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Abstract Our aim in this paper is to introduce an extragradient-type method for
solving variational inequality with uniformly continuous pseudomonotone opera-
tor. The strong convergence of the iterative sequence generated by our method is
established in real Hilbert spaces. Our method uses computationally inexpensive
Armijo-type linesearch procedure to compute the stepsize under reasonable assump-
tions. Finally, we give numerical implementations of our results for optimal control
problems governed by ordinary differential equations.
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1 Introduction

The theory of variational inequality has served as an important tool in studying a wide
class of obstacle, unilateral, and equilibrium problems arising in several branches of
pure and applied sciences in a unified and general framework (see, for example, [2,
3, 15, 28, 29]). Several numerical methods have been developed for solving varia-
tional inequalities and related optimization problems, see the monographs [14, 29]
and references therein.

Pseudomonotone operators in the sense of Karamardian were introduced back in
1976 as a generalization of monotone operators. The notion of pseudomonotone oper-
ator has been studied for 40 years and has found many applications in variational
inequalities and economics. In case of gradient maps, this generalized monotonicity
characterizes generalized convexity of the underlying function [22].

In finite dimensional spaces, it was proven that the extragradient method (6), intro-
duced by Korpelevich [30], is globally convergent if the operator in the variational
inequality is monotone and Lipschitz continuous on feasible set provided stepsize
is sufficiently small. It is a known fact [14, Theorem 12.2.11] that the extragradient
method can be successfully applied for solving pseudo-monotone variational inequal-
ities. For more details on variational inequalities in finite dimensional spaces, please
see [18, 20, 25, 37, 46, 50, 51, 53, 54].

The extragradient method has been recently extended for solving variational
inequalities in infinite dimensional Hilbert spaces. Some results regarding weak con-
vergence [23, 39, 52] as well as strong convergence [40, 47–49, 58] are obtained. A
typical assumptions for proving the convergence of these results is that the opera-
tor in the variational inequality is monotone (and Lipschitz continuous). Exceptions
are the papers [9, 56] where the operator is supposed to be pseudomonotone. How-
ever, to obtain the convergence, beside the monotonicity and Lipschitz continuity, an
additional condition on the operator has to be posed: The operator maps a weak con-
vergence sequence to a strong convergence sequence. As admitted by the authors in
[9], this assumption is very strong, which restricts the applications of the method, for
example, even the identity operator does not satisfy such assumption.

Kraikaew and Saejung [31] recently proved the strong convergence of the iterative
sequence generated by a combination of subgradient extragradient method of Censor
et al. in [11, 12] and Halpern method [16] for the problem of finding a solution (see
(4) below) when the operator in the variational inequality is monotone and Lipschitz
continuous in real Hilbert spaces.

An obvious disadvantage of algorithms [12, 31], which impedes their wide use,
is the assumption that the Lipschitz constant of the monotone operator is known or
admits a simple estimate. Moreover, in many problems, operators may not satisfy the
Lipschitz condition and the operator may not even be monotone as our Example 5.4
shows in Section 5.

In this present paper, we propose an algorithm which is a modification of the
subgradient extragradient algorithm and Halpern method with a new line search
rule generating the step size for variational inequalities with pseudomonotone non-
Lipschitz operator. We weaken the assumption weak-strong continuity proposed in
[9, 56] byweak-weak continuity, i.e., the operatormaps a weak convergence sequence
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to a weak convergence sequence. This assumption is known as sequentially weakly
continuous in the literature. Clearly, this assumption is weaker and more reason-
able. We prove strong convergence without any further assumptions either on the
operator or on the iterative sequence. An obvious difference between our method
and that of the existing ones in [25] is the line search rule generating the stepsize
with pseudomonotone operator. Simply put, our contributions in this paper are the
following:

• The operator involved needs not be monotone. Our result extends on many recent
results (see, e.g., [23, 35, 36, 40]) where the operator is assumed to be monotone.

• The operator involved in the variational inequality needs not be Lipschitz con-
tinuous. This extends many recent results (see, e.g., [11, 12, 31, 40, 41]) on
variational inequality where the involved operator has to be Lipschitz continuous.

• The strong convergence is obtained under reasonable assumptions. Our result
complement results (see, e.g., [9, 32, 39]) where weak convergence results are
obtained.

The paper is organized as follows: We first recall some basic definitions and
results in Section 2. Some discussions about our projection-type method used in this
paper are given in Section 3. The strong convergence of our projection type algo-
rithm is then investigated in Section 4. Some numerical experiments can be found in
Section 5. We conclude with some final remarks in Section 6.

2 Definitions and preliminaries

In this section, we give some definitions and basic results that will be used in our
subsequent analysis. Throughout the paper, H always denotes a real Hilbert space.

Definition 2.1 Let X ⊆ H be a nonempty subset. Then, a mapping A : X → H is
called

(a) monotone on X if 〈Ax − Ay, x − y〉 ≥ 0 for all x, y ∈ X;
(b) η-strongly monotone on X if there exists a constant η > 0 such that

〈Ax − Ay, x − y〉 ≥ η‖x − y‖2, ∀x, y ∈ X;
(c) pseudomonotone on X if, for all x, y ∈ X,

〈Ax, y − x〉 ≥ 0 =⇒ 〈Ay, y − x〉 ≥ 0;
(d) Lipschitz continuous on X if there exists a constant L > 0 such that

‖Ax − Ay‖ ≤ L‖x − y‖, ∀x, y ∈ X.

