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Abstract We investigate the problem of reconstructing internal Neumann data for
a Poisson equation on annular domain from discrete measured data at the external
boundary. By applying a Galerkin’s collocation method to the direct problem, the
reconstruction problem is formulated as a linear system and boundary data are deter-
mined through a singular value decomposition (SVD)-based scheme. The SVD of the
coefficient matrix is explicitly determined, and thus regularization methods such as
truncated singular value decomposition (TSVD) and Tikhonov regularization (TR)
are readily implemented. Numerical examples using both synthetic and experimental
data are presented to illustrate the efficiency of the method, including an appli-
cation to the experimental estimation of heat transfer coefficients in coiled tubes;
the regularization parameter for TSVD and TR is determined by the discrepancy
principle.
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1 Introduction

We consider a reconstruction problem for the Poisson equation on annular domain,
specified by a 2D model in polar coordinates (r, θ) described as
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)
+ λw

1

r2

∂2T

∂2θ
+ qg = 0, rI < r < rE , 0 ≤ θ ≤ 2π. (1)

λw
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∂r
(rE , θ) = α(Tenv − T (rE , θ)), 0 ≤ θ ≤ 2π (2)

−λw

∂T

∂r
(rI , θ) = Q(θ), 0 ≤ θ ≤ 2π. (3)

In heat conduction problems, the annular domain represents a cross-section of a
duct with internal radius 0 < rI and external radius rE , as shown in Fig. 1, λw

denotes wall thermal conductivity, which is assumed constant, qg is a source func-
tion, e.g., heat generated by Joule effect on the internal boundary, α is the reciprocal
heat transfer resistance between the tube wall and the surrounding environment
with temperature Tenv, and Q is the heat flux distribution along the inner bound-
ary. For future reference, the inner and outer boundaries of � are denoted by �I

and �E , respectively. Our investigation is restricted to annular domains for two
reasons. The first is that the annular domain is the shape of a cross-section of a
pipe, as described above. The second is that, up to a conformal mapping, other
domains such as doubly connected domains or square domains can be seen as annular
domains [7, 19].

The boundary value problem (BVP) (1)–(3) is referred to as the forward or direct
problem. The inverse problem consists of recovering the Neumann data Q from mea-
sured point-wise temperature data at the external boundary �E : T̃j = T (rE , θj ) + εj ,
j = 0, . . . , N, where εj denotes random noise. Measurements like these can be

Fig. 1 Tube cross-section
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obtained in several ways, e.g., using a infrared camera [8, 13]. This inverse prob-
lem arises in applications such as food processing, corrosion detection, non-nuclear
power production, air-conditioning systems, and power electronics [7–9, 13, 24, 26,
29]. Unfortunately, inverse boundary value problems are generally ill-posed [6, 14]
and therefore small perturbations in data may generate arbitrarily large perturbations
in the numerical solutions, calling for the use of regularization methods.

Several algorithms have been proposed to overcome the ill-posed nature of inverse
boundary value problems for elliptic equations. These include a Backus-Gilbert
reconstruction algorithm for Laplace equation [18], numerical methods based on
complex analysis tools for the Laplace equation on annular domain [19, 22], self-
regularization methods [10], use of Model functions for heat flux reconstruction
in pool boiling [17], and numerical algorithms that estimate Neumann data as pre-
liminary step for reconstructing Robin data or heat transfer coefficients [1, 2, 8,
9, 12, 13, 15]. Related contributions are found in several places; for example, an
spectral method for a Cauchy problem associated with the Laplace equation can
be found in [7]. Mesh-less radial point interpolation methods are employed in [27,
28]. An inverse boundary element method (BEM) for determining the heat transfer
coefficients on solid surfaces of arbitrary shape is described in [23].

