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Abstract In this paper, we propose new multilevel optimization methods for min-
imizing continuously differentiable functions obtained by discretizing models for
image registration problems. These multilevel schemes rely on a novel two-step
Gauss-Newton method, in which a second step is computed within each iteration by
minimizing a quadratic approximation of the objective function over a certain two-
dimensional subspace. Numerical results on image registration problems show that
the proposed methods can outperform the standard multilevel Gauss-Newton method.
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1 Introduction

Image registration is the task of overlaying two or more images of the same subject
taken at different times, from different viewpoints or by different sensors. The goal
of registration is to find a function that maps points of one image to the correspond-
ing points of the other image, providing a geometric alignment between the images.
This process compensates the motion of the subject or some difference between the
sensors, allowing the images to be compared and analyzed in a common reference
frame [6]. A very important application is the registration of medical images obtained
from computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound
(US), for example. In this context, image registration helps in the direct comparison
of images taken at different stages of progression of a disease (e.g., a tumor growth),
which is essential for the correct diagnosis of the disease, for planning the treatment
and for monitoring the response of the patient [11].

Mathematically, the image registration problem can be described in the following
way. Consider two images, R and T . Image R (called reference) is kept unchanged,
while image T (called template) is kept transformed. These images can be viewed as
compactly supported functions R, T : � → R, where � ⊂ R

d is a bounded convex
domain and d is the dimension of the images. Without loss of generality, in this work,
we shall consider d = 2. For each pixel x = (x1, x2) ∈ �, the values R(x) and T (x)

describe the darkness of x in images R and T , respectively. The goal of registration
is to find a displacement field u : R2 → R

2 such that T (x + u(x)) is similar to R(x)

with respect to some metric. Let us denote by T (u) the function given by

T (u)(x) = T (x + u(x)).

Then, given a metricD(. , .) for measuring the dissimilarity between any two images,
the image registration problem can be stated as the following optimization problem:

min
u

D(R, T (u)). (1)

A usual choice for D(. , .) is the L2-norm

D(R, T (u)) = 1

2

∫
�

(T (u)(x)) − R(x))2 dx. (2)

Problem (1) is an ill-posed problem. Thus, to avoid meaningless solutions, a regu-
larization term is included in the objective function of (1). The resulting problem
is

min
u

J (u) ≡ D(R, T (u)) + λS(u), (3)

where λ > 0 is a regularization parameter. The role of the regularizer is to modify
problem (1) such that it becomes solvable. A usual choice for S( . ) is

S(u) = 1

2

∫
�

|B(u(x))|2 dx. (4)

where B is some differential operator.
Note that (3) is an infinite-dimensional optimization problem. In general, this type

of problem cannot be solved analytically, requiring therefore the use of numerical
schemes. There are two main numerical approaches to solve infinite-dimensional
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optimization problems. The first approach, referred as optimize-then-discretize,
consists in differentiating the objective function (3) to obtain the continuous Euler-
Lagrange equation, discretizing these equations, and then solving numerically the
resulting finite-dimensional equations. The second approach, referred as discretize-
then-optimize, consists in discretizing the objective function (3) and then solving the
resulting finite-dimensional optimization problem by some optimization algorithm.
Usually, the discrete optimization problem has a very large number of variables. To
solve it, several researchers apply a Gauss-Newton method with a line-search (e.g.,
Armijo line-search) embedded in a coarse-to-fine multilevel optimization strategy.
In this strategy, images are registered progressively from lower resolutions to higher
resolutions, providing (by interpolation) the initial point for the finest resolution (see,
for example, [1, 7, 14]).

In this paper, we propose two simple techniques to improve the performance of
the multilevel Gauss-Newton algorithm on image registration problems. The first
technique consists in the possible use of a second step within each iteration of the
Gauss-Newton method. This step is computed by minimizing a quadratic approxi-
mation of the objective function over a two-dimensional subspace. This subspace is
spanned by the steepest descent direction and by the L-BFGS direction with respect
to the current point given by the Gauss-Newton step. If such subspace step provides
any decrease in the objective function, it is accepted; otherwise, it is discarded. The
second technique is a modification of the standard coarse-to-fine multilevel strategy.
At each level, instead of using directly the interpolated solution of the previous level
as the initial point, we try to find a better initial point by minimizing a quadratic
approximation of the objective function over the subspace spanned by the interpo-
lated solutions of all the previous levels. If this new point results in a decrease of the
objective function value, it is accepted as the new initial point; otherwise, we proceed
as in the standard coarse-to-fine approach.

The paper is organized as follows. In Section 2, we describe the methods result-
ing from the two proposed techniques. We also present a convergence analysis for
these schemes. In Section 3, we report the results of extensive numerical experiments
showing the effectiveness of our new methods. Finally, in Section 4, we summarize
the contributions of this work and indicate some directions for future research.

2 Optimization methods

In this section, we present the optimization methods resulting from the use of our
two novel subspace techniques, which are inspired by [13]. For clarity, we start by
describing the standard multilevel Gauss-Newton algorithm.

2.1 Multilevel Gauss-Newton algorithm

Consider the optimization problem

min
u∈V

J (u), (5)
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where J is a function from an infinite-dimensional vector space V to R. Let Vl be a

finite-dimensional subspace of V with basis
{
φ

(j)
l

}nl

j=1
at grid level l, where nl is the

dimension of Vl . By definition, it means that given any ul ∈ Vl , there exists a vector
ul = (u

(1)
l , . . . , u

(nl)
l ) ∈ R

nl such that

ul =
nl∑

j=1

u
(j)
l φ

(j)
l . (6)

Suppose that we have nested spaces VN0 ⊂ . . . ⊂ VN−1 ⊂ VN ⊂ V . For each level l,
we shall consider the discrete functional Jl : Rnl → R given by

Jl(ul) = J (ul), (7)

where ul is computed by (6). Thus, on level l, the discretized version of (5) is

min
ul∈Rnl

Jl(ul). (8)

In the discretize-then-optimize approach, our goal is to obtain an approximate solu-
tion of (5) by solving iteratively its discrete version (8) for l = N . This can be done
by using the coarse-to-fine multilevel strategy, in which problems of the form (8)
are solved consecutively for l = N0, . . . , N − 1, N , and the initial point ul+1,0 for
the discrete problem on level l + 1 is generated by “prolongating” the solution u∗

l

obtained on level l. We shall denote by P l+1
l the prolongation operator from level l

to level l + 1. Thus, in the coarse-to-fine strategy, we have

ul+1,0 = P l+1
l u∗

l , l = N0, . . . , N − 1. (9)

Given an initial guess ul,0 for the solution of (8), Newton’s Method generates a
sequence

