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Abstract This work concerns the useful and large class of all piecewise Cheby-
shevian splines, in the sense of splines with pieces taken from different Extended
Chebyshev spaces all of the same dimension, and with connection matrices at the
knots. The subclass of those which are interesting for applications, and in particu-
lar for design, is known to be characterised by the fact that the continuity between
consecutive pieces can always be controlled by identity matrices, provided that we
express it by means of appropriate generalised derivatives associated with the section-
spaces. Modelled on the proof of this beautiful theoretical characterisation, we
provide a numerical procedure to check whether or not a given spline space lies in that
subclass. Examples are given proving the usefulness of the test in situations where
it is not expectable to derive exact practical conditions from the above-mentioned
theoretical characterisation.
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1 Introduction

Given a < b, take any sequence (w0, w1, . . . , wn) of weight functions on [a, b],
in the sense that wi is both positive and Cn−i on [a, b], and, for i = 0, . . . , n, the
associated ith order linear differential operator Li on Cn([a, b]), obtained by alter-
nating division by w0, differentiation, division by w1, differentiation, and so forth
up to division by wi (referred to as generalised derivatives). It is then well known
that the (n + 1)-dimensional space E composed of all functions F ∈ Cn([a, b]) such
that LnF is constant on [a, b] is an Extended Chebyshev space on [a, b]. We denote
it as E = EC(w0, w1, . . . , wn). Conversely, because we are dealing with a closed
bounded interval, any (n + 1)-dimensional Extended Chebyshev space E on [a, b] is
of the form E = EC(w0, . . . , wn), and we even know how to build all sequences of
weight functions on [a, b] leading to such an equality [27].

Take any sequence of knots t0 < t1 < · · · < tq < tq+1. For each k = 0, . . . , q,
take any sequence (wk

0, w
k
1, . . . , w

k
n) of weight functions on [tk, tk+1], with wk

0 =
1I (this notation stands for the constant function 1I(x) = 1 for all x in any given
interval) and denote by Lk

0, L
k
1, . . . , L

k
n, the associated generalised derivatives. Select

a sequence (F0, . . . , Fq) satisfying the following two properties:

1. for each k = 0, . . . , q, Fk belongs to Ek := EC(1I, wk
1, . . . , w

k
n);

2. for each k = 1, . . . , q and for each i = 0, . . . , n−1, Lk−1
i Fk−1(tk) = Lk

i Fk(tk).

The continuous function S : [t0, tq+1] → IR which coincides with Fk on [tk, tk+1]
for k = 0, . . . , q is what we call a piecewise Chebyshevian spline. From the second
requirement, it is well known that, in terms of the ordinary derivatives, S satisfies
connection conditions

(
S(tk), S

′(t+k ), . . . , S(n−1)(t+k )
)T = Rk

(
S(tk), S

′(t−k ), . . . , S(n−1)(t−k )
)T

,

k = 1, . . . , q, (1)

where each Rk is a lower triangular matrix of order n with positive diagonal entries
and first column equal to (1, 0, . . . , 0)T . It is known that

Theorem 1 The (n + q + 1)-dimensional space S of all piecewise Chebyshevian
splines S defined by the previous two properties is good for design. Conversely, any
piecewise Chebyshevian spline S ⊂ C0([t0, tq+1]) with t1, . . . , tq as simple knots,
supposed to be good for design, is obtained according to the previous procedure.

The expression good for design is used with the meaning of existence of refinable
B-spline bases in S, or, equivalently, existence of blossoms. Though stated here with
a finite sequence of simple knots for convenience, Theorem 1 is more generally valid
for any knot-vector, with any non-negative multiplicities [28]. Piecewise Chebyshe-
vian splines are known to be extremely useful for design due to the great variety of
shape effects they provide. Nevertheless, in practice, how can we recognise that such
a given spline space, defined by its section spaces and connection conditions (1)
is good for design? A constructive method to address this question naturally results
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from Theorem 1: among the infinitely many possible ways to write the section spaces
as EC(1I, wk

1, . . . , w
k
n), k = 0, . . . , q, can we find one so that all given connection

conditions (1) can be expressed by identity matrices in terms of the associated
generalised derivatives? With simple knots and (n + 1)-dimensional section-spaces
(n � 3), this results in a (non-linear, except for n = 3) system in (q + 1)n(n − 1)/2
unknowns and q(n − 1) equations, in which any (n − 2) consecutive connection
matrices are involved at the same time, and that we have to solve positively [29,
33]. For n = 3, this provides us with an elementary necessary and sufficient condi-
tion separately on each connection matrix Rk , depending on the two corresponding
section spaces. For n = 4, the complete characterisation of all good for design
splines resulting from Theorem 1, already rather difficult to obtain, was achieved
in [33], and exploited there in various interesting situations (see also [8]). Unless
we simultaneously increase the multiplicities, the difficulty highly increases with n,
and, with simple knots, finding exact necessary and sufficient conditions is not really
expectable beyond n = 4. It is not expectable either, even in relatively low dimen-
sions, when a significant number of knots have zero multiplicities. This is the reason
why, in the present paper, we develop a numerical algorithm to replace the exact res-
olution of the above-mentioned system. This procedure extends and completes the
one previously proposed in the special case where all interior t1, . . . , tq have zero
multiplicities, that is, when S has the same dimension as each of its section spaces
[2]. In that situation, the question could equivalently be formulated as follows: is S an
Extended Chebyshev Piecewise space good for design on [a, b] relative to the interior
knots t1, . . . , tq?

Our numerical test for splines is built in Section 3, according to the same general
guiding line as in [2] in so far as it is based on dimension diminishing via piecewise
generalised derivatives. As explained in Section 2 along with all the necessary back-
ground, this decisive point is also the guiding line in the proof of the converse part of
the general version of Theorem 1 (see [28]). Also reminded in Section 2 is the cru-
cial simultaneous effect of dimension diminishing on the basis functions in the spline
space and in the section spaces which plays a prominent role for the test and highly
simplifies it. In Section 4, we address several situations making the usefulness of the
numerical test clear.

2 Context and background

This section aims at recalling the crucial results which the present work relies on.
Our overview will be as brief as possible. For further acquaintance with Extended
Chebyshev spaces, see, for instance, [10, 15, 18, 22, 24, 25, 27, 35, 37], with Cheby-
shevian splines, see [3, 4, 35, 37], with piecewise Chebyshevian splines, see [1, 11,
20, 22, 23, 26, 28] and additional references therein.

2.1 Extended Chebyshev spaces

Throughout this subsection, we work on a given closed bounded interval [a, b], a <

b. Given an integer n � 0, an (n + 1)-linear space E ⊂ Cn([a, b]) is said to be an
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Extended Chebyshev space on [a, b] (for short, EC-space on [a, b]) if any non-zero
F ∈ E vanishes at most n times on [a, b], counting multiplicities up to (n + 1).
Equivalently, E is an EC-space on [a, b] if any Hermite interpolation problem in
(n + 1) data in [a, b] is unisolvent in E.

Bases of the Bernstein-type play a prominent role in EC-spaces, and we remind
their definition below.

Definition 1 A sequence (V0, . . . , Vn) in Cn([a, b]) is said to be a Bernstein-like
basis relative to (a, b) if, for each k = 0, . . . , n, Vk vanishes exactly k times at a,
and exactly (n − k) times at b, and is positive on ]a, b[. A sequence (B0, . . . , Bn)

in Cn([a, b]) is said to be a Bernstein basis relative to (a, b) if it is a Bernstein-like
basis relative to (a, b) which is normalised, in the sense that it satisfies

∑n
i=0 Bi = 1I.

Any EC-space on [a, b] possesses infinitely many different Bernstein-like bases
relative to (a, b). Clearly, for an EC-space on [a, b] to possess a Bernstein basis
relative to (a, b), it is necessary that it contains the constants. Nevertheless, this is
not sufficient, unless its dimension is at most two. Below, we state the first key-point
for the present work. [24, 27].

Theorem 2 Given an integer n � 1, let E be an (n + 1)-dimensional EC-space
on [a, b], supposed to contain the constants, the following properties are then
equivalent:

1. E possesses a Bernstein basis relative to (a, b);
2. the space DE := {DF := F ′ | F ∈ E} is an (n-dimensional) EC-space on

[a, b];
3. blossoms exist in E.

