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Abstract In this paper, by using products of finitely many resolvents of monotone
operators, we propose an iterative algorithm for finding a common zero of a finite
family of monotone operators and a common fixed point of an infinitely countable
family of nonexpansive mappings in Hadamard spaces. We derive the strong con-
vergence of the proposed algorithm under appropriate conditions. A common fixed
point of an infinitely countable family of quasi-nonexpansive mappings and a com-
mon zero of a finite family of monotone operators are also approximated in reflexive
Hadamard spaces. In addition, we define a norm on X� := spanX∗ and give an
application of this norm, where X is an Hadamard space with dual space X∗. A
numerical example to solve a nonconvex optimization problem will be exhibited in
an Hadamard space to support our main results.
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1 Introduction

A valuable tool in the study of gradient and subdifferential mappings and other
mappings that appear in many problems, such as optimization, equilibrium or in vari-
ational inequality problems, is the concept of monotonicity. In the case of Hilbert
spaces, the problem of finding zeros of monotone operators has been investigated by
many authors (see, for example, [6–8, 20, 30, 37, 38, 40, 41, 46, 48]). Bearing in mind
the fact that zeros of a maximal monotone operator are fixed points of its resolvent,
which is a nonexpansive mapping, Rockafellar defined the proximal point algorithm
for monotone operators by means of the following iterative scheme:

0 ∈ A(xn+1) + λn(xn+1 − xn), n = 0, 1, 2, ...,

where {λn} is a sequence of real positive numbers and x0 is an initial point. Rock-
afellar showed the weak convergence of the sequence generated by the proximal
point algorithm to a zero of the maximal monotone operator in Hilbert spaces [48].
Güler’s counterexample [26] showed that the sequence generated by the proximal
point algorithm does not necessarily converge strongly even if the maximal mono-
tone operator is the subdifferential of a convex, proper and lower semicontinuous
function. In this connection, see also [4]. In recent years, some algorithms defined to
solve nonlinear equations, variational inequalities and minimization problems, which
involve monotone operators, have been extended from the Hilbert space framework
to the more general setting of Riemannian manifolds, especially Hadamard mani-
folds and the Hilbert unit ball (see, for example, [13, 14, 23, 24, 33, 35, 39]). This
popularization is due to the fact that several non-convex problems may be viewed
as a convex problem under such perspective. Studying of the proximal point method
in Hadamard spaces was started by Bačák [2, Theorem 6.3.1], but only in terms of
Yosida-Moreau regularization for convex optimization (see also [3]). The proximal
point method in Hadamard spaces has been modified to obtain strong convergence
by Cholamjiak [11] using the Halpern procedure (see also [51]). Very recently, Khat-
ibzadeh and Ranjbar [31] generalized monotone operators and their resolvents to
Hadamard spaces by using the duality theory introduced in [29].

In this paper, by using products of finitely many resolvents of monotone opera-
tors (see also [44, 45]), we propose an iterative algorithm for finding a common zero
of a finite family of monotone operators and a common fixed point of an infinitely
countable family of nonexpansive mappings in Hadamard spaces. We derive the
strong convergence of the proposed algorithm under appropriate conditions. A com-
mon fixed point of an infinitely countable family of quasi-nonexpansive mappings
and a common zero of a finite family of monotone operators is also approximated
in reflexive Hadamard spaces. In addition, we define a norm on X� := spanX∗ and
give an application of this norm, where X is an Hadamard space with dual space X∗.
Two numerical examples to support our main results will be exhibited. The results
presented in this paper generalize and improve related results in the literature.
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2 Preliminaries and lemmas

First, we collect the preliminaries on Hadamard spaces required for our proof. For
the details, we refer to [2]. Let (X, d) be a metric space. A geodesic path joining x
to y in X is a mapping c from a closed interval [0, l] ⊆ R to X such that c(0) = x,
c(l) = y and d(c(s), c(t)) = |s − t | for all s, t ∈ [0, l]. In particular, the mapping c
is an isometry and d(x, y) = l. The image of c is called geodesic segment joining x
and y which when unique is denoted by [x, y]. We denote the unique point z ∈ [x, y]
such that d(x, z) = αd(x, y) and d(y, z) = (1 − α)d(x, y), by (1 − α)x ⊕ y, where
0 ≤ α ≤ 1. The metric space (X, d) is called a geodesic space if any two points of
X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly
one geodesic segment joining x and y for each x, y ∈ X. A geodesic space (X, d) is
a CAT (0) space if it satisfies the (CN) inequality:

d2((1 − α)x ⊕ αy, z) ≤ (1 − α)d2(x, z) + αd2(y, z) − α(1 − α)d2(x, y), (1)

for all x, y, z ∈ X and α ∈ [0, 1]. In particular, if x, y, z are points in X and α ∈
[0, 1], then we have

d((1 − α)x ⊕ αy, z) ≤ (1 − α)d(x, z) + αd(y, z). (2)

A subset C of a CAT (0) space is convex if [x, y] ⊆ C for all x, y ∈ C. Complete
CAT (0) spaces are often called Hadamard spaces.

Let {αi}ni=1 be any finite subset of (0, 1) with �n
i=1αi = 1 and {xi}ni=1 ⊆ X. By

induction, the convex combination “
⊕n

i=1 αixi” is defined as follows [34, 45]:
n⊕

i=1

αixi := (1 − αn)(
α1

1 − αn

x1 ⊕ α2

1 − αn

x2 ⊕ ... ⊕ αn−1

1 − αn

xn−1) ⊕ αnxn. (3)

It is remarkable that Dhompongsa et al. [17] defined an infinite sum ‘
⊕

’ as follows:
Let {αi}∞i=1 be a sequence in (0, 1) such that �∞

i=1αi = 1, {xn} be a bounded
sequence in an Hadamard space X and u be an arbitrary element of X. Suppose that
άn = �∞

i=n+1αi and �∞
i=nάi → 0 as n → ∞. Set sn = α1x1⊕α2x2⊕...⊕αnxn⊕άnu.

Thus, by (3),
sn = (�n

i=1αi)wn ⊕ άnu, (4)

where w1 = x1 and for each n ≥ 2,

wn = α1

�n
i=1αi

x1 ⊕ ... ⊕ αn

�n
i=1αi

xn.

The sequence {sn} is a Cauchy sequence [17]. Therefore, {sn} converges to some
point x ∈ X and it is denoted by ⊕∞

i=1αixi . It follows from d(sn, wn) = άnd(u, wn)

that limn→∞ sn = limn→∞ wn. Thus, the definition of ⊕∞
i=1αixi is independent of

the choice of u.
Let C be a nonempty subset of an Hadamard space X and T : C → C be a

mapping. The fixed point set of T is denoted by F(T ), that is, F(T ) = {x ∈ C : x =
T x}. Recall that a mapping T is called
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• Nonexpansive if d(T x, T y) ≤ d(x, y) for all x, y ∈ C.
• Quasi nonexpansive, if F(T ) �= ∅ and d(T x, p) ≤ d(x, p), for all x ∈ C and

p ∈ F(T ).

Chaoha et al. [10] showed that the fixed point set of a quasi nonexpansive mapping
T is closed and convex.

Lemma 2.1 [17] LetC be a nonempty closed convex subset of an Hadamard spaceX

and {Tn}∞n=1 be a family of nonexpansive mappings on C. Suppose
⋂∞

n=1 F(Tn) �= ∅.
Define T : C → C by T x = ⊕∞

n=1αnTnx for all x ∈ C, where {αn}∞n=1 ⊂ (0, 1)

with �∞
n=1αn = 1 and �∞

i=nάi → 0 as n → ∞. Then T is a nonexpansive mapping
and F(T ) = ∩∞

n=1F(Tn).