A common feature of most of the methods mentioned above is the discretization
of the direct problem in order to establish a linear map that relates the desired data
to the measured data. In this work, we also follow this line; however, as we will
see later, our approach is different since the dimension of the discretized problem
is dictated by the number of samples and the reconstruction arises from the singu-
lar value decomposition (SVD) of a linear transformation. A differential feature of
the proposed approach is that such SVD is obtained at no additional cost and as a
consequence of the chosen discretization process. The rest of the paper is organized
as follows. In Section 2, we construct approximate solutions to the direct prob-
lem by means of a Galerkin collocation method and derive preliminary results. In
Section 3, supposing noise-free data, we describe a finite singular value expansion for
Q, including regularization methods for the noisy case. Regularization is achieved by
means of the TSVDmethod and Tikhonov regularization. The regularization parame-
ter is determined by theMorozov’s discrepancy principle [20]. In Section 4, we report
numerical results that illustrate the efficiency of the reconstruction method using
both synthetic and experimental data. The paper ends with concluding remarks in
Section 5.

2 Forward problem: Galerkin collocation approach

The reconstruction method to be described in the next section lies in the observation
that the solution to (1)–(3) can be expressed as

T = V + u, (4)

where V and u solve, respectively, suitable auxiliary boundary value problems.
There are several ways to express the solution T as in (4); see, e.g, [10, 13].
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Here we construct T so that V solves the auxiliary homogeneous boundary value
problem
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−λw

∂V

∂r
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and u solves the auxiliary non-homogeneous boundary value problem
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−λw
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∂r
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Since our interest is to construct approximate solutions to (5)–(7) through a Galerkin
collocation method, motivated by physical considerations, we will assume that V and
Vθ are 2π -periodic, that is

V (r, 0) = V (r, 2π),
∂V

∂θ
(r, 0) = ∂V

∂θ
(r, 2π) rI < r < rE , (11)

and consider the Fourier basis

R0(θ) = 1, Rk(θ) = cos(kθ), Sk(θ) = sin(kθ), k = 1, . . . ,

It is well known that family {R0, R1, S1, . . . , } form an orthogonal basis for the
Hilbert space L2(0, 2π) with standard inner product [21]

〈u, v〉 =
∫ 2π

0
u(θ)v(θ)dθ (12)

With the Fourier basis at hand, we follow [11, 25] and look for approximated
solutions of the form

VM(r, θ) = v0R0(θ) +
M∑

k=1

vk(r)Rk(θ) + wk(r)Sk(θ) (13)

where the coefficients {vk, wk} are to be determined. To this end, we replace VM into
(5), multiply the resulting equality by Rk, Sk , and then integrate in (0, 2π). This
leads to∫ 2π
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Sk(θ)dθ = 0, k = 1, . . . ,M. (15)
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Since the functions {Rk, Sk}Mk=0 are orthogonal, (14)–(15) reduce to

r2v′′
k (r) + rv′

k(r) − k2vk(r) = 0, rI < r < rE (16)

r2w′′
k (r) + rw′

k(r) − k2wk(r) = 0, rI < r < rE (17)

and the boundary condition (6) yields

λwv′
k(rE) + αvk(rE) = 0, λww′

k(rE) + αwk(rE) = 0. (18)

Since in the numerical treatment of the inverse problem we will deal with point-
wise data, we enforce VM(r, θ) to satisfy the boundary condition (7) by replacing
the Neumann data Q by its trigonometric interpolant at uniformly spaced points.
Given Qj

.= Q(θj ) j = 0, . . . , N − 1, where θj are uniformly spaced points in
[0, 2π ], θj = j2π/N, j = 0, . . . , N − 1, it is well known that there exists a unique
trigonometric polynomial Q̂N(θ) satisfying the interpolation conditions Q̂N(θj ) =
Qj , j = 0, . . . , N − 1. Its coefficients depend on N being odd or even and can
be determined explicitly. For instance, for odd N and n such that N − 1 = 2n, the
interpolating polynomial is given by

Q̂N(θ) = a0

2
+

n∑
k=1

akRk(θ) + bkSk(θ). (19)

with coefficients

ak = 2

N

N−1∑
j=0

QjRk(θj ), k = 0, . . . , n,

bk = 2

N

N−1∑
j=0

QjSk(θj ), k = 1, . . . , n. (20)

Similar results can be deduced for even N . For future reference, we notice that the
expressions in (20) come from the fact that the vectors rk , sk ∈ R

N defined by

rk = [Rk(θ0), . . . , Rk(θN−1)]T , k = 0, . . . , n,

sk = [Sk(θ0), . . . , Sk(θN−1)]T , k = 1, . . . , n (21)

are orthogonal and fulfill [25]

rT
i rj =
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⎩
0 if i �= j

N if i = j = 0,
N/2 if i = j = 1, . . . , n.

