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Abstract In this paper, a novel technique incorporated the homotopy analysis
method (HAM) with Coiflets is developed to obtain highly accurate solutions of the
Föppl-von Kármán equations for large bending deflection. The characteristic scale
transformation is introduced to nondimensionalize the governing equations. The
results are obtained for the transformed nondimensional equations, which are in very
excellent agreement with analytical ones or numerical benchmarks performing good
efficiency and validity. Besides, we notice the nonlinearity of the Föppl-von Kármán
equations is closely connected with the load and length-width ratio of the plate. For
the case of the plate suffering tremendous loads, the traditional linear theory does
not work, while our Coiflets solutions are still very accurate. It is expected that our
proposed approach not only keeps the outstanding merits of the HAM technique for
handling strong nonlinearity, but also improves on the computational efficiency to a
great extent.
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1 Introduction

The famous Föppl-von Kármán (FvK) equations governing deflections of a thin flat
rectangular plate, proposed by Föppl [1] and von Kármán [2], are written as

D∇4W− h

(
∂2W

∂X2

∂2�

∂Y 2
+ ∂2�

∂X2

∂2W

∂Y 2
− 2

∂2W

∂X∂Y

∂2�

∂X∂Y

)
= Q, (1a)

∇4� + E

[
∂2W

∂X2

∂2W

∂Y 2
−
(

∂2W

∂X∂Y

)2]
= 0, (1b)

where (1a) is derived on basis of kinematic assumptions and the constitutive relations,
while (1b) is equivalent to compatibility equation of deformation.

In above equations, W = W(x, y) denotes the vertical deflection, � = �(x, y)

is the Airy stress function, h is the thickness of the plate, Q is the vertical external
force per unit of area, D = Eh3/[12(1 − μ2)] is the bending stiffness of plate, E

is the elasticity modulus, μ is the Poisson’s ratio ranging from − 1 to 0.5, ∇ is the
biharmonic operator with the following property

∇4 = ∇2∇2 = ∂4

∂X4
+ 2

∂4

∂X2∂Y 2
+ ∂4

∂Y 4
.

Schematic diagram of force analysis and coordinate system is illustrated in Fig. 1,
where Mx, My are the bending moments, Mxy is the torsion moment, Qx, Qy are
the shear vertical forces, Nx, Ny are the membrane axial forces, Nxy is the horizontal
shear force, Vx, Vy are the equivalent shear forces. The detailed derivative process
are elaborated in literature [3, 4] and can be found in Appendix 1.

Many efforts have been done towards understanding the physical and mathemat-
ical mechanism of the Föppl-von Kármán equations by different researchers with
various approaches. Among those studies, Knightly [5] obtained a priori bound and

Fig. 1 Force analysis and coordinate system of plate element
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a global existence theorem for solutions of the von Kármán equations describing
deflections in a thin elastic plate clamped at its edges with combined normal and
edge loading being imposed on. Kesavan [6] numerically obtained non-trivial solu-
tions of the Föppl-von Kármán equations using an iterative finite element method
which produces approximate solutions bifurcated from a trivial solution close to sim-
ple eigenvalues of the linearized problem. Chueshov [7] presented a proof on the
existence of wide collection of finite sets of functions for full determination of the
long-time solutions of the von Kármán evolution equations and other nonlinear par-
tial differential equations of second order in time. DaSilva and Krauth [8] provided
an algorithm that can be used to obtain the solution of the von Kármán’s and related
problems involving into elasticity theory. By an extraordinary technique of successive
reconditioning, their solution took away the convergence difficulties due to various
nonlinear stretching and pure bending energies. Lewicka et al. [9] made an exten-
sion of the Föppl-von Kármán equations to take account of the shape of stresses in
an elastic plate with residual strains, whose formulation was expected to be further
applied to describe other active materials in low dimension. Xue et al. [10] applied
the von Kármán plate theory on developing a mathematical model on large deflection
of a rectangular magnetoelectroelastic thin sheet whose bottom undergoes an acting
force due to transverse static mechanical loads. Other typical studies on this topic are
found in the papers written by Ciarlet et al. [11, 12], Ciarlet and Gratie [13], Ciarlet
and Paumier [14], Ciarlet et al. [15], Milani [16], Coman [17], and Doussouki et al.
[18].