Let {xn} be a bounded sequence in a CAT (0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The asymptotic radius r(xn) of {xn} is given by:

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known that in a CAT (0) space, A({xn}) consists of exactly one point [18]. A
sequence {xn} in a CAT (0) space X is said to be �-convergent to x ∈ X if x is
the unique asymptotic center of every subsequence of {xn}. In this case, we write
�-limn→∞ xn = x and call x the �-limit of {xn}.

Lemma 2.2 [19] Let C be a closed and convex subset of an Hadamard space X and
T : C → C be a nonexpansive mapping. Let {xn} be a bounded sequence in C such
that limn→∞ d(xn, T xn) = 0 and �-limn→∞ xn = x. Then x = T x.

Definition 2.3 [43] (Asymptotic fixed point). Let C be a nonempty closed convex
subset of an Hadamard space X. A point x ∈ C is said to be an asymptotic fixed
point of T : C → C if there exists a sequence {xn} in C such that �-limn→∞ xn = x

and d(xn, T xn) → 0. We denote the asymptotic fixed point set of T by F̂ (T ).

Berg and Nikolaev in [5] introduced the concept of quasilinearization in a metric
space X. Let us formally denote a pair (a, b) ∈ X × X by

−→
ab and call it a vector.

Then quasilinearization is a map 〈·, ·〉 : (X × X) × (X × X) −→ R defined by:

〈−→ab,
−→
cd〉 = 1

2

[
d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)

]
, (5)
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for all a, b, c, d ∈ X. It is easily seen that 〈−→ab,
−→
cd〉 = 〈−→cd,

−→
ab〉, 〈−→ab,

−→
cd〉 =

−〈−→ba,
−→
cd〉 and 〈−→ax,

−→
cd〉+ 〈−→xb,

−→
cd〉 = 〈−→ab,

−→
cd〉, for all a, b, c, d, x ∈ X. We say that

X satisfies the Cauchy-Schwarz inequality if

〈−→ab,
−→
cd〉 ≤ d(a, b)d(c, d),

for all a, b, c, d ∈ X. It is known [5] that a geodesically connected metric space is a
CAT (0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Kakavandi and Amini [29] have introduced the concept of dual space of a
complete CAT(0) space X, based on a work of Berg and Nikolaev [5], as follows.

Consider the map � : R ×X × X → C(X,R) defined by

�(t, a, b)(x) = t〈−→ab,
−→
ax〉, (a, b, x ∈ X, t ∈ R),

where C(X,R) is the space of all continuous real-valued functions on R ×X × X.
Then the Cauchy-Schwarz inequality implies that �(t, a, b) is a Lipschitz function
with Lipschitz semi-norm L(�(t, a, b)) = |t |d(a, b), for all t ∈ R and a, b ∈ X,

where L(ϕ) = sup{ϕ(x)−ϕ(y)
d(x,y)

; x, y ∈ X, x �= y} is the Lipschitz semi-norm for any
function ϕ : X → R. A pseudometric D on R ×X × X is defined by

D((t, a, b), (s, c, d)) = L(�(t, a, b) − �(s, c, d)), (a, b, c, d ∈ X, t, s ∈ R).

For an Hadamard space (X, d), the pseudometric space (R ×X × X, D) can be
considered as a subspace of the pseudometric space of all real-valued Lipschitz func-
tions (Lip(X, R), L). By [29, Lemma 2.1], D((t, a, b), (s, c, d)) = 0 if and only if
t〈−→ab,

−→
xy〉 = s〈−→cd,

−→
xy〉 for all x, y ∈ X. Thus, ‘D’ induces an equivalence relation

on R ×X × X where the equivalence class of (t, a, b) is

[t−→ab] = {s−→cd ; t〈−→ab,
−→
xy〉 = s〈−→cd,

−→
xy〉, ∀x, y ∈ X}.

The set X∗ := {[t−→ab]; (t, a, b) ∈ R ×X × X} is a metric space with metric
D([tab], [scd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d). It
is clear that [−→aa] = [−→bb] for all a, b ∈ X. Fix o ∈ X, we write 0 = [−→oo] as the zero
of the dual space. Note that X∗ acts on X × X by

〈x∗, −→xy〉 = t〈−→ab,
−→
xy〉, (x∗ = [t−→ab] ∈ X∗, x, y ∈ X).

We also use the following notation in the subsequent work,

〈 N∑

i=1

αix
∗
i , .

〉
:=

N∑

i=1

αi〈x∗
i , .〉, (∀x∗

i ∈ X∗, αi ∈ R).

Definition 2.4 [29] A sequence {xn} in the Hadamard space X w-converges (weakly
converges) to x ∈ X if limn→∞〈−→xxn,

−→
xy〉 = 0, for all y ∈ X.

It is obvious that convergence in the metric implies w-convergence, and it is
easy to check that w-convergence implies �-convergence [29], but the converses are
not valid in general. It is well known that every bounded sequence in X has a �-
convergent subsequence (see [32]), but this is not always true for the w-convergence
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as was noted in [28]. Therefore, it is sensible to consider the following concept of
reflexivity.

Definition 2.5 [9] An Hadamard space X is reflexive if closed balls are weakly
sequentially compact.

Examples of reflexive Hadamard spaces are Hilbert spaces, or more generally,
Hadamard spaces that satisfy property (S) (see [28] for definition).

Let X be an Hadamard space with dual X∗ and let A : X ⇒ X∗ be a multivalued
operator with domain D(A) := {x ∈ X,Ax �= ∅}, range R(A) := ⋃

x∈X Ax,

A−1(x∗) = {x ∈ X, x∗ ∈ Ax} and graph gra(A) := {(x, x∗) ∈ X × X∗, x ∈
D(A), x∗ ∈ Ax} .

Definition 2.6 [31] Let X be an Hadamard space with dual X∗. The multivalued
operator A : X ⇒ X∗ is said to be monotone if the inequality 〈x∗ − y∗, −→yx〉 ≥ 0
holds for every (x, x∗), (y, y∗) ∈ gra(A).

A monotone operator A : X ⇒ X∗ is maximal if there exists no monotone oper-
ator B : X ⇒ X∗ such that gra(B) properly contains gra(A) (that is, for any
(y, y∗) ∈ X ×X∗, the inequality 〈x∗ − y∗, −→yx〉 ≥ 0 for all (x, x∗) ∈ gra(A) implies
that y∗ ∈ Ay ).

Definition 2.7 [31] Let X be an Hadamard space with dual X∗, λ > 0 and let A :
X ⇒ X∗ be a multivalued operator. The resolvent of A of order λ, is the multivalued
mapping JA

λ : X ⇒ X, defined by JA
λ (x) := {z ∈ X, [ 1

λ
−→
zx ] ∈ Az}. Indeed

JA
λ = (

−→
oI + λA)−1 ◦ −→

oI ,

where o is an arbitrary member of X and
−→
oI (x) := [−→ox]. It is obvious that this

definition is independent of the choice of o.

Theorem 2.8 [31] Let X be a CAT (0) space with dual X∗ and let A : X ⇒ X∗ be
a multivalued mapping. Then

(i) For any λ > 0, R(JA
λ ) ⊂ D(A), F (JA

λ ) = A−1(0),
(ii) If A is monotone, then JA

λ is a single-valued on its domain and

d2(JA
λ x, JA

λ y) ≤ 〈−−−−−→
JA

λ xJA
λ y,

−→
xy〉, ∀x, y ∈ D(JA

λ ).

In particular JA
λ is a nonexpansive mapping.

(iii) If A is monotone and 0 < λ ≤ μ, then d2(JA
λ x, JA

μ x) ≤ μ−λ
μ+λ

d2(x, JA
μ x),

which implies that d(x, JA
λ x) ≤ 2d(x, JA

μ x).