sTi sj =
{
0 if i �= j

N/2, i = j = 1, . . . , n.
(22)

Thus, for VN to satisfy the boundary condition (7) with Q̂N instead of Q, it is
required that

− λw

M∑
i=0

v′
k(rI)Rk(θ) + w′

k(rI)Sk(θ) = Q̂N(θ) (23)
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and the L2-orthogonality of {R0, R1, S1, . . . , RM, SM}, M > N , gives{ −λwv′
k(rI) = ak/dk, −λww′

k(rI) = bk; k = 0, . . . , N
−λwv′

k(rI) = 0, −λww′
k(rI) = 0; k = N + 1, . . . , M

(24)

where dk = 2 if k = 0 or dk = 1 if k = 1, . . . , M . This last result together with (16)
show that, to determine the coefficients vk, wk , we must solve the boundary value
problems; ⎧⎨

⎩
r2v′′
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Standard procedures show that for k = 0 the solution of (25) is
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For k = 1, . . . , N , we seek solutions of the form

vk(r) = c1,kr
k + c2,kr

−k (28)

where the coefficients c1,k and c2,k are to be determined by using the boundary con-
ditions in (25). Doing so it follows that the coefficients c1,k, c2,k satisfy the linear
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c1,kr
2k
E

(λwk + αrE) + c2,k(αrE − λwk) = 0
c1,kr

2k
I

− c2,k = −akr
k+1
I

/λwk
(29)

whose solutions are

c1,k = akr
k+1
I

(λwk − αrE)

λwk
(
λwk(r2k

E
− r2k

I
) + αrE(r

2k
E

+ r2k
I

)
)

c2,k = akr
2k
E

rk+1
I

(αrE + λwk)

λwk
(
λwk(r2k

E
− r2k

I
) + αrE(r

2k
E

+ r2k
I

)
) . (30)

Letting ρ = rI/rE , after rearrangement (28) results in,

vk(r) = akηk(r), k = 0, . . . (31)

where

η0(r) =
(
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λw

ln
rE

r
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] rI , k = 1, . . . (32)

and a similar procedure shows that

wk(r) = bkηk(r), k = 1, . . . (33)
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Notice that for k = N + 1, . . . , M in (24), we obtain vk(r) = 0 and wk(r) = 0.
Hence, it is enough considering VN instead of VM .

Proposition 2.1 Given values Qj at uniformly spaced points in [0, 2π ] as described
above, the approximate solution of (1)–(3) obtained by the Galerkin collocation
method is of the form

VN(r, θ) = v0(r)R0(θ) +
N∑

k=1

vk(r)Rk(θ) + wk(r)Sk(θ) (34)

with coefficients given in (27), (28), and (33). Moreover, provided Q ∈ L2[0, 2π ],
we have

|vk(r)|, |wk(r)| → 0 as k → ∞ ∀r ∈ (rI , rE]. (35)

Proof The statement regarding VN is true by construction. To prove the remaining
part, we let ρ = rI/rE and notice that

|c1,krk| ≤ |ak|rI |(λwk − αrE)|
λwk(λwk + αrE)(1 − ρ2k)

ρk

(
r

rE

)k

, (36)

and

|c2,kr−k| ≤ |ak|rI
λwk(1 − ρ2k)

( rI

r

)k

. (37)

The inequalities show that if |ak| is bounded then vk(r) goes to zero exponentially
as k grows ∀ r ∈ (rI , rE]. For wk(r) we obtain a similar result; this completes the
proof.

An important consequence of the analysis above is that the coefficients vk(r) and
wk(r) will become negligible for small or moderate k provided the coefficients ak are
bounded as occurs, e.g., for Q ∈ L2(0, 2π). Indeed, in such a case, the interpolation
polynomial coefficients behave at least likeO(1/k), which is sufficient to ensure that
both |c1,krk| and |c2,krk| will become negligible for small k because of the bounds
(36)–(37). To illustrate this observation, we consider data Qj for a heat flux defined
by Q(θ) = −3250 − 1265 exp(cos θ) with N = 257. Physical parameters are taken
from [8], where the source function qg is constant, qg = 4.8 × 106, rI = 0.014,
rE = 0.015, λw = 15, α = 5, and Te = 294.2. The size of both |ak| and |vk(r)| as
a function of k, displayed in Fig. 2, shows that both quantities become negligible for
k near 15; hence, approximately k = 15 terms in (34) are sufficient to capture the
most important features of the solution V . An approximate solution obtained with 15
terms, V15(r, θ), is displayed in Fig. 3.

