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Abstract In this article, some second-order time discrete schemes covering parame-
ter θ combined with Galerkin finite element (FE) method are proposed and analyzed
for looking for the numerical solution of nonlinear cable equation with time fractional
derivative. At time tk−θ , some second-order θ schemes combined with weighted and
shifted Grünwald difference (WSGD) approximation of fractional derivative are con-
sidered to approximate the time direction, and the Galerkin FE method is used to
discretize the space direction. The stability of second-order θ schemes is derived and
the second-order time convergence rate in L2-norm is proved. Finally, some numer-
ical calculations are implemented to indicate the feasibility and effectiveness for our
schemes.
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1 Introduction

Fractional differential equations (FDEs) have been increasingly concerned by more
and more researchers in scientific and engineering fields. Many important problems
can be solved by considering the corresponding FDEs, which include fractional dif-
fusion problems, fractional wave equations, fractional cable equations, and so forth.
The solutions of FDEs are difficultly solved by some analytic methods, so some
numerical methods based on the features of fractional derivatives and fractional equa-
tions have to be developed. In the literatures, these numerical methods cover FE
methods [1, 3, 6–9, 11–14, 17, 18, 33], finite difference (FD) methods [4, 5], spec-
tral methods [19, 22], finite volume (element) methods [2], discontinuous Galerkin
methods [27, 31], and so forth.

Here, we will develop some Galerkin FE algorithms to solve the nonlinear time
fractional cable equation

⎧
⎪⎨

⎪⎩

∂u

∂t
+ KR

0 Dα
t u(x, t) −R

0 D
β
t �u(x, t) + g(u) = f (x, t), (x, t) ∈ � × J,

u(x, t) = 0, x ∈ ∂�, t ∈ J̄ ,

u(x, 0) = u0(x), x ∈ �̄,

(1)

where � ⊂ Rd, d = 1, 2, and J = (0, T ] are spatial domain and temporal interval
with 0 < T < ∞, respectively. The initial value u0(x) and the source term f (x, t)
are given functions, K is a non-negative constant, and the nonlinear reaction term
g(u) satisfies |g(u)| ≤ C|u| with |g′(u)| ≤ C, where C is a positive constant. And
R
0 D

γ
t w(x, t) is Riemann-Liouville (R-L) fractional-order derivative with order γ ∈

(0, 1) defined by

R
0 D

γ
t w(x, t) = 1

	(1 − γ )

∂

∂t

∫ t

0

w(x, s)
(t − s)γ

ds. (2)

Fractional cable equation, which is a class of vital mathematical model reflecting the
anomalous electro-diffusion in nerve cells, has been theoretically and numerically
discussed by some authors [19, 20, 22–26].

Usually, ones approximate time derivative at integer or fractional points by a lot
of numerical schemes, such as backward Euler method (BEM), second-order Crank-
Nicolson method (CNM), and second-order backward difference method (BDM).
In [19], Lin et al. proposed the FD/spectral approximations, which are formulated
by using spectral approximation in space, L1-formula for time fractional derivative,
and second-order BDM for temporal integer derivative, for solving the cable equa-
tion with time fractional derivative. In [11, 12], Liu et al. developed FE methods
combined with second-order BDM for solving fourth-order nonlinear time fractional
reaction-diffusion problems. Ding and Li [10] proposed a second-order midpoint
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approximation formula for R-L derivative and formulated FD scheme based on CNM
in time for solving time fractional cable equation. Recently, in [30], Gao et al.
proposed some FD schemes for linear time fractional sub-diffusion equations and
discussed the stability and convergence based on certain superconvergence at some
point tn− α

2
. Following the idea in [30], Wang et al. [26] derived the FE approxima-

tions combined with second-order discrete scheme at time tn− α
2
for solving nonlinear

time fractional cable equation. Based on Alikhanov’s work [29], Sun et al. [28] pro-
posed some temporal second-order FD schemes for fractional wave equations, which
rely on the fractional parameters.

Besides, Tian et al. [15] proposed the WSGD formula for approximating R-L
space fractional derivatives. Compared with the L1-approximation, the WSGD for-
mula can get the second-order convergence rate, which is not affected by the changed
fractional parameters. Following this idea, Wang and Vong [16] applied the WSGD
formula to approximating the Caputo fractional derivative in time and formulated
FD scheme to solve the modified time fractional sub-diffusion equation and time
fractional diffusion-wave equation. Ji and Sun [32] used a FD scheme with WSGD
formula to solve a linear fractional diffusion equation. In [21], Liu et al. studied a
two-grid FE method combined WSGD approximation for a two-dimensional time
fractional cable equation and made some comparisons in computational time. In
[31], Liu et al. proposed a local discontinuous Galerkin (LDG) method with WSGD
approximation for linear time fractional sub-diffusion equation. In [27], Du et al.
combined with WSGD formula with LDG method for solving fourth-order nonlinear
time FDE.

In this paper, motivated by the works in [26, 28–30], some second-order θ schemes
combined with FE methods and WSGD approximation are proposed. For solv-
ing nonlinear time fractional cable equation, we propose some new second-order θ

schemes, in which we approximate the temporal integer derivative ∂u
∂t

at any point

tn−θ

(
∀θ ∈

[
0, 1

2

])
by some new second-order θ formulas, discretize the time frac-

tional derivatives by second-order WSGD formula proposed by Tian et al. [15], and
give some new second-order approximate formulas for nonlinear term. Compared to
these discrete schemes [26, 28, 30], our methods can get the approximate result at

any tn−θ

(
∀θ ∈

[
0, 1

2

])
. Moreover, our methods can cover second-order CNM with

θ = 1
2 and second-order BDM with θ = 0.

