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Abstract In this paper, we consider the perturbation of the orthogonal projection
and the generalized inverse for an n × n matrix A and present some perturbation
bounds for the orthogonal projections on the rang spaces of A and A∗, respectively.
A combined bound for the orthogonal projection on the rang spaces of A and A∗
is also given. The proposed bounds are sharper than the existing ones. From the
combined bounds of the orthogonal projection on the rang spaces of A and A∗, we
derived new perturbation bounds for the generalized inverse, which always improve
the existing ones. The combined perturbation bound for the orthogonal projection and
the generalized inverse is also given. Some numerical examples are given to show the
advantage of the new bounds.
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1 Introduction

Let Cm×n and Cm×n
r be the set of all m×n complex matrices and the set of all m×n

complex matrices with rank r , respectively. For a matrix A ∈ Cm×n, by A∗, PA,
rang(A), ‖A‖, ‖A‖F , and ‖A‖2, we denote the conjugate transpose, the orthogonal
projection, the rang space, the general unitarily invariant norm, the Frobenius norm
(F -norm), and the spectral norm (2-norm) of A, respectively. We use Im to denote
the identity matrix of order m .

Let A ∈ Cm×n
r and B ∈ Cm×n

s have the following singular value decompositions
(SVDs):

A = U

(
�1 0
0 0

)
V ∗ and B = Ũ

(
�̃1 0
0 0

)
Ṽ ∗, (1.1)

where U = ( U1 U2 ), Ũ = ( Ũ1 Ũ2 ) ∈ Cm×m and V = ( V1 V2 ), Ṽ = ( Ṽ1 Ṽ2 )

∈ Cn×n are unitary matrices, U1 ∈ Cm×r , Ũ1 ∈ Cm×s , V1 ∈ Cn×r , Ṽ1 ∈ Cn×s ,
�1 = diag(σ1, . . . , σr ), �̃1 = diag(σ̃1, . . . , σ̃s), σ1 ≥ · · · ≥ σr > 0 and σ̃1 ≥
· · · ≥ σ̃s > 0. Let A† denote the Moore-Penrose inverse of A. It is easy to get

A = U1�1V
∗
1 , B = Ũ1�̃1Ṽ

∗
1 , (1.2)

A† = V1�
−1
1 U∗

1 , B† = Ṽ1�̃
−1
1 Ũ∗

1 , (1.3)

‖A†‖2 = 1

σr

and ‖B†‖2 = 1

σ̃s

. (1.4)

By (1.2) and (1.3), we have

E = B − A = Ũ1�̃1Ṽ
∗
1 − U1�1V

∗
1 , (1.5)

PA = AA† = U1U
∗
1 , PA∗ = A∗A∗† = A†A = V1V

∗
1 (1.6)

and
PB = Ũ1Ũ

∗
1 , PB∗ = V1Ṽ

∗
1 . (1.7)

In this paper, we frequently use the inequality as follows: if C is an n × n matrix, σn

and σ1 are the smallest and the largest singular values of C, respectively, then

σ1‖A‖F ≥ ‖CA‖F ≥ σn‖A‖F , σ1‖A‖F ≥ ‖AC‖F ≥ σn‖A‖F .

The generalized inverse and the orthogonal projection play important roles in matrix
computations. In particular, it can be applied to analyze sensitivity for solving least
square problems. Recently, some researchers have studied their perturbation bounds,
e.g., see [1–3, 6–8]. The classical Frobenius norm bounds for the orthogonal pro-
jection are listed below (e.g., see [8]): Let A ∈ Cm×n

r and B = A + E ∈ Cm×n
s .

Then

‖PB − PA‖F ≤
√

‖A†‖22 + ‖B†‖22‖E‖F . (1.8)
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In particular, if r = s, then

‖PB − PA‖ ≤ √
2min{‖A†‖2, ‖B†‖2}‖E‖F . (1.9)

Let A ∈ Cm×n
r , B = A + E ∈ Cm×n

s . Recently, Chen, Chen and Li [2] presented the
following Frobenius norm bound for the orthogonal projection:

‖PB − PA‖F ≤
√

‖EA†‖2F + ‖EB†‖2F . (1.10)

If r = s, then
‖PB − PA‖F ≤ √

2min{‖EA†‖F , ‖EB†‖F }. (1.11)

The bounds (1.10) and (1.11) improve the corresponding ones in (1.8) and (1.9).
On the other hand, they gave a combined bound as follows (see the bound (2.24) of
Theorem 2.8 in [2]):

‖PB − PA‖2F + ‖PB∗ − PA∗‖2F ≤ 4

σ 2
r + σ̃ 2

s

‖E‖2F . (1.12)

For the perturbation bound of the generalized inverse, Meng and Zheng [6]
presented the following results: Let A ∈ Cm×n

r and B = A + E ∈ Cm×n
s . Then

‖B† − A†‖F ≤ 1

min{σ 2
r , σ̃ 2

s }‖E‖F . (1.13)

If r = s, then

‖B† − A†‖F ≤ 1

σr σ̃r

‖E‖F . (1.14)

In order to illustrate our motivation of this paper, we give a simple example as
follows. Let

A =
(

U 0
0 0

)
, B =

(
(1 + ε)U 0

0 0

)
,

where U is a r × r unitary, ε > 0. Then

EA† =
(

εI 0
0 0

)
, EB† =

(
ε

1+ε
I 0

0 0

)
.