Taking into account both the way as VN is constructed and approximation
results regarding the interpolation error Q − Q̂N [11, 25], the following result is a
consequence of the Lax-Milgram Theorem.

Proposition 2.2 Let VN(r, θ) as in the previous proposition. As N → ∞, VN(r, θ)

converges to V ∈ L2(0, 2π) in the L2-sense and V is a weak solution of (5)–(7).
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Fig. 2 Coefficients |ak | and |vk(r)| for k = 0, . . . , 30

We observe that to complete the solution T , we still have to solve the auxiliary
problem (8)–(10), which, for a general source function, must be done numerically.
Indeed, this can be done by the Galerkin method as well or by any other method.
We observe also that in the case where the source function is constant, such auxiliary
problem reduces to

1
r
(ru′(r))′ + qg = 0, rI < r < rE

λwu′(rE) = α(Tenv − u(rE))

u′(rI) = 0

whose solution is the radial function

u(r) = − qg

4λw

(r2 − r2
E
) + qg

2λw

r2
I
ln(r/rE) + Tenv + qg

2αrE
(r2

E
− r2

I
). (38)

Industrial applications involving constant source functions are often met in inverse
heat transfer problems [1, 8, 12, 13].
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Fig. 3 Approximate solution V15(r, θ)
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3 The inverse problem

Perhaps the most important consequence of the theoretical results described in the
previous section is that we can construct approximate solutions for (1)–(3) of excel-
lent quality by simply taking N sufficiently large. In this section, we will concentrate
on a method for estimating heat flux data based on such solutions. Let the approx-
imate solution for (1)–(3) be expressed as TN(r, θ)

.= VN(r, θ) + u(r, θ), where
VN(r, θ) is determined by using the Galerkin collocation method as described before,
that is

TN(r, θ) = a0

2
η0(r)R0(θ) +

n∑
k=1

ηk(r) (akRk(θ) + bkSk(θ)) + u(r, θ)

with ηk(r) defined in (32). Assume that u(r, θ) is available or easy to calculate and
that we are given data values of TN(rE , θ) at the Fourier collocation points θj , j =
0, . . . , N−1.We are going to show that with the “measured data”Gj = TN(rE , θj )−
u(rE , θj ), j = 0, . . . , N − 1 at hand we will be able to:

i) Compute temperature values TN(r, θj ) for all r ∈ [rI , rE];
ii) Establish a linear map of the form

ANQ = G

where AN ∈ R
N×N and Q,G are vectors of point-wise values of Q and

measured data values respectively.

In fact, rewrite VN(rE , θ) as

VN(rE , θ) = a0

2
η̌0R0(θ) +

n∑
k=0

η̌k(akRk(θ) + bkSk(θ)) (39)

where η̌k = η(rE),

η̌0 = ρ

α
, η̌k = 2ρk

λwk
(
1 − ρ2k

) + αrE
(
1 + ρ2k

) rI , k = 1, . . . , n, (40)

and then notice that the data vector G can be described as

G =
⎡
⎢⎣

VN(rE , θ0)
...

VN(rE , θN−1)

⎤
⎥⎦ = ENDNC (41)

where EN = [r0
2

, r1, s1, . . . , rn, sn], with rk, sk as in (21), DN = diag
(
η̌0, η̌1, η̌1,

. . . , η̌n, η̌n

)
and C = [a0, a1, b1, . . . , an, bn] . Recognizing that EN has orthogonal

columns due to (22) and that EN
T EN = B = diag(N/4, N/2, . . . , N/2) ∈ R

N×N , it
follows that the interpolation coefficients satisfy

C = DN
−1B−1EN

T G. (42)
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LetG(r) denote the vector with entriesG(r)
j = TN(r, θj )−u(r, θj ), j = 0, . . . , N−1.