Throughout this article, we will denote C > 0 as a constant, which is independent
of the time step length �t and space mesh parameter h. The layout of the paper is
as follows. In Section 2, we show some lemmas and do some analysis of stability for
fully discrete scheme. In Section 3, we give some detailed error analysis in L2-norm.
In Section 4, we provide some numerical results to confirm the theoretical analysis.
In Section 5, we give some conclusions.

2 Numerical approximation and stability

For obtaining fully discrete scheme, we insert the nodes tn = n�t(n =
0, 1, 2, · · · , N) in the time interval [0, T ], where tn satisfies 0 = t0 < t1 < t2 <
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· · · < tN = T with mesh length �t = T/N for some positive integer N . We now
define φn = φ(tn) for a smooth function φ on [0, T ].

To do the next study, we need to consider some lemmas on integer and fractional
derivatives in time.

Lemma 1 With v(t) ∈ C3[0, T ], at time tn−θ , the following second-order result for

approximating first-order derivative for any θ ∈
[
0, 1

2

]
holds

∂v

∂t
(tn−θ ) =

{
∂t [vn−θ ] + O(�t2), n ≥ 2;
v1−v0

�t
+ O(�t), n = 1

(3)

where

∂t

[
vn−θ

]
� (3 − 2θ)vn − (4 − 4θ)vn−1 + (1 − 2θ)vn−2

2�t
.

Lemma 2 With v(t) ∈ C2[0, T ], at time tn−θ , two important approximate formulas

f (tn−θ ) = (1 − θ)f n + θf n−1 + O(�t2)

� f n−θ + O(�t2) (4)

and

g(v(tn−θ )) = (2 − θ)g(vn−1) − (1 − θ)g(vn−2) + O(�t2)

� g[vn−θ ] + O(�t2) (5)

hold for any θ ∈
[
0, 1

2

]
.

Proof At time tn−θ , we use the Taylor formula for f (tn) and f (tn−1) to easily get

f n−θ = (1 − θ)f n + θf n−1 + O(�t2) (6)

and

g(v(tn−θ )) = (1 − θ)g(vn) + θg(vn−1) + O(�t2). (7)

By using Taylor’s formula for g(vn−1) and g(vn−2) at time tn, we easily get

g(vn) = 2g(vn−1) − g(vn−2) + O(�t2). (8)

Substitute (8) into (7) to get (5).

Lemma 3 From [5], we easily find that the following first-order approximate scheme
holds, for Riemann-Liouville fractional derivative with parameter γ ∈ (0, 1)

R
0 D

γ
t v(tn) = �t−γ

n∑

l=0

w
γ

l vk−l + O(�t), (9)
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where w
γ

0 = 1, wγ

l = (−1)l
(

γ

l

)

= 	(l−γ )
	(−γ )	(l+1) , l ≥ 1. And it is easy to know that

series w
γ

l satisfy

w
γ

l < 0, wγ

l =
(

1 − γ + 1

l

)

w
γ

l−1, (l = 1, 2 · · · ),
∞∑

l=1

w
γ

l = −1. (10)

Lemma 4 Let v̄(t), Liouville fractional derivative −∞D
γ+2
t v̄(t), and the Fourier

transform ˆ̄v belong to L1(R). According to [15], ones can arrive at

−∞D
γ
t v̄(t) = �t−γ

∞∑

i=0

w
γ

i

[
γ − 2q

2(p − q)
v̄(t − (i − p)�t)

+ 2p − γ

2(p − q)
v̄(t − (i − q)�t)

]

+ O(�t2). (11)

Further, by taking v̄(t) =
{

v(t), t ∈ [0, T ],
0, t ∈ (−∞, 0).

and (p, q) = (0, −1), the following

approximate formula with second-order accuracy at time t = tn holds for 0 < γ < 1

R
0 D

γ
t v(tn) = �t−γ

n∑

i=0

Aγ (i)vn−i + O(�t2)

� In
γ [vn] + O(�t2), (12)

with

Aγ (i) =
{

γ+2
2 w

γ

0 , when i = 0,
γ+2
2 w

γ

i + −γ
2 w

γ

i−1, when i > 0,
(13)

where series w
γ

i are defined in Lemma 3.

Lemma 5 (See [16]) Let {Aγ (i)} be defined as in (13). Then for any positive integer
L and real vector (v0, v1, · · · , vL) ∈ RL+1, it holds that

L∑

n=0

n∑

i=0

Aγ (i)
(
vn−i , vn

)
≥ 0. (14)

We now use the approximate formulas at time tk−θ based on Lemmas 1–4 to get
semi-discrete formulation in the time direction

Case n = 1:
(

u1 − u0

�t
, v

)

+ K
(
(1 − θ)I 1α

[
u1

]
+ θI 0α

[
u0

]
, v

)

+
(
(1 − θ)I 1β

[
∇u1

]
+ θI 0β

[
∇u0

]
, ∇v

)
+ (g(u0), v)

= (f 1−θ , v) +
(

4∑

k=0

E1−θ
k , v

)

, ∀v ∈ H 1
0 , (15)

Numer Algor (2019) 80:533–555 537 



Case n ≥ 2:

(
∂t [un−θ ], v) + K

(
(1 − θ)In

α

[
un

] + θIn−1
α

[
un−1

]
, v

)

