone is not a norm on H 1(�). The usual norm on H 1(�) is
given by

‖u‖H 1(�) :=
(∫

�

3∑

i=1

(
∂u

∂si
(s)

)2

ds +
∫

�

u2(s) ds

)1/2

or by an equivalent norm like

(∫

�

3∑

i=1

(
∂u

∂si
(s)

)2

ds +
∫

∂�

u2(s) dS

)1/2

(see [24]). But by Hölder’s inequality, we get

∫

∂�

u2(s) dS ≤
(∫

∂�

1 dS

)3/5

×
(∫

∂�

|u(s)|5 dS

)2/5

So there is a constant c (we will use c in the following for all constants, but the value
might change from inequality to inequality) such that

‖u‖L2(∂�) ≤ c‖u‖L5(∂�)

and therefore also

‖u‖H 1(�) ≤ c‖u‖X (5.7)

The following lemma is proved in [15]

Lemma 5.1 The normed vector space X(�) is a reflexive Banach space.

On X(�) we define the functional

F(u) := 1

2

∫

�

3∑

i,j=1

ai,j (s)
∂u(s)

∂si

∂u(s)

sj
+ γ (s)u2(s) ds

+
∫

∂�

b(s)

5
|u(s)|5 dS (5.8)
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This functional is well defined and continuous on X(�) and because of

f (t) = 1

5
|t |5 , t ∈ R

f ′ (t) = t |t |3 ,

f ′′ (t) = 4 |t |3 ,

we see that F is twice differentiable on X(�) with

DF(u)v =
∫

�

3∑

i,j=1

ai,j (s)
∂u(s)

∂si

∂v(s)

sj
+ γ (s)u(s)v(s)ds +

+
∫

∂�

b(s)u(s)|u(s)|3v(s) dS (5.9)

D2F(u)(v, v) =
∫

�

3∑

i,j=1

ai,j (s)
∂v(s)

∂si

∂v(s)

sj
+ γ (s)v2(s)ds +

+
∫

∂�

4b(s)|u(s)|3v2(s) dS (5.10)

for v ∈ X(�). This together with the fact that D2F(u)(v, v) ≥ 0, for v ∈ X(�),
implies the first result

Lemma 5.2 The functional F : X(�) �→ R, defined in (5.8), is twice differentiable
and convex.

For functions u, v ∈ X(�) with DF(u)(v, v) = 0 we can say more.

Lemma 5.3 If u, v ∈ X(�) and DF(u)(v, v) = 0 then v, is a constant function,
and if v(s) = k �= 0 then u(s)|∂� = 0 for all s ∈ ∂�.

Proof If DF(u)(v, v) = 0 we get

0 =
∫

�

3∑

i,j=1

ai,j (s)
∂v(s)

∂si

∂v(s)

sj
+ γ (s)v2(s) ds

+
∫

∂�

4b(s)|u(s)|3v2(s) dS ⇒

0 =
∫

�

3∑

i,j=1

ai,j (s)
∂v(s)

∂si

∂v(s)

∂sj
ds and (5.11)

0 =
∫

∂�

4b(s)|u(s)|3v2(s) dS. (5.12)

From (5.11), we can conclude that v(s) = k, s ∈ �, is a constant function, and from
(5.12), we can conclude that u(s)|∂� = 0 for s ∈ ∂�, if k �= 0.
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The remaining terms in equation (5.5) are gathered in the linear functional

L(v) :=
∫

�

f (s)v(s) ds +
∫

∂�

c(s)v(s) dS. (5.13)

Because of X(�) ↪→ L2(�) and X(�) ↪→ L2(∂�), the functional L is a linear and
continuous functional on X(�). Equation (5.5) can now be reformulated as: Find
u ∈ X(�) such that

DF(u) = L (5.14)

an equation in X(�)∗. Every minimum of the functional

G(u) := F(u) − L(u) (5.15)

is a solution to (5.14). To show (5.15) has at least one solution, we need one more
property. By our assumptions (5.3) and (5.4), we know there is a constant c such that

F(u) ≥ c(‖u‖2
H ∗(�) + ‖u‖5

L5(∂�)
)

Our next goal is to show that

F(u) ≥ c1‖u‖2
X(�) ≡ c1(‖u‖H ∗(�) + ‖u‖L5(∂�))

2 (5.16)

if ‖u‖X(�) ≥ 1, for some suitable constant c1. This will show that F is a coercive
functional on X. We define the function

f (x, y) := x2 + y5

(x + y)2

on the domain D := {(x, y) | x, y ≥ 0, x+y ≥ 1}. If we can show that f (x, y) ≥ c1
for all (x, y) ∈ D, then we found a suitable constant c1. For this reason let (x, y) ∈ D

with x + y = 1. Then

f (tx, ty) = t2x2 + t5y5

t2(x + y)2

= x2 + t3y5

≥ x2 + y5

for t ≥ 1. So we only need to consider the minimum of the function f on the set
(x, y) ∈ D, x + y = 1, which implies y = 1 − x. Here, we have

f (x, 1 − x) = x2 + (1 − x)5

≥ c1 > 0

with some suitable constant c1, because the polynomial x2 + (1 − x)5 has obviously
no zeros for x ∈ [0, 1].