{
ul,k

}
by the rule ul,k+1 = ul,k + tl,kdl,k , with

∇2Jl(ul,k)dl,k = −∇Jl(ul,k), (10)

where ∇Jl(ul,k) and ∇2Jl(ul,k) are the gradient and the hessian of Jl at ul,k ,
respectively. However, in many situations, the structure of the objective Jl gives

∇2Jl(ul,k) = Hl,k + Al,k, (11)

where Hl,k ∈ R
nl×nl is an “easy” to compute symmetric positive-definite matrix,

while Al,k is “difficult” to compute. For these cases, the common approach is the
Gauss-Newton method, where sequence

{
ul,k

}
is defined similarly but, in contrast to

(10), dl,k is obtained by solving the linear system

Hl,kdl,k = −∇Jl(ul,k). (12)

If the stepsize tl,k is computed by the Armijo line-search, we have Algorithm 1.
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Algorithm 1 (Gauss-Newton Method): u∗
l = GN(l, ul,0)

Step 0 Compute ∇Jl(ul,0) and Hl,0 ≈ ∇2Jl(ul,0). Set η = 10−4 and k := 0.
Step 1 If ul,k satisfies the stopping rules, stop and return u∗

l = ul,k . Otherwise, go
to Step 2.

Step 2 Compute dl,k by solving the Gauss-Newton linear system

Hl,kdl,k = −∇Jl(ul,k). (13)

Step 3 Find the smallest integer ik ≥ 0 such that tl,k = (0.5)ik satisfies

Jl(ul,k + tl,kdl,k) ≤ Jl(ul,k) + ηtl,k∇Jl(ul,k)
T dl,k. (14)

Step 4 Set ul,k+1 = ul,k + tl,kdl,k and compute ∇Jl(ul,k+1) and Hl,k+1 ≈
∇2Jl(ul,k+1).

Step 5 Set k := k + 1 and go back to Step 1.

Remark 1 In the context of image registration problems, at Step 1, it is common the
use of the following stopping rules:

|Jl(ul,k) − Jl(ul,k−1)| ≤ 10−3(1 + |Jl(ul,0)|) if k > 0, (15)

‖ul,k − ul,k−1‖2 ≤ 10−2(1 + ‖ul,0‖2) if k > 0, (16)

‖∇Jl(ul,k)‖2 ≤ 10−2(1 + |Jl(ul,0)|), (17)

‖∇Jl(ul,k)‖2 ≤ ε, (18)

and

k ≥ kmax. (19)

Specifically, the execution of the algorithm is interrupted when all conditions (15)–
(17) are satisfied or when any of the conditions (18) and (19) holds.

Very often, the discretization of image registration problems generate problems
where nN is very big (e.g., nN > 106). Thus, when we apply the Gauss-Newton
method to the discrete problem in the finest grid

min
uN∈RnN

JN(uN),

the solution of the linear system (13) at each iteration can consume a lot of time.
Consequently, if the method starts from a bad initial point, it will take many iterations
to reach a solution, which will make the total running time very big. However, if
the method starts from a good initial point, it will take fewer iterations to reach a
solution, which can lead to a significant reduction in the total running time. This is
the motivation behind the coarse-to-fine multilevel strategy, which is a technique to
generate initial points. The multilevel Gauss-Newton method can be summarized in
the following way.
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Algorithm 2 (Multilevel Gauss-Newton Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ R
nN0 and l := N0 (coarsest level).

Step 1 Compute u∗
l = GN(l, ul,0).

Step 2 If l = N (finest level), stop and return u∗
N . Otherwise, go to Step 3.

Step 3 Set ul+1,0 = P l+1
l u∗

l , l := l + 1 and go back to Step 1.

2.2 Two-step Gauss-Newton algorithm

In order to enhance the performance of the Gauss-Newton method, we consider the
use of a second step after the Gauss-Newton step within each iteration. If we obtain
any reduction in the objective function value, the new step is accepted. Otherwise, the
new step is rejected. Since we are dealing with large-scale problems, this additional
step must be cheap to compute. Therefore, we propose the following subspace pro-
cedure. Denote by ûl,k+1 the Gauss-Newton iterate computed at Step 4 of Algorithm
1, that is,

ûl,k+1 = ul,k + tl,kdl,k, with Hl,kdl,k = −∇Jl(ul,k).

Let Ĥl,k+1 be the Gauss-Newton approximation to ∇2Jl(ûl,k+1) and consider the
quadratic model of Jl around ûl,k+1:

ml(ûl,k+1 + d) ≡ Jl(ûl,k+1) + ∇Jl(ûl,k+1)
T d + 1

2
dT Ĥl,k+1d.

We compute the second step d̂l,k+1 by minimizing ml(ûl,k+1 + d) over the subspace

Sl,k+1 = span
({

dSD
l,k+1, d

QN
l,k+1

})
,

where dSD
l,k+1 = −∇Jl(ûl,k+1) and d

QN
l,k+1 = −Bl,k+1∇Jl(ûl,k+1) with Bl,k+1

being the approximation to
(∇2Jl(ûl,k+1)

)−1
given by the limited-memory BFGS

(L-BFGS) formula [5]. More specifically,

d̂l,k+1 = α1d
SD
l,k+1 + α2d

QN
l,k+1, (20)

where α = (α1, α2) ∈ R
2 is a solution of the quadratic minimization problem

min
α∈R2

gT
l,k+1α + 1

2
αT Ql,k+1α, (21)

with

gl,k+1 =
[

∇Jl(ûl,k+1)
T dSD

l,k+1

∇Jl(ûl,k+1)
T d

QN
l,k+1

]
(22)

and

Ql,k+1 =
[

(dSD
l,k+1)

T Ĥl,k+1d
SD
l,k+1 (dSD

l,k+1)
T Ĥl,k+1d

QN
l,k+1

(d
QN
l,k+1)

T Ĥl,k+1d
SD
l,k+1 (d

QN
l,k+1)

T Ĥl,k+1d
QN
l,k+1

]
. (23)

Problem (21) is equivalent to the 2 × 2 linear system

Ql,k+1α = −gl,k+1, (24)
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Algorithm 3 (Two-Step GN Method): u∗
l = 2SGN(l, ul,0)

Step 0 Compute ∇Jl(ul,0) and Hl,0 ≈ ∇2Jl(ul,0). Set Bl,0 = I , m = 3, η = 10−4

and k := 0.
Step 1 If ul,k satisfies the stopping rules, stop and return u∗

l = ul,k . Otherwise, go
to Step 2.