Remark 1 It is well known that if T is a nonexpansive mapping on a subset C of a
CAT (0) space X, then F(T ) is closed and convex. Thus, if A is a monotone operator
on a CAT (0) space X, then, by parts (i) and (ii) of Theorem 2.8, A−1(0) is closed
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and convex. Also by using part (ii) of this theorem for all u ∈ F(JA
λ ) and x ∈

D(JA
λ ), we have

d2(JA
λ x, x) ≤ d2(u, x) − d2(u, JA

λ x). (6)

We say that A : X ⇒ X∗ satisfies the range condition if, for every λ > 0,
D(JA

λ ) = X. It is known that if A is a maximal monotone operator on a Hilbert space
H , then R(I + λA) = H for all λ > 0. Thus, every maximal monotone operator A

on a Hilbert space satisfies the range condition. Also as it has been shown in [35] if
A is a maximal monotone operator on an Hadamard manifold, then A satisfies the
range condition. Some examples of monotone operators in CAT (0) spaces which
satisfying the range condition are presented in [31].

The following theorem states that any convex closed subset of an Hadamard space
is Chebyshev and summarizes the basic properties of the projection.

Theorem 2.9 [2] Let X be an Hadamard space and C ⊂ X be a closed convex set.
Then:

(i) For every x ∈ X, there exists a unique point PC(x) ∈ C such that

d(x, PC(x)) = d(x, C).

(ii) If x ∈ X and y ∈ C, then

d2(x, PCx) + d2(PCx, y) ≤ d2(x, y),

(iii) The mapping PC is a nonexpansive mapping from X onto C.

Lemma 2.10 [16] Let C be a nonempty closed convex subset of a CAT (0) space X,
x ∈ X and u ∈ C. Then u = PCx if and only if 〈−→xu,

−→
uy〉 ≥ 0 for all y ∈ C.

Lemma 2.11 [52] Let X be an Hadamard space. Then for all u, x, y ∈ X, the
following inequality holds:

d2(x, y) ≤ d2(y, u) + 2〈−→xy,
−→
xu〉.

Lemma 2.12 [52] Let X be a CAT (0) space. For any u, v ∈ X and t ∈ [0, 1], let
ut = tu ⊕ (1 − t)v.Then, for all x, y ∈ X,

(i) 〈−→utx,
−→
uty〉 ≤ t〈−→ux,

−→
uty〉 + (1 − t)〈−→vx,

−→
uty〉,

(ii) 〈−→utx,
−→
uy〉 ≤ t〈−→ux,

−→
uy〉 + (1 − t)〈−→vx,

−→
uy〉, and 〈−→utx,

−→
vy〉 ≤ t〈−→ux,

−→
vy〉 + (1 −

t)〈−→vx,
−→
vy〉.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let μ

be an element of (l∞)∗ (the dual space of l∞). Then we denote by μ(f ) the value
of μ at f = (a1, a2, a3, ...) ∈ l∞. Sometimes, we denote by μn(an) the value μ(f ).
A linear functional μ on l∞ is called a Banach limit if μ(1, 1, ...) = ‖μ‖ = 1, and
μn(an+1) = μn(an).
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Lemma 2.13 [50] Let (a1, a2, a3, ...) ∈ l∞ be such that μn(an) ≤ 0 for all Banach
limits μ and lim supn→∞(an+1 − an) ≤ 0. Then lim supn→∞ an ≤ 0.

Lemma 2.14 [25, 49] Let C be a closed convex subset of an Hadamard space (X, d)

and let T : C → C be a nonexpansive mapping. Let u ∈ C be fixed. Then F(T ) �= ∅
if and only if {xt } given by the xt = tu⊕(1−t)T xt for all t ∈ (0, 1) remains bounded
as t → 0. In this case, the following hold:

(1) {xt } converges to the unique fixed point z0 of T which is nearest u;
(2) d2(u, z0) ≤ μnd

2(u, xn) for all Banach limits μ and bounded sequences {xn}
with d(xn, T xn) → 0.

Similar results of Lemma 2.14 have been obtained in a uniformly smooth Banach
space by Reich [42] (see also [47]).

The AKT T -condition was introduced in [1] as follows:

Definition 2.15 Let C be a nonempty subset of metric space X, and let {Tn}∞n=1 be
a sequence of mappings from C into C such that ∩∞

n=1F(Tn) �= ∅. Then {Tn}∞n=1 is
said to satisfy the AKT T -condition if for each bounded subset K of C,

∞∑

n=1

sup{d(Tn+1z, Tnz) : z ∈ K} < ∞.

We also need the following lemma [1].

Lemma 2.16 Let C be a nonempty subset of metric space X, and let {Tn}∞n=1 be a
sequence of mappings from C into C which satisfies the AKT T -condition. Then, for
each x ∈ C, {Tnx}∞n=1 converges strongly to a point in C. Furthermore, define the
mapping T : C → C by:

T x := lim
n→∞ Tnx, ∀x ∈ C.

Then, for each bounded subset K of C,

lim
n→∞ sup{d(Tnz, T z) : z ∈ K} = 0.

In the sequel, we will write that ({Tn}∞n=1, T ) satisfies the AKT T -condition
if {Tn}∞n=1 satisfies the AKT T -condition and T is defined by Lemma 2.16 with
F(T ) = ∩∞

n=1F(Tn).
In [27], the authors constructed a sequence of nonexpansive mappings satis-

fying the AKTT condition by choosing an appropriate control sequence under
certain conditions. Applying the same argument as in [27], we give a sequence of
quasi-nonexpansive mappings satisfying the AKTT condition as follows:

Example 2.17 Let C be a nonempty closed convex subset of an Hadamard space X,

{Tn}∞n=1 be a family of quasi-nonexpansive mappings on C with
⋂∞

n=1 F(Tn) �= ∅
and {γn,k : k ≤ n} ⊂ (0, 1) be a sequence satisfying:
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(i)
∑n

k=1 γn,k = 1, ∀n ∈ N,

(ii) λk = limn→∞ γn,k > 0, ∀k ∈ N, and limn→∞
∑∞

k=n λ́k = 0,

(iii)
∑∞

n=1
∑n+1

k=1 |γ̄n+1,k − γ̄n,k| < ∞, where γn,n+1 = 0 and

γ̄n,k = γn,k

γn,1 + ... + γn,k

, k = 1, ..., n + 1.

For each n ∈ N, define the mapping Sn : C → C by Snx = ⊕n
k=1 γn,kTkx. Then,

{Sn} is a family of quasi-nonexpansive mappings satisfying the AKT T -condition
and

⋂∞
n=1 F(Sn) = ⋂∞

n=1 F(Tn). Moreover, the mapping S : C → C defined by
Sx = limn→∞ Snx is also quasi-nonexpansive and F(S) = ⋂∞

n=1 F(Sn).

The following lemmas concerning properties of real sequences.

Lemma 2.18 [53] Let {sn} be a sequence of nonnegative real numbers satisfying the
inequality:

sn+1 ≤ (1 − γn)sn + γnδn, ∀n ≥ 0,

where {γn} ⊂ (0, 1) and {δn} ⊂ R such that

(i)
∑∞

n=0 γn = ∞,

(ii) lim supn→∞ δn ≤ 0, or
∑∞

n=0 |γnδn| < ∞.

Then limn→∞ sn = 0.

Lemma 2.19 [36] Let {an} be a sequence of real numbers such that there exists a
subsequence {ni} of {n} such that ani

< ani+1 for all i ∈ N. Then there exists a
subsequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied
by all (sufficiently large) numbers k ∈ N :

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

3 Main results

This section is divided into three subsections. In the first subsection, we propose
a new iterative algorithm for finding a common zero of finitely many monotone
mappings and a common fixed point of an infinitely countable family of nonexpan-
sive mappings in Hadamard spaces. In the second subsection, a common zero of a
finite family of monotone operators and a common fixed point of an infinitely count-
able family of quasi-nonexpansive mappings is approximated in reflexive Hadamard
spaces. Finally, in the third subsection, we define a norm on X� by the formula:

‖x�‖� := sup
{
∣
∣〈x�, −→ab〉 − 〈x�, −→cd〉∣∣

d(a, b) + d(c, d)
, (a, b, c, d ∈ X, a �= b or c �= d)

}
,

in addition an application of this norm will be exhibited.
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3.1 Algorithm in Hadamard spaces

A problem of interest in optimization theory is to find zeros of mapping A : X ⇒
X∗. The concept of monotonicity is a valuable tool in studying important operators,
such as the gradient or subdifferential of a convex function, which appear in many
problems in optimization, variational inequality problems or differential equations.
In this subsection, we propose an iterative algorithm for finding a common zero of
a finite family of monotone operators and a common fixed point of an infinitely
countable family of nonexpansive mappings in Hadamard spaces (see also [21, 22]).
Before this, we state the following lemma.