(e) sequentially weakly continuous if for each sequence {xn} we have: {xn}
converges weakly to x implies {Axn} converges weakly to Ax.

We note that every monotone operator is pseudomonotone but the converse is not
true as seen in this example.
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Example 2.2 The mapping A : (0, ∞) → (0, ∞), defined by Ax = a/(a + x) with
a > 0. It is clear that A is pseudomonotone but not monotone.

We next recall some properties of the projection, cf. [4] for more details. To this
end, let C be a nonempty, closed, and convex subset of H . For any point u ∈ H ,
there exists a unique point PCu ∈ C such that

‖u − PCu‖ ≤ ‖u − y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C. It is also known that PC satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H. (1)

In particular, we get from (1) that

〈x − y, x − PCy〉 ≥ ‖x − PCy‖2, ∀x ∈ C, y ∈ H. (2)

Furthermore, PCx is characterized by the properties

PCx ∈ C and 〈x − PCx, PCx − y〉 ≥ 0, ∀y ∈ C. (3)

Let us recall the definition of variational inequality problem and some iterative
methods for solving this problem. Let C be a nonempty, closed and convex subset of
H and A : C → H be a continuous mapping. The variational inequality problem
(for short, VI(A, C)) is defined as find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (4)

Let SOL denote the solution set of VI(A, C). It is well-known that x solves the
VI(A, C) if and only if x solves the fixed point equation

x = PC(x − γAx)

or, equivalently, x solves the residual equation

rγ (x) = 0, where rγ (x) := x − PC(x − γAx) (5)

for an arbitrary positive constant γ , see [15] for details. Therefore, the knowledge of
fixed-point algorithms (see, for example, [14, 42]) can be used to solve (4).

The following projection type iterative method for solving (4) was introduced by
Korpelevich in [30], which is of the form:

⎧
⎨

⎩

x1 ∈ C,

yn = PC(xn − λnAxn)

xn+1 = PC(xn − λnAyn), n ≥ 1,
(6)

where λn > 0 is a fixed number. The extragradient algorithm (6) can be incorporated
with the Armijo-like stepsize rule, which is shown by Marcotte [37], Sun [50], and
Iusem [18] in the form:

Algorithm 2.3
{

x1 ∈ C,

yn = PC(xn − λnAxn),
(7)
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where λn = γ �mn(γ > 0, � ∈ (0, 1)) and mn is the smallest nonnegative integer m

such that

‖Axn − Ayn‖ ≤ μ
‖xn − yn‖

λn

, μ ∈ (0, 1).

Set
xn+1 = PC(xn − λnAyn).

The forthcoming method was introduced by Censor et al. [12], which is called the
subgradient extragradient method:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ H,

yn = PC(xn − λAxn),

Tn := {w ∈ H : 〈xn − λAxn − yn, w − yn〉 ≤ 0},
xn+1 = PTn(xn − λAyn).

(8)

Inspired by this method, when A is monotone and Lipschitz continuous, Kraikaew
and Saejung [31] recently proved the strong convergence of the iterative sequence
generated by the following algorithm:

Algorithm 2.4
⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ H,

yn = PC(xn − λAxn),

Tn := {w ∈ H : 〈xn − λAxn − yn, w − yn〉 ≤ 0},
xn+1 = αnx1 + (1 − αn)PTn(xn − λAyn),

(9)

where λ ∈ (0, 1
L
) and {αn} is a sequence in (0, 1) satisfying limn→∞ αn = 0 and∑∞

n=1 αn = ∞.
The following elementary lemma will be used in our convergence analysis.

Lemma 2.5 The following statements hold in any real Hilbert space H :

(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2 for all x, y ∈ H ;
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H ;
(iii) 2〈x − y, x − z〉 = ‖x − y‖2 + ‖x − z‖2 − ‖y − z‖2 for all x, y, z ∈ H .

We next give some existing results from the literature which will be used in our
proof of strong convergence.

Lemma 2.6 ([55]) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 1,

where

(a) {αn} ⊂ [0, 1] and ∑∞
n=1 αn = ∞;

(b) lim supn→∞ σn ≤ 0;
(c) γn ≥ 0 (n ≥ 1) and

∑∞
n=1 γn < ∞.
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Then, an → 0 as n → ∞.

Lemma 2.7 ([38]) Consider VI(A, C) in (4). If the mapping h : [0, 1] → H defined
as h(t) := A(tx + (1− t)y) is continuous for all x, y ∈ C (i.e., h is hemicontinuous),
then M(A,C) := {x ∈ C : 〈Ay, y − x〉 ≥ 0, ∀y ∈ C} ⊂ SOL. Moreover, if A is
pseudomonotone, then SOL is closed, convex and M(A,C) = SOL.

Lemma 2.8 ([19, 38]) LetH1 andH2 be two real Hilbert spaces. SupposeA : H1 →
H2 is uniformly continuous on bounded subsets of H1 and M is a bounded subset of
H1. Then A(M) is bounded.

The following lemmas were given in R
n in [17]. The proof of the lemmas is the

same if given in infinite dimensional real Hilbert spaces. Hence, we state the lemmas
and omit the proof in real Hilbert spaces.

Lemma 2.9 Let C be a nonempty closed and convex subset of a real Hilbert space
H . Let h be a real-valued function on H and define K := {x ∈ C : h(x) ≤ 0}. If K

is nonempty and h is Lipschitz continuous on C with modulus θ > 0, then

dist(x, K) ≥ θ−1 max{h(x), 0}, ∀x ∈ C,

where dist(x, K) denotes the distance function from x to K .