Step 2 Compute dl,k by solving the Gauss-Newton linear system

Hl,kdl,k = −∇Jl(ul,k). (25)

Step 3 Find the smallest integer ik ≥ 0 such that tl,k = (0.5)ik satisfies

Jl(ul,k + tl,kdl,k) ≤ Jl(ul,k) + ηtl,k∇Jl(ul,k)
T dl,k. (26)

Step 4 Set ûl,k+1 = ul,k + tl,kdl,k and compute ∇Jl(ûl,k+1) and Ĥl,k+1 ≈
∇2Jl(ûl,k+1).

Step 5 Set sl,k = ûl,k+1 − ul,k and yl,k = ∇Jl(ûl,k+1) − ∇Jl(ul,k).
Step 6 (L-BFGS direction) Let m̂ = min {k, m − 1}. If k > 0, set Bl,0 =

(sT
l,k−1yl,k−1/(yl,k−1)

T yl,k−1)I . Update Bl,0 m̂ + 1 times using the pairs{
sl,j , yl,j

}k

j=k−m̂
, i.e., let

Bl,k+1 =
(
V T

k . . . V T
k−m̂

)
Bl,0

(
Vk−m̂ . . . Vk

)

+ρk−m̂

(
V T

k . . . V T
k−m̂+1

)
sl,k−m̂(sl,k−m̂)T

× (
Vk−m̂+1 . . . Vk

)
+ρk−m̂+1

(
V T

k . . . V T
k−m̂+2

)
sl,k−m̂+1

×(sl,i−m̂+1)
T

(
Vk−m̂+2 . . . Vk

)
...

+ρksl,k(sl,k)
T ,

with ρj = 1/(sl,j )T yl,j and Vj = I − ρjyl,j (sl,j )
T . Compute d

QN
l,k+1 =

−Bl,k+1∇Jl(ûl,k+1).
Step 7 (Second Step) Let dSD

l,k+1 = −∇Jl(ûl,k+1), compute α = (α1, α2) ∈ R
2 by

solving (24) and then set d̂l,k+1 = α1d
SD
l,k+1 + α2d

QN
l,k+1.

Step 8 If Jl(ûl,k+1+d̂l,k+1) < Jl(ûl,k+1), set ul,k+1 = ûl,k+1+d̂l,k+1 and compute
∇Jl(ul,k+1) and Hl,k+1 ≈ ∇2Jl(ul,k+1). Otherwise, set ul,k+1 = ûl,k+1

and Hl,k+1 = Ĥl,k+1.
Step 9 Set k := k + 1 and go back to Step 1.

which makes the computation of the second step d̂l,k+1 in (20) very cheap. If
Jl(ûl,k+1+ d̂l,k+1) < Jl(ûl,k+1), then we accept the new step and we define ul,k+1 =
ûl,k+1 + d̂l,k+1. Otherwise, we reject the new step and we define ul,k+1 = ûl,k+1.
The resulting two-step Gauss-Newton method can be summarized as follows.
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In practice, the matrices Bl,k+1 in the L-BFGS scheme are not formed explic-
itly. At each iteration, all that we need is to compute the product d

QN
l,k+1 =

−Bl,k+1∇Jl(ûl,k+1). This can be done efficiently in a matrix-free fashion by using
the following algorithm [10]:

Algorithm 4 (Direction finding in L-BFGS)

Step 0 Set q = ∇Jl(ûl,k+1).
Step 1 For j = (k − 1) : (−1) : (k − m̂) do

αj = ρj (sl,j )
T q

q = q − αjyl,j

Step 2 Set r = Bl,0q.
Step 3 For j = (k − m̂) : 1 : (k − 1) do

β = ρj (yl,j )
T r

r = r + (αj − β)sj

Step 4 Set dQN
l,k+1 = −r and STOP.

Finally, if at Step 1 of Algorithm 2 we replace Gauss-Newton method by our new
two-step Gauss-Newton method, we obtain the multilevel algorithm below.

Algorithm 5 (Multilevel Two-Step Gauss-Newton Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ R
nN0 and l := N0 (coarsest level).

Step 1 Compute u∗
l = 2SGN(l, ul,0).

Step 2 If l = N (finest level), stop and return u∗
N . Otherwise, go to Step 3.

Step 3 Set ul+1,0 = P l+1
l u∗

l , l := l + 1 and go back to Step 1.

2.3 Convergence analysis

The analysis of Algorithms 1 and 3 in a constrained setting can be done in an unified
framework. In fact, consider the finite-dimensional optimization problem

min
u∈Rn

J (u), (27)

s. t. u ∈ X, (28)

where J : Rn → R is a differentiable function and X ⊂ R
n is an open set.1 Clearly,

problem (27)–(28) may have no solution. Thus, we seek for iterative methods that

1In image registration problems, it is common the inclusion of the constraint det∇y > 0, where y(x) =
x + u(x).
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generate sequences {uk} ⊂ X of feasible points such that {J (uk)} is monotonically
decreasing. By incorporating constraint (28) within the Armijo line-search in
Algorithms 1 and 3 (and omitting the level index l), the resulting algorithms can be
seen as particular cases of the following framework.

Algorithm A (Feasible Direction Method)

Step 0 Given u0 ∈ X, B0 ∈ R
n×n symmetric and positive-definite and η ∈ (0, 1),

set k := 0.
Step 1 Compute dk = −Bk∇J (uk).
Step 2 Find the smallest ik ≥ 0 such that tk = (0.5)ik ensures

J (uk + tkdk) ≤ J (uk) + ηtk∇J (uk)
T dk and uk + tkdk ∈ X. (29)

Define ûk+1 = uk + tkdk .
Step 3 Find uk+1 ∈ X such that J (uk+1) ≤ J (ûk+1), choose Bk+1 ∈ R

n×n

symmetric and positive-definite, set k := k + 1 and go back to Step 1.

Remark 2 In Algorithm A, Bk is the inverse of the Gauss-Newton matrix, that is,
Bk = H−1

k . To better see the correspondence between Algorithm A and Algorithms
1 and 3, note that in Algorithm 1, we set uk+1 = ûk+1 for all k, while in Algorithm
3, we may have uk+1 �= ûk+1 if the second step is successful.

We shall study the worst-case complexity and global convergence properties of
Algorithm A. By worst-case complexity, we mean an upper bound on the maximum
number of iterations that Algorithm A may take to find an approximate critical point
of J or a point near to the boundary of the feasible set. Our analysis is an adaptation
of the analysis of Nesterov [9] for the gradient method. Consider the following
assumptions:

A1 The objective J : Rn → R is differentiable and∇J : Rn → R
n isL-Lipschitz:

‖∇J (w) − ∇J (u)‖ ≤ L‖w − u‖, ∀w, u ∈ R
n.

A2 The set L(u0) = {u ∈ R
n | J (u) ≤ J (u0)} is compact.

A3 There exist constants c1 ≥ c0 > 0 such that
c0I � Bk � c1I ∀k.