It is easy to get
‖PB − PA‖F = 0,

and the right hand sides of the bounds (1.10) and (1.11) are

√
‖EA†‖2F + ‖EB†‖2F =

√(
1 + 1

(1 + ε)2

)
ε2r

and
√
2min{‖EA†‖F , ‖EB†‖F } = ε

1+ε

√
2r, respectively. This example shows that

the variation of the orthogonal projection is independent of the perturbation ε. How-
ever, the bounds in (1.10) and (1.11) depend on the perturbation ε. By this motivation,
we explore some new variations for the perturbation of the orthogonal projection;
the new bounds may rub down the weakness of the bounds (1.10) and (1.11). From
the proposed bounds, we also derive the new perturbation bounds of the generalized
inverse, which can always improve the bound in (1.13). The idea is based on the
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elaborate analysis on the matrix decompositions. The contributions of this article are
given below:

– Improves the existing Frobenius norm bounds for perturbation of orthogonal
projections

– Improves the perturbation bound for the generalized inverse by the perturbation
result of orthogonal projections

The rest of the paper is organized as follows. In Section 2, we present the pertur-
bation bounds for the orthogonal projection on rang(A) and rang(A∗), respectively.
Also, we give a combined bound for the orthogonal projection on rang(A) and
rang(A∗). Comparing with some existing ones, our bounds are sharper. In Section 3,
we give the perturbation bounds for the generalized inverse, which always improve
the existing one. In Section 4, we consider the combined perturbation bound for the
orthogonal projection and the generalized inverse. In Section 5, we plot figures of
some examples to show the advantage of the new bounds. The final section gives
some concluding remarks.

2 The perturbation bound for orthogonal projections

In this section, we consider improving some existing perturbation bounds for the
orthogonal projection. The following two lemmas were given in [2], which will be
used in the sequel.

Lemma 2.1 Let U = (U1 U2) and V = (V1 V2) be unitary matrices of order n,
where U1, V1 ∈ Cn×r . Then for any unitarily invariant norm || · ||, we have

‖U∗
1V2‖ = ‖U∗

2V1‖. (2.1)

Lemma 2.2 Let A ∈ Cm×n
r , B ∈ Cm×n

s have the SVDs (1.1). Then

‖PB − PA‖2F = ‖Ũ∗
1U2‖2F + ‖U∗

1 Ũ2‖2F
‖PB∗ − PA∗‖2F = ‖Ṽ ∗

1 V2‖2F + ‖V ∗
1 Ṽ2‖2F . (2.2)

If r = s, then

‖PB − PA‖2F = 2‖Ũ∗
1U2‖2F and ‖PB∗ − PA∗‖2F = 2‖Ṽ ∗

1 V2‖2F . (2.3)

In the following, we discuss the perturbation of the orthogonal projection.

Theorem 2.3 Let A ∈ Cm×n
r , and B = A + E ∈ Cm×n

s be a perturbed matrix of A.
Then

‖PB∗ − PA∗‖2F ≤ 1

σ̃ 2
s

(‖E‖2F − σ 2
r ‖EA†‖2F ) + 1

σ 2
r

(‖E‖2F − σ̃ 2
s ‖EB†‖2F ).

If r = s, then

‖PB∗ − PA∗‖2F ≤ 2min

{
1

σ̃ 2
r

(‖E‖2F − σ 2
r ‖EA†‖2F ),

1

σ 2
r

(‖E‖2F − σ̃ 2
s ‖EB†‖2F

}
.



Numer Algor (2018) 79:657–677 661

Proof By (1.5) and (1.3), it is easy to get

Ũ∗EA†U =
(

�̃1Ṽ
∗
1 V1�

−1
1 − Ũ∗

1U1 0
−Ũ∗

2U1 0

)
.

Hence,

‖EA†‖2F = ‖�̃1Ṽ
∗
1 V1�

−1
1 − Ũ∗

1U1‖2F + ‖Ũ∗
2U1‖2F

= ‖(�̃1Ṽ
∗
1 V1 − Ũ∗

1U1�1)�
−1
1 ‖2F + ‖Ũ∗

2U1‖2F
≤ 1

σ 2
r

‖�̃1Ṽ
∗
1 V1 − Ũ∗

1U1�1‖2F + ‖Ũ∗
2U1‖2F , (2.4)

from which one can deduce that

‖�̃1Ṽ
∗
1 V1 − Ũ∗

1U1�1‖2F ≥ σ 2
r (‖EA†‖2F − ‖Ũ∗

2U1‖2F ). (2.5)

By (1.5), we have

Ũ∗EV = Ũ∗(Ũ1�̃1Ṽ
∗
1 − U1�1V

∗
1 )V

=
(

�̃1Ṽ
∗
1 V1 − Ũ∗

1U1�1 �̃1Ṽ
∗
1 V2

−Ũ∗
2U1�1 0

)
, (2.6)

which together with (2.5) gives

‖E‖2F = ‖�̃1Ṽ
∗
1 V1 − Ũ∗

1U1�1‖2F + ‖Ũ∗
2U1�1‖2F + ‖�̃1Ṽ

∗
1 V2‖2F

≥ σ 2
r (‖EA†‖2F − ‖Ũ∗

2U1‖2F ) + σ 2
r ‖Ũ∗

2U1‖2F + σ̃ 2
s ‖Ṽ ∗

1 V2‖2F
= σ 2

r ‖EA†‖2F + σ̃ 2
s ‖Ṽ ∗

1 V2‖2F .

Hence,

‖Ṽ ∗
1 V2‖2F ≤ 1

σ̃ 2
s

(‖E‖2F − σ 2
r ‖EA†‖2F ). (2.7)

Interchanging the matrices A and B in (2.7) gives

‖V ∗
1 Ṽ2‖2F ≤ 1

σ 2
r

(‖E‖2F − σ̃ 2
s ‖EB†‖2F ). (2.8)

By Lemma 2.2, we have

‖PB∗ − PA∗‖2F = ‖Ṽ ∗
2 V1‖2F + ‖Ṽ ∗

1 V2‖2F ,

which together (2.7) and (2.8) gives

‖PB∗ − PA∗‖2F ≤ 1

σ̃ 2
s

(‖E‖2F − σ 2
r ‖EA†‖2F ) + 1

σ 2
r

(‖E‖2F − σ̃ 2
s ‖EB†‖2F ).