Lemma 2.10 Let C be a nonempty closed and convex subset of a real Hilbert space
H , y := PC(x) and x∗ ∈ C. Then

‖y − x∗‖2 ≤ ‖x − x∗‖2 − ‖x − y‖2. (10)

3 Approximation method

In this section, we state our proposed projection-type method for solving VI(A, C)
(4) and give some its associated properties. We start by giving these assumptions that
we will assume to hold for the rest of this paper.

Assumption 3.1 Suppose that the following hold:

(a) The feasible set C is a nonempty, closed, and convex subset of the real Hilbert
space H .

(b) A : H → H is a pseudomonotone, uniformly continuous and sequentially
weakly continuous on bounded subsets of C.

(c) The solution set SOL of VI(A, C) is nonempty.

Observe that the assumption (a) implies that projections onto C are well-defined.
Assumption (b) is new and weaker than the condition imposed in [9, 24, 56]. Assump-
tion (c) is standard and has been used in several papers on variational inequality
problems (see, e.g., [5, 19, 21])
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In our convergence analysis, we assume that the following conditions hold for our
iterative parameter sequence {αn}.

Assumption 3.2 (a) {αn} ⊂ (0, 1) with limn→∞ αn = 0;
(b)

∑∞
n=1 αn = ∞.

These conditions are satisfied, e.g., for αn = 1/(n + 1) for all n ∈ N.
We next give a precise statement of our projection-type method. To this end, we

use the abbreviation

r(x) := r1(x) = x − PC(x − Ax)

for the residual from (5) with γ = 1.
Observe that if we take y = x − Ax in (2), then we have

〈Ax, r(x)〉 ≥ ‖r(x)‖2, ∀x ∈ C. (11)

Algorithm 3.3 • Initialization: Choose sequence {αn} ⊂ (0, 1) such that the con-
ditions from Assumption 3.2 hold, σ ∈ (0, 1), γ ∈ (0, 1). Let x1 ∈ C be a given
starting point. Set n := 1.

• Step 1: Compute zn := PC(xn −Axn). If r(xn) = xn −zn = 0: STOP. Otherwise
• Step 2: Compute yn = xn − γ knr(xn), where kn is the smallest nonnegative

integer satisfying

〈Ayn, r(xn)〉 ≥ σ

2
‖r(xn)‖2. (12)

Set ηn := γ kn .
• Step 3: Compute

xn+1 = αnx1 + (1 − αn)PCn(xn), (13)

where Cn = {x ∈ C : hn(x) ≤ 0} and
hn(x) := 〈Ayn, x − yn〉. (14)

• Step 4: Let n := n + 1 and go to Step 1.

Observe that we are at a solution of VI(A, C) (4) if xn − zn = 0. In our con-
vergence analysis, we will implicitly assume that this does not occur after finitely
many iterations, so that Algorithm 3.3 generates an infinite sequence satisfying, in
particular, xn − zn �= 0 for all n ∈ N.

Remark 3.4 (a) It is easy to see by a simple induction argument fromAlgorithm 3.3
that xn, yn, zn ∈ C.

(b) By the uniform continuity (hence continuity) of A and (11), we see that Step 2 in
Algorithm 3.3 is well-defined. Furthermore, if SOL �= ∅, the Step 3 is well-
defined since SOL ⊂ Cn by the lemma below and hence Cn �= ∅ for all n ∈
N.

Lemma 3.5 Let x∗ ∈ SOL and the function hn be defined by (14). Then

hn(xn) ≥ σηn

2
‖xn − zn‖2
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and hn(x
∗) ≤ 0. In particular, if xn �= zn, then hn(xn) > 0.

Proof Since yn = xn − ηn(xn − zn), using (12), we have

hn(xn) = 〈Ayn, xn − yn〉
= ηn〈Ayn, xn − zn〉 ≥ ηn

σ

2
‖xn − zn‖2 ≥ 0.

If xn �= zn, then hn(xn) > 0. Since x∗ ∈ SOL, we have

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C,

and thus implies (by the fact M(A, C) = SOL) that hn(x
∗) = 〈Ayn, x

∗ − yn〉 ≤
0.

4 Convergence analysis

For the rest of this paper, we define

wn := PCn(xn), ∀n ≥ 1.

and
z := PSOLx1.

In the next lemma, we prove a result that shows that the sequence {xn} generated by
Algorithm 3.3 is bounded.

Lemma 4.1 We have from Algorithm 3.3 that {xn} is bounded and

‖wn − z‖2 ≤ ‖xn − z‖2 −
(

1

M
σηn‖xn − zn‖2

)2

, (15)

for some M > 0.

Proof By Lemma 2.10, we get (since z ∈ Cn) that

‖wn − z‖2 = ‖PCn(xn) − z‖2 ≤ ‖xn − z‖2 − ‖wn − xn‖2. (16)

Furthermore,
‖wn − z‖2 = ‖PCn(xn) − z‖2

≤ ‖xn − z‖2 − ‖PCn(xn) − xn‖2
= ‖xn − z‖2 − dist2(xn, Cn).

(17)

From (13) and (17), we have

‖xn+1 − z‖ ≤ αn‖x1 − z‖ + (1 − αn)‖wn − z‖
≤ αn‖x1 − z‖ + (1 − αn)‖xn − z‖
≤ max

{‖xn − z‖, ‖x1 − z‖}
...

