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Abstract The purpose of this article is to propose three new hybrid projection meth-
ods for a finite family of quasi-asymptotically pseudocontractive mappings. The
strong convergence of the algorithms is proved in real Hilbert spaces. Some numer-
ical experiments are also included to compare and explain the effectiveness of the
proposed methods.
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1 Introduction

Suppose that H is a real Hilbert space. We use 〈·, ·〉 and ‖ · ‖ to denote the inner
product and the norm, respectively. Suppose that C is a closed convex nonempty
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subset of H . We use F(T ) to denote the fixed point set of a mapping T : C → C,
i.e., F(T ) = {x ∈ C : x = T x}. A mapping T : C → C is called a nonexpansive
mappings if

‖T x − Ty‖ ≤ ‖x − y‖

for all x, y ∈ C.
A mapping T : C → C is called a quasi-nonexpansive mapping if F(T ) �= ∅ such

that

‖T x − p‖ ≤ ‖x − p‖

for all x ∈ C, p ∈ F(T ).
A mapping T : C → C is called asymptotically nonexpansive if there exists a

sequence {kn} ⊂ [1, ∞) with kn → 1 such that

‖T nx − T ny‖ ≤ kn‖x − y‖,

for all x, y ∈ C and all n ≥ 1.
A mapping T : C → C is called quasi-asymptotically nonexpansive if F(T ) �= ∅

and there exists a sequence {kn} ⊂ [1, ∞) with kn → 1 such that

‖T nx − p‖ ≤ kn‖x − p‖,

for all x ∈ C, p ∈ F(T ) and all n ≥ 1.
A mapping T : C → C is called asymptotically pseudocontractive if there exists

a sequence {kn} ⊂ [1, ∞) with kn → 1 such that

〈T nx − T ny, x − y〉 ≤ kn‖x − y‖2,

for all x, y ∈ C and all n ≥ 1.
A mapping T : C → C is called quasi-asymptotically pseudocontractive if

F(T ) �= ∅ and there exists a sequence {kn} ⊂ [1, ∞) with kn → 1 such that

〈T nx − p, x − p〉 ≤ kn‖x − p‖2,

for all x ∈ C, p ∈ F(T ) and all n ≥ 1.
A mapping T : C → C is called κ-strictly asymptotically pseudocontractive if

there exist some κ ∈ [0, 1) and some real sequence {kn} ⊂ [1, ∞) with kn → 1 such
that

‖T nx − T ny‖2 ≤ k2n‖x − y‖2 + κ‖(I − T n)x − (I − T n)y‖2,

for all x, y ∈ C and all n ≥ 1.
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Amapping T : C → C is called quasi-κ-strictly asymptotically pseudocontractive
if F(T ) �= ∅, and there exist some κ ∈ [0, 1) and some real sequence {kn} ⊂ [1, ∞)

with kn → 1 such that

‖T nx − p‖2 ≤ k2n‖x − p‖2 + κ‖(I − T n)x‖2,
for all x ∈ C, p ∈ F(T ) and all n ≥ 1.

A mapping T : C → C is called uniformly L-Lipschitzian if there exists some
L > 0 such that

‖T nx − T ny‖ ≤ L‖x − y‖,
for all x, y ∈ C and all n ≥ 1.

Remark 1.1 [15] We note that every κ-strictly asymptotically pseudocontractive

mapping is uniformly L-Lipschitzian with the Lipschitz constant L = M+√
κ

1−√
κ
,

where M = supn{kn}. In particular, every asymptotically nonexpansive mapping is
uniformly L-Lipschitzian with L = sup{kn : n ≥ 1}.

Remark 1.2 [15] It is clear that every asymptotically nonexpansive mapping is
0-strictly asymptotically pseudocontractive, while every asymptotically pseudocon-
tractive mapping with sequence {kn} is 1-strictly asymptotically pseudocontractive
with sequence {2kn − 1}.

Remark 1.3 [15] It is also clear that every asymptotically pseudocontractive mapping
with F(T ) �= ∅ is quasi-asymptotically pseudocontractive, but the converse may be
not true in general.

Remark 1.4 [15] The class of asymptotically pseudocontractive mappings is a gen-
eralization of the class of pseudocontractive mappings, and the former contains
properly the class of asymptotically nonexpansive mappings as a subclass.

We give an asymptotically pseudocontractive mapping in infinite dimensional
Hilbert spaces.

Example 1.1 [25] Let B denote the unit ball in the Hilbert space l2 and let F be
defined as follows:

F : (x1, x2, x3, · ··) → (0, x2
1 , A2x2, A3x3, · ··)

where Ai is a sequence of numbers such that 0 < Ai < 1 and �∞
i=2Ai = 1

2
. Then, F

is lipschitzian and ‖Fx−Fy‖ ≤ 2‖x−y‖, x, y ∈ B; and moreover, ‖F ix−F iy‖ ≤
2�i

j=2Aj‖x − y‖ for i = 2, 3, · ··. Thus,

lim
i→∞ ki = lim

i→∞ 2�i
j=2Aj = 1.
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Then, F is an asymptotically nonexpansive mapping, thereby F is also an
asymptotically pseudocontractive mapping.

Construction of fixed points of nonlinear mappings is an important subject in the
theory of nonlinear mappings and finds application in a number of applied areas.
Recently, a great deal of literature on iteration algorithms for approximating fixed
points of nonexpansive mappings has been published since these algorithms have a
variety of applications in inverse problem, image recovery, and signal processing (see
[1–10]). Mann’s iteration process [1] is often used to approximate a fixed point of
the operators, but it has only weak convergence in general (see [3] for an example).
However, strong convergence is often much more desirable than weak convergence
in many problems that arise in infinite dimensional spaces (see [7] and references
therein). Consequently, in order to obtain strong convergence, one has to modify
the normal Mann’s iteration algorithm, and the so-called hybrid projection iteration
method is such a modification.