The next lemma shows that if ∇J (uk) �= 0, then there exists ik ≥ 0 such that condi-
tions (29) hold. Therefore, Step 2 of Algorithm A is well-defined. The proof is based
on elementary analysis arguments and it is included here for completeness.

Lemma 1 Suppose that A1 holds. Given ū ∈ X, B ∈ R
n×n positive definite and

η ∈ (0, 1), let d = −B∇J (ū). If ∇J (ū) �= 0, then there exists δ > 0 such that

J (ū + td) ≤ J (ū) + ηt∇J (ū)T d and ū + td ∈ X,

for all t ∈ [0, δ).
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Proof Since X is an open set, there exists ε > 0 such that

‖u − ū‖ ≤ ε =⇒ u ∈ X. (30)

Thus, if we consider u = ū + td, it follows that

0 ≤ t ≤ ε

‖d‖ =⇒ ū + td ∈ X. (31)

Let us denote δ1 = ε/‖d‖. On the other hand, as J is differentiable and η ∈ (0, 1),
we have

lim
t→0

J (ū + td) − J (ū)

t
= ∇J (ū)T d = −∇J (ū)T B∇J (ū)

< −η∇J (ū)T B∇J (ū)

= η∇J (ū)T d.

Hence, there exists δ2 > 0 such that

J (ū + td) − J (ū)

t
< η∇J (ū)T d,

for all t ∈ (0, δ2). Therefore,

J (ū + td) ≤ J (ū) + ηt∇J (ū)T d, ∀t ∈ [0, δ2). (32)

Finally, if we take δ = min {δ1, δ2}, it follows from (31) and (32) that

J (ū + td) ≤ J (ū) + ηt∇J (ū)T d and ū + td ∈ X, ∀t ∈ [0, δ),
and the proof is complete.

The lemma below gives a lower bound for the sequence {tk} and will be crucial to
establish a lower bound for the functional decrease obtained in consecutive iterations
of Algorithm A. Its proof is an adaptation of the proof of Lemma 11.1.1 in [12].

Lemma 2 Suppose that A1 holds. Then, for all k, we have

tk ≥ min

{
1,

(1 − η)

L

(
−∇J (uk)

T dk

‖dk‖2
)

,
�(uk)

2‖dk‖
}

, (33)

where, for all u ∈ X,
�(u) = inf

w/∈X
‖u − w‖.

Proof If ik = 0, then tk = 1 and so (33) holds. Thus, suppose that ik > 0. If uk +
2tkdk ∈ X, then from the definition of ik , we know that uk+2tkdk = uk+(0.5)ik−1dk

does not satisfy the inequality in (29). Thus,

J (uk + 2tkdk) > J (uk) + 2ηtk∇J (uk)
T dk. (34)

Since ∇J is L-Lipschitz, it follows that

J (uk + 2tkdk) ≤ J (uk) + 2tk∇J (uk)
T dk + 2Lt2k ‖dk‖2. (35)

Then, combining (34) and (35), we have

J (uk) + 2ηtk∇J (uk)
T dk < J (uk) + 2tk∇J (uk)

T dk + 2Lt2k ‖dk‖2
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=⇒ 2Lt2k ‖dk‖2 > (η − 1)2tk∇J (uk)
T dk

=⇒ tk > − (1 − η)

L

(∇J (uk)
T dk

‖dk‖2
)

and so, (33) also holds.
Finally, if uk + 2tkdk /∈ X, it follows from the definition of �(uk) that

2tk‖dk‖ � �(uk).

Thus, tk � �(uk)/2‖dk‖, and once again (33) holds.

Now, we are in position to establish a worst-case complexity bound for Algorithm
A.

Theorem 1 Suppose that A1-A3 hold and let {uk} be a sequence generated by
Algorithm A such that

�(uk) > ε and ‖∇J (uk)‖ > ε, for k = 0, . . . , T − 1, (36)

for a given precision ε > 0. Then, J (u) is bounded from below by some Jlow and we
must have

T ≤
(

J (u0) − Jlow

κc

)
ε−2, (37)

where

κc = min

{
ηc0,

η(1 − η)c20

Lc21

,
ηc0

2c1

}
. (38)

Proof By Step 3 of Algorithm A, we have J (uk+1) ≤ J (ûk+1). Thus, combining
(29) and the lower bound for tk in (33), we obtain the following lower bound for the
decrease of the function value in consecutive iterations:

J (uk)−J (uk+1)≥J (uk)−J (ûk+1)≥ηtk

(
−∇J (uk)

T dk

)

≥ ηmin

{
−∇J (uk)

T dk,
(1−η)

L

(
−∇J (uk)

T dk

‖dk‖
)2

,
�(uk)

2

(
−∇J (uk)

T dk

‖dk‖
)}

.(39)

On the other hand, from A3 it follows that

‖dk‖ = ‖ − Bk∇J (uk)‖ ≤ ‖Bk‖‖∇J (uk)‖ ≤ c1‖∇J (uk)‖,
and

− ∇J (uk)
T dk = ∇J (uk)

T Bk∇J (uk) ≥ c0‖∇J (uk)‖2. (40)

Hence,

− ∇J (uk)
T dk

‖dk‖ ≥ c0‖∇J (uk)‖2
c1‖∇J (uk)‖ =

(
c0

c1

)
‖∇J (uk)‖. (41)

Then, combining (39) with (40), (41), and (36), we obtain
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J (uk)−J (uk+1) ≥ ηmin

{
c0‖∇J (uk)‖2, (1−η)c20

Lc21

‖∇J (uk)‖2,
(

c0

2c1

)
�(uk)‖∇J (uk)‖

}

≥ min

{
ηc0,

η(1−η)c20

Lc21

,
ηc0

2c1

}
min

{
‖∇J (uk)‖2, �(uk)‖∇J (uk)‖

}

= κc min
{
‖∇J (uk)‖2, �(uk)‖∇J (uk)‖

}
(42)

> κcε
2, for k = 0, . . . , T − 1.

From A2, it follows that J has a global minimizer on R
n. Thus, there exists Jlow

such that J (uk) ≥ Jlow for all k. Therefore,

J (u0) − Jlow ≥ J (u0) − J (uT ) =
T −1∑
k=0

J (uk) − J (uk+1) ≥
T −1∑
k=0

κcε
2 = T κcε

2

=⇒ T ≤
(

J (u0) − Jlow

κc

)
ε−2,

and the proof is complete.

Remark 3 Theorem 1 means that given ε > 0, Algorithm A takes at most O(ε−2)

iterations to generate a point uT ∈ X such that

�(uT ) ≤ ε or ‖∇J (uT )‖ ≤ ε.