+
(
(1 − θ)In

β

[∇un
] + θIn−1

β

[
∇un−1

]
, ∇v

)
+ (g

[
un−θ

]
, v)

= (f n−θ , v) +
(

4∑

k=0

En−θ
k , v

)

, ∀v ∈ H 1
0 , (16)

where

E1−θ
0 = ∂t

[
v1

]
− ut (t1−θ ) = O(�t),

En−θ
1 = KR

0 Dα
t u(tn−θ ) − KIn−θ

α

[
un−θ

] = O(�t2),

En−θ
2 =R

0 D
β
t �u(tn−θ ) − In−θ

β

[
�un−θ

] = O(�t2),

E1−θ
3 = g(u0) − g(u1−θ ) = O(�t), E1−θ

4 = f 1 − f 1−θ = O(�t),

En−θ
0 = ∂t

[
vn−θ

] − ∂u

∂t
(tn−θ ) = O(�t2),

En−θ
3 = g

[
un−θ

] − g(u(tn−θ )) = O(�t2), En−θ
4 = f n−θ − f (tn−θ ) = O(�t2),

In−θ
γ

[
un−θ

]
� (1 − θ)In

γ

[
un

] + θIn−1
γ

[
un−1

]
. (17)

Based on the time semi-discrete scheme, we get the following fully discrete scheme
by choosing finite element space Vh ⊂ H 1

0 .
Case n = 1:

(
u1h − u0h

�t
, vh

)

+ K
(
(1 − θ)I 1α [u1h] + θI 0α [u0h], vh

)

+
(
(1−θ)I 1β [∇u1h]+θI 0β [∇u0h], ∇vh

)
+(g(u0h), vh)= (f 1−θ , vh), ∀vh ∈ Vh.

(18)

Case n ≥ 2:

(
∂t [un−θ

h ], vh

)
+ K

(
(1 − θ)In

α [un
h] + θIn−1

α [un−1
h ], vh

)
+

(
(1 − θ)In

β [∇un
h]

+ θIn−1
β [∇un−1

h ], ∇vh

)
+ (g[un−θ

h ], vh) = (f n−θ , vh), ∀vh ∈ Vh. (19)

Remark 1 In [26, 30], the finite element scheme and finite difference system are
proposed at time tn− α

2
, where α ∈ (0, 1) is the parameter of time fractional derivative,

that is to say that the time discrete schemes in [26, 30] must be formulated at time
tn− α

2
and were related to time fractional parameter α. In our paper, the scheme (19)

is proposed at time tn−θ , where θ ∈ [0, 1/2] is an arbitrary constant independent of
time fractional parameter α.
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Remark 2 (I) When taking θ = 0, the scheme (19) is reduced to second-order
backward difference/finite element scheme
(
3un

h−4un−1
h +un−2

h

2�t
, vh

)

+ K
(
In
α [un

h], vh

) +
(
In
β [∇un

h], ∇vh

)

+ (2g(un−1
h )−g(un−2

h ), vh)=(f n, vh),∀vh ∈ Vh.

(20)

(II) When taking θ = 1/2, the scheme (19) is reduced to Crank-Nicolson finite
difference/finite element scheme
(
un

h−un−1
h

�t
, vh

)

+ K
2

(
In
α [un

h] + In−1
α [un−1

h ], vh

)

+ 1

2

(
In
β [∇un

h] + In−1
β [∇un−1

h ], ∇vh

)

+
(
3

2
g(un−1

h )− 1

2
g(un−2

h ), vh

)

=
(
f n+f n−1

2
, vh

)

, ∀vh ∈ Vh.

(21)

For analyzing the stability and error estimates, we need to consider the following
lemma.

Lemma 6 For series {χn} (n ≥ 2), the following inequality holds

(
∂t [χn−θ ], χn−θ

) ≥ 1

4�t
(H[χn] − H[χn−1]), (22)

H[χn] = (3−2θ)‖χn‖2− (1−2θ)‖χn−1‖2+ (2−θ)(1−2θ)‖χn − χn−1‖2, (23)

and

H[χn] ≥ 1

1 − θ
‖χn‖2, (24)

where 0 ≤ θ ≤ 1/2.

Proof We make use of a similar proof to the one in [28] to get the conclusion of
Lemma 6.

In what follows, we consider the following stable inequality.

Theorem 7 For un
h ∈ Vh, the stability for fully discrete systems (17)–(19) holds

‖un
h‖2 ≤ C(‖u0h‖2 + max

0≤i≤n
‖f i‖2). (25)
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Proof For the case n ≥ 2, we choose vh = un−θ
h = (1 − θ)un

h + θun−1
h in (19) and

use Lemma 6 to arrive at

1

4�t
(H[un

h] − H[un−1
h ]) + K

(
(1 − θ)In

α [un
h] + θIn−1

α [un−1
h ], un−θ

h

)

+
(
(1 − θ)In

β [∇un
h] + θIn−1

β [∇un−1
h ], ∇un−θ

h

)

+ (g[un−θ
h ], un−θ

h ) ≤ (f n−θ , un−θ
h ). (26)

Sum (26) from n = 2 to L and use inequality (24) to get

H(uL
h ) + 4K�t

L∑

n=2

(
(1 − θ)In

α [un
h] + θIn−1

α [un−1
h ], un−θ

h

)

+ 4�t

L∑

n=2

(
(1 − θ)In

β [∇un
h] + θIn−1

β [∇un−1
h ], ∇un−θ

h

)