Recently, the hybrid projection algorithm was developed rapidly for finding
the nearest fixed point of certain quasi-nonexpansive mappings; see, for instance,
Bauschke and Combettes [7] and the references therein.

By virtue of the hybrid projection methods, Nakajo and Takahashi [11] established
some strong convergence results for nonexpansive mappings and nonexpansive semi-
groups in a real Hilbert space; Marino and Xu [12] proved a strong convergence
theorem for strict pseudo-contractions in a real Hilbert space; Zhou [13] extended
Marino and Xu’s strong convergence theorem to the more general class of Lipschitz
pseudocontractive mappings; Zhou [14] generalized and extended the main results
of [13] to the class of asymptotically pseudocontractive mappings; Zhou and Su
[15] further extended the main results in [14] to a family of uniformly L-Lipschitz
continuous and quasi-asymptotically pseudocontractive mappings.

Very recently, some authors constructed some hybrid projection methods for
finding common fixed points of a finite family of nonexpansive mappings, quasi-
nonexpansive mappings, quasi-asymptotically nonexpansive mappings, or quasi-
asymptotically pseudocontractive mappings and gave some corresponding numerical
experiments (see [16–23] and the references therein). Anh and Chung [21] proposed
a parallel hybrid algorithm for a finite family of nonexpansive mappings in a Hilbert
space H as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,

zk = PCxk,

yi
k = αkzk + (1 − αk)Tizk, i = 1, 2, · ··, N,

ik = argmax{‖yi
k − xk‖ : i = 1, 2, · ··, N},

Ck = {v ∈ H : ‖v − y
ik
k ‖ ≤ ‖v − xk‖},

Qk = {u ∈ H : 〈x0 − xk, xk − u〉 ≥ 0},
xk+1 = PCk∩Qk

x0

(1.1)

and proved that {xn} produced by (1.1) converges to P⋂N
i=1 F(Ti)

x0.
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Dong et al. [18] proposed a cyclic algorithm for a finite family of nonexpansive
mappings in a Hilbert space H as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,

y1
k = αkxk + (1 − αk)T1xk,

yi+1
k = αky

i
k + (1 − αk)Ti+1y

i
k, i = 1, 2, · · ·, N − 1,

ik = argmax{‖yi
k − xk‖ : i = 1, 2, · ··, N},

Ck = {u ∈ C : ‖u − y
ik
k ‖ ≤ ‖u − xk‖},

Qk = {v ∈ C : 〈x0 − xk, xk − v〉 ≥ 0},
xk+1 = PCk∩Qk

x0

(1.2)

and proved that {xn} produced by (1.2) converges to P⋂N
i=1 F(Ti)

x0.
We observe that the construction of the half-spaces Cn in [15] is complicated, and

hence the computation of the metric projections PCnx0 is difficult.
Our concern now is the following: Can one design some simple and new hybrid

projection algorithms for finding a common fixed point for a finite family of quasi-
asymptotically pseudocontractive mappings?

Motivated by the above work, the purpose of this paper is to propose three kinds
of new hybrid projection algorithms for constructing a common fixed point of a finite
family of quasi-asymptotically pseudocontractive mappings in a real Hilbert space.
By using some new analysis techniques, we prove the strong convergence of the pro-
posed algorithms. We also give some numerical experiments to compare and describe
the effectiveness of the proposed algorithms. The results of this paper improve and
extend the related ones obtained by some authors.

2 Preliminaries

Lemma 2.1 [12]Suppose that C is a closed convex nonempty subset of H . Suppose
that PC is the projection from H onto C (that is, for any x ∈ H , PCx is the only
point in C such that ‖x − PCx‖ = inf {‖x − z‖ : z ∈ C}). Then, for any x ∈ H and
z ∈ C, z = PCx if and only if

〈x − z, y − z〉 ≤ 0

for all y ∈ C.

Lemma 2.2 [15] Let C be a nonempty, bounded, and closed convex subset of
H . Let T : C → C be a uniformly L-Lipschitzian and quasi-asymptotically
pseudocontractive mapping. Then, F(T) is a closed convex subset of C.

Lemma 2.3 [11, 12] Suppose that C is a closed convex nonempty subset of H . Let
PC be the projection from H onto C. Then,

‖y − PCx‖2 + ‖x − PCx‖2 ≤ ‖x − y‖2, ∀x ∈ H, ∀y ∈ C.
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3 Main results

Theorem 3.1 Suppose that C is a bounded closed convex nonempty subset of H .
Suppose that {Ti}Ni=1 : C → C is a finite family of uniformly Li-Lipschitzian and

quasi-asymptotically pseudocontractive mappings such that F = ⋂N
i=1 F(Ti) is not

empty. Assume the control sequences {αni}Ni=1 are chosen so that {αni} ⊂ [a, b] for
some a, b ∈ (0, 1

1+L
), where L = max{Li : 1 ≤ i ≤ N}. Let a sequence {xn} be

generated by the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,

C
(i)
0 = C, i = 1, 2, · ··, N,

y
(0)
n = xn, ∀n ≥ 0,

y
(1)
n = (1 − αn1)xn + αn1T

n
1 xn,

y
(i)
n = (1 − αni)y

(i−1)
n + αniT

n
i y

(i−1)
n , i = 2, · ··, N,

C
(1)
n+1 = {w ∈ C

(1)
n : αn1[1 − (1 + L)αn1]‖xn − T n

1 xn‖2
≤ 〈xn − w, (I − T n

1 )y
(1)
n 〉 + (kn − 1)(diamC)2},

C
(i)
n+1 = {w ∈ C

(i)
n : αni[1 − (1 + L)αni]‖y(i−1)

n − T n
i y

(i−1)
n ‖2

≤ 〈y(i−1)
n − w, (I − T n

i )y
(i)
n 〉 + (kn − 1)(diamC)2}, i = 2, · ··, N,

Cn+1 = ⋂N
i=1 C

(i)
n+1,

xn+1 = PCn+1x0, n ≥ 0,
(3.1)

where kn = max{kni : 1 ≤ i ≤ N}, while kni are asymptotic sequences for {Ti}Ni=1.
Then, the sequence {xn} generated by (3.1) strongly converges to PF x0.