Lemma 3.1 Let C be a nonempty closed convex subset of an Hadamard space X

and Ai : X ⇒ X∗, i = 1, 2, ..., N, be N monotone operators such that satisfy the
range condition and D(AN) ⊂ C. Let T : C −→ C be a nonexpansive mapping and
λi > 0 (i = 1, 2, ..., N). If F(T ) ∩ ⋂N

i=1 F(J
Ai

λi
) �= ∅, then

F(T ◦ J
AN

λN
◦ ... ◦ J

A1
λ1

) = F(T ) ∩
N⋂

i=1

F(J
Ai

λi
).

Proof It follows from the range condition and Theorem 2.8 that the mapping T ◦
J

AN

λN
◦...◦J

A1
λ1

is well defined. Set Si = J
Ai

λi
◦...◦J

A1
λ1

(1 ≤ i ≤ N) and S0 = I, where

I is the identity operator. It is clear that F(T )∩⋂N
i=1 F(J

Ai

λi
) ⊆ F(T ◦J

AN

λN
◦...◦J

A1
λ1

).

To prove the reverse inclusion, let x ∈ F(T ◦ J
AN

λN
◦ ... ◦ J

A1
λ1

) and suppose that

y ∈ F(T )∩⋂N
i=1 F(J

Ai

λi
). Then, By Theorem 2.8, for any i = 1, 2, ..., N , we obtain

d(Si−1x, y) ≤ d(x, y) = d(T (SNx), T (SNy))

≤ d(SNx, SNy) ≤ d(Six, Siy)

= d(Six, y). (7)

By using (6), for any i = 1, 2, ..., N , we have

d2(Six, y) ≤ d2(Si−1x, y) − d2(Six, Si−1x).

This together with (7) implies that

d2(Si−1x, y) ≤ d2(Si−1x, y) − d2(Six, Si−1x).

Therefore, for any i = 1, 2, ..., N , we have Six = Si−1x. It follows that x ∈
⋂N

i=1 F(J
Ai

λi
). On the other hand, we derive from x = T SNx = T x that x ∈ F(T )

and hence, x ∈ F(T ) ∩ ⋂N
i=1 F(J

Ai

λi
).

Proposition 3.2 Let C be a nonempty closed convex subset of an Hadamard space
X and Ai : X ⇒ X∗, i = 1, 2, ..., N, be N monotone operators such that satisfy the
range condition and D(AN) ⊂ C. Let T : C → C be a nonexpansive mapping such
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that 
 = F(T ) ∩ ⋂N
i=1 A−1

i (0) �= ∅. Assume that f is a k-contraction on C into
itself with k ∈ [0, 1

2 ). For x1 ∈ X, let {xn} be a sequence defined by:
⎧
⎪⎪⎨

⎪⎪⎩

zn = J
AN

λN
n

◦ ... ◦ J
A1
λ1

n
xn,

yn = βnxn ⊕ (1 − βn)T zn,

xn+1 = αnf (yn) ⊕ (1 − αn)yn,

(8)

where {βn}, {αn} ⊂ (0, 1) and {λi
n} ⊂ (0, ∞) satisfy the following conditions:

(i) lim infn→∞ λi
n > 0 for all 1 ≤ i ≤ N, lim infn→∞ βn(1 − βn) > 0,

(ii) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Then {xn} converges strongly to u ∈ 
 which solves the variational inequality:

〈−−−→
yf (y),

−→
xy〉 ≥ 0, ∀x ∈ 
.

Proof It follows from Remark 1 that 
 is closed and convex. Since P
f is a con-
traction mapping, by the Banach contraction principle, there exists a unique u ∈ 


such that u = P
f (u). First, we show that the sequence {xn} is bounded. By using
Theorem 2.8, we have

d(zn, u) = d(J
AN

λN
n

◦...◦J
A1
λ1

n
xn, u) ≤ d(J

AN−1

λN−1
n

◦...◦J
A1
λ1

n
xn, u) ≤ · · · ≤ d(xn, u), (9)

Using (2) and (9), we obtain

d(yn, u) ≤ βnd(xn, u) + (1 − βn)d(T zn, u)

≤ βnd(xn, u) + (1 − βn)d(zn, u)

≤ βnd(xn, u) + (1 − βn)d(xn, u)

= d(xn, u). (10)

Therefore,

d(xn+1, u) ≤ αnd(f (yn), u) + (1 − αn)d(yn, u)

≤ αn

[
d(f (yn), f (u)) + d(f (u), u)

] + (1 − αn)d(yn, u)

≤ αnkd(yn, u) + αnd(f (u), u) + (1 − αn)d(yn, u)

≤ αnkd(xn, u) + αnd(f (u), u) + (1 − αn)d(xn, u)

= (1 − αn(1 − k))d(xn, u) + αn(1 − k)
d(f (u), u))

1 − k

≤ max{d(xn, u),
d(f (u), u))

1 − k
}

...

≤ max{d(x1, u),
d(f (u), u))

1 − k
}.

Thus, {xn} is bounded. Consequently, we conclude that {yn}, {f (yn)} and {zn} are
also bounded. Now, we consider two cases:
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Case 1 Suppose that there exists n0 ∈ N such that {d(xn, u)}∞n=n0
is nonincreas-

ing, in this situation, {d(xn, u)} is convergent. This shows that limn→∞ d(xn+1, u)−
d(xn, u) = 0. Denote by Si

n the composition J
Ai

λi
n

◦...◦J
A1
λ1

n
for any i = 1, 2, ..., N and

n ∈ N. Therefore zn = SN
n xn. We also assume that S0

n = I . Using Theorem 2.8, we
get d(Si

nxn, u) − d(xn, u) ≤ d(xn, u) − d(xn, u), for any i = 1, 2, ..., N, and hence,

lim sup
n→∞

[
d(Si

nxn, u) − d(xn, u)
] ≤ 0. (11)

On the other hand, from (2), for any i = 1, 2, ..., N and n ∈ N, we get

d(xn+1, u) ≤ αnd(f (yn), u) + (1 − αn)d(yn, u)

≤ αnd(f (yn), u) + (1 − αn)
[
βnd(xn, u) + (1 − βn)d(T zn, u)

]

≤ αnd(f (yn), u) + (1 − αn)
[
βnd(xn, u) + (1 − βn)d(zn, u)

]

≤ αnd(f (yn), u) + (1 − αn)
[
βnd(xn, u) + (1 − βn)d(Si

nxn, u)
]
.

Therefore,

d(xn+1, u) − d(xn, u) ≤ αn

[
d(f (yn), u) − βnd(xn, u) − (1 − βn)d(Si

nxn, u)
]

+(1 − βn)
[
d(Si

nxn, u) − d(xn, u)
]
.

From the boundedness of the sequences {f (yn)}, {xn}, {Si
nxn}, and the conditions

(i) and (ii), we get

lim inf
n→∞

[
d(Si

nxn, u) − d(xn, u)
] ≥ 0. (12)

Using inequalities (11) and (12), for any i = 1, 2, ..., N , we have

lim
n→∞

[
d(Si

nxn, u) − d(xn, u)
] = 0. (13)

Applying (6), we get

d2(J
Ai

λi
n
(Si−1

n xn), S
i−1
n xn) ≤ d2(u, Si−1

n xn) − d2(u, Si
nxn)

≤ d2(u, xn) − d2(u, Si
nxn).