Furthermore, if any of these properties is satisfied, then it is possible to develop all
the classical geometric design algorithms in E, and the Bernstein basis relative to
(a, b) is the optimal normalised totally positive basis in E.

Though we will avoid explicitly using blossoms as far as possible, they are implic-
itly involved in all results reminded in this subsection, and their properties are
essential in the proof of Theorem 2. This is the reason why we mentioned them. As
for the expression optimal normalised totally positive basis, the reader can simply
understand it as the best possible basis for design. For the precise meaning, see [22],
and also [9, 14]. Theorem 2 justifies the definition below.

Definition 2 A given (n+1)-dimensional EC-space E on [a, b] is said to be good for
design on [a, b]when it possesses a Bernstein basis relative to (a, b) (or, equivalently,
when it contains the constants and possesses blossoms).

The second key-point needed is closely connected with the proof of Theorem 2
(see [27]).
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Theorem 3 LetE be an (n+1)-dimensional EC-space on [a, b], and let (V0, . . . , Vn)

be a Bernstein-like basis relative to (a, b) in E. Then, for a function w0 ∈ E,
expanded as w0 = ∑n

i=0 αiVi , the following properties are equivalent:

1. α0, α1, . . . , αn are all positive;
2. w0 is positive on [a, b] and, setting L0V := V/w0 for all functions V defined

on [a, b], the space L0E is good for design (i.e., if n � 1, DL0E is an EC-space
on [a, b]).

Remark 1 In connection with Theorems 2 and 3, the recursive passage from Bern-
stein bases/Bernstein-like bases to Bernstein-like bases/Bernstein bases, respectively,
will be crucial for the numerical test built in the next section. We therefore have to
recall it subsequently. Let us start with an (n + 1)-dimensional EC-space good for
design on [a, b], E, and its Bernstein basis (B0, . . . , Bn) relative to (a, b).

• From E to DE: Consider the functions1

B�
i :=

n∑

k=i

Bk = 1I −
i−1∑

k=0

Bk, i = 0, . . . , n, (2)

so that, in particular,

B�
0 = 1I, B�

n = Bn, Bi = B�
i − B�

i+1 for i = 0, . . . , n, (3)

with the convention that B�
n+1 = 0. Moreover, from (2), we can see that, for each

i = 1, . . . , n, the function B�
i vanishes exactly i times at a, while the function

1I − B�
i vanishes exactly (n − i + 1) times at b. Setting [24]

Vi := DB�
i+1 =

n∑

k=i+1

DBk = −
i∑

k=0

DBk, i = 0, . . . , n − 1, (4)

we can see that, for i = 0, . . . , n − 1, the function Vi vanishes exactly i times
at a and exactly (n − 1 − i) times at b. It is also positive close to a due to the
equality Vi

(i)(a) = Bi+1
(i+1)(a). Since, according to Theorem 2, DE is an EC-

space on [a, b], we can thus conclude that (V0, . . . , Vn−1) is a Bernstein-like
basis relative to (a, b). Moreover, expansions in that basis can easily be derived
from expansions in the Bernstein basis in E. Indeed, given any real numbers
β0, . . . , βn

F :=
n∑

i=0

βi Bi =⇒ DF :=
n−1∑

i=0

(βi+1 − βi) Vi . (5)

1It should be observed that, when E is the degree n polynomial space, these B�
i , i = 0, . . . , n, are the

functions initially introduced by Pierre Bézier, under the pseudonym Onésime Durand, before realising
that their differences (Bernstein polynomials) were easier to manipulate for design (see [17] and references
to P. Bézier therein).
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• From DE to L1E: Consider a function

w1 :=
n−1∑

i=0

αiVi, with positive α0, . . . , αn−1. (6)

Out of division of the two hand-sides of (6) by the positive functionw1, we obtain

1I =
n−1∑

i=0

Bi, with Bi := αiVi

w1
for i = 0, . . . , n − 1. (7)

Clearly, (B0, . . . , Bn−1) is the Bernstein basis relative to (a, b) in L1E :=
1

w1
DE which is an n-dimensional EC-space good for design on [a, b] (see

Theorem 3).

This is one step of dimension diminishing within the class of all EC-spaces good
for design on [a, b]. Starting from L1E and its Bernstein basis relative to (a, b),
we can iterate the process. This alternation between differentiation and division
by appropriate positive functions provides us with all ways to write E as E =
EC(1I, w1, . . . , wn) (see [27]). This dimension diminishing process can be under-
stood as alternating between design (that is, successively in E, L1E, . . . , which are
EC-spaces good for design on [a, b]) and interpolation (that is, successively in DE,
DL1E, . . . , which are EC-spaces on [a, b]).

2.2 Piecewise Chebyshevian splines

From now on, we consider a fixed bi-infinite sequence T of knots tk , k ∈ ZZ, with
tk < tk+1 for all k, and the associated interval I :=] infk tk, supk tk[. In general, we
will not deal with functions on I but with piecewise functions F on (I;T), defined on
∪k∈Z[t+k , t−k+1], that is, separately on each [t+k , t−k+1], with possibly F(t+k ) �= F(t−k ).
In this context, equality, differentiation, positivity, and so forth, will be defined
piecewisely. Each tk is allocated a non-negative multiplicity mk , with

∑

i�0

mi =
∑

i�0

mi = +∞. (8)

Due to this requirement, the extended knot-vector K := (
tk

[mk])
k∈ZZ formed by the

knots repeated with their multiplicities can be written as a bi-infinite sequence

K = (
ξ�

)
�∈ZZ, with ξ� � ξ�+1. (9)

To define a spline space, we additionally consider the following:

– A bi-infinite sequence of section spaces Ek , k ∈ ZZ: each Ek is an (n + 1)-
dimensional EC-space on [tk, tk+1].

– A bi-infinite sequence of connection matrices Rk , k ∈ ZZ: each Rk is a lower
triangular matrix of order (n − mk + 1) with positive diagonal entries.

Based on these data, a piecewise Chebyshevian spline (in short, PEC-spline) is a
piecewise function S on (I;T) meeting the following two requirements:
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1- For each k ∈ ZZ, the restriction of S to [t+k , t−k+1] coincides with an element of
the section-space Ek .

2- S satisfies the connection conditions:

(
S(t+k ), S′(t+k ), . . . , S(n−mk)(tk

+)
)T

= Rk

(
S(t−k ), S′(t−k ) . . . , S(n−mk)(tk

−)
)T

, k ∈ ZZ. (10)

Subsequently we denote by S the linear space all such splines. At a knot tk , there
are two reasons why a spline S ∈ S can be discontinuous. Either mk � n + 1 and
there is no relation between t−k and t+k ; or mk � n and the first diagonal entry of
the connection matrix Rk is not equal to 1. Observe that piecewise multiplication by
some piecewise function ω which is piecewise positive and piecewise Cn on (I ;T)

transforms S in another PEC-spline space in which, at each knot tk , the new connec-
tion matrix can be calculated from Rk and ω (see, for instance, [28]). Integration also
transforms a PEC-spline space into another one which contains the constants.

Denote by �n(K) the set of all integers � such that ξ� < ξ�+n+1.

Definition 3 A sequence Q� ∈ S, � ∈ �n(K), is a B-spline-like basis if it meets the
usual requirements below:

– support property: for each � ∈ �n(K), Q� is piecewise zero outside [ξ�, ξ�+n+1];
– positivity property: for each � ∈ �n(K),Q� is piecewise positive on ]ξ�, ξ�+n+1[;
– endpoint property: for each � ∈ �n(K), Q� vanishes exactly (n − s + 1) times

at ξ+
� and exactly (n − s′ + 1) at ξ−

�+n+1, where s := #{j � � | ξj = ξ�} and
s′ := #{j � � + n + 1 | ξj = ξ�+n+1}.

A sequence N� ∈ S, � ∈ �n(K), is a B-spline basis if it is a B-spline-like
basis which is normalised, in the sense that

∑
�∈�n(K) N�(x) = 1 for all x ∈

∪k∈Z[t+k , t−k+1].

Subsequently, for the sake of simplicity, given a B-spline-like basis Q� ∈ S, � ∈
�n(K), we will abusively write S = ∑

� α�Q� with the meaning of the following
pointwise equality:

S(x) =
∑

�∈�n(K)

α�Q�(x) for all x ∈ [t+k , t−k+1] and all k ∈ ZZ.