If r = s, by Lemma 2.2, (2.7), and (2.8), we get

‖PB∗ − PA∗‖2F ≤ 2min

{
1

σ̃ 2
r

(‖E‖2F − σ 2
r ‖EA†‖2F ),

1

σ 2
r

(‖E‖2F − σ̃ 2
s ‖EB†‖2F )

}
.

This proves the theorem.

We replace A and B by A∗ and B∗ in Theorem 2.3, respectively; it is easy to get
the following corollary.
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Corollary 2.4 Let A ∈ Cm×n
r and B = A + E ∈ Cm×n

s . Then

‖PB − PA‖2F ≤ 1

σ̃ 2
s

(‖E‖2F − σ 2
r ‖A†E‖2F ) + 1

σ 2
r

(‖E‖2F − σ̃ 2
s ‖B†E‖2F ). (2.9)

If r = s, then

‖PB − PA‖2F ≤ 2min

{
1

σ̃ 2
r

(‖E‖2F − σ 2
r ‖A†E‖2F ),

1

σ 2
r

(‖E‖2F − σ̃ 2
r ‖B†E‖2F )

}
.

(2.10)

Remark 2.1 It is easy to see that the bounds in Corollary 2.4 are always sharper than
the corresponding one in (1.8) and (1.9) of [8]. In order to show that the bound (2.10)
is the sharpest, taking matrices A and B as given in Section 1, then the bound (2.10)
gives

1

σ̃ 2
r

(‖E‖2F − σ 2
r ‖A†E‖2F ) =

(
1

1 + ε

)2

(ε2r − ε2r) = 0,

1

σ 2
r

(‖E‖2F − σ̃ 2
r ‖B†E‖2F ) = ε2r − (1 + ε)2

ε2

(1 + ε)2
r = 0.

Hence, the equality in the bound (2.10) can be achieved.
In order to compare (2.9) with (1.10), consider

A =
⎛
⎝ 1 0
0 0
0 0

⎞
⎠ , B =

⎛
⎝ 1 + ε 0

0 ε

0 0

⎞
⎠ , (2.11)

where 0 < ε ≤ 1. Then

EA† =
⎛
⎝ ε 0 0
0 0 0
0 0 0

⎞
⎠ , A†E =

(
ε 0
0 0

)
, B†E =

(
ε

1+ε
0

0 1

)
, EB† =

⎛
⎝

ε
1+ε

0 0
0 1 0
0 0 0

⎞
⎠ .

The bound (1.10) is

‖EA†‖2F + ‖EB†‖2F = 1 + ε2 +
(

ε

1 + ε

)2

.

The bound (2.9) is

1

σ̃ 2
s

(‖E‖2F − σ 2
r ‖A†E‖2F ) + 1

σ 2
r

(‖E‖2F − σ̃ 2
s ‖B†E‖2F ) = 1 + ε2 − ε4

(1 + ε)2
,

which shows that the bound (2.9) is sharper than the one in (1.10). For more general
case, we will give some comparison in Section 5.

For the perturbation with rank(A) = rank(B), the combined bound of the
orthogonal projection on rang(A) and rang(A∗) was given in [2]. However, for gen-
eral perturbation, no combined bound has been given so far. Next, we present the
combined perturbation bounds.
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Theorem 2.5 Let A ∈ Cm×n
r and B = A + E ∈ Cm×n

s . Then

min{σ̃ 2
s , σ 2

r }(‖PB∗ − PA∗‖2F + ‖PB − PA‖2F )

≤ 2‖E‖2F − σ 2
r σ̃ 2

s (‖A†EB†‖2F + ‖B†EA†‖2F ). (2.12)

If r = s, then we have

(σ̃ 2
r + σ 2

r )(‖PB∗ − PA∗‖2F + ‖PB − PA‖2F )

≤ 4‖E‖2F − 2σ 2
r σ̃ 2

s (‖A†EB†‖2F + ‖B†EA†‖2F ). (2.13)

Proof By (1.5) and (1.3), we have

B†EA† = Ṽ1Ṽ
∗
1 V1�

−1
1 U∗

1 − Ṽ1�̃
−1
1 Ũ∗

1U1U
∗
1 ,

Ṽ ∗B†EA†U =
(

Ṽ ∗
1 V1�

−1
1 − �̃−1

1 Ũ∗
1U1 0

0 0

)
.