This together with (13) implies that limn→∞ d(Si
nxn, S

i−1
n xn) = 0, and hence for

any i = 1, 2, ..., N , we obtain

d(xn, S
i
nxn) ≤ d(xn, S

1
nxn) + ... + d(Si−1

n xn, S
i
nxn) → 0. (14)

Since lim infn→∞ λi
n > 0, there exists λ0 ∈ R such that λi

n ≥ λ0 > 0 for all n ∈ N

and 1 ≤ i ≤ N . By using Theorem 2.8, for all 1 ≤ i ≤ N, we have

d(J
Ai

λ0
(Si−1

n xn), S
i
nxn)) ≤ d(J

Ai

λ0
(Si−1

n xn), S
i−1
n xn) + d(Si−1

n xn, S
i
nxn)

≤ 2d(J
Ai

λi
n
(Si−1

n xn), S
i−1
n xn) + d(Si−1

n xn, S
i
nxn)

= 3d(Si
nxn, S

i−1
n xn) → 0, as n → ∞.
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So for all 1 ≤ i ≤ N , we have

d(J
Ai

λ0
xn, xn) ≤ d(J

Ai

λ0
xn, J

Ai

λ0
(Si−1

n xn)) + d(J
Ai

λ0
(Si−1

n xn), S
i
nxn) + d(Si

nxn, xn)

≤ d(xn, S
i−1
n xn) + d(J

Ai

λ0
(Si−1

n xn), S
i
nxn) + d(Si

nxn, xn) → 0, (15)

as n → ∞. Now, we show that limn→∞ d(xn, T xn) = 0. By using (1) and (9), we get

d2(xn+1, u) ≤ αnd
2(f (yn), u) + (1 − αn)d

2(yn, u)

≤ αnd
2(f (yn), u) + (1 − αn)

[
βnd

2(xn, u) + (1 − βn)d
2(T zn, u)

−βn(1 − βn)d
2(xn, T zn)

]

≤ αnd
2(f (yn), u) + (1 − αn)

[
βnd

2(xn, u) + (1 − βn)d
2(T zn, u)

−βn(1 − βn)d
2(xn, T zn)

]

≤ αnd
2(f (yn), u) + (1 − αn)

[
βnd

2(xn, u) + (1 − βn)d
2(xn, u)

−βn(1 − βn)d
2(xn, T zn)

]

= αn

[
d2(f (yn), u) − d2(xn, u) + βn(1 − βn)d

2(xn, T zn)
]

+d2(xn, u) − βn(1 − βn)d
2(xn, T zn).

Hence,

d2(xn, T zn) ≤ αn

βn(1−βn)

[
d2(f (yn), u) − d2(xn, u) + βn(1 − βn)d

2(xn, T zn)
]

+ 1
βn(1−βn)

[
d2(xn, u) − d2(xn+1, u)

]
.

Using the above inequality and the conditions (i) and (ii), we get

lim
n→∞ d(xn, T zn) = 0. (16)

Applying (14) and (16), we obtain

d(xn, T xn) ≤ d(xn, T zn) + d(T zn, T xn) (17)

≤ d(xn, T zn) + d(zn, xn) → 0,

as n → ∞. Let g = T ◦ J
AN

λ0
◦ ... ◦ J

A1
λ0

. Set Si := J
Ai

λ0
◦ ... ◦ J

A1
λ0

(1 ≤ i ≤ N) and

S0 = I . We show that for any i = 1, 2, ..., N ,

lim
n→∞ d(Sixn, S

i−1xn) = 0. (18)

For this purpose, we use the principle of strong induction. From (15), it is obvious
that (18) holds for i = 1. Also for i = 2, we have

d(S2xn, S
1xn) = d(J

A2
λ0

◦ J
A1
λ0

xn, J
A1
λ0

xn)

≤ d(J
A2
λ0

◦ J
A1
λ0

xn, J
A2
λ0

xn) + d(J
A2
λ0

xn, xn) + d(xn, J
A1
λ0

xn)

≤ 2d(xn, J
A1
λ0

xn) + d(xn, J
A2
λ0

xn) → 0, as n → ∞.
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Now, suppose that (18) holds for i = 1, 2, ..., N − 1. Then, we have

d(SNxn, S
N−1xn) ≤ d

(
J

AN

λ0
(SN−1xn), J

AN

λ0
(SN−2xn)

)

+d
(
J

AN

λ0
(SN−2xn), S

N−2xn

) + d
(
SN−2xn, S

N−1xn

)

≤ 2d
(
SN−2xn, S

N−1xn

) + d
(
J

AN

λ0
(SN−2xn), S

N−2xn

)

≤ 2d
(
SN−2xn, S

N−1xn

) + d
(
J

AN

λ0
(SN−2xn), J

AN

λ0
xn

)

+d
(
J

AN

λ0
xn, xn

) + d(xn, S
N−2xn)

≤ 2d
(
SN−2xn, S

N−1xn

) + d
(
J

AN

λ0
xn, xn

) + 2d(xn, S
N−2xn)

≤ 2d
(
SN−2xn, S

N−1xn

) + d
(
J

AN

λ0
xn, xn

)

+2
[
d(xn, S

1xn) + d(S1xn, S
2xn) + ... + d(SN−3xn, S

N−2xn)
]

→ 0,

as n → ∞. Hence,

d(xn, S
Nxn) ≤ d(xn, S

1xn) + d(S1xn, S
2xn) + ... + d(SN−1xn, S

Nxn) → 0,

as n → ∞. Using this and (17), we get

d(xn, g(xn)) ≤ d(xn, T xn) + d(T xn, T SNxn)

≤ d(xn, T xn) + d(xn, S
Nxn) → 0, as n → ∞.

Also from (16), we have

d(xn, yn) ≤ βnd(xn, xn) + (1 − βn)d(xn, T zn) → 0, (19)

as n → ∞, and hence,

d(xn, xn+1) ≤ αnd(xn, f (yn)) + (1 − αn)d(xn, yn) → 0.

Applying Lemma 3.1, we get that F(g) = 
. For each t ∈ (0, 1), let xt = tf (u) ⊕
(1 − t)g(xt ). From Lemma 2.14, we know that xt → u = P
f (u), as t → 0. Since
d(xn, g(xn)) → 0, again from Lemma 2.14, we obtain

μn

[
d2(u, f (u)) − d2(f (u), xn)

] ≤ 0, (20)

for all Banach limits μ. Since d(xn, xn+1) → 0, we get

lim sup
n→∞

[
d2(u, f (u)) − d2(f (u), xn+1) − (d2(u, f (u)) − d2(f (u), xn))

]

= lim sup
n→∞

[
d(f (u), xn) − d(f (u), xn+1)

][
d(f (u), xn) + d(f (u), xn+1)

]

≤ lim sup
n→∞

d(xn+1, xn)
[
d(f (u), xn) + d(f (u), xn+1)

] = 0. (21)

Using inequalities (20), (21) and Lemma 2.13, we get

lim sup
n→∞

[
d2(u, f (u)) − d2(f (u), xn)

] ≤ 0. (22)
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For each n ∈ N, set wn = αnu ⊕ (1 − αn)yn. It follows from Lemmas 2.11 and 2.12
that

d2(xn+1, u) ≤ d2(wn, u) + 2〈−−−−→
xn+1wn,

−−−→
xn+1u〉

= (1 − αn)
2d2(yn, u) + 2〈−−−−→

xn+1wn,
−−−→
xn+1u〉

≤ (1 − αn)
2d2(yn, u) + 2

[
αn〈−−−−−→

f (yn)wn,
−−−→
xn+1u〉 + (1 − αn)〈−−→

ynwn,
−−−→
xn+1u〉]