For instance, with this (double) abuse of notations, the normalisation property of a
B-spline basis N�, � ∈ �n(K), can be written as

∑
� N� = 1I, but the reader should

keep in mind first that it is a piecewise and pointwise equality, second that it may not
concern all integers.

The spline space S contains the constant function 1I if and only if, firstly each
section space contains the constants, and secondly, for each k such that mk � n,
the first column of the connection matrix Rk is equal to (1, 0, . . . , 0)T . If S contains
the constants and n � 1, we can assert that the space DS obtained by piecewise
differentiation is a PEC-spline space only if, for each k, DEk is an EC-space on
[tk, tk+1], that is, only if the section spaces Ek are EC-spaces good for design on their
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intervals. A spline version of Theorem 2 can be stated as follows (see [22, 23] and
other useful references therein).

Theorem 4 Assume the PEC-spline space S to contain the constants. Then, the
following three properties are equivalent:

1. S possesses a B-spline basis, and so does any spline space obtained from S by
knot insertion;

2. the space DS is a PEC-spline space, it possesses B-spline-like bases, and so
does any spline space obtained from DS by knot insertion;

3. blossoms exist in S.

Furthermore, if one of these properties is satisfied, then it is possible to develop all
the classical geometric design algorithms for splines in S, and its B-spline basis is
totally positive.

Obviously, the second property above is meaningful only if n � 1. As in the
non-spline case, Theorem 4 highly justifies the following definition.

Definition 4 A PEC-spline space S being given, we say that S is good for design if it
possesses a B-spline basis and so does any spline space derived from S by insertion
of knots (or, equivalently, if S contains the constants and possesses blossoms).

Clearly, all section spaces of a PEC-spline space S good for design are themselves
good for design on their own intervals. From the study carried out in [32], it follows
that condition 2 of Theorem 4 is satisfied if and only if the restriction of DS to any
closed bounded interval ensures unisolvence of all corresponding Hermite (left/right)
interpolation problems under the classical Schoenberg-Whitney conditions and the
same holds true after knot insertion. It is convenient to introduce the following
definition.

Definition 5 A PEC-spline space S being given, we say that S is good for interpola-
tion if it possesses B-spline-like bases and so does any spline space derived from S

by insertion of knots.

According to the latter two definitions, a PEC-spline space which is good for
design is good for interpolation. Moreover, Theorem 4 can now be reformulated as
follows.

Theorem 5 Given PEC-spline space S, let Ŝ denote the PEC-spline space (contain-
ing the constants) obtained by continuous integration. The following two properties
are equivalent:

1. S is good for interpolation;
2. Ŝ is good for design.
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Assume that a PEC-spline space S possesses a spline w0 which is piecewise
positive on (I;T). Then, we can consider the piecewise division L0 by w0, that is,
L0V := V

w0
for all piecewise functions V on (I;T). The space L0S is a PEC-space on

(I;T), in which the connection matrices can be calculated from w0 and the connec-
tion matrices in S. Moreover L0S contains the constants. Still, even if S possesses a
B-spline-like basis, this does not guarantee that L0S possesses a B-spline basis. The
spline version of Theorem 3 is recalled below.

Theorem 6 [28] Assume the PEC-spline space S to be good for interpolation, and
let Q�, � ∈ �n(K), be a B-spline-like basis in S. Then, for a spline w0 ∈ S, expanded
as w0 = ∑

� α�Q�, the following properties are equivalent:

1. all coefficients α� are positive;
2. w0 is piecewise positive on (I ;T) and, setting L0V := V/w0 for all piecewise

functions on (I;T) (piecewise division by w0), the PEC-spline space L0S is good
for design.

Remark 2 Similarly to what we mentioned in Remark 1, the recursive passage from
B-spline/B-spline-like bases to B-spline-like/B-spline bases will be crucial for the
the numerical test built in the next section. Here, we assume that S is a PEC-spline
space good for design on (I;T), with (n+1)-dimensional section-spaces, n � 1, and
we denote by N�, � ∈ �n(K), its B-spline basis.

• From S to DS: Consider the splines N�
� ∈ S defined by2

N�
� :=

∑

p��

Np = 1I −
∑

p��−1

Np, � ∈ �n(K). (11)

so that, in particular,

N� = N�
� − N�

�+1, � ∈ �n(K). (12)

When it is defined, the spline N�
� is piecewise zero (resp. one) on the left (resp.

on the right) of [ξ+
� , ξ−

�+n]. In particular if ξ� = ξ�+n, it is piecewise constant.
Otherwise, � ∈ �n−1(K), and from (11), we can see that N�

� vanishes exactly as
many times as N� at ξ

+
� , while the spline 1I−N�

� vanishes exactly as many times
as N�−1 at ξ

−
�+n. Setting

Q� := DN�
� , � ∈ �n−1(K), (13)

for each � ∈ �n−1(K), the piecewise function Q� vanishes exactly (n − s)

times at ξ� and exactly (n − s′) times at ξ�+n, where s and s′ are defined in the
endpoint property of Definition 3. It is also positive close to ξ+

� due to the equal-
ity Q�

(n−s−1)(ξ+
� ) = N�

(n−s+1)(ξ+
� ). Since, according to Theorem 5, DS is

2In the polynomial spline setting, this corresponds to the transition functions by L. Schumaker, p. 141 of
[37].
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a PEC-spline space good for interpolation on (I;T), we can thus conclude that
the sequence Q�, � ∈ �n−1(K), forms a B-spline-like basis in DS. Moreover,
expansions in that basis can easily be derived from expansions in the B-spline
basis. Indeed, given any spline S ∈ S,

S =
∑

�

α� N� =⇒ DS :=
∑

�

(α� − α�−1)Q�. (14)

• From DS to L1S: Consider a spline w1 ∈ DS, given by

w1 :=
∑

�

α�Q�, with positive α�. (15)

This spline w1 is piecewise positive on (I;T) and piecewise division of both
hand-sides of (15) by w1 yields the piecewise equality

1I =
∑

�

N�, with N� := α�Q�

w1
for � ∈ �n−1(K). (16)

The sequence N�, � ∈ �n−1(K), is the B-spline basis in L1S := 1
w1

DS which is
a PEC-spline space good for design on (I;T), with n-dimensional section spaces,
and with connection matrices deduced from those in S and from (15).

Above, we have described one step of dimension diminishing within the class
of all PEC-spline spaces good for design on (I ;T), obtained through the piecewise
generalised derivative L1. Observe that, for all S ∈ S, the function L1S is continuous
at each knot tk for whichmk � n−1. Starting fromL1S and its B-spline basis, we can
iterate the process. This alternation between (left/right) differentiation and piecewise
division by appropriate positive piecewise functions on (I;T) provides us with all
local systems of generalised derivatives relative to which the connection conditions
in S are expressed by identity matrices (see the general version of Theorem 1 in [28]).
According to Theorem 5, this dimension diminishing process produces alternation
between PEC-spline spaces good for design (S, L1S, etc) and PEC-spline spaces
good for interpolation (DS, DL1S, etc).

Remark 3 Even if we require that all multiplicities be bounded above by n in the ini-
tial space (continuous splines), it may be the case that after a few steps, we will be
working in a discontinuous PEC-space LrS, in which the equality �n−r (K) = ZZ
will no longer be valid. Then, one can either continue with the convention intro-
duced earlier, or, if we want to avoid this difficulty, split the space LrS into several
PEC-spline spaces of the form LrS

−
k , LrS

+
k , or LrSk,k′ , obtained by restriction to

∪j�k−1[t+j , t−j+1], ∪j�k[t+j , t−j+1], ∪k�j�k′−1[t+j , t−j+1], with k < k′, respectively,
in which all interior multiplicities will be bounded above in an appropriate way.

2.3 Towards the numerical test

Subsequently, we present some further arguments on which our test will be closely
modelled.

Numer Algor (2019) 81:1–3110



2.3.1 Positivity property of local expansions

In this subsection, we consider local properties of the B-spline (-like) bases. For
convenience, we assume mk � n for all k ∈ ZZ, and consider a PEC-spline space S
with (n + 1)-dimensional section spaces.

Proposition 1 Let S be a PEC-spline space good for design, and let N�, � ∈ ZZ, be
the B-spline basis in S. For any integers �, k ∈ ZZ, we denote by Nk

� the restriction to
[tk, tk+1] of the B-spline N�, and by α�,k,i its Bézier points relative to (tk, tk+1), that
is,

Nk
� =

n∑

i=0

α�,k,iBk,i , k, � ∈ ZZ, (17)

where (Bk,0, . . . , Bk,n) is the Bernstein basis relative to (tk, tk+1) in the section-
space Ek.