Though many numerical and experimental studies with regard to various aspects
of the Föppl-von Kármán equations have been done, few researchers have paid their
attention to analytical aspects of such equations. Van Gorder [19] firstly made an
attempt to obtain analytical solutions of the Föppl-von Kármán equations by combin-
ing the HAM technique [20–26]and the Fourier method [27, 28]. He firstly linearized
the equations by the HAM technique, by solving a series of linear equations, the ana-
lytical approximations are finally obtained for a range of physical parameters. His
method has efficiently controlled the item inflation in right part of higher deforma-
tion by projecting the solution in functional space spanned by finite trigonometric
basis.

In this paper, we develop a novel wavelet-homotopy method to handle the Föppl-
von Kármán equations for large bending deflection. In doing so, we introduce the
wavelet-Galerkin method into the HAM technique to improve the computation effi-
ciency by choosing Coiflets [29–31] as basis. It should be noted that Xing [32]
once tried to combine the HAM technique with wavelet, but his solution was lack
of a convergence control parameter, that leads to the convergence of his solution
could not be guaranteed. The framework is illustrated as the following. In Section 2,
governing equations are dimensionalized and different boundary conditions are put
forward. In Section 3, HAM technique is applied to convert the governing equa-
tions to a set of linear differential ones. After approximated by wavelets, coupled
algebra iterating equations are proposed so as to give Coiflets series. In Section 4,
several examples are illustrated to validate solution of our approach. Accurate solu-
tions are given for ultimate load strength in large deformation of plate with fierce
nonlinearity.
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2 Mathematical formulation

According to the Kirchhoff hypothesis [33], if the plate material is homogeneous and
isotropic, then the surface normals remain perpendicular to the neutral plate after
deformation. Equations (1a,b) can be formulated via an energy approach with con-
sideration of variations of internal energy and the work done by external forces. Note
that membrane displacements and change of plate thickness are negligible.

2.1 The dimensionless equations

The nondimensional Föppl-von Kármán equations derived from (1a,b) are given by
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)
= q, (2a)
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)2]
= 0, (2b)

via the following transformations

x = X

a
, y = Y

b
, w = W

h
, ϕ = �h

D
, λ = b

a
, (3)

where w is the dimensionless vertical deflection, ϕ is the dimensionless Airy stress
function, a, b, and h are, respectively, the length, the width, and the thickness of the
plate, dimensionless loads q and constant Ke are

Ke = 12(1 − μ2), q = KQa2b2

Eh4
(4)

and the dimensionless biharmonic operator

∇̂4 = λ2
∂4

∂x4
+ 2

∂4

∂x2∂y2
+ 1

λ2

∂4

∂y4
. (5)

2.2 Closeness and boundary analysis

In order to ensure (2a,b) being closed while calculation domain �̂ = [0, X] × [0, Y ]
is transformed to � = [0, 1] × [0, 1] with the boundary � = ∂(�) , 16 bound-
ary conditions have to be taken into consideration. In consideration of an isolated
rectangular plate with circled simply supported edge, the bending moment does not
exist without external force. In this case, the corresponding boundary conditions in
nondimensional forms are written as

w(x, y)|� = ∂2w

∂x2

∣∣∣∣
y=0,1

= ∂2w

∂y2

∣∣∣∣
x=0,1

= 0, (6)

and for circled clamped edge, boundary bending angle is zero without deformation,

w(x, y)|� = ∂w

∂n

∣∣∣∣
�

= 0, (7)
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and the combined edge that two parallel edges clamped and the other two parallel
edge simply supported

w(x, y)|� = ∂w

∂x

∣∣∣∣
y=0,1

= ∂2w

∂y2
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x=0,1

= 0. (8)

Due to the dimensionless lateral stress meets

σm
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K

∂2ϕ

∂x2
, σm

y = 1

K

∂2ϕ

∂y2
, τxy = − 1

K

∂2ϕ

∂x∂y
(9)

where σm
x , σm

y are membrane axial stresses and τxy is membrane shear stress. For an
isolate plate, membrane stress circled the plate does not exist which satisfies