It is obvious that, like (41), we have

G(r) = END
(r)
N C, (43)

where DN
(r) = diag (η0(r), η1(r), η1(r), . . . , ηn(r), ηn(r)). Hence, by virtue of (42),

we have
G(r) = END

(r)
N DN

−1B−1EN
T G (44)

and this shows that item i) is achieved. Item ii) appears as a consequence of the proof
of the Proposition below.

Proposition 3.1 With the notation and definitions in (39)–(41), assume that we are
given noiseless data TN(rE , θj ) where θj , j = 0, . . . , N − 1, denote, as before, the
Fourier collocation points. Then, the vector Q of point-wise values Qj of Q can be
expressed as

Q = FND
−1
N FN

T G =
N∑

k=1

fTkG

σk

fk, (45)

where FN = EN

√
B−1, fk denotes the k-th columns of FN and σ1 = η̌0, σ2i = σ2i+1 =

η̌i , i = 1, . . . , n, with η̌i defined in (40). Moreover, the vector T of point-wise values
of T (r, θj ) can be described as

T =
N∑

k=1

ηk(r)fTkG

σk

fk + u, (46)

where u denotes the vector of point-wise values of u(r, θj ).

Proof Since (20) implies C = B−1EN
T Q, substitution of C into (41) shows that Q

solves a linear system of the form

ANQ = G, AN = ENDNB
−1ET

N. (47)

Recognizing that FN = EN

√
B−1 is an orthogonal matrix, it follows that AN has a

singular value decomposition (SVD) expressed as

AN = FNDNFN
T , (48)

and this implies (45). The expression in (46) follows immediately from (44). �
Despite the relevance of having found an explicit representation for the vector of

heat flux values, we emphasize that the main hypothesis of the proposition is not
entirely realistic, since what is to be measured are values of T not of TN . For this
reason, for the reconstruction of Q, we will assume that:

a) the function u(rE , θ) is simple to evaluate or calculated to high precision,
b) the approximation error |T (rE , θ)−TN(rE , θ)| is negligible to such an extent that

we can substitute Tj = T (rE , θj ) for TN(rE , θj ) without any significant loss.

It is worth mentioning that assumption a) is automatically satisfied in inverse heat
transfer problems where the source function represents uniform heating generated
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by Joule effect. For other cases cases, the solution u(rE , θ) must be computed by
a highly accurate method. As for assumption b), recall that the coefficients vk, wk

become negligible for small k (see Prop. 2.1 and Fig. 2). Thus, assumption b) is valid
when N is large enough, which is not a restriction due to the current availability of
modern data acquisition equipment.

However, in practice, we only have perturbed data Tδ(θj ) = T (rE , θj ) + εj , j =
0, . . . , N − 1, which, for inversion purposes, generate input data Gδ such that

‖G − Gδ‖2 ≤ δ. (49)

So the challenge is to determine meaningful approximations toQ by solving the linear
system (47) with Gδ instead of G. The major difficulty here is that, as the matrix AN

is severely ill-conditioned due to the fast decrease of its singular values (see Fig. 4),
the computed solution Qδ = AN

−1Gδ will be contaminated by noise in such a way
that it will have no practical value.

We illustrate this by considering the reconstruction problem using data generated
by the heat fluxQ(θ) described in the previous section. Exact and perturbed data used
in this illustration as well as the vector Q and Qδ are all displayed in Fig. 5. A way to
see this more precisely is by using the SVD ofAN . Indeed, if we letGδ = G+ε where
ε stands for a vector of inaccuracies, then the computed solution can be expressed
as

Qδ =
N∑

k=1

fTkGδ

σk

fk = Q +
N∑

k=1

fTkε

σk

fk, (50)

where the sum on the right equality stands for the perturbation error. As the singular
values rapidly decrease to zero, the above expression shows that the perturbation
error will dominate the final result because in practice, there is no way to prevent
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Fig. 4 Behavior of σj
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Fig. 5 Left: exact and perturbed temperature data: T (rE , θj ), T̃ (rE , θj ) = T (rE , θj ) + εj , j = 0, . . . 256
(i.e., N = 257), for noise vector ε with standard deviation 7.8954 × 10−6. Right: exact heat flux and its
naive reconstruction

σk from being much less than |fTkε| for some k; this explains the ill-posed nature of
the reconstruction problem addressed in this work. Thus, regularization methods are
required in order to construct approximations that resemble the exact solution Q.