≤ (1 − αn)
2d2(xn, u) + 2

[
α2

n〈
−−−−→
f (yn)u,

−−−→
xn+1u〉 + αn(1 − αn)〈−−−−−→

f (yn)yn,
−−−→
xn+1u〉

+αn(1 − αn)〈−→ynu,
−−−→
xn+1u〉 + (1 − αn)

2〈−−→ynyn,
−−−→
xn+1u〉]

= (1 − αn)
2d2(xn, u) + 2

[
α2

n〈
−−−−→
f (yn)u,

−−−→
xn+1u〉 + αn(1 − αn)〈−−−−→

f (yn)u,
−−−→
xn+1u〉]

= (1 − αn)
2d2(xn, u) + 2αn〈−−−−→

f (yn)u,
−−−→
xn+1u〉

= (1 − αn)
2d2(xn, u) + 2αn〈−−−−−−→

f (yn)f (u),
−−−→
xn+1u〉 + 2αn〈−−−→

f (u)u,
−−−→
xn+1u〉

≤ (1 − αn)
2d2(xn, u) + 2αnkd(xn, u)d(xn+1, u) + 2αn〈−−−→

f (u)u,
−−−→
xn+1u〉

≤ (1 − αn)
2d2(xn, u) + αnk

[
d2(xn, u) + d2(xn+1, u)

]

+αn

[
d2(f (u), u) + d2(xn+1, u) − d2(xn+1, f (u))

]
.

This implies that

d2(xn+1, u) ≤ (1 − αn(1 − 2k)

1 − αn(k + 1)
)d2(xn, u) + α2

n

1 − αn(k + 1)
d2(xn, u)

+ αn

1 − αn(k + 1)

[
d2(f (u), u) − d2(xn+1, f (u))

]

≤ (1 − αn(1 − 2k)

1 − αn(k + 1)
)d2(xn, u) + αn(1 − 2k)

1 − αn(k + 1)
× [ αnL

1 − 2k

+d2(f (u), u) − d2(xn+1, f (u))

1 − 2k

]

= (1 − γn)d
2(xn, u) + γnδn,

where

γn = αn(1 − 2k)

1 − αn(k + 1)
, L = sup{d2(xn, u), n ∈ N},

and

δn = αnL

1 − 2k
+ d2(f (u), u) − d2(xn+1, f (u))

1 − 2k
.

It follows from the condition (ii) and (22) that {γn} ⊂ (0, 1),
∑∞

n=1 γn = ∞
and lim supn→∞ δn ≤ 0. Utilizing Lemma 2.18, we deduce that the sequence {xn}
converges strongly to u = P
f (u).

Case 2 There exists a subsequence {nj } of {n} such that d(u, xnj
) < d(u, xnj +1),

for all j ∈ N. Then by Lemma 2.19, there exists a nondecreasing sequence {mk} ⊂ N

such that mk → ∞,

d(u, xmk
) ≤ d(u, xmk+1) and d(u, xk) ≤ d(u, xmk+1),
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for all k ∈ N. Therefore,

0 ≤ lim inf
k→∞

[
d(u, xmk+1) − d(u, xmk

)
]

≤ lim sup
k→∞

[
d(u, xmk+1) − d(u, xmk

)
]

≤ lim sup
k→∞

[
αmk

d(f (ymk
), u) + (1 − αmk

)d(ymk
, u) − d(u, xmk

)
]

≤ lim sup
k→∞

[
αmk

d(f (ymk
), u) + (1 − αmk

)d(xmk
, u) − d(u, xmk

)
]

= lim sup
k→∞

[
αmk

(
d(f (ymk

), u) − d(u, xmk
)
)] = 0.

This shows that
lim

k→∞
[
d(u, xmk+1) − d(u, xmk

)
] = 0. (23)

By a similar argument to that used in Case 1, we get

lim sup
k→∞

[
d2(u, f (u)) − d2(f (u), xmk

)
] ≤ 0, (24)

and
d2(xmk+1, u) ≤ (1 − γmk

)d2(xmk
, u) + γmk

δmk
.

Hence,

γmk
d2(xmk

, u) ≤ d2(xmk
, u) − d2(xmk+1, u) + γmk

δmk
≤ γmk

δmk
. (25)

On the other hand,

d2(f (u), xmk
) ≤ d2(f (u), xmk+1) + d2(xmk

, xmk+1) + 2d(f (u), xmk+1)d(xmk
, xmk+1).

So, we have

d2(u, f (u)) − d2(f (u), xmk+1) ≤ d2(u, f (u)) − d2(f (u), xmk
) + d2(xmk+1, xmk

)

+2d(xmk+1, xmk
)d(f (u), xmk+1). (26)

By using inequalities (24), (26), the condition (ii) and d(xmk+1, xmk
) → 0, we get

lim supk→∞ δmk
≤ 0. From this, (25) and γmk

> 0, we obtain limk→∞ d(xmk
, u) =

0. This together with (23), implies limk→∞ d(u, xmk+1) = 0. Therefore from
d(u, xk) ≤ d(u, xmk+1), we get xk → u. This completes the proof.

We are now ready for the main result of this subsection.

Theorem 3.3 Let C be a nonempty closed convex subset of an Hadamard space X

and Ai : X ⇒ X∗, i = 1, 2, ..., N, be N monotone operators such that satisfy the
range condition and D(AN) ⊂ C. Let {Tn}∞n=1 be a family of nonexpansive map-

pings on C such that 
 = ⋂∞
n=1 F(Tn) ∩ ⋂N

i=1 A−1
i (0) �= ∅. Assume that f is a

k-contraction on C into itself with k ∈ [0, 1
2 ). For x1 ∈ X, let {xn} be a sequence

defined by: ⎧
⎪⎪⎨

⎪⎪⎩

zn = J
AN

λN
n

◦ ... ◦ J
A1
λ1

n
xn,

yn = βnxn ⊕ (1 − βn) ⊕∞
m=1 ηmTmzn,

xn+1 = αnf (yn) ⊕ (1 − αn)yn,

(27)
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where {βn}, {ηn}, {αn} ⊂ (0, 1) and {λi
n} ⊂ (0, ∞) satisfy the following conditions:

(i) lim infn→∞ λi
n > 0 for all 1 ≤ i ≤ N, lim infn→∞ βn(1 − βn) > 0,

(ii) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
∑∞

n=1 ηn = 1 and
∑∞

j=n ήj → 0 as
n → ∞.

Then {xn} converges strongly to u ∈ 
 which solves the variational inequality:

〈−−−→
yf (y),

−→
xy〉 ≥ 0, ∀x ∈ 
.

Proof The proof follows from Lemma 2.1 and Proposition 3.2.

3.2 Algorithm in reflexive Hadamard spaces

In this subsection, we propose the iterative algorithm (28) for finding a common zero
of a finite family of monotone operators and a common fixed point of an infinitely
countable family of quasi-nonexpansive mappings in reflexive Hadamard spaces.

Theorem 3.4 Let C be a nonempty closed convex subset of a reflexive Hadamard
space X and Ai : X ⇒ X∗, i = 1, 2, ..., N, be N monotone operators such that
satisfy the range condition and D(AN) ⊂ C. Let {Tn}∞n=1 be an infinitely countable
family of quasi-nonexpansive mappings from C into C such that F(Tn) = F̂ (Tn) for
all n ≥ 1. Suppose in addition that T : C → C is a quasi-nonexpansive mapping
such that ({Tn}∞n=1, T ) satisfies the AKT T -condition and F(T ) = F̂ (T ). Let 
 =
∩∞

n=1F(Tn)
⋂ ∩N

i=1A
−1
i (0) �= ∅. Assume that f is a k-contraction of C into itself

with constant k ∈ [0, 1). For x1 ∈ X, let {xn} be a sequence defined by:
⎧
⎪⎪⎨

⎪⎪⎩

zn = J
AN

λN
n

◦ ... ◦ J
A1
λ1

n
xn,

yn = βnxn ⊕ (1 − βn)Tnzn,

xn+1 = αnf (yn) ⊕ (1 − αn)yn,

(28)

where {βn}, {αn} ⊂ (0, 1) and {λi
n} ⊂ (0, ∞) satisfy the following conditions:

(i) lim infn→∞ λi
n > 0 for all 1 ≤ i ≤ N, lim infn→∞ βn(1 − βn) > 0,

(ii) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Then, {xn} converges strongly to u ∈ 
 which solves the variational inequality:

〈−−−→
yf (y),

−→
xy〉 ≥ 0, ∀x ∈ 
.