Proof By Lemma 2.2 and our assumption that F �= ∅, we know that PF x0 is well
defined for every x0 ∈ C. It follows from the constructions of Cn that Cn is closed
and convex, ∀n ≥ 0. We omit the details.

Step 1 Show that F ⊂ Cn for all n ≥ 0.

It suffices to show that F ⊂ C
(i)
n for all n ≥ 0, i = 1, 2, · ··, N . Firstly, we

show that F ⊂ C
(1)
n for all n ≥ 0. In fact, F ⊂ C

(1)
0 = C is obvious. Assume that

F ⊂ C
(1)
n for some n ≥ 0. For any q ∈ F ⊂ C

(1)
n , one has

‖xn − T n
1 xn‖2 = 〈xn − T n

1 xn, xn − T n
1 xn〉

= 1

αn1
〈xn − y(1)

n , (I − T n
1 )xn〉

= 1

αn1
〈xn − y(1)

n , (I − T n
1 )xn − (I − T n

1 )y(1)
n 〉

+ 1

αn1
〈xn − y(1)

n , (I − T n
1 )y(1)

n 〉

≤ 1 + L

αn1
‖xn − y(1)

n ‖2 + 1

αn1
〈xn − q, (I − T n

1 )y(1)
n 〉
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+ 1

αn1
〈q − y(1)

n , (I − T n
1 )y(1)

n 〉

= (1 + L)αn1‖xn − T n
1 xn‖2 + 1

αn1
〈xn − q, (I − T n

1 )y(1)
n 〉

+ 1

αn1
[〈q − y(1)

n , T n
1 q − T n

1 y(1)
n 〉 − 〈q − y1

n, q − y1
n〉]

≤ (1 + L)αn1‖xn − T n
1 xn‖2 + 1

αn1
〈xn − q, (I − T n

1 )y(1)
n 〉

+ 1

αn1
(kn − 1)(diamC)2.

It follows that

αn1[1 − (1 + L)αn1]‖xn − T n
1 xn‖2 ≤ 〈xn − q, (I − T n

1 )y(1)
n 〉 + (kn − 1)(diamC)2,

which shows q ∈ C
(1)
n+1 and hence F ⊂ C

(1)
n for all n ≥ 0.

Secondly, we show that F ⊂ C
(i)
n for all n ≥ 0, i = 2, · · ·, N . In fact, F ⊂ C

(i)
0 =

C (i = 2, · · ·, N) is obvious. Assume that F ⊂ C
(i)
n (i = 2, · · ·, N) for some n ≥ 0.

For any q ∈ F ⊂ C
(i)
n (i = 2, · · ·, N), one has

‖y(i−1)
n − T n

i y(i−1)
n ‖2 = 〈y(i−1)

n − T n
i y(i−1)

n , y(i−1)
n − T n

i y(i−1)
n 〉

= 1

αni

〈y(i−1)
n − y(i)

n , (I − T n
i )y(i−1)

n 〉

= 1

αni

〈y(i−1)
n − y(i)

n , (I − T n
i )y(i−1)

n − (I − T n
i )y(i)

n 〉

+ 1

αni

〈y(i−1)
n − y(i)

n , (I − T n
i )y(i)

n 〉

≤ 1 + L

αni

‖y(i−1)
n − y(i)

n ‖2 + 1

αni

〈y(i−1)
n − q, (I − T n

i )y(i)
n 〉

+ 1

αni

〈q − y(i)
n , (I − T n

i )y(i)
n 〉

= (1 + L)αni‖y(i−1)
n − T n

i y(i−1)
n ‖2

+ 1

αni

〈y(i−1)
n − q, (I − T n

i )y(i)
n 〉

+ 1

αni

[〈q − y(i)
n , T n

i q − T n
i y(i)

n 〉−〈q−y(i)
n , q−y(i)

n 〉]
≤ (1 + L)αni‖y(i−1)

n − T n
i y(i−1)

n ‖2

+ 1

αni

〈y(i−1)
n − q, (I − T n

i )y(i)
n 〉

+ 1

αni

(kn − 1)(diamC)2.

Numer Algor (2019) 80:1015–1035 1021



It follows that

αni[1 − (1 + L)αni]‖y(i−1)
n − T n

i y(i−1)
n ‖2 ≤ 〈y(i−1)

n − q, (I − T n
i )y(i)

n 〉
+(kn − 1)(diamC)2,

which shows q ∈ C
(i)
n+1 and hence F ⊂ C

(i)
n for all n ≥ 0, i = 2, · · ·, N . So

F ⊂ ⋂N
i=1 C

(i)
n = Cn for all n ≥ 0.

Step 2 Show that limn→∞ ‖xn − x0‖ exists.

In view of (3.1), one has xn = PCnx0. Since Cn+1 ⊂ Cn and xn+1 ∈ Cn+1, one has

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀n ≥ 1. (3.2)

On the other hand, as F ⊂ Cn by step 1, it follows that

‖xn − x0‖ ≤ ‖z − x0‖, ∀z ∈ F, ∀n ≥ 1. (3.3)

Combining (3.2) and (3.3), one sees that limn→∞ ‖xn − x0‖ exists.

Step 3 Show that xn → v as n → ∞, v ∈ C.

For m > n ≥ 1, one has xm = PCmx0 ∈ Cm ⊂ Cn, by Lemma 2.3, one has

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2. (3.4)

Taking m, n → ∞ in (3.4), one gets xm −xn → 0 as m, n → ∞, which proves that
{xn} is a Cauchy sequence in C. By completeness of H and closedness of C, one has
v ∈ C such that xn → v as n → ∞.