≤ max
{‖x1 − z‖, ‖x1 − z‖}

= ‖x1 − z‖.
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This shows that {xn} is bounded. SinceA is uniformly continuous on bounded subsets
ofC, then {Axn}, {zn}, {wn} and {Ayn} are bounded. In particular, there existsM > 0
such that ‖Ayn‖ ≤ M/2 for all n ∈ N. Combining (17), Lemmas 2.9 and 3.5, we get

‖wn − z‖2 ≤ ‖xn − z‖2 −
(

2

M
hn(xn)

)2

≤ ‖xn − z‖2 −
(

1

M
σηn‖r(xn)‖2

)2

= ‖xn − z‖2 −
(

1

M
σηn‖xn − zn‖2

)2

,

(18)

which yields (15).

In the next lemma, we show that the weak cluster points of {xn} belong to the set
SOL.

Lemma 4.2 If there exists a subsequence {xnk
} of {xn} such that {xnk

} converges
weakly to p ∈ H and limk→∞ ‖xnk

− znk
‖ = 0, then p ∈ SOL.

Proof By the definition of znk
together with (3), we have

〈xnk
− Axnk

− znk
, x − znk

〉 ≤ 0, ∀x ∈ C,

which implies that

〈xnk
− znk

, x − znk
〉 ≤ 〈Axnk

, x − znk
〉, ∀x ∈ C.

Hence,

〈xnk
− znk

, x − znk
〉 + 〈Axnk

, znk
− xnk

〉 ≤ 〈Axnk
, x − xnk

〉, ∀x ∈ C. (19)

Fix x ∈ C and let k → ∞ in (19). Since limk→∞ ‖xnk
− znk

‖ = 0, we have

0 ≤ lim inf
k→∞ 〈Axnk

, x − xnk
〉 (20)

for all x ∈ C.
Now we choose a sequence {εk}k of positive numbers decreasing and tending to

0. For each εk , we denote by Nk the smallest positive integer such that
〈
Axnj

, x − xnj

〉 + εk ≥ 0 ∀j ≥ Nk, (21)

where the existence of Nk follows from (20). Since {εk} is decreasing, it is easy to see
that the sequence {Nk} is increasing. Furthermore, for each k, AxNk

�= 0 and, setting

vNk
= AxNk

‖AxNk
‖2 ,

we have
〈
AxNk

, vNk

〉 = 1 for each k. Now, we can deduce from (21) that for each k
〈
AxNk

, x + εkvNk
− xNk

〉 ≥ 0,

and, since A is pseudo-monotone, that
〈
A(x + εkvNk

), x + εkvNk
− xNk

〉 ≥ 0. (22)
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On the other hand, we have that
{
xnk

}
converges weakly to p when k → ∞. Since

A is sequentially weakly continuous on C,
{
Axnk

}
converges weakly to Ap. We

can suppose that Ap �= 0 (otherwise, p is a solution). Since the norm mapping is
sequentially weakly lower semicontinuous, we have

0 < ‖Ap‖ ≤ lim inf
k→∞ ‖Axnk

‖.
Since

{
xNk

} ⊂ {
xnk

}
and εk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

‖εkvNk
‖ = lim sup

k→∞

( εk

‖Axnk
‖
)

≤ lim supk→∞ εk

lim infk→∞ ‖Axnk
‖ ≤ 0

‖Ap‖ = 0,

which implies that limk→∞ ‖εkvNk
‖ = 0. Hence, taking the limit as k → ∞ in (22),

we obtain
〈Ax, x − p〉 ≥ 0.

In view of Lemma 2.7, this implies p ∈ SOL.

Remark 4.3 When the function A is monotone, it is not necessary to impose the
sequential weak continuity on A. Indeed, in that case, it follows from (19) and the
monotonicity of A that

〈xnk
− znk

, x − znk
〉 + 〈Axnk

, znk
− xnk

〉 ≤ 〈Axnk
, x − xnk

〉
≤ 〈Ax, x − xnk

〉 ∀x ∈ C.

Letting k → +∞ in the last inequality, remembering that limk→∞ ‖xnk
− znk

‖ = 0
for all k, we have

〈Ax, x − p〉 ≥ 0 ∀x ∈ C.

We are now in position to prove our main strong convergence result.

Theorem 4.4 Let Assumptions 3.1 and 3.2 hold. Then the sequence {xn} generated
by Algorithm 3.3 strongly converges to a solution z.

Proof Then, from Algorithm 3.3, we have by Lemma 2.5 (ii) that

‖xn+1 − z‖2 = ‖αn(x1 − z) + (1 − αn)(wn − z)‖2
≤ (1 − αn)‖wn − z‖2 + 2αn〈x1 − z, xn+1 − z〉. (23)

This implies from (18) that

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn〈x1 − z, xn+1 − z〉

−
(

(1 − αn)σηn

M
‖xn − zn‖2

)2

= (1 − αn)‖xn − z‖2

+ αn

(

2〈x1 − z, xn+1 − z〉 −
(

(1 − αn)σηn

αnM
‖xn − zn‖2

)2
)

= (1 − αn)an + αnbn,

(24)
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where an := ‖xn − z‖2 and bn := 2〈x1 − z, xn+1 − z〉 −
(

(1−αn)σηn

αnM
‖xn − zn‖2

)2
.