3.1 Regularized solutions

As already seen in (50), the main problem with Qδ is that noise components can be
greatly amplified because of the division by small singular values; in this event, the
computed estimate Qδ can differ enormously from Q. To filter out the contribution of
noise to the computed solution, two regularization methods will be used in this work,
namely, truncated SVD (TSVD) and Tikhonov regularization.

3.1.1 TSVD

Since the reconstructed heat flux from noisy data is dominated by inaccuracies, based
on the SVD of matrix AN (48), the TSVDmethod determines regularized solutions by
truncating the sum (50) to k terms, see, e.g., [16], giving rise to regularized solutions
defined as

Q(k)
δ =

k∑
j=1

fTjGδ

σj

fj .

The point here is that if k is poorly chosen, the solution Q(k)
δ either captures not

enough information about the problem or the noise in the data dominates the approxi-
mate solution. The challenge in connection with TSVD is thus how to choose a proper
truncation parameter. In this work, the truncation parameter is determined according
to the discrepancy principle (DP) of Morozov [20]; i.e., for the truncation parameter,
we choose the first index k such that

‖ANQ
(k)
δ − Gδ‖2 ≤ τδ, τ � 1. (51)
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3.1.2 Tikhonov method

Tikhonov regularization (TR) manages ill-conditioned systems by solving nearby
least-squares problems. In our context, TR determines approximate solutions by
solving the penalized least-squares problem

Qλ,δ = argmin
Q∈RN

Jλ(Q), Jλ(Q) = ‖ANQ − Gδ‖22 + λ2‖Q‖22,

where λ > 0 is the regularization parameter. The functional Jλ(Q) represents a
trade-off between two optimization processes: the fidelity of the fit and second the
smoothness or the stability of the solution. Thus, for the regularized solution Qλ,δ

to be meaningful the regularization parameter must balance both processes. In other
words, the choice of a good regularization parameter requires a good balance between
the size of the residual norm and the size of the solution norm [16]. Regarding the
practical aspects, based on the SVD of AN, it is immediate to see that the regularized
solution can be expressed as

Qλ,δ =
N∑

j=1

σj fTjGδ

(λ2 + σ 2
j )

fj .

In this work, the regularization parameter will be chosen according DP; i.e., for the
regularization parameter, we choose the only root of the non-linear equation [20]

‖ANQλ,δ − Gδ‖2 = τδ, τ � 1. (52)

Based on the SVD of AN again, it is straightforward to see that the squared residual
norm

R(λ) := ‖ANQλ,δ − Gδ‖22.
is an increasing function of the regularization parameterλ, so the non-linear equa-
tion (52) can be readily solved; see, e.g., [3, 16].

We end the section with the observation that error bounds associated to regular-
ized solutions obtained by TSVD and TR with DP as parameter choice rule are well
established in literature and are therefore not included here.

4 Numerical results

We shall now illustrate the effectiveness of the proposed method by describing
reconstruction results using both synthetic and experimental data.

4.1 Reconstructions using synthetic data

Case 1: Constant source function

We consider a test problem with temperature data generated by means of the
Galerkin approach, as described in Section 2, with heat flux defined by

Q(θ) = −3250 − 1265exp(cos θ).
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Physical parameters are taken from [8] and reproduced here for convenience:

α = 5, λw = 15, qg = 4.8 × 106, Tenv = 294.2, Tb = 295.2, rE = 0.015. (53)

For the inverse problem, we consider N = 127 temperature values T̃j = T (rE , θj ) +
εj , where εj are zero mean random numbers scaled such that the corresponding data
vectors satisfy

Tδ = T + NL‖T‖ε, ‖ε‖ = 1,

where NL stands for relative noise level. Hence, the data vector for inversion is

Gδ = Tδ − u(rE)1

where 1 denotes the vector of all ones and u is determined according to (38), and thus

δ = ‖̃T − T‖ = ‖Gδ − G‖ = NL‖T‖.
To quantify the effectiveness of the new method at distinct noise levels, we define the
relative estimation error for Q as

EQ = ‖Qestimated − Qexact‖2/‖Qexact‖2,
For the test problem under consideration, we ran 100 instances with different data
vectors sharing the same noise level. We report average relative errors correspond-
ing to five noise levels NL = 10−6, 10−5, . . . , 10−2 and five distinct inner radii
rI = 0.010, 0.011, 0.012, 0.013, 0.014. All calculations were carried out using Mat-
lab with the error norm δ as input data. Recall that the error norm δ is required for the
implementation of TSVD and TR based on the discrepancy principle as regularization
parameter choice rule.