Then, for [tk, tk+1] ⊂ [ξ�, ξ�+n+1], all α�,k,i’s are positive except in accordance
with the end point property, that is,

if tk = ξ�, then α�,k,0 = α�,k,1 = · · · = α�,k,n−s = 0
and α�,k,i > 0 for i = n − s + 1, . . . , n,

if [tk, tk+1] ⊂]ξ�, ξ�+n+1[, then α�,k,i > 0 for i = 0, . . . , n,

if tk+1 = ξ�+n+1, then α�,k,i > 0 for i = 0, . . . , s′ − 1
and α�,k,s′ = α�,k,s′+1 = · · · = α�,k,n = 0,

(18)

the integers s, s′ being those introduced in Definition 3.

Proof The poles of a spline S ∈ S are the real numbers α� such that, with the con-
vention adopted earlier, S = ∑

j αjNj . As is classical with polynomials/polynomial
splines [36], they can be expressed as

αj := s(ξj+1, . . . , ξj+n) ∈ IRd , j ∈ ZZ,

where s is the blossom of S, defined on the set of all n-tuples (x1, . . . , xn) which
are admissible with respect to the knot-vector K, in the sense that, up to permutation,
they can be written as follows:

(x1, . . . , xn) = (ξ�1+1, ξ�1+2, . . . , ξ�2 , y1, . . . , yp), with y1, . . . , yp ∈]ξ�1 , ξ�2+1[.
(19)

Classically, all values of the blossom s of S can be computed from the poles of
S by means of a corner-cutting evaluation algorithm. Indeed, supposing that (19)
holds, the fundamental properties of blossoms (see for instance [28]) guarantee that
s(x1, . . . , xn) is a strictly convex combination of the (p + 1) poles α�2−n, . . . , α�1 of
S, with coefficients independent of S. Given k ∈ ZZ, this applies in particular to all
n-tuples of the form

(x1, . . . , xn) = (tk
[n−i], tk+1

[i]), i = 0, . . . , n,
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where the notation x[r] stands for x repeated r times. The real numbers s(tk
[n−i],

tk+1
[i]), i = 0, . . . , n, are the Bézier points (relative to (tk, tk+1)) of the function

Fk ∈ Ek which coincides with S on [tk, tk+1]. This means that

Fk =
n∑

i=0

s(tk
[n−i], tk+1

[i])Bk,i .

Apply the evaluation algorithm when S is the B-spline N�, for some � ∈ ZZ. In
that case, we work with the poles

s(ξj+1, . . . , ξj+n) = 1 if j = �, s(ξj+1, . . . , ξj+n) = 0 otherwise.

Without going more into details, this yields the claimed result.

We refer to (18) as the local expansion positivity property of the B-spline basis.
As a consequence, a similar property can be stated when S is good for interpolation.

Corollary 1 Assume that S be a PEC-spline space good for interpolation, and let
Q�, � ∈ ZZ, be any B-spline like basis in S. For any integers �, k ∈ ZZ, we denote by
Qk

� the restriction to [t+k , t−k+1] of the B-spline-like Q�, and by γ�,k,i the coefficients
of its expansion in a Bernstein-like basis (Vk,0, . . . , Vk,n) relative to (tk, tk+1) in the
section space Ek , that is,

Qk
� =

n∑

i=0

γ�,k,iVk,i , k, � ∈ ZZ. (20)

Then, these local expansions satisfy the positivity property (18).

Proof Take any positive numbers α�, � ∈ ZZ, and the associated piecewise positive
spline w0 = ∑

� α�Q� ∈ S. If L0 denotes the piecewise division by w0, we know
that the PEC-spline space L0S is good for design (Theorem 6), its B-spline basis N�,
� ∈ ZZ, being obtained as follows:

N� := α�Q�

w0
, � ∈ ZZ.

Denote its local expansions in the Bernstein bases (Bk,0, . . . , Bk,n) of the section-
spaces in L0S as in (17). They satisfy the positivity property (18). If wk

0 is the
restriction of w0 to [t+k , t−k+1], we obtain

Qk
� =

n∑

i=0

α�,k,i

wk
0

α�

Bk,i .

Given that the sequence

(
wk
0

α�
Bk,0, . . . ,

wk
0

α�
Bk,n

)
is also a Bernstein-like basis

relative to (tk, tk+1) in the section space Ek , the claimed result is proved.
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2.3.2 One specific dimension diminishing process

Here, the PEC-spline space S is assumed to be good for design. We have seen that
there are infinitely many different ways to diminish the dimension of the section
spaces while keeping within the class of all PEC-spline spaces good for design. We
will now describe the simplest possible process, obtained by choosing all coefficients
α� in (15) to be equal to 1, and repeating this at each step. We thus take

w1 :=
∑

�

Q�, (21)

the B-spline-like basis Q�, � ∈ ZZ, in the PEC-spline space DS being defined by
(13). In the PEC-spline space good for design L1S, the B-spline basis is then defined
piecewisely by

N� := Q�

w1
, � ∈ ZZ. (22)

Repeating the process, the B-spline-like basis in the PEC-spline space DL1S is
defined by

Q� := DN
�

�, � ∈ �n−2(K), with N
�

� :=
∑

p��

Np. (23)

We want to calculate the local expansions of this new B-spline-like basis in function
of the local expansions of the B-spline-like basis at the previous level. With this in
view, let us first see how the previous steps in S operate on the section spaces. InDEk ,
we take the Bernstein-like basis (Vk,0, . . . , Vk,n−1) relative to (tk, tk+1) defined by

Vk,i := DB�
k,i+1 for i = 0, . . . , n − 1, where B�

k,i :=
n∑

r=i

Bk,r for i = 0, . . . , n.

(24)
Then, consider the expansion

wk
1 =

n−1∑

i=0

δk,iVk,i , (25)

in which we know that all coefficients δk,i are positive because the space Lk
1Ek :=

1/wk
1DEk is an EC-space good for design on [tk, tk+1] (Theorem 3). In Lk

1Ek , the
Bernstein basis (Bk,0, . . . , Bk,n−1) is given by

Bk,i := δk,iVk,i

wk
1

, i = 0, . . . , n − 1. (26)

At the next step, in DLk
1Ek , we take the Bernstein-like basis (V k,0, . . . , V k,n−2)

obtained by

V k,i :=DB
�

k,i+1 for i =0, . . . , n−2, where B
�

k,i :=
n−1∑

r=i

Bk,i for i = 0, . . . , n−1.

(27)
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Expand the restrictions Qk
� (resp. Q

k

�) of the B-spline-like Q�, � ∈ ZZ, (resp. Q�,
� ∈ �n−2(K)) as follows

Qk
� =

n−1∑

i=0

γ�,k,iVk,i , Q
k

� =
n−2∑

i=0

γ �,k,iV k,i . (28)

Now, from (23), we know that

Q
k

� = D

⎛

⎝
∑

p��

Nk
p

⎞

⎠ . (29)

Taking account of (29) and (27), we know that, for each i = 0, . . . , n − 2, the coef-
ficients γ �,k,i can be deduced from the Bézier points of the functions

∑
p�� Nk

p ∈
Lk
1Ek (see formula (5)). Combining (22) with the left part of (28) and with (26), we

can write:
∑

p�� Nk
p = 1

wk
1

∑
p�� Qk

p = 1
wk
1

∑
p��

(∑n−1
i=0 γp,k,iVk,i

)
=

= 1
wk
1

∑n−1
i=0

(∑
p�� γp,k,i

)(
wk
1Bk,i

δk,i

)
= ∑n−1

i=0

(∑
p�� γp,k,i

δk,i

)
Bk,i .