Step 4 Show that v ∈ F = ⋂N
i=1 F(Ti).

Firstly, we show that v = T1v. In fact, it follows from Step 3 that xn+1 − xn → 0
as n → ∞. Since xn+1 ∈ Cn+1, one has xn+1 ∈ C

(i)
n+1, i = 1, 2, · · ·, N . It follows

that

αn1[1 − (1 + L)αn1]‖xn − T n
1 xn‖2 ≤ 〈xn − xn+1, (I − T n

1 )y
(1)
n 〉

+(kn − 1)(diamC)2.
(3.5)

Noting that {αn1} ⊂ [a, b] for some a, b ∈ (0, 1
1+L

), {y(1)
n } and {T n

1 y
(1)
n } are all

bounded and kn → 1(n → ∞), from (3.5), we obtain that

‖xn − T n
1 xn‖ → 0(n → ∞). (3.6)

Since xn → v as n → ∞ and T1 is uniformly Lipschitzian, we have

v = T1v. (3.7)
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Secondly, we show that v = T2v. In fact, xn+1 ∈ C
(2)
n+1, we have

αn2[1 − (1 + L)αn2]‖y(1)
n − T n

2 y(1)
n ‖2

≤ 〈y(1)
n − xn+1, (I − T n

2 )y(2)
n 〉 + (kn − 1)(diamC)2

= (1 − αn1)〈xn − xn+1, (I − T n
2 )y(2)

n 〉 + αn1〈T n
1 xn − xn+1, (I − T n

2 )y(2)
n 〉

+ (kn − 1)(diamC)2

= 〈xn−xn+1, (I −T n
2 )y(2)

n 〉 + αn1〈T n
1 xn−xn, (I −T n

2 )y(2)
n 〉 + (kn−1)(diamC)2.

Since xn+1 − xn → 0, xn − T n
1 xn → 0, kn → 1 as n → ∞, while {(I − T n

2 )y
(2)
n } is

bounded and {αn2} ⊂ [a, b] for some a, b ∈ (0, 1
1+L

), we have

y(1)
n − T n

2 y(1)
n → 0(n → ∞). (3.8)

From y
(1)
n = (1 − αn1)xn + αn1T

n
1 xn, (3.6) and xn → v(n → ∞), we have

y(1)
n → v(n → ∞). (3.9)

From (3.8), (3.9) and uniform Lipschitz continuity of T2, we have

v = T2v. (3.10)

Similarly, we obtain that
v = Tiv, i = 3, · · ·, N. (3.11)

Combining (3.7), (3.10) and (3.11), we have v ∈ F = ⋂N
i=1 F(Ti).

Step 5 Show that v = PF x0.

Noting that v ∈ F ⊂ Cn and xn = PCnx0, by Lemma 2.1, one concludes that

〈z − xn, x0 − xn〉 ≤ 0, ∀z ∈ F,

which follows that
〈z − v, x0 − v〉 ≤ 0, ∀z ∈ F.

By Lemma 2.1, one concludes that v = PF x0.

Theorem 3.2 Suppose that C is a bounded closed convex nonempty subset of H .
Suppose that {Ti}Ni=1 : C → C is a finite family of uniformly Li-Lipschitzian and

quasi-asymptotically pseudocontractive mappings such that F = ⋂N
i=1 F(Ti) is not

empty. Assume the control sequence {αn} is chosen so that {αn} ⊂ [a, b] for some
a, b ∈ (0, 1

1+L
), where L = max{Li : 1 ≤ i ≤ N}. Let a sequence {xn} be

generated by the following manner:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,

C1 = C,

yi
n = (1 − αn)xn + αnT

n
i xn, i = 1, 2, · ··, N,

in = argmax{‖yi
n − xn‖ : i = 1, 2, · ··, N},

Cn+1 = {w ∈ Cn : αn[1 − (1 + L)αn]‖xn − T n
in
xn‖2

≤ 〈xn − w, y
in
n − T n

in
y

in
n 〉 + (kn − 1)(diamC)2},

xn+1 = PCn+1x0, n ≥ 0,

(3.12)
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where kn = max{kn,i : 1 ≤ i ≤ N}, while kn,i are asymptotic sequences for {Ti}Ni=1.
Then, the sequence {xn} generated by (3.12) strongly converges to PF x0.

Proof By Lemma 2.2 and our assumption that F �= ∅, we know that PF x0 is well
defined for every x0 ∈ C. It follows from the constructions of Cn that Cn is closed
and convex, ∀n ≥ 1. We omit the details.

Step 1 Show that F ⊂ Cn for all n ≥ 1.

In fact, F ⊂ C1 = C is obvious. Assume that F ⊂ Cn for some n ≥ 1. For
any q ∈ F ⊂ Cn, from (3.12), using the uniform Li-Lipschitz continuity of Ti and
quasi-asymptotic pseudo-contractiveness of Ti , we obtain that

‖xn − T n
in
xn‖2 = 〈xn − T n

in
xn, xn − T n

in
xn〉

= 1

αn

〈xn − yin
n , xn − T n

in
xn〉

= 1

αn

〈xn − yin
n , (I − T n

in
)xn − (I − T n

in
)yin

n 〉

+ 1

αn

〈xn − yin
n , (I − T n

in
)yin

n 〉

≤ 1

αn

(‖xn − yin
n ‖2 + ‖xn − yin

n ‖ · ‖T n
in
xn − T n

in
yin
n ‖)

+ 1

αn

〈xn − q, yin
n − T n

in
yin
n 〉 + 1

αn

〈q − yin
n , yin

n − T n
in
yin
n 〉

≤ 1 + L

αn

‖xn − yin
n ‖2 + 1

αn

〈xn − q, yin
n − T n

in
yin
n 〉

+ 1

αn

〈q − yin
n , yin

n − q + T n
in
q − T n

in
yin
n 〉

= (1 + L)αn‖xn − T n
in
xn‖2 + 1

αn

〈xn − q, yin
n − T n

in
yin
n 〉

+ 1

αn

[〈q − yin
n , T n

in
q − T n

in
yin
n 〉 − 〈q − yin

n , q − yin
n 〉]

= (1 + L)αn‖xn − T n
in
xn‖2 + 1

αn

〈xn − q, yin
n − T n

in
yin
n 〉

+ 1

αn

(kn − 1)(diamC)2,

which implies that

αn[1 − (1 + L)αn]‖xn − T n
in
xn‖2 ≤ 〈xn − q, yin

n − T n
in
yin
n 〉 + (kn − 1)(diamC)2.