Numerical results obtained in the experiment are displayed in Fig. 6. Two con-
clusions can be drawn from the results. First, TSVD and TR produce results of
comparable quality, and second, the quality of the reconstructions tends to deteriorate
as the inner radius decreases. While the first observation confirms common experi-
ence widely described in literature, the second one expresses the fact that the problem
becomes more sensitive to noise as the inner radius decreases. To reinforce this last
observation, the condition number of AN as a function of the inner radius is displayed
in Table 1.

Results obtained in the first run for two noise levels are displayed in Fig. 7.
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Fig. 6 Average relative errors EQ for several noise levels and several inner radii. Left: TSVD-based
results. Right: Tikhonov regularization-based results
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Table 1 Condition numbers of matrix AN

rI 0.010 0.011 0.012 0.013 0.014

κ(AN) 4.4351×1026 2.2317×1021 3.2486 × 1016 1.1538×1012 8.7603×107

Case 2: Variable source function

We consider a test problem with source function qg(r, θ) chosen in such a way that
the exact solution to the forward problem (1)–(3) and the heat flux are defined by

T (r, θ)= Q(θ)

α
exp

[
− α

λw

(r−rI)

]
, Q(θ)= 0.5α

[
3+cos2(0.5θ)

]
α+0.5α

[
3+cos2(0.5θ)

] (Tb −Tenv).

In this numerical experiment, the “physical” parameters are chosen as

rI = 0.4, rE = 0.9, Tb = 55, Tenv = 10, α = 8, λw = 5.

As the source function depends on both variables r and θ , to determine the “exact”
data set for inversion, G(rE , θj ) = T (rE , θj )−u(rE , θj ), j = 0, . . . , N , the solution
u(r,θj ) to the auxiliary problem (8)–(10) is obtained numerically through the highly
accurate Chebyshev pseudospectral method, as made in [1]. In this case, the solution
is computed on a grid with p = 30 points in the radial direction and N = 128 points
in the θ direction. With exact data set at hand, we proceed in the same way as before
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Fig. 7 Temperature data and estimated heat flux obtained with TSVD method. The results correspond to
rI = 0.013, NL = 10−4 (top), and NL = 10−3 (bottom)
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in order to simulate data for inversion with several noise levels. Average results of 100
realizations for noise levels NL = 10−5, . . . , 10−2 produced reconstruction errors
EQ ranging from 2.13× 10−5 to 5.73× 10−3. Exact and noisy data, as well as exact
and recovered heat flux (first run), are displayed in Fig. 8. As in Case 1, TSVD and
TR produced results of comparable quality; that is why results obtained with TR are
not shown here.

4.2 Reconstruction of heat transfer coefficient in coiled tubes: reconstruction
using experimental data

In this section, we give an application of the method proposed in this work to the esti-
mation of the heat transfer coefficient in coiled tubes from experimental temperature
data at the external boundary acquired by Bozzoli et al. [8]. The estimation procedure
relies on the fact that if the heat flux Q is available, then the heat transfer coefficient
can be determined as [1, 8, 12, 13, 24]

h(θ) = Q(θ)

Tb − T (rI , θ)
, Tb �= T (rI , θ),

where Tb denotes the bulk-fluid temperature on the test section (annular region) and
T (rI , θ) denotes the temperature at the inner boundary associated to the heat flux Q.

The data consist of 276 point-wise equally spaced temperature values acquired by
a infrared camera on the exterior test section wall surface of a stainless steel coiled
tube under the prescribed condition of uniform heating generated by Joule effect
in the tube wall (i.e., the source function gg is constant). With the exception that
in this experimental investigation the inner and external radii are rI = 0.008 mm
and rE = 0.009 mm, the remaining physical parameters are the same as in (53).
Experimental data acquired by the infrared camera are displayed in Fig. 9. The data
clearly reveal that the temperature distribution exhibits a significant variation along
the circumference, and the temperature gradient is almost negligible along the axis of
the tube. This observation confirms that adopting a 2-D numerical model for this type
of problem is appropriate. The experimental investigation was carried out in laminar
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Fig. 8 Temperature data and estimated heat flux obtained with TSVD method. The results correspond to
NL = 10−2
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Fig. 9 Experimental data and recovered data

regime by using Ethylene Glycol as a working fluid. For further details about the
experimental procedure, the reader is referred to Bozzoli [8].