ForX = R
n, this bound agrees in order with known complexity bounds for first-order

methods [2, 4, 9]. In any case, by (42), we have

J (uT ) < J (uT −1) < . . . < J (u1) < J (u0).

Finally, from inequality (42) we can establish the following global convergence
result.

Theorem 2 Suppose that A1-A3 hold. Then, given u0 ∈ X, the sequence {uk} ⊂ X

generated by Algorithm A from u0 admits a subsequence that converges either to a
point in the boundary of X or to a critical point of J in X.

Proof Let us denote the closure of X by X̄. Note that {uk} ⊂ L(u0). Thus, by A2,
sequence {uk} is bounded and, therefore, it admits a convergent subsequence

{
ukj

}
,

with ukj
→ ū ∈ X̄. Since J is continuous, we also have J (ukj

) → J (ū) as j

goes to infinity. Thus, sequence {J (uk)} is monotonically decreasing and admits a
convergent subsequence. Hence, {J (uk)} must be convergent, which implies that

lim
k→+∞ J (uk) − J (uk+1) = 0.

Thus, by applying the Squeeze Theorem on inequality (42), we conclude that

lim
j→+∞ ∇J (ukj

) = 0 or lim
j→+∞ �(ukj

)‖∇J (ukj
)‖ = 0. (43)
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On the other hand, as ∇J and � are continuous functions, we have

lim
j→+∞ ∇J (ukj

) = ∇J (ū) and lim
j→+∞ �(ukj

) = �(ū). (44)

Then, combining (43) and (44), it follows that

∇J (ū) = 0 or �(ū) = 0,

that is, the limit point ū is either a point in the boundary of X or a critical point of J

in X.

2.4 Subspace multilevel technique

In the standard coarse-to-fine multilevel strategy, the initial point ul+1,0 for level
l + 1 is computed using only the solution u∗

l of the previous level. To allow the
finding of a better initial point, we propose the use of all the previous solutions
u∗

l , u
∗
l−1, . . . , u

∗
N0

by employing again the subspace technique. Given N0 ≤ z <

w ≤ N , let us denote by P w
z the prolongation operator from level z to level w. We

set ûl+1,0 = P l+1
l u∗

l and we compute ∇Jl+1(ûl+1,0) and Ĥl+1,0 ≈ ∇2Jl+1(ûl+1,0).

Then, we obtain a search direction d̂l+1,0 by solving the subspace quadratic
problem

min
d

Jl+1(ûl+1,0) + ∇Jl+1(ûl+1,0)
T d + 1

2
dĤl+1,0d, (45)

s. t. d ∈ Sl+1,0 ⊂ R
nl+1 , (46)

where Sl+1,0 ≡ span
({

P l+1
N0

u∗
N0

, . . . , P l+1
l u∗

l

})
. As in the two-step Gauss-Newton

method, d̂l+1,0 can be easily computed by solving a small-scale linear system. If
Jl+1(ûl+1,0 + d̂l+1,0) < Jl+1(ûl+1,0), we define the initial point for level l + 1 as
ul+1,0 = ûl+1,0 + d̂l+1,0. Otherwise, we set ul+1,0 = ûl+1,0. The corresponding
modification in Algorithm 2 can be summarized in the following way.

Algorithm 6 (Subspace Multilevel GN Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ R
nN0 and l := N0 (coarsest level).

Step 1 Compute u∗
l = GN(l, ul,0).

Step 2 If l = N (finest level), stop and return u∗
N .

Step 3 Compute P l+1
l u∗

l , . . . , P
N
l u∗

l , set ûl+1,0 = P l+1
l u∗

l and compute

∇Jl+1(ûl+1,0) and Ĥl+1,0 ≈ ∇2Jl+1(ûl+1,0).
Step 4 If l = 0, set ul+1,0 = ûl+1,0 and go to Step 6.
Step 5 Compute d̂l+1,0 by solving the subspace problem (45)–(46). If Jl+1(ûl+1,0+

d̂l+1,0) < Jl+1(ûl+1,0), set ul+1,0 = ûl+1,0+d̂l+1,0. Otherwise, set ul+1,0 =
ûl+1,0.

Step 6 Set l := l + 1 and go back to Step 1.
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Finally, if at Step 1 of Algorithm 6 we replace Gauss-Newton method by our new
two-step Gauss-Newton method, we obtain the subspace multilevel algorithm below.

Algorithm 7 (Subspace Multilevel Two-Step GN Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ R
nN0 and l := N0 (coarsest level).

Step 1 Compute u∗
l = 2SGN(l, ul,0).

Step 2 If l = N (finest level), stop and return u∗
N .

Step 3 Compute P l+1
l u∗

l , . . . , P
N
l u∗

l , set ûl+1,0 = P l+1
l u∗

l and compute

∇Jl+1(ûl+1,0) and Ĥl+1,0 ≈ ∇2Jl+1(ûl+1,0).
Step 4 If l = 0, set ul+1,0 = ûl+1,0 and go to Step 6.
Step 5 Compute d̂l+1,0 by solving the subspace problem (45)–(46). If Jl+1(ûl+1,0+

d̂l+1,0) < Jl+1(ûl+1,0), set ul+1,0 = ûl+1,0+d̂l+1,0. Otherwise, set ul+1,0 =
ûl+1,0.

Step 6 Set l := l + 1 and go back to Step 1.

3 Numerical experiments

In order to investigate the numerical performance of the proposed methods, we have
tested implementations of the following algorithms:

(i) The standard multilevel Gauss-Newton algorithm (i.e., Algorithm 2). We shall
refer to this code as GN (from Gauss-Newton).

(ii) The multilevel two-step Gauss-Newton algorithm (i.e., Algorithm 5). We shall
refer to this code as TS (from two-step).

(iii) The subspace multilevel Gauss-Newton algorithm (i.e., Algorithm 6). We shall
refer to this code as SIG (from subspace initial guess).

(iv) The subspace multilevel two-step Gauss-Newton algorithm (i.e., Algorithm 7).
We shall refer to this code asHYBRID, since it can be viewed as a combination
of TS and SIG.

The algorithms were coded in MATLAB (R2017a) language, and the tests were per-
formed on a PC with 3.20 GHz Intel(R) Core(TM) i5-6500 microprocessor, and with
installed memory (RAM) of 8.00 GB. In all codes, the execution of the inner opti-
mization algorithm (Gauss-Newton or two-step Gauss-Newton) is interrupted when
all conditions (15)–(17) are satisfied or when any of the conditions (18) and (19)
holds. For the latter conditions, we use ε = 10−16 and kmax = 500. Moreover, in
all codes, the Gauss-Newton linear system is solved by the conjugate gradient (CG)
method with diagonal preconditioner. We stop the execution of the CG method when
the residual becomes smaller 10−1 or when the maximum of 50 iterations is reached.