Hence, we have

‖B†EA†‖2F = ‖Ṽ ∗
1 V1�

−1
1 − �̃−1

1 Ũ∗
1U1‖2F

= ‖�̃−1
1 (�̃1Ṽ

∗
1 V1 − Ũ∗

1U1�1)�
−1
1 ‖2F

≤ σ−2
r σ̃−2

s ‖�̃1Ṽ
∗
1 V1 − Ũ∗

1U1�1‖2F . (2.14)

By (2.6) and (2.14), we have

‖E‖2F = ‖�̃1Ṽ
∗
1 V1 − Ũ∗

1U1�1‖2F + ‖Ũ∗
2U1�1‖2F + ‖�̃1Ṽ

∗
1 V2‖2F

≥ σ 2
r σ̃ 2

s ‖B†EA†‖2F + σ 2
r ‖Ũ∗

2U1‖2F + σ̃ 2
s ‖Ṽ ∗

1 V2‖2F .

So

σ 2
r ‖Ũ∗

2U1‖2F + σ̃ 2
s ‖Ṽ ∗

1 V2‖2F ≤ ‖E‖2F − σ 2
r σ̃ 2

s ‖B†EA†‖2F .

Similarly, we have

σ̃ 2
s ‖U∗

2 Ũ1‖2F + σ 2
r ‖V ∗

1 Ṽ2‖2F ≤ ‖E‖2F − σ 2
r σ̃ 2

s ‖A†EB†‖2F .

By Lemma 2.2, we have

min{σ̃ 2
s , σ 2

r }(‖PB∗ − PA∗‖2F + ‖PB − PA‖2F )

≤ 2‖E‖2F − σ 2
r σ̃ 2

s (‖A†EB†‖2F + ‖B†EA†‖2F ),

which implies the first bound of the theorem.
If r = s,then by Lemma 2.2, we have

(σ̃ 2
r + σ 2

r )(‖PB∗ − PA∗‖2F + ‖PB − PA‖2F )

≤ 4‖E‖2F − 2σ 2
r σ̃ 2

s (‖A†EB†‖2F + ‖B†EA†‖2F ),

which implies the second bound of the theorem. This proves the theorem.

Remark 2.2 It is easy to see that the bound (2.13) in Theorem 2.5 always improves
the one (1.12) given in [2]. On the other hand, the equality in (2.13) can be achieved.
In fact, let A and B be unitary matrices. Then the equality of the bound (2.13)
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holds. Furthermore, we get the new combined bound (2.12) which does not impose
restriction on rank.

3 The perturbation bound for generalized inverses

In this section, we use the bound (2.12) given in Section 2 to get a new perturbation
bound for generalized inverses.

Theorem 3.1 Let A ∈ Cm×n
r and B = A + E ∈ Cm×n

s . Then

‖B† − A†‖2F ≤ 1

min{σ 4
r , σ̃ 4

s }‖E‖2F

−1

2

(
max{σ 2

r , σ̃ 2
s }

min{σ 2
r , σ̃ 2

s } − 1

)
(‖A†EB†‖2F + ‖B†EA†‖2F ). (3.1)

Proof By the first equation of (2.14), we have

‖B†EA†‖2F = ‖Ṽ ∗
1 V1�

−1
1 − �̃−1

1 Ũ∗
1U1‖2F

= ‖Ṽ ∗
1 (B† − A†)U1‖2F .

Clearly, we have

‖Ṽ ∗
1 (B† − A†)U2‖2F = ‖�̃−1

1 Ũ∗
1U2‖2F

‖Ṽ ∗
2 (B† − A†)U1‖2F = ‖Ṽ ∗

2 V1�
−1
1 ‖2F

‖Ṽ ∗
2 (B† − A†)U2‖2F = 0.

Hence, it follows that

‖B† − A†‖2F = ‖B†EA†‖2F + ‖�̃−1
1 Ũ∗

1U2‖2F + ‖Ṽ ∗
2 V1�

−1
1 ‖2F

≤ ‖B†EA†‖2F + 1

σ̃ 2
s

‖Ũ∗
1U2‖2F + 1

σ 2
r

‖Ṽ ∗
2 V1‖2F .

Similarly, we have

‖B† − A†‖2F ≤ ‖A†EB†‖2F + 1

σ 2
r

‖U∗
1 Ũ2‖2F + 1

σ̃ 2
s

‖V ∗
2 Ṽ1‖2F .

Hence, we have

2σ 2
r σ̃ 2

s ‖B† − A†‖2F ≤ σ 2
r σ̃ 2

s (‖B†EA†‖2F + ‖A†EB†‖2F )

+max{σ 2
r , σ̃ 2

s }[‖U∗
1 Ũ2‖2F + ‖Ũ∗

1U2‖2F
+‖V ∗

2 Ṽ1‖2F + ‖Ṽ ∗
2 V1‖2F ].

which together with (2.12) gives

2σ 2
r σ̃ 2

s ‖B† − A†‖2F ≤ σ 2
r σ̃ 2

s (‖B†EA†‖2F + ‖A†EB†‖2F )

+max{σ 2
r , σ̃ 2

s }
min{σ 2

r , σ̃ 2
s } [2‖E‖2F −σ 2

r σ̃ 2
s (‖A†EB†‖2F +‖B†EA†‖2F )].
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Consequently,

‖B†−A†‖2F ≤ ‖E‖2F
min{σ 4

r , σ̃ 4
s } − 1

2

(
max{σ 2

r , σ̃ 2
s }

min{σ 2
r , σ̃ 2

s } − 1

)
(‖A†EB†‖2F + ‖B†EA†‖2F ),

which proves the theorem.

Next we give the perturbation bounds of the generalized inverse for perturbation
of a full rank matrix A.