So q ∈ Cn+1 and hence F ⊂ Cn for all n ≥ 1.

Step 2 Show that limn→∞ ‖xn − x0‖ exists.

The proof is similar to the proof of Step 2 in Theorem 3.1 and omitted here.

Step 3 Show that xn → v as n → ∞, v ∈ C.
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The proof is similar to the proof of Step 3 in Theorem 3.1 and omitted here.

Step 4 Show that xn − T n
in
xn → 0 as n → ∞.

It follows from Step 3 that ‖xn+1 − xn‖ → 0 as n → ∞. Since xn+1 ∈ Cn+1, one
has

αn[1− (1 + L)αn]‖xn − T n
in
xn‖2 ≤ 〈xn − xn+1, y

in
n − T n

in
yin
n 〉 + (kn−1)(diamC)2

≤ ‖xn − xn+1‖ · ‖yin
n − T n

in
yin
n ‖

+ (kn − 1)(diamC)2.

Noting that {αn} ⊂ [a, b] for a, b ∈ (0, 1
1+L

), {yin
n } and {T n

in
y

in
n } are all bounded,

we have ‖xn − T n
in
xn‖ → 0 as n → ∞.

Step 5 Show that xn − T n
i xn → 0 as n → ∞, i = 1, 2, · ··, N .

By the definition of y
in
n , we have

αn(xn − T n
in
xn) = xn − yin

n .

Since xn − T n
in
xn → 0 as n → ∞, we have xn − y

in
n → 0 as n → ∞. By the

definition of in, one has

‖xn − yi
n‖ → 0(n → ∞), i = 1, 2, · ··, N.

Using (3.12), one has

‖xn − T n
i xn‖ = 1

αn

‖xn − yi
n‖ → 0(n → ∞), i = 1, 2, · ··, N.

Step 6 Show that xn − Tixn → 0 as n → ∞, i = 1, 2, · ··, N .

Since Ti is uniformly Li-Lipschitzian, i = 1, 2, · ··, N , we have

‖xn+1 − Tixn+1‖ ≤ ‖xn+1 − T n+1
i xn+1‖ + ‖T n+1

i xn+1 − T n+1
i xn‖

+ ‖T n+1
i xn − Tixn+1‖

≤ ‖xn+1 − T n+1
i xn+1‖ + Li‖xn+1 − xn‖ + Li‖T n

i xn − xn+1‖
≤ ‖xn+1 − T n+1

i xn+1‖ + Li‖xn+1 − xn‖ + Li‖T n
i xn − xn‖

+ Li‖xn − xn+1‖
= ‖xn+1 − T n+1

i xn+1‖ + 2Li‖xn+1 − xn‖ + Li‖T n
i xn − xn‖.

In view of Steps 3 and 5, we obtain that xn+1 − Tixn+1 → 0 as n → ∞, i =
1, 2, · ··, N .

Step 7 Show that v = PF x0.
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Since xn → v as n → ∞, xn − Tixn → 0 as n → ∞ and Ti is uniformly Li-
Lipschitzian, i = 1, 2, · ··, N , one has v = Tiv, i = 1, 2, · ··, N . So v ∈ F .
Noting that F ⊂ Cn and xn = PCnx0, by Lemma 2.1, one concludes that

〈z − xn, x0 − xn〉 ≤ 0, ∀z ∈ F.

It follows that

〈z − v, x0 − v〉 ≤ 0, ∀z ∈ F.

By Lemma 2.1, one concludes that v = PF x0.

Next, we give another kind of iterative algorithm for a finite family of quasi-
asymptotically pseudocontractive mappings.

We put I = {1, 2, · ··, N}. For any positive integer n, we write n = (h(n) −
1)N + i(n), where h(n) → ∞ as n → ∞, and i(n) ∈ I , for all n ≥ 1.

Theorem 3.3 Suppose that C is a bounded closed convex nonempty subset of H .
Suppose that {Ti}Ni=1 : C → C is a finite family of uniformly Li-Lipschitzian and

quasi-asymptotically pseudocontractive mappings such that F = ⋂N
i=1 F(Ti) is not

empty. Assume the control sequence {αn} and {βn} are chosen so that {αn}, {βn} ⊂
[a, b] for some a, b ∈ (0, 1

1+L
), where L = max{Li : 1 ≤ i ≤ N}. Let a sequence

{xn} be generated by the following manner:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrarily,

C1 = C,

yn = (1 − αn)xn + αnT
h(n)
i(n) xn,

zn = (1 − βn)xn + βnT
h(n)
i(n) yn,

Cn+1 = {w ∈ Cn : αnβn[1 − (1 + L)αn]‖xn − T
h(n)
i(n) xn‖2

≤ 〈xn − w, xn − zn〉 + 2(kh(n) − 1)(diamC)2},
xn+1 = PCn+1x0, n ≥ 1,

(3.13)

where kh(n) = max{kh(n),i(n) : 1 ≤ i(n) ≤ N}, while kh(n),i(n) are asymp-
totic sequences for {Ti}Ni=1. Then, the sequence {xn} generated by (3.13) strongly
converges to PF x0.