The codes were applied to image registration problems corresponding to 20 pairs
of images (reference, template): ten pairs of medical images (Figs. 1, 2, 3, 4, 5, 6, 7,
8, 9, and 10), and ten pairs of artificial images (Figs. 11, 12, 13, 14, 15, 16, 17, 18,
19, and 20). To evaluate the performance of the codes for several problem sizes, we
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(a) (b)

Fig. 1 Problem hand

considered four different resolutions: 128× 128, 256× 256, 512× 512, and 1024×
1024. The choice for the objective function (3) was the one corresponding to the
hyperelastic model proposed in [1]. Specifically, we use the MATLAB package FAIR
as the basis for our tests (see details in [7]). In all codes, the constraint det∇y > 0,
for y(x) = x +u(x), is handled within the Armijo line-search, that is, to be accepted,
a trial step must provide a sufficient decrease in the objective and the resulting point
must be feasible with respect to the referred constraint (see Algorithm A).

The results reported below summarize more than 21 hours of numerical experi-
mentation. Problems and results for resolution 128× 128 are given in Table 1, where
“TIME” represents the time in seconds taken by the code to solve the corresponding
problem, “IT” represents the number of iterations performed to reach the solution,
“FE” represents the number of function evaluations performed, and “TOTAL” pro-
vides the sum of the values in the corresponding column of the table, where the total
time is given in seconds.

(a) (b)

Fig. 2 Problem EPslice
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(a) (b)

Fig. 3 Problem brain

(a) (b)

Fig. 4 Problem CT

(a) (b)

Fig. 5 Problem MRI

Numer Algor (2019) 80:305–336320



(a) (b)

Fig. 6 Problem lung

(a) (b)

Fig. 7 Problem CT1

(a) (b)

Fig. 8 Problem CT2
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(a) (b)

Fig. 9 Problem MRI2

(a) (b)

Fig. 10 Problem breast

(a) (b)

Fig. 11 Problem circle to C

(a) (b)

Fig. 12 Problem C to circle
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(a) (b)

Fig. 13 Problem A to R

(a) (b)

Fig. 14 Problem square to square

(a) (b)

Fig. 15 Problem Lena

(a) (b)

Fig. 16 Problem circle to square
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(a) (b)

Fig. 17 Problem molecule

(a) (b)

Fig. 18 Problem F to F

(a) (b)

Fig. 19 Problem circle to I
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(a) (b)

Fig. 20 Problem Rio

Table 1 Results for resolution 128 × 128

GN SIG TS HYBRID

Problem Time IT FE Time IT FE Time IT FE Time IT FE

1. Hand 2.1 31 75 1.8 31 80 2.1 30 120 1.6 27 114

2. EPLslice 11.4 82 216 8.6 71 190 5.0 52 214 4.7 47 201

3. Brain 1.5 52 116 1.5 49 116 1.3 29 114 1.3 29 110

4. CT 5.9 51 116 5.6 48 116 3.9 42 166 3.7 40 162

5. MRI 3.3 56 123 3.3 56 129 2.7 38 152 2.7 38 156

6. Lung 3.3 40 95 3.7 45 112 2.5 30 123 3.5 36 153

7. CT1 8.9 82 202 7.4 79 200 4.7 51 206 3.9 47 194

8. CT2 4.1 36 82 3.1 33 82 2.7 28 112 2.2 25 106

9. MRI2 10.2 95 206 9.4 91 204 5.3 57 228 5.5 58 238

10. Breast 5.1 53 117 5.0 53 123 3.5 37 147 3.7 38 157

11. Circle to C 1.4 45 103 1.6 48 114 1.4 37 131 1.3 37 146

12. C to circle 2.7 46 119 2.8 49 129 4.5 87 356 2.5 40 175

13. A to R 0.8 39 88 0.7 41 99 0.8 23 94 0.6 19 84

14. Square to square 0.6 19 46 0.6 19 54 0.5 14 60 0.5 12 61

15. Lena 0.6 18 46 0.7 18 52 0.7 17 68 0.6 16 70

16. Circle to square 0.2 12 34 0.4 14 44 0.2 11 44 0.3 12 56

17. Molecule 0.9 23 56 1.0 22 60 1.1 22 87 1.1 20 84

18. F to F 0.9 41 95 1.0 43 104 0.8 25 102 0.8 25 106

19. Circle to I 1.5 25 60 1.2 28 73 1.3 22 90 1.3 19 80

20. Rio 0.6 15 40 0.4 14 44 0.5 14 56 0.5 13 58

Total 65.6 861 2035 59.7 852 2125 45.5 666 2670 42.5 598 2511
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From Table 1, we see that TS, SIG, and HYBRID were better than GN in terms
of the total time. The fastest code was HYBRID, which outperformed GN on 16
problems (9 of them corresponding to medical images).

Table 2 shows the results for resolution 256 × 256. Codes TS and HYBRID were
better than GN in terms of the total time. The fastest code was HYBRID, which
outperformed GN on 11 problems (7 of them corresponding to medical images).

Table 3 shows the results for resolution 512 × 512. Codes TS, SIG, and HYBRID
were better than GN in terms of the total time. In this case, the fastest code was
HYBRID, which outperformed GN on 13 problems (9 of them corresponding to
medical images).

Finally, Table 4 shows the results for resolution 1024×1024. Once again, TS, SIG,
and HYBRID were better than GN in terms of the total time. The fastest code was

Table 2 Results for resolution 256 × 256

GN SIG TS HYBRID

Problem Time IT FE Time IT FE Time IT FE Time IT FE

1. Hand 6.4 35 85 7.1 35 92 9.9 36 144 9.2 33 140

2. EPLslice 110.1 172 480 120.6 176 500 88.0 123 548 83.2 120 534

3. Brain 4.6 61 136 4.9 56 134 5.1 35 128 4.9 34 132

4. CT 175.9 201 470 169.8 185 440 79.4 146 577 84.8 146 588

5. MRI 45.4 92 212 37.2 84 200 24.3 63 254 22.4 59 246

6. Lung 29.2 61 155 41.9 74 196 50.2 66 289 31.1 61 264

7. CT1 54.8 115 286 53.8 112 287 35.6 81 330 32.9 73 305

8. CT2 40.5 89 192 38.3 73 168 25.5 60 240 28.2 61 250

9. MRI2 60.2 136 305 60.1 132 304 42.4 97 391 43.7 99 407

10. Breast 36.6 77 176 28.8 75 177 26.8 59 241 20.4 56 233

11. Circle to C 7.0 51 117 6.3 54 130 7.2 42 148 4.9 41 166

12. C to circle 9.8 53 135 10.9 54 142 10.1 91 374 8.3 44 193

13. A to R 2.5 41 94 3.3 44 109 4.5 28 114 2.9 22 99

14. Square to square 1.9 21 52 6.6 26 73 3.1 17 72 4.4 16 79

15. Lena 2.2 20 52 2.6 20 60 2.6 19 76 2.8 18 80

16. Circle to square 2.3 15 42 2.5 19 56 0.4 12 48 0.9 13 62

17. Molecule 5.2 32 76 5.7 27 74 6.1 26 101 5.2 24 101

18. F to F 3.8 46 107 3.7 47 116 3.4 28 116 3.9 28 122

19. Circle to I 6.6 32 76 5.9 32 83 5.5 26 102 5.7 23 96

20. Rio 1.4 17 46 1.7 16 52 1.8 16 64 2.0 15 68

Total 606.5 1367 3294 611.6 1341 3393 432.0 1071 4367 401.9 986 4165
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TS, which outperformed GN on 12 problems (6 of them corresponding to medical
images).