(30)
It follows that

γ �,k,i =
∑

p�� γp,k,i+1

δk,i+1
−

∑
p�� γp,k,i

δk,i

, i = 0, . . . , n − 2,

that is, on account of (25) and of the left part of (28),

γ �,k,i =
∑

p�� γp,k,i+1
∑

p γp,k,i+1
−

∑
p�� γp,k,i

∑
p γp,k,i

, i = 0, . . . , n − 2. (31)

2.3.3 One example

To make the previous dimension diminishing procedure more tangible, we illustrate
it with cardinal symmetric geometrically continuous quartic B-splines (see [33]). In
other words, we take tk = k for all k, and each spline S ∈ S is continuous on
IR, polynomial of degree at most four on each [tk, tk+1], and it satisfies connection
conditions of the form

(
S′(t+k ), S′′(t+k ), S′′′(t+k )

)T =
⎡

⎣
1 0 0
b 1 0
bc
2 c 1

⎤

⎦
(
S′(t−k ), S′′(t−k ), S′′′(t−k )

)T
, k ∈ ZZ,

(32)
where b, c are any real parameters. In [33], this spline space S was proved to be good
for design if and only if the two conditions below are simultaneously satisfied:

b + 6 > 0, c + 4 > 0. (33)

Figures 1, 2, and 3 contain eight pictures which two by two represent four steps of
dimension diminishing, for various values of the parameters b, c satisfying (33).
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Fig. 1 Four steps of dimension diminishing in the quartic spline space of Section 2.3.3, with b = c = 1
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Fig. 2 Same as in Fig. 1, but with b = −3, c = −2
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Fig. 3 Same as in Fig. 1, but with b = 0, c = −3.9

Numer Algor (2019) 81:1–31 15



• The upper left pair of pictures concerns the initial spline space S and the PEC-
spline space DS. (respectively good for design and good for interpolation). On
the left one, we can see one B-spline in S, namely, N4 with support [4, 9], along
with the two consecutive functions N�

4 , N�
5 , to which it is linked via (12). The

right one shows the B-spline-like basis Q�, � ∈ ZZ, in DS, obtained from (13),
along with the first positive piecewise function w1 := ∑

� Q� ∈ DS which
produces the good for design PEC-spline space L1S by piecewise division (here,
geometrically continuous rational splines).

• Similar illustrations concerning L1S and DL1S are shown in the upper right pair
of pictures, with in particular the B-spline of support [4, 8] in L1S, obtained by
(22) and the positive piecewise function w2 ∈ DL1S replacing w1 and leading
to the good for design PEC-spline space L2S by piecewise division.

• The lower left pair concerns L2S and DL2S, with the B-spline of support [4, 7],
and w3 ∈ DL2S leading to the good for design PEC-spline space L3S by
piecewise division.

• Finally, the lower right pair concerns L3S and DL3S, with the B-spline of sup-
port [4, 6], and w4 ∈ DL3S leading to the good for design PEC-spline space L4S

by piecewise division. Note that DL3S has one-dimensional section spaces, and
therefore on each interval [t+k , t−k+1], w4 coincides with the only B-spline-like
which is non-zero on that interval. As for L4S, it is a space of piecewise constant
splines.

In the last picture of Fig. 3, we can see that, on the interval considered, the positive
function w4 is very close to zero. This is consistent with the fact that the value c =
− 3.9 is close to the limit in (33).

3 Is a given PEC-spline space good for design?

In this section, we start with a given PEC-spline space S, assuming that

– for each k ∈ ZZ, the section space Ek is an (n + 1)-dimensional EC-space good
for design on [tk, tk+1];

– the spline space S itself contains the constants.

Then, we want to build a numerical procedure to answer the question: is the PEC-
spline space S good for design or not? The idea on which the test is based can be
summarised as follows: if we can construct positive piecewise functions w1 ∈ DS,
then w2 ∈ DL1S (where L1 stands for the piecewise division by w1 applied after
piecewise differentiation), w3 ∈ DL2S, and so forth up to dimension one, while
remaining within the class of PEC-spline spaces, then the initial space S will be good
for design. Now, the present assumptions on S guarantee only thatDS is a PEC-spline
space. We do not know if we can find a positive w1 ∈ DS. If ever such a spline w1
exists, the corresponding spline space L1S is a PEC-space containing the constants,
but we cannot assert thatDL1Swill be a PEC-spline space in turn, or equivalently we
cannot assert that the section-spaces of L1Swill be good for design on their intervals.
It is essential to take these difficulties into account in the construction of the test.
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3.1 Build a theoretical test

The theoretical test proposed below reinterprets the results recalled in the previous
section. In particular, the observations above explain why, step by step, our algorithm
mimics the procedure described in Section 2.3.2 and illustrated in Section 2.3.3. Fur-
thermore, it will also be based on the necessary local positivity property (18). To
facilitate the description, from now on, we assume here that mk = 1 for all k ∈ ZZ.
We will comment on this requirement later on.

3.1.1 Step 0

The initial part of the test concerns our initial spline space S along with the PEC-
spline space DS. It comprises two parts: the first one is connected to the possible
existence of a B-spline basis in S, while the second one tests the existence of a B-
spline-like basis in DS.

• Step 0.1: Towards a B-spline basis in S. The first question to be answered is: can
we find a normalised sequence N�, � ∈ ZZ, satisfying the support and endpoint
properties? To avoid the question of normalisation, we replace it by the following
question, for each � ∈ ZZ: in the 2n-dimensional spline space S�,�+n, can we find
a unique spline N�

� such that

N�
� vanishes n times at t� and (1I − N�

� ) vanishes n times at t�+n? (34)

We search for N�
� by searching for the coefficients α�

�,k,i , k = �, . . . , � + n − 1,
i = 0, . . . , n such that

N�
� |[tk,tk+1] =

n∑

i=0

α�
�,k,iBk,i , � � k � � + n − 1, (35)

with

α�
�,k,i =

{
0 for k = � and i = 0, . . . , n − 1,
1 for k = � + n − 1 and i = 1, . . . , n.

We then simply have to ensure the connection conditions at the interior knots
tk , k = � + 1, . . . , � + n − 1. Accordingly, answering question (34) consists in
solving a linear system of n(n − 1) equations in n(n − 1) unknowns. We thus
test the regularity of a square matrix of order n(n − 1) whose non-zero entries
are the values of successive derivatives of the concerned Bernstein basis at the
endpoints of their intervals.

If one among all the questions (34) obtains a negative answer, then the PEC-spline
space S is not good for design, for it cannot possess a B-spline basis. Suppose that all
answers are positive. Then, we proceed to step 0.2.

• Step 0.2: Possible existence of a B-spline-like basis in DS. For each � ∈ ZZ,
we first extend each function N�

� by 0 on the left of t� (with therefore all corre-
sponding coefficients α�

�,k,i in (35) equal to 0) and by 1 on the right of t�+n (with
therefore all corresponding coefficients α�

�,k,i in (35) equal to 1), while keep-
ing the same notation. We now have at our disposal a bi-infinite sequence N�

� ,
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� ∈ ZZ, in S, from which we can build the two sequences

N� := N�
� − N�

�+1 ∈ S, Q� = DN�
� ∈ DS, � ∈ ZZ. (36)

The left sequence is the only possible candidate to be the B-spline basis of S; it is
normalised and satisfies the support property, along with the endpoint property,
the exactness of the number of vanishing conditions being omitted.

Consider the right sequence in (36). As in the previous section, we use the notation
Qk

� for the restriction of the piecewise function Q� to [t+k , t−k+1]. Given any �, k ∈ ZZ,
we expand the function Qk

� in the Bernstein-like basis (Vk,0, . . . , Vk,n−1) in DEk as
in (28). Then, according to (36), (35), and (5), we know that

γ�,k,i = α�
�,k,i+1 − α�

�,k,i , i = 0, . . . , n − 1, � ∈ ZZ. (37)

The question we have to answer is

Do all coefficients γ�,k,i satisfy the positivity property (18) ? (38)

If the answer to (38) is negative, then the test stops: the PEC-spline space S is not
good for design. If the question (38) obtains a positive answer, then we can state that
the sequence Q�, � ∈ ZZ, is indeed a B-spline-like basis in the PEC-spline space DS.

Suppose that all questions of Step 0 have received a positive answer. Then, we
proceed to Step 1.

3.1.2 Step 1

Consider the spline w1 ∈ DS defined according to (21). For each k ∈ ZZ, its
restriction wk

1 to [t+k , t−k+1] can be expanded as

wk
1 =

n−1∑

i=0

δk,iVk,i , with δk,i :=
∑

�

γ�,k,i > 0 for i = 0, . . . , n − 1, (39)

the positivity indicated in (39) resulting from the positive answer to (38). Then,
denoting by Lk

1 the differentiation followed by division by wk
1, from Theorem 3, we

can assert that Lk
1Ek is an n-dimensional EC-space good for design on [tk, tk+1].