Proof By Lemma 2.2 and our assumption that F �= ∅, we know that PF x0 is well
defined for every x0 ∈ C. It follows from the constructions of Cn that Cn is closed
and convex, ∀n ≥ 1. We omit the details.

Step 1 Show that F ⊂ Cn for all n ≥ 1.

In fact, F ⊂ C1 = C is obvious. Assume that F ⊂ Cn for some
n ≥ 1. For any q ∈ F ⊂ Cn, from (3.13), using the uniform Li-Lipschitz
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continuity of Ti and quasi-asymptotic pseudo-contractiveness of Ti , we obtain
that

‖xn − T
h(n)
i(n) xn‖2

= 〈xn − T
h(n)
i(n) xn, xn − T

h(n)
i(n) xn〉

= 1

αn

〈xn − yn, xn − T
h(n)
i(n) xn〉

= 1

αn

〈xn − yn, (I − T
h(n)
i(n) )xn − (I − T

h(n)
i(n) )yn〉 + 1

αn

〈xn − yn, (I − T
h(n)
i(n) )yn〉

≤ 1 + L

αn

‖xn − yn‖2 + 1

αn

〈xn − q, (I − T
h(n)
i(n) )yn〉 + 1

αn

〈q − yn, (I − T
h(n)
i(n) )yn〉

= 1 + L

αn

· α2
n‖xn − T

h(n)
i(n) xn‖2 + 1

αn

〈xn − q, (I − T
h(n)
i(n) )yn〉

+ 1

αn

〈q − yn, yn − q + T
h(n)
i(n) q − T

h(n)
i(n) yn〉

≤ (1 + L)αn‖xn−T
h(n)
i(n) xn‖2+ 1

αn

〈xn−q, (I −T
h(n)
i(n) )yn〉+ 1

αn

(kh(n)−1)(diamC)2

= (1 + L)αn‖xn − T
h(n)
i(n) xn‖2 + 1

αn

〈xn − q, (1 − αn)xn + αnT
h(n)
i(n) xn

− zn − (1 − βn)xn

βn

〉 + 1

αn

(kh(n) − 1)(diamC)2

= (1 + L)αn‖xn − T
h(n)
i(n) xn‖2 + 1

αn

〈xn − T
h(n)
i(n) xn + T

h(n)
i(n) xn − q,

− αn(xn − T
h(n)
i(n) xn) + 1

βn

(xn − zn)〉 + 1

αn

(kh(n) − 1)(diamC)2

= (1 + L)αn‖xn − T
h(n)
i(n) xn‖2 − ‖xn − T

h(n)
i(n) xn‖2 + 1

αnβn

〈xn − T
h(n)
i(n) xn, xn − zn〉

− 〈T h(n)
i(n) xn − q, xn − T

h(n)
i(n) xn〉 + 1

αnβn

〈T h(n)
i(n) xn − q, xn − zn〉

+ 1

αn

(kh(n) − 1)(diamC)2

= [(1 + L)αn − 1]‖xn − T
h(n)
i(n) xn‖2 + 1

αnβn

〈xn − q, xn − zn〉 + ‖xn − T
h(n)
i(n) xn‖2

+ 〈q − xn, xn − T
h(n)
i(n) xn〉 + kh(n) − 1

αn

(diamC)2

≤ (1 + L)αn‖xn − T
h(n)
i(n) xn‖2 + 1

αnβn

〈xn − q, xn − zn〉

+ (kh(n) − 1)(diamC)2 + kh(n) − 1

αn

(diamC)2,
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from which it turns out that

αnβn[1− (1+ L)αn]‖xn − T
h(n)
i(n) xn‖2 ≤ 〈xn − q, xn − zn〉 + 2(kh(n) − 1)(diamC)2.

So q ∈ Cn+1 and hence F ⊂ Cn for all n ≥ 1.

Step 2 Show that limn→∞ ‖xn − x0‖ exists.

The proof is similar to the proof of Step 2 in Theorem 3.1 and omitted here.

Step 3 Show that xn → v as n → ∞, v ∈ C.

The proof is similar to the proof of Step 3 in Theorem 3.1 and omitted here.

Step 4 Show that xn − T
h(n)
i(n) xn → 0 as n → ∞.

It follows from step 3 that ‖xn − xn+1‖ → 0 as n → ∞. Since xn+1 ∈ Cn+1, one
has

αnβn[1−(1+L)αn]‖xn−T
h(n)
i(n) xn‖2 ≤ 〈xn−xn+1, xn−zn〉+2(kh(n)−1)(diamC)2

≤ ‖xn−xn+1‖ · ‖xn−zn‖
+2(kh(n)−1)(diamC)2.

Noting that {αn}, {βn} ⊂ [a, b] for a, b ∈ (0, 1
1+L

), {xn} and {zn} are all bounded,
kh(n) → 1 as n → ∞, we have xn − T

h(n)
i(n) xn → 0 as n → ∞.

Step 5 Show that xn − Ti(n)xn → 0 as n → ∞.

Since n = (h(n) − 1)N + i(n), we have

n − N = (h(n) − 1 − 1)N + i(n).

On the other hand, since n−N = (h(n−N)−1)N + i(n−N), we have h(n)−1 =
h(n − N) and i(n) = i(n − N). Noting that

‖xn−Ti(n)xn‖ ≤ ‖xn − T
h(n)
i(n) xn‖ + ‖T h(n)

i(n) xn − Ti(n)xn‖
≤ ‖xn − T

h(n)
i(n) xn‖ + L‖T h(n)−1

i(n) xn − xn‖
≤ ‖xn − T

h(n)
i(n) xn‖ + L‖T h(n−N)

i(n) xn − T
h(n−N)
i(n−N) xn−N‖

+ ‖T h(n−N)
i(n−N) xn−N − xn−N‖ + ‖xn−N − xn‖

≤ ‖xn−T
h(n)
i(n) xn‖+(1+L2)‖xn−N −xn‖+‖T h(n−N)

i(n−N) xn−N −xn−N‖,

from which it turns out that xn − Ti(n)xn → 0 as n → ∞ in view of Steps 3 and 4.