The improved performance of TS and HYBRID over GN is better highlighted in
Tables 5, 6, and 7, which shows the reduction in the total time provided by the new
methods.

As mentioned above, codes TS andHYBRID behave much better when we consider
only medical images. In terms of the total time, this difference of performance is
shown on Tables 8, 9, and 10.

Additional information about the codes can be obtained by using the Performance
Profile, which is a tool for benchmarking and comparing optimization software [3].
More specifically, let tp,s denote the time to solve problem p by solver s. The

performance ratio is defined as rp,s = tp,s

t∗p
, where t∗p is the lowest time required to

Table 3 Results for resolution 512 × 512

GN SIG TS HYBRID

Problem Time IT FE Time IT FE Time IT FE Time IT FE

1. Hand 37.6 39 95 32.8 38 102 25.9 38 152 26.3 35 150

2. EPLslice 220.3 190 525 332.3 207 586 286.2 149 666 214.0 137 617

3. Brain 18.0 64 144 15.1 58 142 15.0 37 148 15.7 36 144

4. CT 2827.4 524 1430 1700 370 988 824.3 253 1065 446.2 202 832

5. MRI 303.3 132 309 298.5 117 286 209.3 96 391 286.9 105 436

6. Lung 175.8 77 201 134.3 93 246 425.7 109 500 243.8 88 389

7. CT1 385.1 158 394 346.1 155 396 224.8 110 443 248.2 109 454

8. CT2 1083.4 208 537 1044.4 189 511 480.1 125 533 576.9 137 607

9. MRI2 339.4 167 388 270.0 157 371 204.3 125 507 249.0 130 545

10. Breast 221.2 100 234 230.6 98 239 195.5 85 347 151.1 77 319

11. Circle to C 31.2 54 125 57.2 68 162 60.9 51 172 58.9 51 197

12. C to circle 37.9 56 144 39.9 57 150 47.3 97 401 47.4 49 210

13. A to R 26.2 49 112 13.3 46 117 17.8 30 121 14.5 24 111

14. Square to square 16.7 25 62 17.9 27 78 26.3 20 84 20.7 18 86

15. Lena 17.2 22 58 19.1 22 68 18.3 21 84 19.7 20 90

16. Circle to square 11.4 20 54 13.3 23 66 2.6 13 52 3.7 14 66

17. Molecule 74.3 40 95 69.7 46 116 74.5 39 145 64.7 37 150

18. F to F 12.2 48 113 7.1 48 122 6.6 29 122 7.6 29 128

19. Circle to I 32.4 43 100 53.1 42 105 45.3 33 128 64.3 31 125

20. Rio 9.5 19 52 9.6 18 60 11.8 18 72 12.5 17 78

Total 5880.7 2035 5172 4704.6 1879 4911 3202.6 1478 6133 2772.3 1346 5734
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Table 4 Results for resolution 1024 × 1024

GN SIG TS Hybrid

Problem Time IT FE Time IT FE Time IT FE Time IT FE

1. Hand 119.9 41 101 121.2 40 110 105.3 40 160 58.2 36 156

2. EPLslice 539.9 198 550 589.5 216 612 518.2 155 693 654.2 150 677

3. Brain 49.8 65 148 91.7 63 156 52.9 38 152 46.7 37 152

4. CT 3884.3 556 1504 2299.4 390 1035 2478.2 297 1257 1526.3 235 965

5. MRI 1048.2 166 384 1094.8 136 337 908.2 120 486 696.0 118 489

6. Lung 929.0 102 258 1074.6 125 318 1615.3 140 650 2520.2 144 653

7. CT1 1246.3 181 446 1040.6 174 440 906.2 133 532 1050.3 143 585

8. CT2 6148.7 330 899 4924.8 287 796 3758.3 198 881 3865.9 215 982

9. MRI2 974.9 189 442 809.6 170 409 998.3 152 621 1088 154 652

10. Breast 515.3 107 254 477.5 105 259 760.1 100 414 1120.6 104 440

11. Circle to C 235.5 61 141 538.6 93 214 126.1 53 178 192.4 56 210

12. C to circle 245.3 61 156 239.8 65 168 181.1 100 414 204.9 54 226

13. A to R 124.2 58 132 117.9 51 129 89.2 34 132 105.3 29 123

14. Square to square 57.8 26 66 106.7 29 84 68.0 21 88 64.2 19 90

15. Lena 140.3 26 68 109.3 25 78 135.8 24 96 92.2 22 100

16. Circle to square 69.6 23 62 57.1 27 76 43.4 14 56 34.1 15 70

17. Molecule 364.3 47 111 374.9 53 132 830.6 69 242 662.0 59 223

18. F to F 60.4 51 121 63.2 51 132 70.5 31 130 81.3 32 142

19. Circle to I 73.2 44 104 139.8 44 111 181.7 39 146 234.1 38 149

20. Rio 90.9 22 60 69.2 20 68 70.6 20 80 78.9 19 88

Total 16,917.9 2354 6007 14,340 2164 5664 13,898 1778 7408 14,376.6 1679 7172

Table 5 Comparison of the total time (in seconds) to solve all 20 problems for each resolution between
GN and SIG

Resolution Time GN Time SIG Reduction (%)

128 × 128 65.6 59.7 9.0

256 × 256 606.5 611.6 –

512 × 512 5880.7 4704.6 20.0

1024 × 1024 16,917.9 14,340 15.2

Numer Algor (2019) 80:305–336328



Table 6 Comparison of the total time (in seconds) to solve all 20 problems for each resolution between
GN and TS

Resolution Time GN Time TS Reduction (%)