Equivalently, we can assert that the spline w1 ∈ DS is piecewise positive on (I;T),
and that the PEC-spline space L1S obtained by piecewise division of DS by w1 sat-
isfies the same properties as S with n replaced by (n − 1) (and each Ek replaced by
Lk
1Ek). We can thus apply Step 0 to the PEC-spline space L1S. This is Step 1 of the

test which thus concerns L1S and DL1S. Nevertheless, the following observations
reduces it to very little.

• Step 1.1: It should be observed that this part of Step 1 is useless. Indeed, in L1S,
we can consider the two bi-infinite sequences of splines

N� := Q�

w1
, N

�

� :=
∑

p��

Np ∈ L1S, � ∈ ZZ.

The splinesN�, � ∈ ZZ, form the B-spline basis ofL1S and their local expansions
satisfy the positivity property (18) as does the B-spline-like basis Q�, � ∈ ZZ.
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• Step 1.2: The next part of Step 1 concerns the splines

Q� := DN
�

� ∈ DL1S, � ∈ ZZ.

For each k ∈ ZZ, we can successively introduce the Bernstein basis
(Bk,0, . . . , Bk,n−1) in Lk

1Ek , and the Bernstein-like basis (V k,0, . . . , V k,n−2) in
DLk

1Ek , exactly as we did in Section 2.3.2. We then have to check that all local
expansions

Q� =
n−2∑

i=0

γ �,k,iV k,i ,

satisfy the expected positivity property. Here, it reduces to the local expansions
on all intervals [tk, tk+1] contained in ]t�, t�+n−1[, that is, k = �+1, . . . , �+n−2.
Note that the corresponding coefficients γ �,k,i are obtained from the coefficients
γ�,k,i computed at Step 0.1 via formula (31). If at least one of them is not positive,
the test stops: S is not good for design. Otherwise, we continue.

3.1.3 Up to step n-1:

If the test reaches Step 1, that is, if the coefficients

γ
{0}
�,k,i := γ�,k,i

satisfy the local expansion positivity property (18), then the additional possible steps
can be summarised as follows: if, for some p � 1, we have obtained coefficients
γ

{p−1}
�,k,i which satisfy the local expansion positivity property (18), then, compute the

coefficients

γ
{p}
�,k,i =

∑
p�� γ

{p−1}
p,k,i+1

∑
p γ

{p−1}
p,k,i+1

−
∑

p�� γ
{p−1}
p,k,i

∑
p γ

{p−1}
p,k,i

, i = 0, . . . , n − p, �, k ∈ ZZ, (40)

and answer the question

Do all coefficients γ
{p}
�,k,i satisfy the positivity property (18)? (41)

If at some level p � n−2, we obtain at least one negative answer, then the step stops
at level p. Suppose that we can successfully go through all the previous iterations up
to Step (n−2). We have thus obtained a PEC-spline spaceLn−1Swhich contains con-
stants. Here, because we are working with simple knots,Ln−1S is automatically good
for design. The spline space S, obtained from Ln−1S by alternating multiplications
by positive piecewise functions and integrations, is thus good for design.

If the test is successful, afterwards we can say that the sequence N�, � ∈ ZZ,
determined at Step 0 (see (36)) is the B-spline basis of S.

3.2 The numerical test

The numerical test follows in a precise way the description of the various steps in
the previous subsection. Of course, the passage from one step to the next one takes
numerical aspects into account as follows.
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1. In Step 0.1, if any of the matrices involved is nearly singular or/and very ill-
conditioned, we stop the test: in that case, the corresponding system is not
solvable or the solution of (34) cannot be computed with sufficient accuracy.

2. Similarly, all positivity tests mentioned earlier are actually replaced by γ
{p}
�,k,i >

tol, where tol is a small positive number (in our experiments, tol = 1e − 30).

When we stop at some level p � n− 2, then, numerically speaking, we consider that
the PEC-spline space S is not good for design. When the test successfully reaches
p = n − 1, we conclude that S is good for design, numerically speaking.

Subsequently, we both illustrate the test in itself and comment on it.

• Suppose that the numerical test has been successfully applied to a given PEC-
spline space S. Then, not only do we know that S is good for design, but we even
have determined its B-spline basis N�, � ∈ ZZ, at Step 0 of the test. Therefore,
this enables us to easily obtain all parametric curves in IRd as

S(x) =
∑

�

N�(x)P�, x ∈ IR,

where the P�’s are any given points in IRd , d � 1. Obviously, the knowledge of
the B-spline bases can also be exploited in many other problems if needed, e.g.,
interpolation problems.

• The test was first used to rediscover the conditions for a given PEC-spline space
S to be good for design in many situations for which explicit necessary and suffi-
cient conditions (concerning the parameters on which S depends) had previously
been obtained, with n = 4, for instance in [33]. In the many examples investi-
gated, we could observe that the test numerically confirms the conditions with a
remarkable precision.

• We now would like to illustrate the various steps where the test can stop. This
is done with n = 4. In the present comments, the space S is composed of C3

splines, with regularly spaced knots, and knot spacing h = tk+1 − tk . For each
k, the section space Ek is the restriction to [tk, tk+1] of the kernel E = kerL of
a linear differential operator L of order five, with constant coefficients and odd
characteristic polynomial pL having at least one non-real root. In that case, as an
application of Theorem 1, it was proved in [8] that the spline space is good for
design if and only if

h <
π

M
, where M is the maximum of the positive imaginary parts of the roots of p.

(42)

We retrieve these conditions through the test. Before applying the test, we
first have to know the so-called critical length for design of the space E, that
is, the positive number �L < +∞ such that E is an EC-space good for design
if and only if h < �L [10, 30]. In the first example, L = D5 + a2D3, with
a > 0. Hence, E is spanned by the five functions 1, x, x2, cos(ax), sin(ax), and
S depends on the two parameters a, h. It is well known that �L = 2π

a
[10], and

the corresponding limit hyperbola h < 2π
a

is indicated in red in the plane (a; h)

in Fig. 4, while the good for design condition (42) for S corresponds to the green
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Fig. 4 The results of the test for C3 splines with all sections taken from the space spanned by the five
functions 1, x, x2, cos(ax), sin(ax) (left) and 1, cos x, sin x, cos(ax), sin(ax) (right), depending on the
pair (a;h)

region limited by the hyperbola branch h < π
a
. In the second example, L =

D5 + (a2 + 1)D3 + a2D, and E is spanned by 1, cos x, sin x, cos(ax), sin(ax),
with a > 1. The red curve, composed of two different parts meeting at a = 3,
corresponds to the starting condition h < �L (see [7]). In both examples, the
number m appearing in Fig. 4 at a given pair (a; h) indicates that, for these
values of the two parameters, the test stops at Step m. In both examples, with the
sampling used, we can see a number of pairs of parameters with “1”. That the test
successfully passed Step 0 implies that the spline L1S does possess a B-spline
basis. Still it is not good for design (otherwise S itself would be good for design).
The test definitely shows that the presence of a B-spline basis in a PEC-spline
space S does not guarantee that each spline space obtained from S by insertion
of knots will possess a B-spline basis in turn, thus giving a negative answer to a
frequently asked question.
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Fig. 5 The results of the test for C3 splines with knot spacing h = 1 and all sections taken from the space
spanned by the five functions 1, cosh(ax), sinh(ax), cos(bx), sin(bx), depending on the pair (a; b). Left:
simple knots. Right: alternatively simple and double knots
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• We have presented the test with simple knots only, in order to never meet dis-
continuities during the dimension diminishing process, and therefore at all stages
we were working within the condition �p(K) = ZZ. It is nevertheless valid
with any multiplicities. If, at some step r , the spline space LrS presents discon-
tinuities, we simply split LrS into spaces of the form LrS

−
k , LrS

+
k , or LrSk,k′ ,

with k < k′, with all interior multiplicities bounded above by (n − r) and
continue separately in each of these PEC-spline spaces. In Fig. 5, we illustrate
this with knot spacing h = 1, and with L := D5 + (b2 − a2)D3 − a2b2D,
a, b > 0, implying that E = kerL is spanned over IR by the five functions
1, cosh(ax), sinh(ax), cos(bx), sin(bx). In the left picture, all knots are simple,
while in the right one, we alternate simple and double knots. In both pictures,
the pairs (a; b) located below the red curve are those which ensure 1 < �L: from
[7], we know that they satisfy either b � π , or

π < b < 2π and (b2 − a2) sinh a sin b + 2ab
(
cosh a cos b − 1

)
< 0.