We next show that lim supn→∞ bn < ∞. Since {xn} is bounded, we have
bn ≤ 2〈x1 − z, xn+1 − z〉

≤ 2‖x1 − z‖‖xn+1 − z‖ < ∞,

and this implies that lim supn→∞ bn < ∞. We now show that lim supn→∞ bn ≥ −1.
Assume the contrary that lim supn→∞ bn < −1. Then, there exists n0 ∈ N such that
bn < −1 for all n ≥ n0. For all n ≥ n0, we get from (24) that

an+1 ≤ (1 − αn)an + αnbn < (1 − αn)an − αn

= an − αn(an + 1) ≤ an − αn.

By induction, we get

an+1 ≤ an0 −
n∑

i=n0

αi.

Taking limit superior of both sides of the last inequality, we have

lim sup
n→∞

an ≤ an0 − lim
n→∞

n∑

i=n0

αi = −∞.

This contradicts the fact that {an} is a nonnegative real sequence. Therefore,
lim supn→∞ bn ≥ −1.

Using (16) and Lemma 2.5 (ii) in (13), we have

‖xn+1 − z‖2 = ‖αn(x1 − z) + (1 − αn)(wn − z)‖2
≤ (1 − αn)‖wn − z‖2 + 2αn〈x1 − z, xn+1 − z〉
≤ (1 − αn)‖xn − z‖2 + 2αn〈x1 − z, xn+1 − z〉

− (1 − αn)‖wn − xn‖2.

(25)

We next consider two cases:

Case 1: Assume that there exists n0 ∈ N such that ‖xn+1−z‖ ≤ ‖xn−z‖,∀n ≥ n0.
Then limk→∞ ‖xn − z‖ exists. From (25), we get

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn〈x1 − z, xn+1 − z〉
− (1 − αn)‖wn − xn‖2

≤ ‖xn − z‖2 + αnM1 − (1 − αn)‖wn − xn‖2,
(26)

for some M1 > 0. Thus,

(1 − αn)‖wn − xn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + αnM1 → 0, n → ∞.

Therefore,

lim
n→∞ ‖wn − xn‖ = 0.
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Now, since lim sup
n→∞

bn is finite and {xn} is bounded, we can take a subsequence

{nk} of {n} such that xnk
⇀ p ∈ C and

lim sup
n→∞

bn = lim
k→∞ bnk

= lim
k→∞

(

2〈x1 − z, xnk+1 − z〉 −
(

(1 − αnk
)σηnk

αnk
M

‖xnk
− znk

‖2
)2

)

.

(27)
Since {〈x1 − z, xnk+1 − z〉} is a bounded real sequence, without loss of generality,
we may assume there exists the limit

lim
k→∞〈x1 − z, xnk+1 − z〉.

We obtain from (27) that

lim
k→∞

(1 − αnk
)σηnk

αnk
M

‖xnk
− znk

‖2

exists. This implies that the sequence
{

σηnk

αnk
M

‖xnk
− znk

‖2
}

is bounded. By

Assumption 3.2, we get

lim
k→∞ ηnk

‖xnk
− znk

‖2 = 0.

We now claim that

lim
k→∞ ‖xnk

− znk
‖ = 0.

Indeed, let us distinguish two cases depending on the behavior of (the bounded)
sequence of stepsizes {ηnk

}.
(i): If lim infk→∞ ηnk

> 0, then

0 ≤ ‖r(xnk
)‖2 = ηnk

‖r(xnk
)‖2

ηnk

and this implies that

lim sup
k→∞

‖r(xnk
)‖2 ≤ lim sup

k→∞

(

ηnk
‖r(xnk

)‖2
)(

lim sup
k→∞

1

ηnk

)

=
(

lim sup
k→∞

ηnk
‖r(xnk

)‖2
)

1

lim infk→∞ ηnk

= 0.

Hence, lim supk→∞ ‖r(xnk
)‖2 = 0. Therefore,

lim
k→∞ ‖xnk

− znk
‖ = lim

k→∞ ‖r(xnk
)‖ = 0.

(ii): If lim infk→∞ ηnk
= 0. Subsequencing if necessary, we may assume without

loss of generality that limk→∞ ηnk
= 0 and limk→∞ ‖xnk

− znk
‖ = a ≥ 0.
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Define ȳk := 1
γ
ηnk

znk
+

(
1− 1

γ
ηnk

)
xnk

or, equivalently, ȳk −xnk
= 1

γ
ηnk

(znk
−

xnk
). Since {znk

−xnk
} is bounded and since limk→∞ ηnk

= 0 holds, it follows that

lim
k→∞ ‖ȳk − xnk

‖ = 0. (28)

From the stepsize rule and the definition of ȳk , we have

〈Aȳk, xnk
− znk

〉 <
σ

2
‖xnk

− znk
‖2, ∀k ∈ N,

or equivalently

2〈Axnk
, xnk

− znk
〉 + 2〈Aȳk − Axnk

, xnk
− znk

〉 < σ‖xnk
− znk

‖2, ∀k ∈ N.

Setting tnk
:= xnk

− Axnk
, we obtain form the last inequality that

2〈xnk
− tnk

, xnk
− znk

〉 + 2〈Aȳk − Axnk
, xnk

− znk
〉 < σ‖xnk

− znk
‖2, ∀k ∈ N.