≤ H(u1h) + 4�t

L∑

n=2

(f n−θ , un−θ
h ) − 4�t

L∑

n=2

(g[un−θ
h ], un−θ

h ). (27)

For the next proof, we now consider the second term on the left hand side of (27).
Now, we use some notations to get

4K�t

L∑

n=2

(
(1 − θ)In

α [un
h] + θIn−1

α [un−1
h ], un−θ

h

)

= 4K�t1−α
L∑

n=2

(

(1 − θ)

n∑

i=0

Aα(i)un−i
h + θ

n−1∑

i=0

Aα(i)un−1−i
h , un−θ

h

)

= 4K�t1−α
L∑

n=2

(
n∑

i=0

Aα(i)[(1 − θ)un−i
h + θun−1−i

h ], un−θ
h

)

= 4K�t1−α
L∑

n=2

n∑

i=0

Aα(i)
(
un−θ−i

h , un−θ
h

)
. (28)

By the similar derivation to (28), we have

4�t

L∑

n=2

(
(1 − θ)In

β [∇un
h] + θIn−1

β [∇un−1
h ], ∇un−θ

h

)

= 4�t1−β
L∑

n=2

n∑

i=0

Aβ(i)
(
∇un−θ−i

h , ∇un−θ
h

)
. (29)
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We now handle the three terms on the right hand side of (27). We use Cauchy-
Schwarz inequality and Young inequality to arrive at

H[u1h] + 4�t

L∑

n=2

(f n−θ , un−θ
h ) − 4�t

L∑

n=2

(g[un−θ
h ], un−θ

h )

≤ H[u1h] + 2�t

L∑

n=2

(‖f n−θ‖2 + ‖un−θ
h ‖2) + 2�t

L∑

n=2

(‖g[un−θ
h ]‖2 + ‖un−θ

h ‖2)

≤ H[u1h] + C�t

L∑

n=1

‖f n‖2 + C�t

L∑

n=0

‖un
h‖2. (30)

Substitute (28)–(30) into (27) to get

H[uL
h ] + 4K�t1−α

L∑

n=2

n∑

i=0

Aα(i)
(
un−θ−i

h , un−θ
h

)

+ 4�t1−β

L∑

n=2

n∑

i=0

Aβ(i)
(
∇un−θ−i

h , ∇un−θ
h

)

≤ H[u1h] + C�t

L∑

n=1

‖f n‖2 + C�t

L∑

n=0

‖un
h‖2. (31)

In what follows, we need to consider the case n = 1. We now set vh = (1−θ)u1h+
θu0h in (17) and note that

(
u1h − u0h

�t
, (1 − θ)u1h + θu0h

)

= ‖u1h‖2 − ‖u0h‖2
2�t

+ 1 − 2θ

2�t
‖u1h − u0h‖2 (32)

to arrive at

‖u1h‖2 − ‖u0h‖2
2�t

+ 1 − 2θ

2�t
‖u1h − u0h‖2+K�t−α

1∑

i=0

Aα(i)
(
u1−θ−i

h , u1−θ
h

)

+ �t−β
1∑

i=0

Aβ(i)
(
∇u1−θ−i

h ,∇u1−θ
h

)
+(g(u0h), u

1−θ
h )= (f 1−θ , u1−θ

h ). (33)
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Noting that 1− 2θ ≥ 0, multiplying (34) by 2�t and using Cauchy-Schwarz inequa-
lity with Young inequality, we arrive at

‖u1h‖2 + 2K�t1−α

1∑

i=0

Aα(i)
(
u1−θ−i

h , u1−θ
h

)

+ 2�t1−β

1∑

i=0

Aβ(i)
(
∇u1−θ−i

h , ∇u1−θ
h

)

= ‖u0h‖2 + 2�t(g(u0h), u
1−θ
h ) + 2�t(f 1−θ , u1−θ

h )

≤ C‖u0h‖2 + 2�t‖u1h‖2 + C�t(‖f 0‖2 + ‖f 1‖2). (34)

Simplifying (34), we arrive at

‖u1h‖2 ≤ −2K�t1−α
1∑

i=0

Aα(i)
(
u1−θ−i

h , u1−θ
h

)

− 2�t1−β
1∑

i=0

Aβ(i)
(
∇u1−θ−i

h , ∇u1−θ
h

)

+ C‖u0h‖2 + C�t(‖f 0‖2 + ‖f 1‖2). (35)

So, we have

H[u1h] = (3 − 2θ)‖u1h‖2 − (1 − 2θ)‖u0h‖
2 + (θ − 2)(2θ − 1)‖u1h − u0h‖

2

≤ −2K�t1−α

1∑

i=0

Aα(i)
(
u1−θ−i

h , u1−θ
h

)
−2�t1−β

1∑

i=0

Aβ(i)
(
∇u1−θ−i

h ,∇u1−θ
h

)

+ C‖u0h‖2 + C�t(‖f 0‖2 + ‖f 1‖2), (36)

Substitute (36) into (31) and use (24) to get

‖uL
h ‖2 + 4K�t1−α

L∑

n=1

n∑

i=0

Aα(i)
(
un−θ−i

h , un−θ
h

)

+ 4�t1−β
L∑

n=1

n∑

i=0

Aβ(i)
(
∇un−θ−i

h , ∇un−θ
h

)

≤ C‖u0h‖2 + C�t

L∑

n=0

‖f n‖2 + C�t

L∑

n=0

‖un
h‖2. (37)

Making use of Lemma l and the discrete Gronwall inequality for sufficiently small
�t , we get

‖uL
h ‖2 ≤ C‖u0h‖

2 + C�t

L∑

n=0

‖f n‖2, (38)

which shows the conclusion of Theorem 7.
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3 A priori error analysis

For considering a priori error estimates for finite element method, we need to give
the projection operator and the estimate inequality.