For the functional L, we get

|L(u)| ≤ |
∫

�

f (x)u(x) : dx| + |
∫

∂�

c(x)u(x) : dS|
≤ ‖f ‖L2(�)‖u‖L2(�) + ‖c‖L2(∂�)‖u‖L2(∂�)

≤ c2‖u‖X(�) (5.17)

where we used again the continuous imbeddings X(�) ↪→ L2(�) and X(�) ↪→
L5(∂�) ↪→ L2(∂�).
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The inequalities (5.16) and (5.17) show now

G(u) ≥ F(u) − |L(u)|
≥ c1‖u‖2

X(�) − c2‖u‖X(�)

= c1‖u‖2
X(�)

(
1 − c2/c1

‖u‖X(�)

)
(5.18)

for all u ∈ X(�) with ‖u‖X(�) ≥ 1. This implies

lim‖u‖X(�)→∞ G(u) = ∞ (5.19)

and proves the next result.

Lemma 5.4 The functional G : X(�) �→ R, defined in (5.15), is coercive.

Using Lemmata 5.1, 5.2, and 5.4 the Corollary 42.14 in [33] shows

Lemma 5.5 The functional G(u) (see [5.15]) has at least one minimum and the set
of all minimum points is closed, bounded, and convex.

As a next step we strengthen Lemma 5.5:

Lemma 5.6 The functional G(u) (see [5.15]) has a unique minimum.

Proof Assume that the set M of all minimum points of G(u) has two distinct
elements u, v ∈ M . Then the function

ϕ(t) := G(u + t (v − u)), t ∈ [0, 1]
is a constant function according to Lemma 5.5. This implies

0 = ϕ′′(0)

= D2G(u)(v − u, v − u)

= D2F(u)(v − u, v − u)

because the functional L is linear. Using Lemma 5.3, we see that v = u + k, where k

is a constant. Because of u �= v, we know that k �= 0, so again by Lemma 5.3, we can
conclude that u|∂� = 0. But now, we can reverse the roles of u and v and consider
the functional

ψ(t) := G(v + t (u − v)), t ∈ [0, 1]
and the same arguments show v|∂� = 0. But this makes v = u + k, with a nonzero
constant k impossible. So the assumption that M has two distinct elements leads to a
contradiction. This proves the uniqueness.

Finally, we prove that the unique minimum is a positive function.
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Theorem 5.7 The functional G(u) (see [5.15]) has a unique positive minimum u.
The function u is a solution of (5.5).

Proof Let u(s) be the unique minimum of G, then u ∈ H 1(�) and therefore v :=
|u| ∈ H 1(�) (see [29]). Obviously also v|∂� ∈ L5(∂�), so v ∈ X(�). Looking at
the definition of F , we see F(u) = F(v), and because the functions f and c in (5.1)
and (5.2) are assumed to be non-negative, we also have (see [5.13])

L(v) ≥ L(u)

which implies
G(v) ≤ G(u)

and because u is the unique minimum, we conclude u = v.
Because of u(s) ≥ 0, the function u(s) satisfies

∫

�

3∑

i,j=1

ai,j (s)
u(s)

∂sj

∂v(s)

∂si
+ γ (s)u(s)v(s) ds

=
∫

∂�

−b(s)u4(s)v(s) + c(s)v(s) dS +
∫

�

f (s)v(s) ds

= 0

for all v ∈ X(�)∗, and the absolute value which appeared in equation (5.9) is
unnecessary.

The above theorem does not prove the uniqueness of the solution to (2.1), but we
know that there is a positive solution. Because we know that the solution minimizes
the functional G, one might also try to use minimization methods in combination with
spectral methods to approximate the solution u. This will be the subject of further
investigations.

Acknowledgments For helpful discussions, we thank Weimin Han and Gerhard Strohmer.

Appendix

Defining surface normals and Jacobian for a general surface. This is well-known
in the literature, but we include it for convenience. For notational simplicity in the

mapping � : Bd 1−1−→
onto

�, let x be replaced by (x, y, z) , and s be replaced by (s, t, u).

Write
s = s(x, y, z)

t = t (x, y, z)

u = u(x, y, z)

For derivatives, use the shorthand notation

ds1 = ∂s(x, y, z)

∂x
≡ ∂�1(x, y, z)

∂x
, ds2 = ∂s(x, y, z)

∂y
, ds3 = ∂s(x, y, z)

∂z
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with similar notation for t and u.
For the surface Jacobian

∣∣Jbdy (x, y, z)
∣∣ used in the change of variables expression

(2.11),

∣∣Jbdy (x, y, z)
∣∣2 =

∣∣∣∣∣∣

x y z

dt1 dt2 dt3
du1 du2 du3

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣

ds1 ds2 ds3
x y z

du1 du2 du3

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣

ds1 ds2 ds3
dt1 dt2 dt3
x y z

∣∣∣∣∣∣

2

The normal at (s, t, u) = �(x, y, z), call it N (s, t, u), is given by

N = G
‖G‖ ,

G =
⎡

⎣
(dt1du2 − dt2du1) z + (dt3du1 − dt1du3) y + (dt2du3 − dt3du2) x

(du1ds2 − du2ds1) z + (du3ds1 − du1ds3) y + (du2ds3 − du3ds2) x

(ds1dt2 − ds2dt1) z + (ds3dt1 − ds1dt3) y + (ds2dt3 − ds3dt2) x

⎤

⎦ .

As an example, consider the ellipsoidal mapping

�(x, y, z) = (ax, by, cz) , (x, y, z) ∈ B
3
.

Then
∣∣Jbdy (x, y, z)

∣∣2 = (bcx)2 + (acy)2 + (abz)2 , (x, y, z) ∈ S
2.
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