Using Lemma 2.5 (iii), we get

2〈xnk
− tnk

, xnk
− znk

〉 = ‖xnk
− znk

‖2 + ‖xnk
− tnk

‖2 − ‖znk
− tnk

‖2.
Therefore,

‖xnk
−tnk

‖2−‖znk
−tnk

‖2 < (σ−1)‖xnk
−znk

‖2−2〈Aȳk−Axnk
, xnk

−znk
〉 ∀k ∈ N.

Since A is uniformly continuous on bounded subsets of C and (28), if a > 0 then
the right hand side of the last inequality converges to (σ − 1)a < 0 as k → ∞.
From the last inequality, we have

lim sup
k→∞

(
‖xnk

− tnk
‖2 − ‖znk

− tnk
‖2

)
≤ (σ − 1)a < 0.

For ε = −(σ − 1)a/2 > 0, there exists N ∈ N such that

‖xnk
− tnk

‖2 − ‖znk
− tnk

‖2 ≤ (σ − 1)a + ε = (σ − 1)a/2 < 0 ∀k ∈ N, k ≥ N,

leading to
‖xnk

− tnk
‖ < ‖znk

− tnk
‖ ∀k ∈ N, k ≥ N,

which is a contradiction to the definition of znk
= PC(xnk

−Axnk
). Hence, a = 0.

From the Algorithm 3.3, we have

‖ynk
− xnk

‖ = ηnk
‖r(xnk

)‖ → 0, k → ∞. (29)

Furthermore, we get

‖xnk+1 − wnk
‖ = αnk

‖x1 − wnk
‖ → 0, k → ∞. (30)

Since limk→∞ ‖wnk
− xnk

‖ = 0, we obtain

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − wnk

‖ + ‖wnk
− xnk

‖ → 0, k → ∞.

Since xnk
⇀ p ∈ SOL and ‖xnk+1 − xnk

‖ → 0 as k → ∞, we get xnk+1 ⇀ p ∈
SOL. So

lim sup
n→∞

bn ≤ 2 lim
k→∞〈x1 − z, xnk+1 − z〉

= 2〈x1 − z, p − z〉 ≤ 0,
(31)
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where the last inequality follows by the fact that z = PSOLx1 and p ∈ SOL. Using
Lemma 2.6 and (31) in (24), we obtain limn→∞ ‖xn − z‖ = 0. Thus, we have that
xn → z as n → ∞.

Case 2: Assume that there is no n0 ∈ N such that {‖xn − z‖}∞n=n0
is monotonically

decreasing. The technique of proof used here is adapted from [33, 34]. Set �n =
‖xn − z‖2 for all n ≥ 1 and let τ : N → N be a mapping defined for all n ≥ n0
(for some n0 large enough) by

τ(n) := max{k ∈ N : k ≤ n, �k ≤ �k+1},
i.e. τ(n) is the largest number k in {1, . . . , n} such that �k increases at k = τ(n);
note that, in view of Case 2, this τ(n) is well-defined for all sufficiently large n.
Clearly, τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and

0 ≤ �τ(n) ≤ �τ(n)+1, ∀n ≥ n0.

From (24), we get

‖xτ(n)+1 − z‖2 ≤ (1 − ατ(n))‖xτ(n) − z‖2 + 2ατ(n)〈x1 − z, xτ(n)+1 − z〉

−
(

(1 − ατ(n))σητ(n)

M
‖xτ(n) − zτ(n)‖2

)2

≤ ‖xτ(n) − z‖2 −
(

(1 − ατ(n))σητ(n)

M
‖xτ(n) − zτ(n)‖2

)2

+ατ(n)M3,

for some M3 > 0. Therefore,
(

(1 − ατ(n))σητ(n)

M
‖xτ(n) − zτ(n)‖2

)2

≤ ‖xτ(n) − z‖2 − ‖xτ(n)+1 − z‖2 + ατ(n)M3

≤ ατ(n)M3 → 0, n → ∞.

Hence,
lim

n→∞ητ(n)‖xτ(n) − zτ(n)‖2 = 0.

Just as in Case 1, we can show that

lim
n→∞‖xτ(n) − zτ(n)‖2 = 0.

Similarly, we can obtain from (25) that

lim
n→∞‖wτ(n) − xτ(n)‖ = 0.

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by
{xτ(n)}, which converges weakly to some p ∈ SOL. Similarly, as in Case 1 above,
we can show that

‖yτ(n) − xτ(n)‖ = ητ(n)‖r(xτ(n))‖ → 0, n → ∞. (32)

and
‖xτ(n)+1 − wτ(n)‖ = ατ(n)‖x1 − wτ(n)‖ → 0, n → ∞. (33)

Since limn→∞ ‖wτ(n) − xτ(n)‖ = 0, we obtain

‖xτ(n)+1 − xτ(n)‖ ≤ ‖xτ(n)+1 − wτ(n)‖ + ‖wτ(n) − xτ(n)‖ → 0, n → ∞.
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Since xτ(n) ⇀ p ∈ SOL and ‖xτ(n)+1−xτ(n)‖ → 0 as n → ∞, we get xτ(n)+1 ⇀

p ∈ SOL. So lim sup
n→∞

〈x1 − z, xτ(n)+1 − z〉 ≤ 0. Following (24), we obtain

‖xτ(n)+1 − z‖2 ≤ (1−ατ(n))‖xτ(n) − z‖2 + 2ατ(n)〈x1 − z, xτ(n)+1−z〉. (34)
By Lemma 2.6 and using Assumptions 3.2, we have from (34) that lim