∂2ϕ

∂x2

∣∣∣∣
y=0,1

= ∂2ϕ

∂x∂y

∣∣∣∣
y=0,1

= ∂2ϕ

∂y2

∣∣∣∣
x=0,1

= ∂2ϕ
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x=0,1

= 0. (10)

Except for the boundary conditions due to the surface force distribution, we still
need other conditions for ϕ(x, y) to ensure the equations being closed. Without loss
of generality, further boundary conditions are supplemented as

ϕ(x, 0) = f1(x), ϕ(x, 1) = g1(x), ϕ(0, y) = f2(y), ϕ(1, y) = g2(y). (11)

To let the boundary conditions at edges be compatible, it requires

f1(0) = f2(0), g1(1) = g2(1), f1(1) = g2(0), f2(1) = g1(0). (12)

Regarding physical requirements in (9), which lead to

ϕ(x, y) = C1x + C2y + C3. (13)

It is readily to know that (13) satisfies (2a,b) automatically, which means that C1, C2,
and C3 can be any constants. We therefore set C1 = C2 = C3 = 0 for convenience.
As a result, the following boundary conditions can be given

ϕ(x, y)|� = 0. (14)

Now, the problem becomes closed and can be solved conveniently.

3 HAM with wavelet basis

In this section, we combine the HAM technique with the wavelet basis to give highly
accurate solutions to the above-mentioned problem.

3.1 Linearization by HAM

We first apply the HAM technique to transform the nonlinear equations to a group of
linear ones. To do so, we first choose the linear operators as follows:

Lϕ = Lw = ∇̂4. (15)
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Then, the HAM deformation equations can be constructed as

(1 − 
)Lw[�(x, y; 
) − �(x, y; 0)] = 
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), �(x, y; 
)],(16a)
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)],(16b)

where 
 ∈ [0, 1] is an embedding parameter, c1 and c2 are the convergence-
control parameters, �(x, y; 
) and �(x, y; 
) are mappings of w(x, y) and ϕ(x, y),
Nw[�, �] and Nϕ[�, �] are nonlinear operators defined by
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)
− q, (17a)
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The appropriated boundary conditions are

�(x, 0; 
) = ∂2�(x, 0; 
)

∂x2
= 0, �(x, 1; 
) = ∂2�(x, 1; 
)

∂x2
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)
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)
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= 0,
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)
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)
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(18)

From (16a,b), we notice


 = 0, �(x, y; 0) = w0(x, y), �(x, y; 0) = ϕ0(x, y), (19a)


 = 1, �(x, y; 1) = w(x, y), �(x, y; 1) = ϕ(x, y), (19b)

where w0(x, y) and ϕ0(x, y) are the initial guesses.
As 
 increases from 0 to 1, �(x, y; 
) and �(x, y; 
) vary from their initial

guessesw0(x, y) and ϕ0(x, y) to the exact solutionsw(x, y) and ϕ(x, y). The explicit
forms of �(x, y; 
) and �(x, y; 
) can be expressed by the Taylor expansions with
respect to 
 in the following forms

�(x, y; 
) = w0(x, y) +
+∞∑
M=1

wM(x, y)
M, (20a)

�(x, y; 
) = ϕ0(x, y) +
+∞∑
M=1

ϕM(x, y)
M, (20b)

where

wM(x, y) = 1

M!
∂M�(x, y; 
)

∂
M
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=0

, (21a)

ϕM(x, y) = 1

M!
∂M�(x, y; 
)

∂
M
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=0

. (21b)
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The convergent HAM series solutions can be expected as all auxiliary parameters
are properly chosen to ensure that the Taylor series all converge at 
 = 1. In this
case, we have

w(x, y) = w0(x, y) +
+∞∑
M=1

wM(x, y), (22a)

ϕ(x, y) = ϕ0(x, y) +
+∞∑
M=1

ϕM(x, y). (22b)

Differentiating (16a,b) M times with respect to p, then dividing them by M!,
finally setting p = 0, we obtain the Mth-order deformation equations