Proof As in the proof of Proposition 3.2, we can obtain that {xn} is bounded. Now,
we consider two cases:

Case 1 Suppose that there exists n0 ∈ N such that {d(xn, u)}∞n=n0
is nonincreasing,

where u = P
f (u). By the same argument as in the proof of Proposition 3.2, we see
that

lim
n→∞ d(zn, Tnzn) = 0, lim

n→∞ d(xn, J
Ai

λ0
xn) = 0. (29)
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Since ({Tn}∞n=1, T ) satisfies the AKTT condition, we conclude that

d(zn, T zn) ≤ d(zn, Tnzn) + d(Tnzn, T zn)

≤ d(zn, Tnzn) + sup{d(Tnz, T z) : z ∈ K},
where {zn} ⊆ K and K is bounded subset of C. By using Lemma 2.16 and (29), we
get

lim
n→∞ d(zn, T zn) = 0. (30)

Since {xn} is bounded and X is a reflexive Hadamard space, there exists a subse-
quence {xnk

} of {xn} such that {xnk
} w-converges to x̄. Since {xnk

} w-converges to
x̄ and d(xnk

, znk
) → 0, by using the Cauchy-Schwarz inequality, for all y ∈ X, we

have

lim
k→∞ |〈−−→znk

x̄,
−→̄
xy〉| = lim

k→∞ |〈−−−→
znk

xnk
,
−→̄
xy〉 + 〈−−→xnk

x̄,
−→̄
xy〉|

≤ lim
k→∞ d(xnk

, znk
)d(x̄, y) + lim

k→∞ |〈−−→xnk
x̄,

−→̄
xy〉|

= 0.

So, {znk
} w-converges to x̄, and hence by (30), x̄ ∈ F̂ (T ) = F(T ). Also from Lemma

2.2, Theorem 2.8 and (29), we get x̄ ∈ A−1
i (0) for any i = 1, 2, ...., N and so, x̄ ∈ 
.

Next, we show that lim supn→∞〈−−−→
f (u)u,

−→
xnu〉 ≤ 0. We can choose a subsequence

{xnj
} of {xn} such that

lim sup
n→∞

〈−−−→
f (u)u,

−→
xnu〉 = lim

j→∞〈−−−→
f (u)u,

−−→
xnj

u〉.
Since {xnj

} is bounded, there exists a subsequence {xnjk
} of {xnj

} which w-converges
to p ∈ 
. So, by using Lemma 2.10, we get

lim
j→∞〈−−−→

f (u)u,
−−→
xnj

u〉 = lim
k→∞〈−−−→

f (u)u,
−−→
xnjk

u〉 = 〈−−−→
f (u)u,

−→
pu〉 ≤ 0. (31)

For each n ∈ N, set wn = αnu ⊕ (1 − αn)yn. Similar to the proof of Theorem 3.2,
we get

d2(xn+1, u) ≤ (1 − αn)
2d2(xn, u) + αnk

[
d2(xn, u) + d2(xn+1, u)

] + 2αn〈−−−→
f (u)u,

−−−→
xn+1u〉.

This implies that

d2(xn+1, u) ≤ (1 − 2αn(1 − k)

1 − αnk
)d2(xn, u) + α2

n

1 − αnk
d2(xn, u)

+ 2αn

1 − αnk
〈−−−→
f (u)u,

−−−→
xn+1u〉

≤ (1 − 2αn(1 − k)

1 − αnk
)d2(xn, u) + 2αn(1 − k)

1 − αnk
× [ αnL

2(1 − k)

+ 1

1 − k
〈−−−→
f (u)u,

−−−→
xn+1u〉]

= (1 − γn)d
2(xn, u) + γnδn,

where

γn = 2αn(1 − k)

1 − αnk
, L = sup{d2(xn, u), n ∈ N},
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and

δn = αnL

2(1 − k)
+ 〈−−−→

f (u)u,
−−−→
xn+1u〉

1 − k
.

It is easy to see that
∑∞

n=1 γn = ∞ and lim supn→∞ δn ≤ 0. Utilizing Lemma 2.18,
we deduce that the sequence {xn} converges strongly to u = P
f (u).

Case 2 There exists a subsequence {nj } of {n} such that d(u, xnj
) < d(u, xnj +1),

for all j ∈ N. The remaining assertion goes through in a similar way to the one in the
corresponding part of Theorem 3.2.

3.3 Norm on X�

Now, we define a norm on X� and give an application of this norm.

Proposition 3.5 Let X be an Hadamard space with daul X∗ and X� = Span X∗.
Then

‖x�‖� := sup
{

∣
∣〈x�, −→ab〉 − 〈x�, −→cd〉∣∣

d(a, b) + d(c, d)
, (a, b, c, d ∈ X, a �= b or c �= d)

}
.

is a norm on X�. In particular, ‖[t−→xy]‖� = |t |d(x, y).

Proof The only thing that needs verification is to show that ‖x�‖� < ∞, for all
x� ∈ X�. Let x∗ = [t−→xy]. By using the Cauchy-Schwarz inequality, we have

‖x∗‖� = sup
{

∣
∣t〈−→xy,

−→
ab〉 − t〈−→xy,

−→
cd〉∣∣

d(a, b) + d(c, d)
, (a, b, c, d ∈ X, a �= b or c �= d)

}
(32)

≤ sup
{

∣
∣t〈−→xy,

−→
ab〉∣∣ + ∣

∣t〈−→xy,
−→
cd〉∣∣

d(a, b) + d(c, d)
, (a, b, c, d ∈ X, a �= b or c �= d)

}

≤ sup
{ |t |d(x, y)d(a, b) + |t |d(x, y)d(c, d)

d(a, b) + d(c, d)
, (a, b, c, d ∈ X, a �= b or c �= d)

}

= |t |d(x, y).

On the other hand, substituting a = x, b = y and c = d into (32), we get
∣
∣t〈−→xy,

−→
xy〉 − t〈−→xy,

−→
cc〉∣∣

d(x, y)
= |t |d(x, y).

Therefore, ‖x∗‖� = |t |d(x, y). Since x� is a finite linear combinations of elements
of X∗, we conclude that ‖x�‖� < ∞.

Proposition 3.6 Let {xn} be a bounded sequence in an Hadamard space X with dual
X∗ and {x�

n } be a sequence in X�. If {xn} is w-convergent to x and x�
n → x�, then

for all z ∈ X, 〈x�
n ,

−→
xnz〉 → 〈x�, −→xz〉.
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Proof Using the definition of ‖.‖� on X�, we have

|〈x�
n ,

−→
xnz〉 − 〈x�, −→xz〉| ≤ |〈x�

n ,
−→
xnz〉 − 〈x�, −→xnz〉| + |〈x�, −→xnz〉 − 〈x�, −→xz〉|

= |〈x�
n − x�, −→xnz〉 − 〈x�

n − x�, −→zz〉| + |〈x�, −→xnz〉 − 〈x�, −→xz〉|
≤ ‖x�

n − x�‖�d(xn, z) + |〈x�, −→xnz〉 − 〈x�, −→xz〉| → 0,

as n → ∞.

4 Application

One of the major problems in optimization is to find x ∈ X such that f (x) =
miny∈X f (y). In this section, we apply our results to solving this convex problem.