Theorem 3.2 Let A ∈ Cm×n
m (m ≤ n), and B = A + E ∈ Cm×n

r . Then

‖B† − A†‖2F ≤ 1

σ 2
m + σ̃ 2

r

[
‖A†E‖2F + ‖B†E‖2F + σ̃ 2

r

σ 2
m

(m − r)

]
. (3.2)

Furthermore, if B ∈ Cm×n
m (m ≤ n), then

‖B† − A†‖F ≤ min{‖B†‖2‖A†E‖F , ‖A†‖2‖B†E‖F }. (3.3)

If A ∈ Cm×n
n , then

‖B† − A†‖2F ≤ 1

σ 2
n + σ̃ 2

r

[
‖EA†‖2F + ‖EB†‖2F + σ̃ 2

r

σ 2
n

(n − r)

]
. (3.4)

In addition, if rank(B) = n, then

‖B† − A†‖F ≤ min{‖B†‖2‖EA†‖F , ‖A†‖2‖EB†‖F }. (3.5)

Proof Let rank(B) = r ≤ m. By (1.2), we have

A = U�1V
∗
1 , B = Ũ1�̃1Ṽ

∗
1 .

By (1.3), we have

Ṽ ∗(B† − A†)U�1 =
(

�̃−1
1 Ũ∗

1U�1 − Ṽ ∗
1 V1

−Ṽ ∗
2 V1

)
.

Then, we have

‖(B† − A†)U�1‖2F = ‖�̃−1
1 Ũ∗

1U�1 − Ṽ ∗
1 V1‖2F + ‖Ṽ ∗

2 V1‖2F .

Hence,

‖�̃−1
1 Ũ∗

1U�1 − Ṽ ∗
1 V1‖2F + ‖Ṽ ∗

2 V1‖2F ≥ σ 2
m‖B† − A†‖2F . (3.6)

A simple computation gives

Ṽ ∗B†EV =
(

Ṽ ∗
1 V1 − �̃−1

1 Ũ∗
1U�1 Ṽ ∗

1 V2
0 0

)
,

which together with (3.6) gives

‖B†E‖2F = ‖�̃−1
1 Ũ∗

1U�1 − Ṽ ∗
1 V1‖2F + ‖Ṽ ∗

1 V2‖2F
≥ σ 2

m‖(B† − A†)‖2F + ‖Ṽ ∗
1 V2‖2F − ‖Ṽ ∗

2 V1‖2F . (3.7)



666 Numer Algor (2018) 79:657–677

Similarly, we have

V ∗(B† − A†)Ũ1�̃1 =
(

V ∗
1 Ṽ1 − �−1

1 U∗Ũ1�̃1

V ∗
2 Ṽ1

)
,

and then

‖V ∗
1 Ṽ1 − �−1

1 U∗Ũ1�̃1‖2F + ‖V ∗
2 Ṽ1‖2F ≥ σ̃ 2

r ‖(B† − A†)Ũ1‖2F . (3.8)

By similar arguments as above, we may obtain

‖A†E‖2F = ‖�−1
1 U∗Ũ1�̃1 − V ∗

1 Ṽ1‖2F + ‖V ∗
1 Ṽ2‖2F ,

which together with (3.8) gives

‖A†E‖2F ≥ σ̃ 2
r ‖(B† − A†)Ũ1‖2F + ‖V ∗

1 Ṽ2‖2F − ‖V ∗
2 Ṽ1‖2F

Since

σ̃ 2
r ‖(B† − A†)Ũ1‖2F = σ̃ 2

r ‖(B† − A†)Ũ1‖2F + σ̃ 2
r ‖(B† − A†)Ũ2‖2F

−σ̃ 2
r ‖(B† − A†)Ũ2‖2F

= σ̃ 2
r ‖B† − A†‖2F − σ̃ 2

r ‖(B† − A†)Ũ2‖2F
= σ̃ 2

r ‖B† − A†‖2F − σ̃ 2
r ‖�−1

1 U∗Ũ2‖2F
≥ σ̃ 2

r ‖B† − A†‖2F − σ̃ 2
r

σ 2
m

(m − r),

we have

‖A†E‖2F ≥ σ̃ 2
r ‖B† − A†‖2F − σ̃ 2

r

σ 2
m

(m − r) + ‖V ∗
1 Ṽ2‖2F − ‖V ∗

2 Ṽ1‖2F . (3.9)

Hence, by (3.7) and (3.9), we have

‖B† − A†‖2F ≤ 1

σ 2
m + σ̃ 2

r

[‖A†E‖2F + ‖B†E‖2F + σ̃ 2
r

σ 2
m

(m − r)].
which proves the bound (3.2).

Furthermore, if rank(B) = m, then by Lemma 2.1, we have ‖Ṽ ∗
1 V2‖2F =

‖Ṽ ∗
2 V1‖2F . It follows from (3.7) that

‖B† − A†‖F ≤ ‖A†‖2‖B†E‖F . (3.10)

Interchanging the role of A and B in the above inequality gives

‖B† − A†‖F ≤ ‖B†‖2‖A†E‖F ,

which together with (3.12) yields (3.3).
The proofs of (3.4) and (3.5) are analogical. This proves the theorem.

The following corollary follows immediately from the proof of Theorem 3.2.

Corollary 3.3 Let A ∈ Cm×n
m , and B = A + E be any perturbed matrix of A. Then

‖B† − A†‖2F ≤ ‖A†E‖2F + ‖B†E‖2F
σ 2

m

. (3.11)
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If A ∈ Cm×n
n , then

‖B† − A†‖2F ≤ ‖EA†‖2F + ‖EB†‖2F
σ 2

n

. (3.12)

By Theorem 3.2 it is easy to get a relative perturbation bound for the generalized
inverse.