Lw[wM − χMwM−1] = c1{∇4wM−1 + Rw
M + (χM − 1)q}, (23a)

Lϕ[ϕM − χMϕM−1] = c2{∇4ϕM−1 + R
ϕ
M}, (23b)

where

Rw
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)
,

and

χk̄ =
{
0, k̄ ≤ 1,

1, k̄ > 1.
(24)

3.2 Coiflets with boundary modification

Solution expressions are very important to improve the convergence of the HAM
solutions. However, it is not easy to choose them when the nonlinear problems
become considerably complicated. This is due to the solutions of the group of non-
homogeneous HAM high-order linear equations can be hardly determined when the
solution expressions are not basic functions. To overcome this limitation, we intro-
duce the Generalized Orthogonal Coiflets basis [34] into the HAM technique as the
expansion functions.

Due to border jump existence in wavelet, approximate expansions for f (x) at
x = 0 and x = 1 are given by boundary modification of three points interpolation
extension in literature [29, 35]

f̃ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
k=0

f

(
k

2j

)
T0,k(x), x ∈ (−δ, 0),

f (x), x ∈ [0, 1],
3∑

k=0

f

(
1 − k

2j

)
T1,k(x), x ∈ (1, 1 + δ),

(25)
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where δ is small amount, j is resolution level, and T0,k(x) and T1,k(x) are the
modification functions defined by

T0,k(x) =
3∑

i=0

(
p0

i,k

i!
)

xi, T1,k(x) =
3∑

i=0

(
p1

i,k

i!
)

(x − 1)i (26)

with p0
i,k and p1

i,k determined by coefficient matrices P0 and P1.

P0 =

⎛
⎜⎜⎝

1 0 0 0
−11/6 3 −3/2 1/3

2 −5 4 −1
−1 3 −3 1

⎞
⎟⎟⎠ , P1 =

⎛
⎜⎜⎝

1 0 0 0
11/6 −3 3/2 −1/3
2 −5 4 −1
1 −3 3 −1

⎞
⎟⎟⎠ .

Taking the compactly supported [0, L] of wavelets and domain of function [0, 1]
into consideration [29], f̃ (x) is approximated as

f̃ (x) ≈
2j −1∑

k=2−3N

f̃

(
M1 + k

2j

)
ψ(2j x − k) =

2j −1+M1∑
k=2−3N+M1

f̃

(
k

2j

)
ψ(2j x − k + M1).

(27)
where M1 is the first-order vanishing moment, N is the vanishing moment, L is
compactly supported length which equals 3N − 1 in Coiflets family, and ψ is the
wavelet basis. It is turned out that coefficients of Coiflets series is the approximate
value of the function middle points.

Substitute (25) into wavelet expansion (27), we obtain the desired wavelet basis
with boundary modification

φj,k(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1∑
i=2−3N+M1

T0,k

(
i

2j

)
ψj,i(x) + ψj,k(x), k ∈ [0, 3],

ψj,k(x), k ∈ [4, 2j − 4],
2j −1+M1∑
i=2j +1

T1,2j −k

(
i

2j

)
ψj,i(x) + ψj,k(x), k ∈ [2j − 3, 2j ]

(28)

where

ψj,i(x) = ψ(2j x − i + M1), ψj,k(x) = ψ(2j x − k + M1).

3.3 Approximation by wavelet basis

In generalized orthogonal Coiflets system [34], resolution wavelet is the same as
reconstituted wavelet distinguished from Biorthogonal Coiflets System. Approxi-
mation of an arbitrary binary function G(x, y) when u = v = 0 and its partial
derivatives in x and y directions with u and v orders subjected to homogeneous
boundary conditions is

∂u+v

∂xu∂yv
P jG(x, y) =

2j∑
k=0

2j∑
l=0

G

(
k

2j
,

l

2j

)
φ

(u)
j,k (x)φ

(v)
j,l (y). (29)
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Moreover, scale of error approximating estimation are conducted in [34] only
related to resolution level j , reconstruction level J , vanishing moment and filtering
coefficients of wavelets in the following lemma. Besides, some important definitions
of mathematical operators are defined in Appendix 2.