n→∞‖xτ(n) −
z‖ = 0 which, in turn, implies lim

n→∞‖xτ(n)+1 − z‖ = 0. Furthermore, for n ≥ n0,

it is easy to see that �n ≤ �τ(n)+1 (observe that τ(n) ≤ n for n ≥ n0 and consider
the three cases: τ(n) = n, τ(n) = n−1 and τ(n) < n−1. For the first and second
cases, it is obvious that �n ≤ �τ(n)+1, for n ≥ n0. For the third case τ(n) ≤ n−2,
we have from the definition of τ(n) and for any integer n ≥ n0 that �j ≥ �j+1
for τ(n) + 1 ≤ j ≤ n − 1. Thus, �τ(n)+1 ≥ �τ(n)+2 ≥ · · · ≥ �n−1 ≥ �n). As a
consequence, we obtain for all sufficiently large n that 0 ≤ �n ≤ �τ(n)+1. Hence
lim

n→∞�n = 0. Therefore, {xn} converges strongly to z.

Remark 4.5 (a) We emphasize here that in this paper, the iterative method pre-
sented for solving variational inequality involving continuous pseudomonotone
mapping, which is weaker than Lipschitz continuous, monotone mapping
assumed in [11, 12]. Also, our result complements the weak convergence results
obtained in [32, 57].

(b) All our results in this paper are obtained without any extra condition either on
the sequence of iterates or on the operator involved unlike the results of Ceng
and Yao [10] and Zeng and Yao [58].

5 Applications to optimal control and numerical experiments

In this section, we provide computational experiments insulating our newly proposed
method considered in Section 3 for solving variational inequality arising in optimal
control problem. Let 0 < T ∈ R, we denote by L2([0, T ],Rm) the Hilbert space of
square integrable, measurable vector function u : [0, T ] → R

m with inner product

〈u, v〉 =
∫ T

0
〈u(t), v(t)〉dt,

and norm
‖u‖2 = √〈u, u〉 < ∞.

We consider the following optimal control problem:

u∗(t) = argmin{f (u) : u ∈ U} (35)

on the interval [0, T ], assuming that such a control exists. Here, U is the set of admis-
sible controls, which has the form of an m-dimensional box and consists of piecewise
continuous function:

U = {
u(t) ∈ L2([0, T ],Rm) : ui(t) ∈ [u−

i , u+
i ], i = 1, 2, . . . , m

}
.
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Specially, the control can be bang-bang (piecewise constant function).
The terminal objective has the form

f (u) = φ(x(T )),

where φ is a convex and differentiable function, defined on the attainability set.
Suppose that the trajectory x(t) ∈ L2([0, T ] satisfies constrains in the form of a

system of linear differential equation:

ẋ(t) = D(t)x(t) + B(t)u(t), x(0) = x0, t ∈ [0, T ],
where D(t) ∈ R

n×n, B(t) ∈ R
n×m are given continuous matrices for every t ∈

[0, T ]. By the Pontryagin maximum principle, there exists a function p∗ ∈ L2([0, T ]
such that the triple (x∗, p∗, u∗) solves for a.e. t ∈ [0, T ] the system

{
ẋ∗(t) = D(t)x∗(t) + B(t)u∗(t)
x∗(0) = x0,

(36)

{
ṗ∗(t) = −D(t)�p∗(t)

p∗(T ) = ∇g(x(T )),
(37)

0 ∈ B(t)�p∗(t) + NU(u∗(t)), (38)

where NU(u) is the normal cone to U at u defined by

NU(u) :=
{ ∅ if u /∈ U

{� ∈ H : 〈�, v − u〉 ≤ 0, ∀v ∈ U} if u ∈ U.

Denoting Gu(t) := B(t)�p(t), it is known that Gu is the gradient of the objective
cost function f [26, 43]. We can write (38) as a variational inequality

〈Gu∗, v − u∗〉 ≥ 0, ∀v ∈ U. (39)

An extragradient method for solving (39) has been recently investigated [26]. How-
ever, only weak convergence was obtained. Our newly algorithm guarantees the
strong convergence.

We now present some numerical examples to confirm the theoritical finding in
Section 4. To make the algorithm implementable, we discretize the continuous func-
tions. We choose a natural numberN and define themesh size h := T/N . We identity
any discretized control uN := (u0, u1, . . . , uN−1) with its piece-wise constant
extension:

uN(t) = ui for t ∈ [
ti , ti+1) , i = 0, 1, . . . , N.

Moreover, we identity any discretized state xN := (x0, x1, . . . , xN) with its piece-
wise linear interpolation

xN(t) = xi + t − ti

h
(xi+1 − xi) , for t ∈ [

ti , ti+1) , i = 0, 1, . . . , N − 1.

Similarly for the co-state variable pN := (p0, p1, . . . , pN).
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There are several discretization techniques in the theory of numerical ODE, such
as Euler and Runge-Kutta methods [8]. In this paper, we consider the Euler one. That
is, at each iteration, the system of ODEs (36) and (37) is solved by the Euler method

{
xN
i+1 = xN

i + h
[
A(ti)x

N
i + B(ti)u

N
i

]

x(0) = x0,
(40)

{
pN

i = pN
i+1 + hA(ti)

T pN
i+1

p(N) = ∇g(xN).
(41)

It is well known that the Euler discretization has the error estimate O(h) [1, 6, 13].
This means that the difference between the discretized solution uN(t) and the original
solution u∗(t) is proportional to the mesh size h, i.e., there exists a constant C > 0
such that

‖uN − u∗‖ ≤ Ch.