In both pictures, the good for design region is indicated in green. In the left case,
it is described by b < π , in accordance with (42). In the right one, it is formed
by all pairs (a; b) such that either b � π , or

π < b < x0 and
1

a
tanh a >

1

b
tan b,

where x0 ∈]π, 3π
2 [ satisfies tan x0 = x0. This confirms the results described in

[8] (see also [7]).
• The test can be applied as well to PEC-splines on closed bounded intervals, or

equivalently, to any restriction Sk,k′ , with k′ > k+1, andmk = mk′ = n+1. If we
additionally assume that mj = 0 for k < j < k′, then the PEC-spline space Sk,k′
is (n + 1)-dimensional. In this case, testing if Sk,k′ is good for design amounts
to testing if the n-dimensional space DSk,k′ is an Extended Chebyshev Piecewise
Space (for short, ECP-space) on

([tk, tk′ ]; (tk+1, . . . , tk′−1)
)
(same bound on the

number of zeroes as in each section-space), or as well, if the piecewise space Sk,k′
is an ECP-space good for design on

([tk, tk′ ]; (tk+1, . . . , tk′−1)
)
. This coincides

with the test developed in [2].

4 Applications

In this section, we present a few results obtained via the numerical test which
efficiently illustrate its interest.

4.1 Shape effects with Cn−1 polynomial splines of degree n

Polynomial splines defined by a certain degree and a given knot-vector K do not
provide any shape parameters: a given control polygon produces one unique para-
metric spline curve. This inconvenience can be overcome by the insertion of knots of
multiplicity zero, and of associated connection matrices (different from the iden-
tity). The knot-vector K remains unchanged, and therefore the number of poles too.
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A given control polygon now produces infinitely many different spline curves, the
entries of the inserted connection matrices serving as shape parameters.

Introducing knots of zero multiplicities has already proved to be very useful (see
e.g., [16]). Here, with the help of the numerical test, we illustrate this with C2 cubic
splines alternating simple knots with knots of multiplicity 0. We assume that the
knots are regularly spaced, with knot spacing equal to one, and with

m2k = 1, m2k+1 = 0, k ∈ ZZ.

The knot-vector K = (
ξ�

)
�∈ZZ is obtained with ξ� := t2� = 2� for all �. In this situa-

tion, a pole Pk represents the knot t2k+2 which is the middle of the support of the B-
splineNk . One can therefore represent the knot t2k+1 by the segment Pk−1Pk . Our con-
trol polygon (see Fig. 7) presenting a horizontal symmetry line, in order to preserve
symmetry and the C2 connection, at a knot of odd index the connection condition is

(
S′(t+2k+1), S

′′(t+2k+1), S
′′′(t+2k+1)

)T = M2k+1
(
S′(t−2k+1), S

′′(t−2k+1), S
′′′(t−2k+1)

)T
,

(43)
with, on each segment above the symmetry line,

M2k+1 :=
⎡

⎣
1 0 0
0 1 0
d e 1

⎤

⎦ (44)

and on each segment below the symmetry line,

M2k+1 :=
⎡

⎣
1 0 0
0 1 0
−d e 1

⎤

⎦ (45)

For the corresponding spline space S to be good for design, it is necessary that
the four-dimensional space obtained by restriction of S to [t2k, t2k+2] be an ECP-
space good for design on ([t2k, t2k+2]; t2k+1). We therefore first apply the ECP test
developed in [2] to such two consecutive sections. We obtain that, numerically, the
corresponding good for design region is characterised by

|d| < 2(e + 4).

In the plane (e; d), this corresponds to the angular sector delimited by the red boundary
and containing the origin (see Fig. 6). To simplify our work, we apply the numerical test
only within this region, and we can state the following numerical characterisation.

Proposition 2 (proved numerically) The space of C2 cubic splines S defined above
is good for design if and only if

|d| < 2(e + 2). (46)

Within the good for design region (46), represented in green in Fig. 6, the two
parameters d, e act as shape parameters. The effects they produce are illustrated in
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Fig. 6 Good for design region for C2 cubic splines with knot spacing 1, m2k = 1, m2k+1= 0 for all k,
and at each knot t2k+1 the connection matrices (44) (above the symmetry line of the control polygon, see
Fig. 7) and (45) (below the symmetry line)

Fig. 7, where we can see the variations in shape along several vertical lines. From
top to bottom, the leftmost column represents three points of the line e = −1.99 in
the good for design region (not indicated in Fig. 6 for the sake of clarity): the point
P−1.99 on the upper boundary, the point R−1.99 on the horizontal axis, and finally
the point T−1.99 on the lower boundary (of course, we have to slightly move P−1.99

Fig. 7 C2 cubic splines with knot spacing 1, m2k = 1, m2k+1= 0 for all k, and at each knot t2k+1
connection condition (44) (above symmetry line) and (45) (below symmetry line). From left to right:
e = −1.99; 0; 5; 50. Top left: d = −2(e + 2) + ε, with ε = 5 × 10−5. Bottom left: d = 2(e + 2) − ε.
Elsewhere, d = α(e + 2), with α = −1 (first row), α = 0 (second row), and α = 1 (third row) (see Fig. 6
and comments in the text)
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and T−1.99 to be inside the green region). Along the two boundary lines, the curves
visually remain unchanged. In other words, adding both the top leftmost curve above
each of the remaining columns and the bottom leftmost curve below it, we obtain,
from top to bottom, the curves at the five points Pe, Qe, Re, Se, and Te along the
given vertical line of abscissa e with, from left to right, e = 0, e = 5, e = 50 (see
Fig. 6). Note that, for d = 0 (middle line in Fig. 6), we obtain a cardinal symmetric
B-spline basis.

There is no difficulty in generalising the process to Cn−1 splines of degree n, the
connection matrix having entries at each knot of mutiplicity zero differing from the
identity matrix only by its non-diagonal entries on the last row. It is also possible
to insert zero multiplicities only at certain places in order to obtain local rather than
global shape effects.

4.2 Design versus interpolation with symmetric cardinal polynomial B-splines

In this subsection, we would like to illustrate the fact that the test can also be used
for interpolation purposes, via the crucial link between interpolation and design
established in [32] and reminded in Theorem 5. With simple knots tk = k for
all k ∈ ZZ, we consider a space Ŝ of cardinal geometrically continuous quin-
tic splines preserving symmetry. We know that Ŝ is good for interpolation if and

only if the space ̂̂
S of degree six splines obtained by integration of Ŝ is good

for design. In other words, to answer the question: can we use Ŝ to solve Her-
mite interpolation problems satisfying the Schoenberg-Whitney conditions?we apply

our numerical test to ̂̂
S. Each Ŝ ∈ Ŝ satisfies connection conditions of the form

(see [33])

(
Ŝ′(t+k ), . . . , Ŝ(4)(t+k )

)T =

⎡

⎢⎢⎢
⎣

1 0 0 0

a 1 0 0
ab
2 b 1 0

d bc
2 c 1

⎤

⎥⎥⎥
⎦

(
Ŝ ′(t−k ), . . . , Ŝ(4)(t−k )

)T
, k ∈ ZZ. (47)

In the spline space ̂̂
S, at each knot the lower triangular connection matrix is obtained

by addition of the column (1, 0, . . . , 0)T on the left of the matrix in (47). Since it is
not reasonable to handle four parameters at the same time, from now on, we assume
that a = d = 0, implying that Ŝ is composed of C2 splines. This choice facilitates the
numerical search for the good for design region in the plane (b; c). Indeed, we can
start with the symmetric cardinal spline space S of cardinal geometrically continuous
quartic splines already used in Section 2.3.3 to illustrate the dimension diminish-
ing process within the condition “good for design”. We recall that, for S to be good
for design, it is necessary and sufficient that the two conditions in (33) hold true.

The spline space ̂̂
S being obtained from S under two integration steps, we know ̂̂

S is
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good for design at least on the region of the plane (b; c) described by (33). We thus
simply have to apply the test outside this region, and the many points tried clearly
indicate that we cannot go beyond (33). Numerically speaking, the two conditions

(33) are therefore necessary and sufficient for ̂̂
S to be good for design. There-

fore, we can state the following numerical characterisation (to be compared with
Theorem 5).