Turning to the estimation procedure, as we know, for the implementation of the
discrepancy principle, the error norm δ has to be estimated. In this experimental
investigation, such estimation was made by measuring the surface temperature distri-
bution while maintaining the coil wall under isothermal conditions [8]. Numerically,
the truncation parameter determined by the discrepancy principle for TSVD was
k = 11 and the regularization parameter for TR was λ = 1.2093 × 10−4. With the
heat flux at hand, the heat transfer coefficient is estimated as

[hestim]j = [Qestim]j
Tb − [TI]j

, j = 1, . . . , N

where TI denotes the temperature at the inner tube wall calculated according to
Proposition 3.1 as

TI =
k∑

j=1

ηj (rI)f
T
j G

σj

fj + u(rI),

with k determined by the discrepancy principle.
Both reconstructions, heat flux and heat transfer coefficient, are displayed in

Fig. 10. As we can see, the results agree well with those obtained in [8] where the
forward problem is solved by the finite element method and the heat flux is deter-
mined by solving a regularized linear least-squares problem with a sensitivity matrix
as a discrete forward operator. In that case, Tikhonov regularization is coupled with
a fixed-point method to determine the regularization parameter [4, 5].

Filtered temperature data computed by truncating the sum given in (46) to k terms
are compared to the experimental data in Fig. 9 (right). The results show that both
reconstructed temperature distributions fit well the experimental data.

We conclude the section with reconstruction results of asymmetrical heat flux
and asymmetrical heat transfer coefficient from experimental data provided by M. J.
Colaço [13]. In this case, the data set consists of 201 temperature values acquired by
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Fig. 10 Estimated heat flux Q and estimated heat transfer coefficient h from experimental measurements

an infrared camera, under the same experimental conditions as described above, and
with physical parameters

qg = 4.78 × 106, Tb = 21.57, Tenv = 23.85, α = 5, λw = 15.

Experimental data for this numerical example are displayed in Fig. 11 (left). Fil-
tered temperature data are displayed in Fig. 11 (right). As before, the results show that
both reconstructed temperature distributions fit well the experimental data. Note that
the filtered temperature values at the outer and inner boundaries are very similar. The
reason of this is that the tube thickness is very small: rE − rI = 0.001. Finally, recon-
structed heat flux and reconstructed heat transfer coefficient are depicted in Fig. 12.
The results show that the method is also suitable for these types of non-symmetric
functions. The reconstructed heat transfer coefficient obtained by our method looks
very similar to that obtained in [13, Figure 6].
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Fig. 11 Experimental data and recovered data: asymmetric case
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Fig. 12 Estimated heat flux Q (left) and estimated heat transfer coefficient h (right) from experimental
measurements: asymmetric case

5 Conclusion

In this work, we investigated the problem of reconstructing boundary data for a Pois-
son equation on annular domain using discrete data. As the main result, we derive a
method for reconstructing Neumann data at the internal (hence inaccessible) bound-
ary using discrete measured data at the external (accessible) boundary. The method
addresses the problem via Galerkin’s method in such a way that point-wise boundary
data are connected with measured data through a severely ill-conditioned linear sys-
tem with boundary data as unknown. Our main contribution is an explicit description
of the SVD of the coefficient matrix and hence an explicit SVD expansion of point-
wise boundary data for the noisy-free case. Moreover, for the case of noisy data, two
regularization methods are discussed and implemented, namely TSVD and Tikhonov
regularization. The method is extremely simple to implement and computationally
inexpensive since the reconstruction spends only a few standard inner products of low
dimensional vectors. Several numerical results are included to illustrate the effective-
ness of the proposed method. Finally, as an application, we estimate the heat transfer
coefficient in coiled tubes from experimental data reported in [8, 13].
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