Step 6 Show that ∀j ∈ I, xn − Ti(n)+j xn → 0 as n → ∞.
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Observing that

‖xn − Ti(n)+j xn‖ ≤ ‖xn − xn+j‖ + ‖xn+j − Ti(n)+j xn+j‖
+ ‖Ti(n)+j xn+j − Ti(n)+j xn‖

≤ ‖xn − xn+j‖ + ‖xn+j − Ti(n+j)xn+j‖ + L‖xn+j − xn‖
= (1 + L)‖xn+j − xn‖ + ‖xn+j − Ti(n+j)xn+j‖,

by using Steps 3 and 5, we reach the desired conclusion.

Step 7 Show that ∀l ∈ I, xn − Tlxn → 0 as n → ∞.

Indeed, for arbitrary given l ∈ I , we can choose j ∈ I such that j = l−i(n) if l >

i(n) and j = N + l − i(n) if l ≤ i(n). Then, we have l = i(n+ j) = i(n)+ j , for all
n ≥ 1. In view of Step 6, we obtain xn−Tlxn = xn−Ti(n+j)xn = xn−Ti(n)+j xn → 0
as n → ∞.

Step 8 Show that v = PF x0.

Since xn → v as n → ∞, xn − Tlxn → 0 as n → ∞ and Tl is uniformly Ll-
Lipschitzian, l = 1, 2, · ··, N , one has v = Tlv, l = 1, 2, · ··, N . So v ∈ F .
Noting that F ⊂ Cn and xn = PCnx0, by Lemma 2.1, one concludes that

〈z − xn, x0 − xn〉 ≤ 0, ∀z ∈ F.

It follows that

〈z − v, x0 − v〉 ≤ 0, ∀z ∈ F.

By Lemma 2.1, one concludes that v = PF x0.

4 Rate of convergence and numerical experiments

In this section, we provide some numerical examples to show our algorithms are
effective. We also compare the rate of convergence of the algorithms (3.1), (3.12),
and (3.13). In order to compare two fixed point iteration schemes, Rhoades [26]
introduced the following concept in 1976.

Definition 4.1 [26] If {xn}, {zn} are two iteration schemes which converge to the
same fixed point p, we shall say that {xn} is better than {zn} if ‖xn − p‖ ≤ ‖zn − p‖
for all n.

Berinde [27] introduced the following definition, which is slightly different from
definition 4.1.

Definition 4.2 [27] Let {an}∞n=0, {bn}∞n=0 be two sequences of real numbers that
converge to a and b, respectively, and assume that there exists

l = lim
n→∞

|an − a|
|bn − b| .

(a) If l = 0, then it can be said that {an}∞n=0 converges faster to a than {bn}∞n=0 to b.
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(b) If 0 < l < ∞, then it can be said that {an}∞n=0 and {bn}∞n=0 have the same rate
of convergence.

Phuengrattana and Suantai [28] presented numerical examples to compare the con-
vergence speed of Mann, Ishikawa, Noor and SP-iterations by using the definition
4.1.

Motivated by the above results, we present numerical examples to compare the
convergence speed of algorithms (3.1), (3.12), and (3.13) by using the definition 4.1,
the definition 4.2, and other methods.

In our numerical experiments, we consider the case of N = 2. Taking the mapping
T1, T2 : C → R by

T1x = 1

9
x cos x, T2x = 1

8
x sin x, x ∈ C,

where C = [0, 2π ], R denotes the set of real numbers. One has F(T1) = F(T2) =
{0} and T1 and T2 are two uniformly Lipschitzian and quasi-asymptotically pseu-
docontractive mappings. It is easy to see that asymptotic sequences kn,1 ≡ 1 and
kn,2 ≡ 1. Obviously, F(T1) ∩ F(T2) = {0}. For such a family {Ti}2i=1, we have
L1 = 1+2π

9 and L2 = 1+2π
8 ; therefore, L = 1+2π

8 . Iterating algorithms (3.1), (3.12),
and (3.13) to 60 steps, respectively.

For algorithm (3.1), we take αn,1 = 0.1, αn,2 = 0.1 for all n ≥ 0. For algorithm
(3.12), we take αn = 0.1 for all n ≥ 0. For algorithm (3.13), we take αn = 0.1, βn =
0.1 for all n ≥ 0. Choosing x0 ∈ [0, 2π ] arbitrarily, then for 50 different initial
values, one can see all the results are convergent in Figs. 1, 2, and 3.
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Fig. 1 The iterative curves of algorithm (3.1) under different initial value
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Fig. 2 The iterative curves of algorithm (3.12) under different initial value
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Fig. 3 The iterative curves of algorithm (3.13) under different initial value

Numer Algor (2019) 80:1015–1035 1031



Next, we compare algorithms (3.1), (3.12), and (3.13) for the above given exam-
ples. In the numerical results listed in the following tables, I ter. and Sec. denote
the number of iterations and the running time in seconds, respectively. We chose
x0 ∈ [0, 2π ] as initial points. We took ‖xn − 0‖ ≤ ε1 as the stopping criterion and
ε1 = 10−6 in Table 1.We took ‖xn−0‖ ≤ ε2 as the stopping criterion and ε2 = 10−10

in Table 2. We took ‖xn − 0‖ ≤ ε3 as the stopping criterion and ε3 = 10−14 in
Table 3. The algorithms were coded in Matlab 2013 and run on a personal laptop.
For different stopping criteria, the numerical results of the above algorithms (3.1),
(3.12), and (3.13) with the initial points 1, 2, 3, and 6 are shown in Tables 1, 2, and
3, respectively. From Tables 1, 2, and 3, we observe that algorithm (3.1) is the best,
from the points of view of number of iterations and running time.