Proposition 3 (proved numerically) For the cardinal quintic spline space Ŝ defined
by (47) with a = d = 0, the following three properties are equivalent:

1. Ŝ is good for interpolation;
2. Ŝ is good for design;
3. the parameters b, c satisfy (33), that is, b + 6 > 0 and c + 4 > 0.

A control polygon being given, we first illustrate design in Ŝ within conditions
(33) in Fig. 8. We can summarise the shape effects obtained as follows:

– For a given value of b ∈] − 6, +∞[, increasing the value of c significantly
improves the curve, in the sense that it better imitates the control polygon;

– From this point of view, the effect of increasing c is all the stronger as b is close
to its boundary b = −6.

The most remarkable point to retain from this example is the fact that the obtained
curves mimick the control polygon all the better as the parameter b gets closer to
its lower bound − 6. This gives further evidence of the interest of not limiting the
connection matrices to be totally positive (see [21]), contrary to what was initially
done for geometrically continuous polynomial splines [12, 13], and also [1, 34] .

Below, we assume again that b + 6 > 0 and c + 4 > 0. Under Schoenberg-
Whitney conditions, any Hermite interpolation problem in Ŝ has a unique solution.
It should be observed that this result guarantees nothing about the quality of the
obtained solution. Nevertheless, hopefully it might be possible to use the two parame-
ters b, c to improve the interpolating curves. In Fig. 9, this is illustrated with Lagrange
interpolation at the knots in Ŝ. The vertices of the previous control polygon now
serve as the points to interpolate. Only a small selection of the many interpolating
curves we tried is presented, and in particular the too oscillating ones are avoided.
According to our experiments, we can summarise the effects of the two parameters as
follows:

– Along the boundary b = −6, there is no visual difference between all the curves
when c ranges over ] − 4, +∞[ (see, e.g., the two leftmost curves).

– For a given value of c ∈] − 4, +∞[, increasing the value of b increases the
presence/amplitude of oscillations, loops, self intersections, etc.

– Oppositely, for a given value of b not too close to −6+, increasing the value of c

significantly reduces them.
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Fig. 8 Design with cardinal symmetric C2, F 4 quintic B-splines with connections (47) and a = d = 0.
From left to right, c = −3.99; 0; 10; 100. Up: b = 0 (i.e., C3, F 4 splines, and even the ordinary C4

splines for c = 0). Down: b = −5.99

In particular, we would like to draw the reader’s attention to the presence of loops
in the ordinary quintic spline curve (b = c = 0). Increasing c makes them disappear
and it also reduces the amplitude of the oscillations (see b = 0, c = 100 for com-
parison). As is usual, these observations are in accordance with the design analysis
above. Again, we can say that the best (i.e., the least oscillatory) curves are obtained
along the limit b = −6+.

Remark 4 It should be observed that, numerically speaking, Proposition 3 is still
valid when replacing the space Ŝ by the initial space S, except that, in that case,
the equivalence between the last two properties is an exact one, proved in [33], as
reminded in Section 2.3.3. As a matter of fact, from a few more applications of the
test in higher dimensions, we conjecture that Proposition 3 remains valid after any
number of integration steps.

Fig. 9 Lagrange interpolation with symmetric cardinal C2, F 4 polynomial quintic B-splines with, at each
knot, with a = d = 0 in the connection conditions (47). From left to right, b = −5.99; 0 (i.e., C3 splines);
10; 100. Up: c = 0 (ordinary C4 quintic splines for b = 0). Down: c = 100
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Fig. 10 C5 splines, knot spacing h = 3, all pieces taken from the space spanned by 1, cosh(ax) cos x,

cosh(ax) sin x, sinh(ax) cos x, sinh(ax) sin x, cosh(ax), sinh(ax). From left to right: a = 0.01; 0.7; 1.5; 3

4.3 L-splines in higher dimensions

As mentioned in Section 3.2, C3 splines with all pieces taken from the kernel
E = kerL of a linear differential operator of the form L = D5 + a2D

3 + a0D,
where a0, a2 ∈ IR, were investigated in [8] (see more generally [19]). If the char-
acteristic polynomial has only real roots, the space E is an EC-space good for
design on the whole of IR, and therefore under parametric continuity conditions,
any associated spline space S is a Chebyshevian spline space, and is automati-
cally good for design. This is the reason why we focussed on the case where not
all roots of the characteristic polynomial are real. In that case, we are dealing
with PEC-splines, at least provided that the difference between any two consecu-
tive knots is less than the critical length for design. With simple equispaced knots,
we know that (42) is the necessary and sufficient condition for S to be good for
design. In [8], it was conjectured that, with simple equispaced knots, (42) could
remain the necessary and sufficient condition in higher dimension too. Here, we
consider a space S of C5 splines with all pieces taken from E = kerL, with
L = D7 + a4D

5 + a2D
3 + a0D, where a0, a2, a4 ∈ IR. This class contains 22 dif-

ferent subclasses of spaces E, among which only seven real cases for which S is
a space of Chebyshevian splines (i.e., all roots of the characteristic polynomial are
real).

Fig. 11 C5 splines, knot spacing h = 3, all pieces taken from the space spanned by 1, cosh(ax) cos x,

cosh(ax) sin x, sinh(ax) cos x, sinh(ax) sin x, cos x, sin x. From left to right: a = 0.01; 0.7; 1.5; 3

Numer Algor (2019) 81:1–3128



Our aim was to use the test to either strengthen or contradict the conjecture. So
far, we have tested successfully a number of spaces in different non-real subclasses:

1- Those resulting from the non-real cases of dimension five after double integra-
tion steps.

2- Spaces spanned by 1, cos(ax), sin(ax), cos(bx), sin(bx), cos(cx), sin(cx),
where a, b, c are pairwise distinct positive parameters.

3- Spaces spanned by 1, cosh(ax) cos(bx), cosh(ax) sin(bx), sinh(ax) cos(bx),

sinh(ax) sin(bx), cosh(cx), sinh(cx);
4- Spaces spanned by 1, cosh(ax) cos(bx), cosh(ax) sin(bx), sinh(ax) cos(bx),

sinh(ax) sin(bx), cos(cx), sin(cx).

This numerical checking is a very little step towards a possible proof of the con-
jecture (42), but no doubt that this confirmation is interesting to obtain. The third
category is illustrated in Fig. 10 with a = c, b = 1, and the fourth one in Fig. 11 with
b = c = 1, and in both cases with h = 3.

5 Conclusion

Beyond the classical polynomial splines, the huge class of PEC-splines contains
many famous interesting subclasses such as L-splines, geometrically continuous
polynomial splines, Müntz splines, . . . As a rough statement, all that can be done with
classical splines, can also be done with PEC-splines good for design/interpolation,
the advantage being that it can be done with a large variety of shape parameters
(attached either to the section spaces or to the connection matrices). If the many
examples in the literature clearly demonstrate this advantage, the price to pay for
it is the greater difficulty to handle such splines. In many situations, it is not even
expectable to easily obtain an exact answer to the question: is this PEC-spline space
good for design/interpolation? The numerical test was precisely developed for this
reason, with a view to facilitate not only the access to a greater number of appropriate
PEC-splines but also their use for any kind of applications. To cite only one exam-
ple, the generalised splines successfully introduced in Isogeometric Analysis [5, 6]
constitute only a very small subclass of PEC-splines good for design.

Though no numerical characterisation can play the same role as general exact
characterisations (as were obtained in [33], for instance), we believe that the few
situations that we selected to illustrate it give a clear idea of the usefulness of this
test. We would like to insist that our test and its implementation are extremely gen-
eral, and applicable to any given PEC-spline space, whatever the knot-vector, the
multiplicities, the connection matrices, and the EC-section-spaces can be. Neverthe-
less, replacing the classical splines by PEC-splines is justified only if we are able to
handle the shape parameters such splines provide. This is why in practice, it is ne-
cessary to drastically limitate their numbers. It is worthwhile mentioning that the test
is also applicable in the larger context of PQEC-splines (Piecewise Quasi Extended
Chebyshev splines, see [31] and other references therein), considering that the class
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of all PQEC-splines good for design can be understood as the largest class satisfying
all properties expected for design. Icing on the cake, our test can provide valuable
help on the theoretical side by the fact that it gives access to higher dimensions: it
can consolidate conjectures, as in Section 4.3, or even suggest some new ones (see
Remark 4).
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