128 × 128 65.6 45.5 30.6

256 × 256 606.5 432.0 28.7

512 × 512 5880.7 3202.6 45.5

1024 × 1024 16,917.9 13,898 17.8

Table 7 Comparison of the total time (in seconds) to solve all 20 problems for each resolution between
GN and HYBRID

Resolution Time GN Time HYBRID Reduction (%)

128 × 128 65.6 42.5 35.2

256 × 256 606.5 401.9 33.7

512 × 512 5880.7 2772.3 52.8

1024 × 1024 16,917.9 13,898 15.0

Table 8 Comparison of the total time (in seconds) to solve all 10 problems with medical images for each
resolution between GN and SIG

Resolution Time GN Time SIG Reduction (%)

128 × 128 55.7 49.4 11.3

256 × 256 563.6 562.6 0.2

512 × 512 5611.6 4404.5 21.5

1024 × 1024 15,456 12,524 18.9

Table 9 Comparison of the total time (in seconds) to solve all 10 problems with medical images for each
resolution between GN and TS

Resolution Time GN Time TS Reduction (%)

128 × 128 55.7 33.7 39.4

256 × 256 563.6 387.1 31.3

512 × 512 5611.6 2891.1 48.4

1024 × 1024 15,456 12,100.9 21.7
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Table 10 Comparison of the total time (in seconds) to solve all 10 problems with medical images for
each resolution between GN and HYBRID

Resolution Time GN Time HYBRID Reduction (%)

128 × 128 55.7 32.9 41.0

256 × 256 563.6 360.8 36.0

512 × 512 5611.6 2458.3 56.2

1024 × 1024 15,456 12,100.9 18.3

Fig. 21 Performance Profile based on CPU Time for the set of 30 problems with medical images and
resolutions of 128 × 128, 256 × 256 and 512 × 512. The black line (-x-x-) corresponds to the code GN
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solve problem p among all solvers that are being compared. Clearly, rp,s ≥ 1 for all
p and s. The performance profile for each code s is defined as

ρs(τ ) = number of problems for which rp,s ≤ τ

total number of problems
.

Therefore, the value ρs(τ ) represents the percentage of problems solved by algorithm
s with a cost at most τ times worse than that of the best algorithm. This means that,
for a given value of τ , the best solver is the one with the highest value of ρs(τ ). In
particular, ρs(1) gives the percentage of problems for which solver s is the best.

Figures 21, 22, and 23 show the performance profiles for codes GN and HYBRID
taking as reference all 30 problems with medical images and resolutions of 128×128,
256 × 256 and 512 × 512 (combined results of Tables 1, 2, and 3). As expected, we
can see that in this set of test problems, code HYBRID is significantly more efficient

Fig. 22 Performance Profile based on Number of Iterations for the set of 30 problems with medical
images and resolutions of 128× 128, 256× 256 and 512× 512. The black line (-x-x-) corresponds to the
code GN
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Fig. 23 Performance Profile based on Number of Function Evaluations for the set of 30 problems with
medical images and resolutions of 128×128, 256×256 and 512×512. The black line (-x-x-) corresponds
to the code GN

than GN in terms of CPU time and number of iterations. It is interesting to notice
that GN outperforms HYBRID in terms of the number of function evaluations. How-
ever, this effect is compensated by the time that HYBRID saves in the solution of a
smaller number of Gauss-Newton linear systems (which is equal to the number of
iterations).

As an example, Fig. 24 shows the registered images obtained by all codes applied
to problem MRI2 with resolution 512 × 512.

We also tested the codes GN and HYBRID on four 3D problems from [7] (such as
the Brain Problem illustrated on Figs. 25 and 26). The results are in Table 11.

Once again, HYBRID outperformed GN. However, it seems that the gain of
HYBRID overGN deteriorates when the problems become larger. One possible expla-
nation is that for larger problems, the computational cost to compute function and
gradient evaluations becomes comparable with the cost to solve the Gauss-Newton
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Fig. 24 Registered images for problem MRI2 with resolution 512 × 512

problem. In this case, the saving obtained by performing a smaller number of iter-
ations may be not enough to compensate the additional time used to evaluate the
objective function and its gradients.

Finally, it is worth to mention that the methods proposed in this work can be
applied to general smooth optimization problems. Notice that the key component
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Fig. 25 3D brain problem

(a) (b)

Fig. 26 Template and Reference for the 3D brain problem

Table 11 Results for 3D problems

GN HYBRID

Problem Time IT FE Time IT FE

1. Brain 1435 26 60 1249 25 97

2. Knee 937 16 40 698 13 56

3. Phantom 105 15 37 243 16 68

4. Mice 62 28 65 48 17 68

Total 2539 85 202 2238 71 289
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Table 12 Results for MGH problems

Gauss-Newton Algorithm 3

Problem (n,m) IT FE IT FE

1. Extended Rosenbrock (100,100) 50 180 32 129

2. Extended Rosenbrock (500,500) 49 177 27 110

3. Extended Powell Singular (100,100) 23 47 26 79

4. Extended Powell Singular (500,500) 24 49 26 79

5. Penalty I (100,101) 99 667 25 154

6. Penalty I (500,501) 101 670 27 154

7. Variably Dimensioned (100,100) 48 93 28 81

8. Discrete Integral Equation (100,100) 15 31 02 06

9. Broyden Tridiagonal (100,100) 20 41 11 32

10. Broyden Banded (100,100) 24 49 15 45

Total 453 2004 219 869

of the codes HYBRID and TS is the Algorithm 3 embedded on them. To evaluate
the performance of this algorithm on a different class of problems, we applied it
on a set of 10 test problems from [8] (without the multilevel step). The results on
Table 12 show that the gain obtained with Algorithm 3 over the standard Gauss-
Newton method is not restricted to image registration problems.

4 Conclusion

In this paper, we propose a two-step Gauss-Newton method for smooth unconstrained
optimization and a modified coarse-to-fine multilevel scheme. Both methods rely
on very simple subspace techniques and they aim the solution of image registra-
tion problems by the discretize-then-optimize approach. Numerical experiments were
performed on a diverse set of 20 pairs of images (Reference, Template) considering
four different resolutions. The results obtained correspond to more than 21 hours of
numerical experimentation. For registration problems with resolutions of 128× 128,
256× 256, and 512× 512, a hybrid of our two new subspace methods outperformed
the standard multilevel Gauss-Newton method, reducing the total running time in
52.8% for problems with resolution of 512×512. The advantage of the new methods
over the Gauss-Newton scheme is even bigger when we consider the registration of
medical images. For example, in our set of 10 problems from medical images with
resolution of 512 × 512, our hybrid method was faster than the multilevel Gauss-
Newton method on 9 problems, reducing the total running time in 56.2%. These
results are very encouraging. As a future work, we intend to investigate other choices
for the subspace used in the two-step Gauss-Newton method.
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