Lemma 8 Define a Ritz projection operator Sh : H 1
0 (�) → Vh satisfying

(∇(z − Shz), ∇zh) = 0, ∀zh ∈ Vh, (39)

with the estimate inequality

‖z − Shz‖ + h‖z − Shz‖1 ≤ Chm+1‖z‖m+1, ∀z ∈ H 1
0 (�) ∩ Hm+1(�), (40)

where the norms are defined by ‖z‖l =
√∑

0≤|r|≤l

∫

�
| Drz |2.

For the convenience of error analysis in the following derivations, we now write

u(tn) − un
h = (u(tn) − Shu

n) + (Shu
n − un

h) = ηn + ξn.

The error equation is as follows:
Case n = 1:

(
ξ1 − ξ0

�t
, vh

)

+ K
(
(1 − θ)I 1α [ξ1] + θI 0α [ξ0], vh

)

+
(
(1 − θ)I 1β [∇ξ1] + θI 0β [∇ξ0],∇vh

)

=
(
η1 − η0

�t
, vh

)

−(g(u0) − g(u0h), vh)−K
(
(1 − θ)I 1α [η1] + θI 0α [η0], vh

)

+
(

4∑

k=0

E1−θ
k , vh

)

,∀vh ∈ Vh. (41)

Case n ≥ 2:
(
∂t [ξn−θ ], vh

) +K
(
(1 − θ)In

α [ξn] + θIn−1
α [ξn−1], vh

)

+
(
(1 − θ)In

β [∇ξn] + θIn−1
β [∇ξn−1], ∇vh

)

=− (
∂t [ηn−θ ], vh

)−(g[un−θ ]−g[un−θ
h ], vh)−K

(
(1−θ)In

α [ηn]

+ θIn−1
α [ηn−1], vh

)
+

(
4∑

k=0

En−θ
k , vh

)

, ∀vh ∈ Vh. (42)

In what follows, we will give the detailed proof of error estimates in L2-norm.

Theorem 9 Let u(tn) be the solution of systems (15)–(16) and un
h be the solution of

systems (17)–(19), respectively. For the sufficiently smooth solution u(t) ∈ C3[0, T ]
with u0h = Shu0, there exists a constant C independent of space-time mesh pair
(h, �t) such that

‖u(tn) − un
h‖ ≤ C[�t2 + hm+1]. (43)
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Proof Take vh = ξn−θ = (1 − θ)ξn + θξn−1 in (42), sum n from 2 to L and use
(22)–(23) to arrive at

H[ξL] − H[ξ1]
4�t

+ K
L∑

n=2

(
(1 − θ)In

α [ξn] + θIn−1
α [ξn−1], ξn−θ

)

+
L∑

n=2

(
(1 − θ)In

β [∇ξn] + θIn−1
β [∇ξn−1], ∇ξn−θ

)

≤ −
L∑

n=2

(
∂t [ηn−θ ], ξn−θ

) −
L∑

n=2

(g[un−θ ] − g[un−θ
h ], ξn−θ )

− K
L∑

n=2

(
(1 − θ)In

α [ηn] + θIn−1
α [ηn−1], ξn−θ

)
+

L∑

n=2

(
4∑

k=0

En−θ
k , ξn−θ

)

.(44)

Now, we estimate every term on the right-hand side of (44). We use Cauchy-Schwarz
inequality as well as Young inequality to get

−
L∑

n=2

(
∂t [ηn−θ ], ξn−θ

) ≤
L∑

n=2

‖∂t [ηn−θ ]‖‖ξn−θ‖

≤ (3 − 2θ)

�t

∫ tL

t0

‖ηt‖2ds + 1

2

L∑

n=2

‖(1 − θ)ξn + θξn−1‖2

≤ (3 − 2θ)

�t

∫ tL

t0

‖ηt‖2ds +
L∑

n=1

‖ξn‖2. (45)

Use the triangle inequality, Cauchy-Schwarz inequality, and Young inequality to get

−
L∑

n=2

(g[un−θ ] − g[un−θ
h ], ξn−θ )

≤
L∑

n=2

‖(2 − θ)[g(un−1) − g(un−1
h )] − (1 − θ)[g(un−2) − g(un−2

h )]‖‖ξn−θ‖

≤
L∑

n=2

(‖(2−θ)g′(uμ1)(ηn−1+ξn−1)‖+‖(1−θ)g′(uμ2)(ηn−2 + ξn−2)‖)‖ξn−θ‖

≤ C

L∑

n=0

(‖ηn‖2 + ‖ξn‖2). (46)
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Using Cauchy-Schwarz inequality, Young inequality, and Lemma 8 with the similar
technique in [23], we arrive at

−K
L∑

n=2

(
(1 − θ)In

α [ηn] + θIn−1
α [ηn−1], ξn−θ

)

= K�t−α
L∑

n=2

(

(1 − θ)

n∑

i=0

Aα(i)ηn−i + θ

n−1∑

i=0

Aα(i)ηn−1−i , ξn−θ

)

≤ K
L∑

n=2

(

(1 − θ)‖�t−α

n∑

i=0

Aα(i)ηn−i‖‖ξn−θ‖ + θ‖�t−α

n−1∑

i=0

Aα(i)ηn−1−i‖‖ξn−θ‖
)