Definition 4.1 [29] Let X be an Hadamard space with dual X∗ and let f : X →
(−∞, +∞] be a proper function with efficient domain D(f ) := {x : f (x) < +∞}.
Then, the subdifferential of f is the multivalued mapping ∂f : X ⇒ X∗ defined by:

∂f (x) = {x∗ ∈ X∗ : f (z) − f (x) ≥ 〈x∗, −→xz〉 (z ∈ X)},
when x ∈ D(f ) and ∂f (x) = ∅, otherwise.

Theorem 4.2 [29] Let f : X → (−∞, +∞] be a proper, convex and lower
semicontinuous function on an Hadamard space X with dual X∗. Then

(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂f (x),

(ii) ∂f : X ⇒ X∗ is a monotone operator,
(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that [α−→

xy] ∈
∂f (x).

Part (iii) of Theorem 4.2 shows that the subdifferential of a convex, proper and
lower semicontinuous function satisfies the range condition.

Lemma 4.3 [31] Let f : X → (−∞, +∞] be a proper, convex and lower
semicontinuous function on an Hadamard space X with dual X∗. Then

J
∂f
λ (x) = argminy∈X

[
f (y) + 1

2λ
d2(y, x)

]
,

for all λ > 0 and x ∈ X.

Using Theorems 3.4, and 4.2, we have the following corollary.

Corollary 4.4 Let C be a nonempty closed convex subset of a reflexive Hadamard
space X and fi : C → (−∞, +∞], i = 1, 2, ..., N, be N proper con-
vex and lower semicontinuous functions. Let {Tn}∞n=1 be an infinitely countable
family of quasi-nonexpansive mappings on C such that F(Tn) = F̂ (Tn). Sup-
pose in addition that T : C → C is a quasi-nonexpansive mapping such
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that ({Tn}∞n=1, T ) satisfies the AKT T -condition and F(T ) = F̂ (T ). Let 
 =
∩∞

n=1F(Tn)
⋂ ∩N

i=1argminy∈C fi(y) �= ∅. Assume that f be a contraction of C into
itself with constant k ∈ [0, 1). For x1 ∈ X, let {xn} be a sequence defined by:

⎧
⎪⎪⎨

⎪⎪⎩

zn = J
∂fN

λN
n

◦ ... ◦ J
∂f1
λ1

n
(xn),

yn = βnzn ⊕ (1 − βn)Tnzn,

xn+1 = αnf (yn) ⊕ (1 − αn)yn,

(33)

where {βn}, {αn} ⊂ (0, 1) and {λi
n} ⊂ (0, ∞) satisfy the following conditions:

(i) lim infn→∞ λi
n > 0 for all 1 ≤ i ≤ N, lim infn→∞ βn(1 − βn) > 0,

(ii) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Then {xn} converges strongly to u ∈ 
 which solves the variational inequality:

〈−−−→
yf (y),

−→
xy〉 ≥ 0, ∀x ∈ 
.

5 Numerical examples

In this section, we will present two numerical examples in the three-dimensional
space of real number and in an Hadamard space X to show that our algorithms are
efficient.

Example 5.1 Let X = R
3 with the Euclidean norm and C = {x =

(x1, x2, x3), −1 ≤ x1, x2, x3 ≤ 1}. For each x ∈ C and n = 1, 2, ..., we define the

mappings Tn and f on C as follows: Tnx = x

n
, f (x) = (0.1, −0.2, 0.4). For each

x ∈ C, define f1, f2 : C → (−∞, +∞] by:

f1(x) = 1

2
‖A1x − b1‖2 and f2(x) = 1

2
‖A2x − b2‖2,

where

A1 =
⎡

⎣
1 1 0
0 0 0
0 0 0

⎤

⎦ , b1 =
⎡

⎣
0
4

−5

⎤

⎦ ,

A2 =
⎡

⎣
0 0 0
0 0 0
1 1 −1

⎤

⎦ , b2 =
⎡

⎣
2

−3
0

⎤

⎦ .

Using the proximity operator [12], algorithm (28) becomes
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = (I + At
1A1)

−1(xn + At
1b1),

zn = (I + At
2A2)

−1(wn + At
2b2),

yn = βnzn + (1 − βn)Tnzn,

xn+1 = αnf (yn) + (1 − αn)yn.

(34)
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Table 1 Numerical results of Example 5.1

n xn ‖xn‖2

1 (1.00000000, − 1.00000000, 1.00000000) 1.73205080

2 (0.67500000, − 0.47500000, 0.57500000) 1.00591997

3 (0.40104166, − 0.27395833, 0.35729166) 0.60294686

4 (0.24370659, − 0.16879340, 0.23927951) 0.38097087

5 (0.15615632, − 0.11009367, 0.17285120) 0.25764889
.
.
.

.

.

.
.
.
.

98 (0.00344929, − 0.00273763, 0.00661979) 0.00795072

99 (0.00341395, − 0.00270980, 0.00655248) 0.00786976

100 (0.00337934, − 0.00268254, 0.00648651) 0.00779043

We choose αn = 1
n+1 and βn = 1

2 . It can be observed that all the assumptions of

Theorem 3.4 are satisfied and 
 = ⋂∞
n=1 F(Tn) ∩ ⋂2

i=1 argminx∈Cfi(x) = {0}.
Using the algorithm (34) with the initial point x1 = (1, −1, 1), we have the numerical
results in Table 1 and Fig. 1.

Now, we shall illustrate another numerical experiment performed by our method.
The problem we are setting up is to solve a nonconvex optimization problem by
reducing the problem into convex optimization and apply our algorithm to solve such
problem in an Hadamard space. For more details, we refer to [15].

Fig. 1 a Plotting of ‖xn‖2 in Table 1. b Plotting of dH (xn, 0) in Table 2
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Example 5.2 Let f1 : R2 → R be a function defined by:

f1(x1, x2) = 100
(
(x2 + 1) − (x1 + 1)2

)2 + x2
1 .

The function f1 is not convex in the classical sense. We define a metric on R
2 by:

dH (x, y) =
√

(x1 − y1)2 + (x2
1 − x2 − y2

1 + y2)2,

where x = (x1, x2) and y = (y1, y2). Then, (R2, dH ) is an Hadamard space with the
geodesics:

γx,y(t) =
(
(1 − t)x1 + ty1,

(
(1 − t)x1 + ty1

)2 − (1 − t)(x2
1 − x2) − t (y2

1 − y2)
)
.

Let f2 : R
2 → R, T : R

2 → R
2 and f : R

2 → R
2 be mappings defined by

f2(x1, x2) = 100x2
1 , T (x1, x2) = (−x1, x2) and f (x1, x2) = (1, 1). Then, T is

a nonexpansive mapping, f1 and f2 are convex in (R2, dH ) (see [15]). Therefore,
algorithm (8) takes the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = argminy∈X

[
f1(y) + 1

2λ1
n
d2(y, xn)

]
,

zn = argminy∈X

[
f2(y) + 1

2λ2
n
d2(y, wn)

]
,

yn = βnxn ⊕ (1 − βn)T zn,

xn+1 = αnf (yn) ⊕ (1 − αn)yn,

(35)

We choose αn = 1
n+1 , βn = 1

10 and λ1
n = λ2

n = n, for all n ∈ N. It can be
observed that all the assumptions of Theorem 3.2 are satisfied and 
 = F(T ) ∩⋂2

i=1 argminx∈Xfi(x) = {0}. Using the algorithm (35) with the initial point x1 =
(0.6, 0.5), we have the numerical results in Table 2 and Fig. 1.

Table 2 Numerical results of Example 5.2

n xn dH (xn, 0)

1 (0.60000000, 0.50000000) 0.61611687

2 (0.52971819, 0.40063700) 0.54314815

3 (0.36851985, 0.24640539) 0.38475825

4 (0.27757877, 0.15772162) 0.28906382

5 (0.22217595, 0.10444313) 0.22890187
.
.
.

.

.

.
.
.
.

98 (0.01133786, 0.00024499) 0.01133846

99 (0.01122334, 0.00024006) 0.01122392

100 (0.01111110, 0.00023527) 0.01111167
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