Theorem 3.4 Let A, B ∈ Cm×n, and B = A + E. If rank(A) = rank(B) =
min{m, n}, then

‖B† − A†‖F

‖A†‖F

≤ ‖B†‖2‖E‖2. (3.13)

Remark 3.1 The bound (3.13) can reduce to Theorem 1.1 of [8] when both A and
B are nonsingular matrices. Clearly, the new bound in (3.1) is sharper than the cor-
responding one in (1.13). However, for the case that r = s < min{m, n}, we only
obtain the following bound by the same technique as in Theorem 3.1:

‖B† − A†‖F ≤ ‖A†‖2‖B†‖2‖E‖F , (3.14)

which is the same as the existing bound (1.14). But for r = s = min{m, n}, from
(3.2) and (3.4), we can derive the bound

‖B† − A†‖2F ≤ 1

σ 2
m + σ̃ 2

m

[‖A†E‖2F + ‖B†E‖]2F
or

‖B† − A†‖2F ≤ 1

σ 2
n + σ̃ 2

n

[‖EA†‖2F + ‖EB†‖]2F .

These bounds are smaller than (3.14), but larger than (3.3) and (3.5), respectively.
The following examples show the difference of the new bound in Theorem 3.1 and

the existing bounds. Let

A =
⎛
⎝ U 0 0

0 0 0
0 0 0

⎞
⎠ , B =

⎛
⎝ (1 + ε)U 0 0

0 εV 0
0 0 0

⎞
⎠ ,

where 0 < ε < 1, U and V are r × r unitary matrices. Then

‖B† − A†‖2F =
(

ε2

(1 + ε)2
+ 1

ε2

)
r

By the bound (3.1), we have

‖B† − A†‖2F ≤
(
2

ε2
+ ε2

(1 + ε)2
− 1

)
r.

The bound (1.13) is

‖B† − A†‖2F ≤ 2r

ε2
.

Now, we give another example. Let A and B be given by (2.11). Then

B†EA† = A†EB† =
(

ε
1+ε

0 0
0 0 0

)
.



668 Numer Algor (2018) 79:657–677

By the bound (3.1), we get

‖B† − A†‖22 ≤ 2

ε2
− 1 − ε

1 + ε
,

while by the bound (1.13), we have

‖B† − A†‖22 ≤ 2

ε2
.

Remark 3.2 For A and its perturbed matrix B being full rank matrices, it is noted that
the bounds (3.3) and (3.5) are always sharper than the one in (3.14). The following
example shows the difference of (3.3) and (3.14). Let

A =
(

U 0 0
0 V 0

)
, B =

(
(1 + ε)U 0 0

0 εV 0

)
,

where 0 < ε < 1, U and V are r × r unitary matrices. Then by (3.14), we have

‖B† − A†‖2F ≤
(
1 + (ε − 1)2

ε2

)
r.

By (3.3), we have

‖B† − A†‖2F
(

ε2

(1 + ε)2
+ (ε − 1)2

ε2

)
r,

which shows that the bound (3.3) is sharper.

For the perturbation of a full rank matrix, it is difficult to compare the perturbation
bound for the generalized inverse in theory. However, the following example shows
that the new bounds in Theorem 3.2 is the best. Let

A =
(
1 0 0
0 1 0

)
, B =

(
ε 0 0
0 0 0

)
,

where 0 < ε ≤ 1. Then ‖B† − A†‖2F = 1 + (1−ε)2

ε2
.

By (1.13), we have

‖B† − A†‖2F ≤ 1

ε4
[1 + (1 − ε)2].

The bound (3.1) gives

‖B† − A†‖2F ≤ 1

ε4
+ (ε − 1)2

ε2

and (3.2) is

‖B† − A†‖2F ≤ 1 + (1 − ε)2

1 + ε2
(1 + 1

ε2
)

= 1 + (1 − ε)2

ε2
.



Numer Algor (2018) 79:657–677 669

Finally, it follows from (3.11) that

‖B† − A†‖2F ≤ 1 + (1 − ε)2 + (1 − ε)2

ε2
.

For small ε, it is easy to see that

(3.2) < (3.11) < (3.1) < (1.13),

where we have used the equation numbers to represent the corresponding bounds.
This example also shows that the equality of the bound (3.2) can be achieved. Further
numerical comparison of the proposed bounds and existing bounds will be given in
Section 5.

Remark 3.3 The following example shows that (3.3) and (3.5) cannot hold in the case
r = s < min{m, n}, let

A =
⎛
⎝ 1 0 0
0 1 0
0 0 0

⎞
⎠ , B =

⎛
⎝ 0 0 0
0 1 0
0 0 1

⎞
⎠ ,

then E = B − A, A† = A, B† = B, and

A†E = EA† =
⎛
⎝ −1 0 0

0 0 0
0 0 0

⎞
⎠ , B†E = EB† =

⎛
⎝ 0 0 0
0 0 0
0 0 1

⎞
⎠ .

Hence, ‖B† − A†‖F = √
2, but

min{‖B†‖2‖A†E‖F , ‖A†‖2‖B†E‖F } = min{‖B†‖2‖EA†‖F , ‖A†‖2‖EB†‖F } = 1,

which contradicts to those in (3.3) and (3.5).

4 Combined perturbation bounds for the orthogonal projection
and the generalized inverse

The idea of the combined bound was first used in [4, 5]. Following this idea, we con-
sider combined perturbation bounds for the orthogonal projection and the generalized
inverse. The main result of this section is given below.