In Tables 4 and 5, let {xn}∞n=0 be the iterative sequence given by (3.1), {yn}∞n=0 be
the iterative sequence given by (3.12) and {zn}∞n=0 be the iterative sequence given by
(3.13). The comparison of the convergences of algorithms (3.1), (3.12), and (3.13)
to the common fixed point p = 0 is given in Tables 4 and 5, with the initial point
x0 = y0 = z0 = 3.

From Table 4, we see that the algorithm (3.1) converges faster than the algorithms
(3.12) and (3.13) by using the definition 4.1. From Table 5, we see that the algorithm
(3.1) converges faster than the algorithm (3.12) and the algorithm (3.12) converges
faster than the algorithm (3.13) by using the definition 4.2.

Let R
2 be a two-dimensional Euclidean space with the usual inner product

〈v(1), v(2)〉 = v
(1)
1 v

(2)
1 + v

(1)
2 v

(2)
2 for all v(1) = (v

(1)
1 , v

(1)
2 )T , v(2) = (v

(2)
1 , v

(2)
2 )T ∈

R
2, and the norm ‖v‖ =

√

v21 + v22(v = (v1, v2)
T ∈ R

2). He et al. [24] defined a
mapping:

T1 : v = (v1, v2)
T �→ (sin

v1 + v2√
2

, cos
v1 + v2√

2
)T

and showed that T1 is nonexpansive. So T1 is a quasi-asymptotically pseudocontrac-
tive mapping. It is easily to observe that T1 has a fixed point in the unit disk. Define
a mapping T2 : R2 → R

2 as follows:

T2(v) = PKv

for all v ∈ R
2, where K = {v ∈ R

2 : ‖v‖ ≤ 1}. It is well known that T2 is nonexpan-
sive. So T2 is a quasi-asymptotically pseudocontractive mapping. And F(T2) = K .
Thus, we get F(T1) ∩ F(T2) = F(T1) �= ∅.

Table 1 The numerical results
of the three algorithms with
ε1 = 10−6

x0 Algorithm (3.1) Algorithm (3.12) Algorithm (3.13)

Iter. Sec. Iter. Sec. Iter. Sec.

1 71 2.5189 133 17.567 165 10.7554

2 74 6.0655 139 16.022 174 19.747

3 76 8.6421 143 11.618 178 20.586

6 80 10.009 150 24.682 187 20.899
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Table 2 The numerical results
of the three algorithms with
ε1 = 10−10

x0 Algorithm (3.1) Algorithm (3.12) Algorithm (3.13)

Iter. Sec. Iter. Sec. Iter. Sec.

1 117 11.123 220 31.779 275 37.463

2 120 4.6452 227 35.416 283 42.184

3 122 9.3935 231 44.532 287 38.304

6 126 11.187 237 39.732 296 45.05

Table 3 The numerical results
of the three algorithms with
ε1 = 10−14

x0 Algorithm (3.1) Algorithm (3.12) Algorithm (3.13)

Iter. Sec. Iter. Sec. Iter. Sec.

1 163 17.82 308 59.529 384 72.174

2 167 18.511 314 55.687 392 84.653

3 169 23.202 318 59.369 397 85.529

6 172 22.145 325 52.545 405 93.524

Table 4 Comparison of rate of
convergence of the three
algorithms by the def. 4.1

n Algorithm (3.1) Algorithm (3.12) Algorithm (3.13)

xn yn zn

50 0.00013931 0.017295 0.047589
.
.
.

.

.

.
.
.
.

.

.

.

118 1.7819e-10 1.3504e-05 0.00015352

119 1.4595e-10 1.2155e-05 0.0001411

120 1.1955e-10 1.0941e-05 0.00012969

Table 5 Comparison of rate of
convergence of the three
algorithms by the def. 4.2

n
|xn − 0|
|yn − 0|

|xn − 0|
|zn − 0|

|yn − 0|
|zn − 0|

10 0.35047 0.29343 0.83725

30 0.053129 0.029307 0.55161

50 0.0080549 0.0029273 0.36342

100 0.000071979 9.2169e-06 0.12805

120 0.000010053 8.4817e-07 0.084362
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Table 6 Comparison of Algorithm (3.1) with Algorithm (3.12) and (3.13)

x0 Algorithm (3.1) Algorithm (3.12) Algorithm (3.13)

Iter. Sec. Iter. Sec. Iter. Sec.

(0,0) 241 15.628 293 16.730 613 62.524

(2,7) 165 31.346 925 78.258 795 76.139

(-5,2) 535 46.857 1527 108.54 2308 360.45

(-3,-4) 514 62.732 1359 93.849 1037 125.21

Denote by E(x) = ‖x − T1x‖ + ‖x − T2x‖
‖x‖ the relative rate of convergence of

the algorithms since we do not know the exact value of the projection of x0 onto
common fixed points set of T1 and T2. We compare algorithms (3.1), (3.12), and
(3.13). We took αn,1 = 0.1, αn,2 = 0.1 in Algorithm (3.1), αn = 0.1 in Algorithm
(3.12) and αn = 0.1, βn = 0.1 in Algorithm (3.13). We took E(x) < ε as the
stopping criterion and ε = 10−4 unless specified otherwise. We chose different x0 as
initial point. The numerical results are shown in Table 6.

5 Conclusions

Three kinds of hybrid algorithms for a finite family of quasi-asymptotically pseudo-
contractive mappings were proposed in this paper. Their strong convergences have
been proven in Hilbert spaces. We also have given numerical examples to compare
and explain the effectiveness of the introduced algorithms. The results given in this
paper extend the well-known ones existing in the literature.
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