Lemma If arbitrary binary G(x, y) ∈ L2([0, 1] × L2([0, 1])⋂CN([0, 1] × [0, 1]),
the accuracy of the approximation (29) can be estimated as

∥∥∥∥∂
u+vG(x, y)

∂xu∂yv
− ∂u+vP jG(x, y)

∂xu∂yv

∥∥∥∥
L2

≤ Cp2
−j (N−u−v), (30)

∥∥∥∥∂
u+vG(x, y)

∂xu∂yv
− ∂u+vSJ G(x, y)

∂xu∂yv

∥∥∥∥
L2

≤ Cs2
−J (N−u−v), (31)

where Cp and Cs are positive constants that depend only on G(x, y) and wavelets,
and 0 ≤ u + v < N .

In view of (6,10,14), boundary matrices P0 and P1 are supposed to be modified
corresponding to different conditions. For circled simply supported edge, we set

hw
j,k(x) = hw

j,k(y) = φj,k(y)|p0,2,i→0,p1,2,i→0,

h
ϕ
j,k(x) = h

ϕ
j,k(y) = φj,k(y)|p0,2,i→0,p1,2,i→0.

(32)

For circled clamped edge, we set

hw
j,k(x) = hw

j,k(y) = φj,k(y)|p0,1,i→0,p1,1,i→0,

h
ϕ
j,k(x) = h

ϕ
j,k(y) = φj,k(y)|p0,2,i→0,p1,2,i→0,

(33)

and the combined opposite simply supported and fixed edges

hw
j,k(x) = φj,k(x)|p0,1,i→0,p1,1,i→0, hw

j,k(y) = φj,k(y)|p0,2,i→0,p1,2,i→0.

h
ϕ
j,k(x) = h

ϕ
j,k(y) = φj,k(y)|p0,2,i→0,p1,2,i→0.

(34)

Later, the dimensionless vertical deflection and the Airy function subjected to
homogeneous boundaries are therefore resolved by the Coiflets as

w(x, y) ≈ P jw(x, y) =
2j −1∑
k′=1

2j −1∑
l′=1

w

(
k′

2j
,

l′

2j

)
hw

j,k′(x)hw
j,l′(y), (35a)

ϕ(x, y) ≈ P jϕ(x, y) =
2j −1∑
k′=1

2j −1∑
l′=1

ϕ

(
k′

2j
,

l′

2j

)
h

ϕ

j,k′(x)h
ϕ

j,l′(y). (35b)

What needs illustration is that Dirichlet boundary condition decide the scale of coef-
ficients matrices while Neumann type contributes to the modification of boundary
matrices P0,P1.
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3.4 Algebra iterative equation

According to the general gaussian integration method [30], linear operatorL and non-
linear operator N acting on approximating function can be transformed on Coiflets
basis in the following form

R[f̃ (x)] ≈ R[P j f̃ (x)] =
2j −1+M1∑

k=2−3N+M1

f̃

(
k

2j

)
R[φj,k(x)] (36)

whereR can be replaced by L orN to give their corresponding wavelet expressions.
Then, we substitute Coiflets expansion of w and ϕ into Mth order equations

2j −1∑
k′=1

2j −1∑
l′=1

{
wM

(
k′

2j
,

l′

2j

)
Lw[hj,k′hj,l′ ]

− wM−1

(
k′

2j
,

l′

2j

){
χMLw[hj,k′hj,l′ ] + c1∇̂4[hj,k′hj,l′ ]

}}

= −c1

2j∑
k=0

2j∑
l=0

[
Rw

M

(
k

2j
,

l

2j

)
+ (1 − χM)Q

(
k

2j
,

l

2j

)]
φj,kφj,l,

(37)

2j −1∑
k′=1

2j −1∑
l′=1

{
ϕM

(
k′

2j
,

l′

2j

)
Lϕ[φj,k′φj,l′ ] − ϕM−1

(
k′

2j
,

l′

2j

){
χMLϕ[φj,k′φj,l′ ]

+ c2∇̂4[φj,k′φj,l′ ]
}}

= −c2

2j∑
k=0

2j∑
l=0

[
R

ϕ
M

(
k

2j
,

l

2j

)
φj,kφj,l

]
.