All codes are implement in Matlab 2010b and we perform all computation on a Win-
dows Desktop with an Itel(R) Core(TM) i7-2600CPU at 3.4 GHz and 8.00 GB of
memory.

The following example is taken from [44, Example 7].

Example 5.1 (Control of a harmonic oscillator)

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + u(t), ∀t ∈ [0, 3π ],
x(0) = 0,
u(t) ∈ [−1, 1].

(42)

The exact optimal control in this problem is known:

u∗(t) =
{

1 if t ∈ [0, π/2) ∪ (3π/2, 5π/2)

−1 if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π ].

We choose the following parameters for Algorithm 3.3:

N = 100, σ = 0.5, γ = 0.5, αn = 10−4/(n + 1), ε = 10−4.

The initial control u0(t) is chosen randomly in [−1, 1], and the stopping condition is
‖un+1 − un‖ ≤ ε. The approximate solution is obtained after 92 iteration in 0.27856
seconds of CPU time. In Fig. 1, we display the approximate optimal control and the
corresponding trajectories.

We now consider examples in which the terminal function is not linear. The
following is the Rocket Car example in [1, 45].
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Fig. 1 Random initial control (green) and optimal control (red) on the left and optimal trajectories on the
right for Example 5.1 computed by Algorithm 3.3

Example 5.2 (Rocket car)

minimize 1
2

(
(x1(5))2 + (x2(5))2

)

subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 5],
x1(0) = 6, x2(0) = 1,
u(t) ∈ [−1, 1].

(43)

The exact optimal control is

u∗ =
{

1 if t ∈ (τ, 5]
−1 if t ∈ (0, τ ],

where τ = 3.5174292. Parameters are chosen as in Example 5.1. The approximate
solution is obtained after 199 iteration in 0.60509 s of CPU time (Fig. 2).

The following example is taken from [7].
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Fig. 2 Random initial control (green) and optimal control (red) on the left and optimal trajectories on the
right for Example 5.2 computed by Algorithm 3.3
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Fig. 3 Random initial control (green) and optimal control (red) on the left and optimal trajectories on the
right for Example 5.3 computed by Algorithm 3.3

Example 5.3 (See [7, Example 6.3])

minimize −x1(2) + (x2(2))2

subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 2],
x1(0) = 0, x2(0) = 0,
u(t) ∈ [−1, 1].

(44)

The exact optimal control is

u∗ =
{

1 if t ∈ [0, 6/5)
−1 if t ∈ (6/5, 2],

Parameters are chosen as in Example 5.1. The approximate solution is obtained after
288 iteration in 0.87635 seconds of CPU time.

The following figure displays the error estimate ‖un+1 − un‖ for three examples
considered above with u0(t) = 1 (Figs. 3 and 4).

To conclude this section, let us consider an academic example in which the
mapping A is pseudo monotone, but not monotone [24, 27].

Example 5.4 Let H = �2, the real Hilbert space whose elements are the square
summable sequences of real scalars, i.e.,

H =
{

x = (x1, x2, . . . , xk, . . .)

∣
∣
∣
∣

∞∑

k=1

xk < +∞
}

.

The inner product and the norm on H are given by

〈x, y〉 =
∞∑

k=1

xkyk and ‖x‖ = √〈x, x〉,

where x = (x1, x2, . . . , xk, . . .), y = (y1, y2, . . . , yk, . . .).
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Fig. 4 Error estimate ‖un+1 − un‖

Let α, β ∈ R be such that β > α > β/2 > 0 and

C = {x ∈ H : ‖x‖ ≤ α} and Ax := (β − ‖x‖)x.

It is easy to verify that the solution set SOL = {0}. Now let x, y ∈ C be such that
〈Ax, y − x〉 ≥ 0, i.e.,

(β − ‖x‖)〈x, y − x〉 ≥ 0.

Since β > α > β/2 > 0, the last inequality implies 〈x, y − x〉 ≥ 0. Hence,

〈Ay, y − x〉 = (β − ‖y‖)〈y, y − x〉
≥ (β − ‖y‖)〈y, y − x〉 − (β − ‖y‖)〈x, y − x〉
= (β − ‖y‖)‖y − x‖2 ≥ 0.

This means that A is pseudo monotone on C. To see that it is not monotone on C, let
us consider

x = (β/2, 0, . . . , 0, . . .), y = (α, 0, . . . , 0, . . .) ∈ C,

then we have

〈Ax − Ay, x − y〉 =
(

β

2
− α

)3

< 0.

In the following figure, we display the behavior of Algorithm 3.3 applying to
Example 5.4, where H is Rm for some m. The starting points are chosen randomly
in Bα . We choose α = 2, β = 3 and σ = γ = 0.5 when m = 5, σ = 0.1, γ = 0.6
when m = 10 and σ = 0.5, γ = 0.4 when m = 20 (Fig. 5).
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Fig. 5 Error estimate ‖xn − x∗‖

6 Final remarks

In this paper, we propose a variant of Korpelevich’s method for solving variational
inequality problems involving uniformly continuous pseudomonotone operators in
real Hilbert spaces and obtain strong convergence under reasonable assumptions
on the problem data. Applications to optimal control are considered and numeri-
cal experiments are presented confirming the theoretical results finding. Part of our
future research concentrates on extending our results to Banach spaces.

Acknowledgments The authors would like to thank Nguyen Thanh Qui and two anonymous referees
for their useful comments and suggestions on the first version the paper.
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