= K
L∑

n=2

(
(1 − θ)‖R

0 Dα
tn
η + O(�t2)‖‖ξn−θ‖ + θ‖R

0 Dα
tn−1

η + O(�t2)‖‖ξn−θ‖
)

≤ CK(hm+1 + �t2)

L∑

n=1

‖ξn‖ ≤ C

L∑

n=1

(h2m+2 + �t4) + 1

2

L∑

n=1

‖ξn‖2. (47)

Make use of Cauchy-Schwarz inequality and Young inequality to arrive at

L∑

n=2

(
4∑

k=0

En−θ
k , ξn−θ

)

≤ C

L∑

n=2

(�t4 + ‖ξn‖2). (48)

Substitute (45)–(48) to (44) to get

H[ξL] − H[ξ1]
4�t

+ K
L∑

n=2

(
(1 − θ)In

α [ξn] + θIn−1
α [ξn−1], ξn−θ

)

+
L∑

n=2

(
(1 − θ)In

β [∇ξn] + θIn−1
β [∇ξn−1], ∇ξn−θ

)

≤ (3 − 2θ)

�t

∫ tL

t0

‖ηt‖2ds + C

L∑

n=0

(‖ηn‖2 + ‖ξn‖2) + C

L∑

n=1

(h2m+2 + �t4).(49)

Multiply (49) by 4�t to get

H[ξL] + K
L∑

n=2

(
(1 − θ)In

α [ξn] + θIn−1
α [ξn−1], ξn−θ

)

+
L∑

n=2

(
(1 − θ)In

β [∇ξn] + θIn−1
β [∇ξn−1], ∇ξn−θ

)

≤ H[ξ1] + (12 − 8θ)

∫ tL

t0

‖ηt‖2ds + C�t

L∑

n=0

(‖ηn‖2 + ‖ξn‖2)

+ C�t

L∑

n=1

(h2m+2 + �t4). (50)
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Taking vh = ξ1−θ = (1 − θ)ξ1 + θξ0 in (41) and noting that the formula (32), we
have

‖ξ1‖2 − ‖ξ0‖2
2�t

+ K
(
(1 − θ)I 1α [ξ1] + θI 0α [ξ0], ξ1−θ

)

+
(
(1 − θ)I 1β [∇ξ1] + θI 0β [∇ξ0], ∇ξ1−θ

)

≤
(

η1 − η0

�t
, ξ1−θ

)

− (g(u0) − g(u0h), ξ
1−θ )

− K
(
(1 − θ)I 1α [η1] + θI 0α [η0], ξ1−θ

)
+

(
4∑

k=0

E1−θ
k , ξ1−θ

)

.(51)

Multiply (51) by 2�t and use Cauchy-Schwarz inequality and Young inequality to
get

‖ξ1‖2 + 2�tK
(
(1 − θ)I 1α [ξ1] + θI 0α [ξ0], ξ1−θ

)

+ 2�t
(
(1 − θ)I 1β [∇ξ1] + θI 0β [∇ξ0], ∇ξ1−θ

)

≤ ‖ξ0‖2 + 2�t

(
η1 − η0

�t
, ξ1−θ

)

− 2�t(g(u0) − g(u0h), ξ
1−θ )

− 2�tK
(
(1 − θ)I 1α [η1] + θI 0α [η0], ξ1−θ

)
+ 2�t

(
4∑

k=0

E1−θ
k , ξ1−θ

)

≤ Ch2m+2 +
(
1

2
+ C�t

)

‖ξ1‖2 + C(�t4 + �t6). (52)

Combine (50) with (52) and use (40) to get

H[ξL] + 4K�t1−α
L∑

n=1

n∑

i=0

Aα(i)
(
ξn−θ−i , ξn−θ

)

+ 4�t1−β
L∑

n=1

n∑

i=0

Aβ(i)
(
∇ξn−θ−i , ∇ξn−θ

)

≤ C(h2m+2 + �t4 + �t

L∑

n=0

‖ξn‖2). (53)

Note that inequality (24) and use Gronwall lemma and Lemma 5 to get

‖ξL‖2 ≤ C(h2m+2 + �t4). (54)

Combine (53) with (40), and use triangle inequality to get the conclusion of theorem.

Remark 3 In [21], from the conclusion, ones can see that there is the term�t−αhm+1,
which results in the conditional convergence results in error theory. In this paper, we
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have dropped the influences of the term �t−α and obtained the unconditional error
results.

4 Some numerical results

In this section, we choose some numerical examples to verify the spatial conver-
gence rate and temporal convergence rate, respectively. In Sections 4.1 and 4.2, to
test the convergence rate with order 2, we choose two-dimensional example and
one-dimensional examples, respectively.

4.1 Two-dimensional example

Firstly, we need to verify the spatial convergence order by a numerical example.

Example 4.1.1 In (1), we take K = 1, g(u) = u3 − u, the spatial domain [0, 1] ×
[0, 1], the temporal interval [0, 1], and the exact solution

u(x, t) = t2 sin(2πx) sin(2πy), x = (x, y), (55)

then get the source term

f (x, t) =
[

2t − t2 + 2t2−α

	(3 − α)
+ 16π2 t2−β

	(3 − β)

]

sin(2πx) sin(2πy)

+t6 sin3(2πx) sin3(2πy).