(38)
Finally, by multiplying φj,n′(x)φj,m′(y) on both ends of (37–38) and integrating

on domain �, we obtain coupling iterating algebra equations.

ŴM = (c1 + χM)ŴM−1 + c1Ã−1
w C̃ • [R̂w

M−1 + (1 − χM)Q̂
]
, (39a)

�̂M = (c2 + χM)�̂M−1 + c2KÃ−1
ϕ C̃ • R̂ϕ

M−1, (39b)

where straight vectors of variables, nonlinear items and loads are

F̂ =
{
fp′ = f

(
k′

2j
,

l′

2j

)}
, f = wM, ϕM, F = WM, �M,

F̂ =
{
fp = f

(
k

2j
,

l

2j

)}
, f = Rw

M, R
ϕ
M, q F = Rw

M,Rϕ
M,Q,

p′ = (2j − 1)(k − 1) + l, o′ = (2j − 1)(s − 1) + t,

p = 2j k + l + 1, k′, l′, m′, n′ = 1 ∼ 2j − 1, k, l, = 0 ∼ 2j .

And the iterating matrices of tensor product

ÃT
w = ÃT

ϕ = λ2�
j,4
k′,n′
⊗

�
j,0
l′,m′ + 2�j,2

k′,n′
⊗

�
j,2
l′,m′ + λ−2�

j,0
k′,n′
⊗

�
j,4
l′,m′,

C̃T = N�j,0
k,n′
⊗

N�j,0
l,m′ .
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where tensors constructed by connection coefficients

�
j,n
l,m =

{
γl,m =

∫ 1

0

dnhj,l(x)

dxn
hj,m(x)dx

}
, (40)

N�j,n
l,m =

{
γ̄l,m =

∫ 1

0

dnφj,l(x)

dxn
hj,m(x)dx

}
. (41)

Straight vectors of nonlinear parts Rw
M, R

ϕ
M are approximated by products of cal-

culated vectors of w, ϕ in each order and tensors constituted by Coiflets and its
derivatives from (63).

R̂w
M = −

M−1∑
s=0

[
Ŵj,s

2,0

⊙
�̂

j,M−1−s

0,2 + Ŵj,s

0,2

⊙
�̂

j,M−1−s

2,0

− 2Ŵj,s

1,1

⊙
�̂

j,M−1−s

1,1

]
,

(42)

R̂ϕ
M = Ke

M−1∑
s=0

{
Ŵj,s

2,0

⊙
Ŵj,M−1−s

0,2 − Ŵj,s

1,1

⊙
Ŵj,M−1−s

1,1

}
, (43)

where the matrices of variables Coiflets expansion are

Ŵj,M
u,v = (�̃

j
u

⊗
�̃j

v)
T • ŴU

M, �̂
j,M
u,v = (�̃

j
u

⊗
�̃j

v)
T • �̂U

M, (44)

and the coefficients matrices are

ŴU
M =
{
wp = wM

(
k

2j
,

l

2j

)}
, �̂U

M =
{
ϕp = ϕM

(
k

2j
,

l

2j

)}
.

4 Results and discussion

In this section, we first make comparison of results obtained from linear equa-
tion governed by biharmonic operator in Fourier and Wavelet approach to better
understand properties of the Föppl-von Kármán equations. Then, we validate our
method by comparing the results with numerical benchmark or analytical one and
the computing efficiency in contrast with Gorder’s Fourier approach. Besides, non-
linear analysis of large deflection is conducted to study the feasibility of our
homotopy-wavelet method.

4.1 Comparison in linear cases

Before solving (23a,b) by the Fourier method, we consider the linear equation
governed by biharmonic operator

∇4U(x, y) =
(

∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4

)
U(x, y) = T (x, y), (45)



1004 Numer Algor (2018) 79:993–1020

which exists a complicated general solution of homogeneous special case by sepa-
rated variable method

U(x, y) =
∑
γ

∑
β

(C1e
γ x + C2e

−γ x)[C3 cos(γ x) + C4 sin(γ x)]×

(C5e
βy + C6e

−βy)[C7 cos(βy) + C8 sin(βy)].
(46)

where β, γ are eigenvalue values and the coefficients Ci are determined by the
boundary conditions.