Theorem 4.1 Let A ∈ Cm×n
r and B = A + E ∈ Cm×n

r . Then

2σ̃ 2
r σ 2

r ‖PB∗(B† − A†)PA‖2F + σ̃ 2
r ‖PB∗ − PA∗‖2F + σ 2

r ‖PB − PA‖2F ≤ 2‖E‖2F
or

2σ̃ 2
r σ 2

r ‖PA∗(B† − A†)PB‖2F + σ 2
r ‖PB∗ − PA∗‖2F + σ̃ 2

r ‖PB − PA‖2F ≤ 2‖E‖2F .

Proof By (1.2) and (1.3), we have

B(B† − A†)A = Ũ1Ũ
∗
1U1�1V

∗
1 − Ũ1�̃1Ṽ

∗
1 V1V

∗
1

= Ũ1(Ũ
∗
1U1�1 − �̃1Ṽ

∗
1 V1)V

∗
1 .
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Then

Ũ∗B(B† − A†)AV =
(

Ũ∗
1U1�1 − �̃1Ṽ

∗
1 V1 0

0 0

)
. (4.1)

Since

Ũ∗
1U1�1 − �̃1Ṽ

∗
1 V1 = Ũ∗

1 (U1�1V
∗
1 − Ũ1�̃1Ṽ

∗
1 )V1

= −Ũ∗
1EV1,

by (4.1), we have

‖B(B† − A†)A‖2F = ‖Ũ∗
1EV1‖2F .

By (2.6), we have

Ũ∗
2EV1 = −Ũ∗

2U1�1, Ũ∗
1EV2 = �̃1Ṽ

∗
1 V2 andŨ

∗
2EV2 = 0.

Hence, we get

‖B(B† − A†)A‖2F + ‖Ũ∗
2U1�1‖2F + ‖�̃1Ṽ

∗
1 V2‖2F = ‖Ũ∗EV ‖2F . (4.2)

A simple computation gives that

‖B(B† − A†)A‖F = ‖Ũ1�̃1Ṽ
∗
1 (B† − A†)U1�1V

∗
1 ‖F

= ‖�̃1Ṽ
∗
1 (B† − A†)U1�1‖F

≥ σ̃rσr‖Ṽ ∗
1 (B† − A†)U1‖F

and

‖Ṽ ∗
1 (B† − A†)U1‖2F = tr(U∗

1 (B† − A†)∗Ṽ1Ṽ
∗
1 (B† − A†)U1)

= tr((B† − A†)∗Ṽ1Ṽ
∗
1 (B† − A†)U1U

∗
1 )

= tr((B† − A†)∗PB∗(B† − A†)PA)

= tr(PA(B† − A†)∗PB∗PB∗(B† − A†)PA)

= ‖PB∗(B† − A†)PA‖2F ,

which together with (4.2) gives

‖PB∗(B† − A†)PA‖2F + σ 2
r ‖Ũ∗

2U1‖2F + σ̃ 2
r ‖Ṽ ∗

1 V2‖2F ≤ ‖E‖2F . (4.3)

It follows from Lemma 2.2 that the first bound in Theorem 4.1 holds. The second
bound is given by interchanging the role of A and B in the just given bound. This
proves the theorem.

5 Numerical results

In order to show the differences between the new bounds and the existing bounds, we
give some numerical examples and plot their figures in the following two subsections.
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5.1 Comparisons of the new bounds with the existing bounds for orthogonal
projections

In this subsection, we will compare the new bound with the existing ones for orthogo-
nal projections by some examples. The first example is for perturbation with different
ranks.

Example 1 Let

A = U

(
Ir 0
0 0

)
V ∗ ∈ Cm×n, E = U

(
Ir+1 0
0 0

)
V ∗ ∈ Cm×n, B = A + εE,

where U and V are unitary matrices.

Now taking ε = 0.1 : 0.1 : 1, and m = 3, n = 2, r = 1, then we plot the figure as
follows (Fig. 1):

In this example, we can see that the bound (2.9) is sharper than the corres-
ponding ones in (1.8) and (1.10). The next example is for the case of rank(A) =
rank(B).

Example 2 Let A = U1

(
�1
0

)
V ∗
1 ∈ C5×4, B0 = U2

(
�2
0

)
V ∗
2 ∈ C5×4, and

B = εB0, where �1, �2 are 4 × 4 positive diagonal matrices and U1, U2, V1, V2 are
unitary matrices.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
1

1.5

2

2.5

3

3.5

4

4.5

bo
un

d

exact bound
bound (2.9)
bound (1.10)
bound (1.8)

Fig. 1 Comparison of (2.9) with existing bounds
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Let the diagonal entries of �1, �2 be taken by the uniform distribution in the
interval (1, 2), and let ε = 0.1 : 0.1 : 1. Then we plot the figure as follows:

By Fig. 2, it is seen that the bound (2.10) is the best. This confirms the theoretical
analysis in Remark 2.1.

Next, we take 100 matrix pairs A and B in R
5×4 for comparing these bounds for

the case of rank(A) = rank(B).

Example 3 Let A = U1

(
�1
0

)
V ∗
1 ∈ C5×4, B0 = U2

(
�2
0

)
V ∗
2 ∈ C5×4, and

B = εB0, where U1, U2, V1, V2 are taken unitary matrices randomly and �1, �2
are 4 × 4 diagonal matrices whose diagonal entries are generated independently by
uniform distributions in (1, 2).