Now, we choose the continuous bilinear function space Vh with Q(x, y) =
a0 + a1x + a2y + a3xy. In Table 1, for the given parameters θ = 0, 0.1, 0.3, 0.5,
we choose the fixed time step τ = 1/100 and changed space mesh parameters
h = 1/20, 1/30, 1/40, then arrive at the errors and convergence rates with parameter
pair (α, β) = (0.01, 0.99), (0.5, 0.5), and (0.99, 0.01), respectively. From the rate of
convergence computed in Table 1, we can find that the approximate order is close to
2, which is in agreement with the theoretical results in space.

4.2 One-dimensional examples

Further, for the sake of testing the rate of convergence in time direction and check-
ing the influence of the parameters for the errors, we provide some one-dimensional
examples. Here, for implementing the numerical computation, we take FE space cov-
ering piece linear basis functions. In (1), by choosing the parameter K = 1, the
nonlinear term g(u) = u2, and the exact solution u(x, t) = tλ sin(πx), ∀(x, t) ∈
[0, L] × [0, T ], we obtain the known function

f (x, t) =
[

λtλ−1 + 	(λ + 1)

	(λ + 1 − α)
tλ−α + π2 	(λ + 1)

	(λ + 1 − β)
tλ−β

]

sin(πx)

+ t2λ sin2(πx), ∀(x, t) ∈ [0, L] × [0, T ].
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Table 1 The spatial L2-errors with �t = 1/100

(α, β) (0.01, 0.99) (0.5, 0.5) (0.99, 0.01)

h ‖u − uh‖ Rate ‖u − uh‖ Rate ‖u − uh‖ Rate

θ = 0 1/20 4.1596e-003 − 4.2983e-003 − 4.4810e-003 −
1/30 1.8706e-003 1.9710 1.9404e-003 1.9615 2.0184e-003 1.9669

1/40 1.0573e-003 1.9832 1.1026e-003 1.9648 1.1433e-003 1.9757

θ = 0.1 1/20 4.1619e-003 − 4.2981e-003 − 4.4803e-003 −
1/30 1.8729e-003 1.9693 1.9402e-003 1.9617 2.0177e-003 1.9674

1/40 1.0596e-003 1.9800 1.1024e-003 1.9651 1.1426e-003 1.9767

θ = 0.3 1/20 4.1665e-003 − 4.2977e-003 − 4.4789e-003 −
1/30 1.8774e-003 1.9661 1.9398e-003 1.9620 2.0162e-003 1.9685

1/40 1.0641e-003 1.9736 1.1019e-003 1.9657 1.1411e-003 1.9787

θ = 0.5 1/20 4.1727e-003 − 4.2973e-003 − 4.4774e-003 −
1/30 1.8836e-003 1.9617 1.9393e-003 1.9623 2.0147e-003 1.9102

1/40 1.0702e-003 1.9650 1.1015e-003 1.9663 1.1396e-003 1.9808

Example 4.2.1 By taking L = 4, T = 1, and λ = 2.5, the exact solution is u(x, t) =
t2.5 sin(πx), (x, t) ∈ [0, 4]×[0, 1]. In Table 2, we compute the errors inL2-norm and
convergence rate in time with different parameters α, β, θ and changed time mesh
parameters �t = 1/20, 1/40, 1/80 and the fixed parameter h = 1/100. From these
computed results in Table 2, it is easy to see that with the fixed parameter θ , we get
the second-order time convergence rate with changed fractional parameters (α, β) =
(0.01, 0.01), (0.5, 0.5), and (0.99, 0.99), which show that the WSGD approximation

Table 2 The temporal L2-errors with h = 1/100

(α, β) (0.01, 0.01) (0.5, 0.5) (0.99, 0.99)

�t ‖u − uh‖ Rate ‖u − uh‖ Rate ‖u − uh‖ Rate

θ = 0 1/20 7.2901E-03 − 5.4710E-03 − 5.3071E-03

1/40 2.0121E-03 1.8572 1.5048E-03 1.8622 1.4021E-03 1.9203

1/80 5.3798E-04 1.9031 4.0754E-04 1.8845 3.7426E-04 1.9055

θ = 0.1 1/20 6.6843E-03 − 5.0349E-03 − 5.0931E-03

1/40 1.8298E-03 1.8691 1.3737E-03 1.8739 1.3369E-03 1.9297

1/80 4.8806E-04 1.9065 3.7196E-04 1.8849 3.5637E-04 1.9074

θ = 0.3 1/20 5.4016E-03 − 4.1258E-03 − 4.6767E-03

1/40 1.4544E-03 1.8930 1.1081E-03 1.8965 1.2138E-03 1.9460

1/80 3.8684E-04 1.9106 3.0109E-04 1.8799 3.2310E-04 1.9094

θ = 0.5 1/20 4.0169E-03 − 3.1819E-03 − 4.2931E-03

1/40 1.0644E-03 1.9160 8.4282E-04 1.9166 1.1061E-03 1.9565

1/80 2.8381E-04 1.9071 2.3208E-04 1.8606 2.9454E-04 1.9090
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has second-order accuracy in time, which is not impacted by the parameters (α, β).
At the same time, for given fixed parameters (α, β), we also arrive at the second-order
approximation in time, which show the θ schemes also have stable time second-order
convergence rate which keeps the same results to our theory.