As illustrated above, if we solve Mth order deformation equations exactly by
determining coefficients, the process will be extremely complicated and very time-
consuming. Therefore, the approximate method has to be taken into consideration.
In order to study the approximation precision by increasing the series items, we
select a particular T (x, y) so that (45) admits an analytical solution U(x, y) (refer
to Appendix 2 for the expressions of T (x, y) and U(x, y)). It should be pointed out
that, for constant T (x, y), the systematic errors on the boundaries are inevitable due
to the Gibbs phenomenon when either the Fourier method or the wavelet technique
is employed. The analytical solution is extremely difficult to find. As a result, we
can hardly illustrate it as the example to check the validity of our solutions. To find
an appropriate analytical solution for comparison, we choose such T (x, y) that is
combined with polynomial basis.

Besides, we construct the error estimated function Err(x, y) for measuring the
error distribution between calculated solution U∗(x, y) and analytical one U(x, y)

Err(x, y) = |U∗(x, y) − U(x, y)|. (47)

Moreover, we define ErrSQ1 and ErrSQ2 as the system error estimated
functions, which are written by

ErrSQ1 = ||Err||L1(R) ≈ 1

MaMb

Ma∑
k=0

Mb∑
l=0

∣∣∣∣U∗
(

k

2j
,

l

2j

)
− U

(
k

2j
,

l

2j

)∣∣∣∣,

ErrSQ2 = ||Err||L2(R) ≈ 1

MaMb

Ma∑
k=0

Mb∑
l=0

[
U∗
(

k

2j
,

l

2j

)
− U

(
k

2j
,

l

2j

)]2
.

(48)
where Ma and Mb are numbers of items.

As illustrated in Table 3, by adding items, the approximating precision for both
Coiflets and trigonometric approaches can be improved, while the Coiflets is supe-
rior than trigonometric ones. On the other hand, using the integral relation (49), it
is difficult to determine coefficients of series explicitly, so that it is hard to com-
pute T (x, y) by the Fourier method except that T (x, y) is constant or trigonometric
functions. What is pointed in our approach is that polynomial generating recursive
integration is introduced, in which the numerical Gauss integral technique is adopted
to determine T (x, y).

L−1[T ] =
∫ 1

0

∫ 1

0
T (x, y) sin(mπx) sin(nπy)dxdy (49)

where m, n are frequency parts.
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4.2 Validation and comparison in nonlinear case

In this case, our proposed technique is employed to solve the nonlinear equations (2a)
and (2b). Here, the indicators of measuring errors are defined as

Errf = 1

(2j + 1)2

2j∑
k=0

2j∑
l=0

[
fM

(
k

2j
,

l

2j

)]2
, f = w, ϕ (50)

ErrSQf = 1

(2j + 1)2

2j∑
k=0

2j∑
l=0

[
f

(
k

2j
,

l

2j

)
− f ∗
(

k

2j
,

l

2j

)]2
, f = w, ϕ (51)

where f (x, y) and f ∗(x, y) are the homotopy-wavelet and the analytical solutions,
respectively. Note that the convergent result is expected when Errf tends to zero.
Note also that the diminishment of the residual (51) indicates that our solutions
approach to the analytical ones. Our code is based on the software Mathematica
ver.10 and can be readily run on a personal computer with an Intel Core 4 Quad 2.5
GHz CPU and 8GB memory.