Taking ε = 0.1 : 0.1 : 1. For each given ε, we generate 100 matrix pairs A and
B0 by the method in Example 3. For those chosen 100 matrix pairs, we can get the
best bounds among (1.9), (1.11), and (2.10) and denote the number of the best bound
among three bounds by BN(*.*). Then we draw the figure below:

From Fig. 3, it is easy to see that the bound (2.10) is the best in the most cases
(above 80 percent). Next, two examples are for different ranks.

Example 4 Let

A = U1

(
�1 0
0 0

)
V ∗
1 ∈ C5×4, B0 = U2

(
�2
0

)
V ∗
2 ∈ C5×4,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
0

5

10

15

20

25

bo
un

d

exact bound
bound (2.10)
bound (1.11)
bound (1.9)

Fig. 2 Comparison of (2.10) with existing bounds
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Fig. 3 Comparison of (2.10) with existing bounds by 100 matrix pairs

and B = εB0, where U1, U2, V1, V2 are unitary matrices and �1, �2 are 2 × 2 and
4×4 positive diagonal matrices, respectively, whose diagonal entries are all generated
independently by uniform distributions in the interval (1, 2).

Taking ε = 0.1 : 0.1 : 1, then we plot Fig. 4 for comparing bounds (1.8), (1.10),
and (2.9) with the exact bound.

In Fig. 4, one can see the bound (2.9) is the closest to the exact bound.
Next we take 100 matrix pairs A and B in R

5×4 for comparing bounds (1.8),
(1.10), and (2.9) for the case of rank(A) �= rank(B).

Example 5 Let

A = U1

(
�1 0
0 0

)
V ∗
1 ∈ C5×4, B0 = U2

(
�1
0

)
V ∗
2 ∈ C5×4,

and B = εB0, where U1, U2, V1, V2 are taken unitary matrices randomly and
�1, �1 are 2 × 2 and 4 × 4 diagonal matrices whose diagonal entries are generated
independently by uniform distributions in the interval (1, 2), respectively.

Let ε = 0.1 : 0.1 : 1. For each given ε, we generate 100 matrix pairs A and B0
given by the method in Example 5. For those chosen 100 matrix pairs, we can get the
best bounds among (1.8), (1.10), and (2.9) and denote the number of the best bound
among three bounds by BN(*.*). Then we draw the figure below:

Figure 5 shows that the bound (2.9) is the best in most cases (above 70 percent).
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Fig. 4 Comparison of (2.9) with existing bounds for different ranks
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Fig. 5 Comparison of (2.9) with existing bounds by 100 random matrix pairs
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5.2 Comparison of the new bounds with the existing bounds for generalized
inverses

In this subsection, we will compare the proposed bound with the existing ones for
generalized inverses by some numerical examples and see their difference from the
exact bound.

Example 6 Let D ∈ C4×4 be a diagonal matrix whose diagonal entries are generated
independently by a uniform distribution on the interval (0, 1), and let D2 be also a
diagonal matrix whose diagonal entries are taken from the first 2 diagonal ones of D.
Denote

A = U
(
D 0

)
V ∗ ∈ C4×6

4 , B0 = U

(
D2 0
0 0

)
V ∗ ∈ C4×6

2 ,

and B = εB0, where U and V are unitary matrices.

Let ε = 0.5 : 0.05 : 1. Then we plot the following figures for comparing the
bounds (1.13), (3.1), (3.2), and (3.17) with the exact bound and comparing the bound
(3.1) with (1.13) for a perturbation of a full rank matrix A, respectively.

In Fig. 6, it is seen that the bound (3.2) is the closest to the exact bound, and the
bound (3.1) is very close to the bound (1.13). So we plot Fig. 7, in which one can see
that the bound (3.1) is also better than (1.13). For A and its perturbed matrix B being
full rank rectangular matrices, we compare the bounds (3.3) and (1.14) with the exact
bound in the following example.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1   
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102
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bo
un

d

exact bound
bound (3.2)
bound (3.17)
bound (3.1)
bound (1.13)

Fig. 6 Comparison of the proposed bounds with existing bounds
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Fig. 7 Comparison of the bounds (3.1) with (1.13)

Example 7 Let

A = U
(
D1 0

)
V ∗ ∈ C4×6

4 , B0 = U
(
D2 0

)
V ∗ ∈ C4×6

4 ,

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1   
101

102

103

104

bo
un

d

exact bound
bound (3.3)
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Fig. 8 Comparison bounds (1.14) and (3.3) with the exact bound
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and B = εB0, where U, V are unitary matrices and D1, D2 are 4 × 4 positive
diagonal matrices whose diagonal entries are generated independently from uniform
distribution on the interval (0, 1).

Taking ε = 0.5 : 0.05 : 1, then we draw the figure below:
From Fig. 8, it is known that the bound (3.3) is better than (1.14) and is closed to

the exact bound.

6 Concluding remarks

In the paper, we considered the perturbation bounds for the orthogonal projection and
the generalized inverse, respectively. We have obtained the following results:

– The refined perturbation bounds for the orthogonal projection on rang(A) and
rang(A∗), respectively

– Some new perturbation bounds for the generalized inverse
– A combined perturbation bound for the orthogonal projections on rang(A) and

rang(A∗)
– A combined perturbation bounds for the orthogonal projection and the general-

ized inverse

The new bounds improve the existing ones. Some numerical examples are given to
justify the theoretical results.

In the future, we may employ the technique given in this paper to analyze the
sensitivity of the generalized least square problems arisen from practical applications.
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