For checking the influence of parameters α and β, we give the contour plots of

u − uh with the fixed θ = 0.3, space-time mesh length (h, �t) =
(

1
100 ,

1
40

)
in

Figs. 1, 2, 3, and 4. By the comparison between Figs. 1 and 2, ones can see that when
the smaller parameter α = 0.01 with changed parameter β = 0.01, 0.09 is taken,
the contour plots of u − uh has the larger changes. Similarly, from the comparison
between Figs. 1 and 3, ones can also see the similar results. From Figs. 2 and 4, ones
can find that for the chosen bigger parameter β = 0.99, the contour plots of u − uh

are greatly affected. However, for the fixed bigger α = 0.99, the values of u − uh

have the smaller changes for changed parameters β = 0.01, 0.99 in Figs. 3 and 4.

Example 4.2.2 By choosing L = 2, T = 1, and λ = 2, the fixed spatial mesh
h = 1/200, and the changing time step �t = 1/20, 1/40, 1/80, we get the errors in
L2-norm and time convergence rate, which is close to 2. From the computed results
in Table 3, ones can see that with the changed fractional parameter pairs (α, β) =
(0.01, 0.01), (0.5, 0.5), (0.99, 0.99) and different parameters θ = 0, 0.2, 0.4, 0.5,
the convergence rate in the current form of exact solution is consistent with the
theoretical results.
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Fig. 1 The contour plots of u − uh with h = 1
100 and �t = 1

40
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Fig. 2 The contour plots of u − uh with h = 1
100 , �t = 1
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Fig. 3 The contour plots of u − uh with h = 1
100 and �t = 1
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Fig. 4 The contour plots of u − uh with h = 1
100 and �t = 1

40

In Figs. 5, 6, 7, and 8, we show the contour plots of u−uh by taking fixed param-

eters (α, β) = (0.5, 0.5), space-time mesh length (h, �t) =
(

1
100 ,

1
40

)
, and changed

parameters θ = 0, 0.2, 0.4, 0.5 to check the impact of parameters. Ones can see that
with the same magnitude 10−4, the maximum values of |u − uh| are reduced slightly
with the decrease of parameter θ .

Table 3 The temporal L2-errors with h = 1/200

(α, β) (0.01, 0.99) (0.5, 0.5) (0.99, 0.01)
�t ‖u − uh‖ Rate ‖u − uh‖ Rate ‖u − uh‖ Rate

θ = 0 1/20 2.2845E-03 − 2.0956E-03 − 1.9169E-03 −
1/40 6.1366E-04 1.8964 5.5997E-04 1.9039 5.0316E-04 1.9297
1/80 1.5983E-04 1.9409 1.4675E-04 1.9320 1.3080E-04 1.9437

θ = 0.2 1/20 1.8774E-03 − 1.7472E-03 − 1.6910E-03 −
1/40 4.9753E-04 1.9159 4.6085E-04 1.9227 4.3781E-04 1.9495
1/80 1.2892E-04 1.9483 1.2051E-04 1.9351 1.1329E-04 1.9502

θ = 0.4 1/20 1.4458E-03 − 1.3918E-03 − 1.4736E-03 −
1/40 3.7808E-04 1.9352 3.6259E-04 1.9405 3.7680E-04 1.9675
1/80 9.7611E-05 1.9536 9.4940E-05 1.9333 9.7190E-05 1.9549

θ = 0.5 1/20 1.2205E-03 − 1.2156E-03 − 1.3662E-03 −
1/40 3.1710E-04 1.9445 3.1497E-04 1.9484 3.4894E-04 1.9692
1/80 8.1816E-05 1.9545 8.2723E-05 1.9289 8.9970E-05 1.9554

Numer Algor (2019) 80:533–555 551 



u-u
h
 with = =0.5, =0

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x

-3

-2

-1

0

1

2

3

4

5

6
× 10-4

Fig. 5 The contour plots of u − uh with h = 1
100 and �t = 1

40

u-u
h
 with = =0.5, =0.2

0 0.2 0.4 0.6 0.8 1

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

-2

-1

0

1

2

3

4

5

× 10-4

Fig. 6 The contour plots of u − uh with h = 1
100 and �t = 1
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Fig. 7 The contour plots of u − uh with h = 1
100 and �t = 1
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Fig. 8 The contour plots of u − uh with h = 1
100 and �t = 1
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Based on the above discussions on the calculated results in Tables 1, 2, and 3 for
Example 4.1.1, Examples 4.2.1–4.2.2 and the contour plots in Figs. 1, 2, 3, 4, 5, 6, 7, and
8 for Examples 4.2.1–4.2.2, ones can know that the second-order convergence rate
can be obtained by our methods, also see that both second-order backward difference
method with θ = 0 and Crank-Nicolson method with θ = 0.5 are the special cases of
our second-order θ schemes. From Tables 2 and 3, we can see clearly that the errors
in L2-norm decrease gradually with the increase of parameter θ and also find the
impact of parameters (α, β, θ) for the values of u−uh in Figs. 1, 2, 3, 4, 5, 6, 7, and 8.

5 Conclusions and advancements

In this paper, we propose some second-order θ schemes combined with FE method,
which can solve well the numerical solution for nonlinear time fractional cable
equation. We give detailed proof of stability of scheme and error estimate. On the
purpose of testing theoretical results, we calculate the convergence accuracy in both
time and space by some numerical examples, which are two-dimensional case and
one-dimensional cases, respectively.

In the near future, we will apply the discussed schemes to solving other nonlin-
ear evolution FDEs, such as nonlinear space FDEs and nonlinear space-time FDEs.
Furthermore, ones can see clearly that we can solve a large number of nonlin-
ear integer order evolution equations by our schemes, and we also develop some
new second-order schemes combined with other numerical methods including FD
methods, spectral methods, and discontinuous methods.
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