4.2.1 Validation in different boundary conditions

We first validate our approach in comparison with numerical benchmark. Dimen-
sionless deflection, bending and membrane stresses distributions at x = 1/2 of plate
subjected to circled simply supported movable edge(CSSME) or circled clamped
movable edge(CCME) suffering load q = 128Ke, 192Ke respectively by Analog
Equation Method (AEM) were given by Katsikadelis and Nerantzaki [36]. In contrast
to values by our approach in resolution j = 5, three figures show an excellent agree-
ment in Figs. 2, 3, and 4. On the whole, it is obvious that bearing load capacity of plate

Fig. 2 Dimensionless deflection w comparison for boundaries of circled simply supported movable
edge (CSSME) or circled clamped movable edge (CCME). Line: Analog Equation Method(AEM), Point:
wHAM at resolution level j = 5
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Fig. 3 Bending and membrane stresses comparison subjected to circled simply supported movable edge
(CSSME) when q = 128Ke . Line: Analog Equation Method (AEM), Point: wHAM at resolution level
j = 5

subjected to clamped edge is better than that subjected to simply supported edge.
Besides, in Table 1, with the resolution level j increases, obtained central maximum
deflection is more and more near classical exact one. In comparison of results by
Azizian [37] and Wang [38] using Finite Strip and DRBEM, the absolute errors when
q = 10, 50, 75, 100 is around order 10−3 while the other two methods are around
10−2. Therefore, in this case, the accuracy of our method is much better. As illus-
trated in Table 2, compare to results by Al-Tholaia [39] using RBF meshless method
and finite element method (FEM), we figure out convergent deflection and stress of
plate subjected to CSSME suffering q = 40 in resolution level j = 3 ∼ 6, which

Fig. 4 Bending and membrane stresses comparison subjected to circled clamped movable edge (CCME)
when q = 192Ke . Line: Analog Equation Method(AEM), Point: wHAM at resolution level j = 5
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Table 1 Dimensionless deflection comparison between AEM and our approach with different loads(c1 =
c2 = −3/5, iter = 5,M = 10)

q 10 50 75 100

Classic [37] 0.019149 0.095147 0.14155 0.18671

Azizian [37] 0.019908 0.098833 0.14694 0.19361

Wang [38] 0.0196312 0.0980101 0.146729 0.195117

This work(j = 3) 0.0204734 0.102218 0.146529 0.203523

This work(j = 4) 0.019598 0.0978571 0.146529 0.1949

This work(j = 5) 0.0192927 0.0963329 0.144247 0.191864

This work(j = 6) 0.0192125 0.0959326 0.143648 0.191068

Relative error (Azizian) 3.96E-02 3.87E-02 3.81E-02 3.70E-02

Relative error (Wang) 2.52E-02 3.01E-02 3.66E-02 4.50E-02

Relative error (j = 6) 3.32E-03 8.26E-03 1.48E-02 2.33E-02

also performs excellent agreement by iterating HAM [40] that iteration (iter = 5)
and order (M = 10), as shown in Table 3.

We then construct general equations containing exact solutions by adding item
p in right side of (2b) while the Föppl-von Kármán equations are the special case.
By setting c1 = −92/100 and c2 = −88/100, and choosing λ = 1 and Ke =
9/100, we first illustrate our Coiflets solutions with q(x, y) and p(x, y) being given
in Appendix 2.

As illustrated thereinafter, our reconstituted solutions agree well with the analyt-
ical solutions, which show the validity of our proposed approach. Particularly, we
notice that the reconstituted Coiflets solutions (35a,b) are very accurate since the
Coiflets is compactly supported by performing finite regularity that are not infinitely
differentiable. As shown in Fig. 5a, the norms of w at j = 6 decrease to 10−4 by 15
iterations and 10−10 by 40 iterations. The convergent rate can be adjusted by alter-
ing c1 and c2. Moreover, as showed in Table 4, the system residual errors of w and ϕ

diminish rapidly to 10−7 for the resolution level j = 6.
Since limited precision for calculation of the connection coefficients based on

the filtering coefficients of Coiflets is selected to simplify calculation, the residual

Table 2 Comparison of dimensionless deflectionw, bending stress σb and membrane stresses σm between
RBF, FEM, and our approach(c1 = c2 = −1/4, iter = 5,M = 10)

Methods w σb σm Time (s)

This work (j = 3) 1.53952 10.1476 1.5734 0.3637574

This work (j = 4) 1.40467 8.06868 1.70394 3.1362198

This work (j = 5) 1.36063 7.88887 1.65281 31.7269536

This work (j = 6) 1.35013 7.84265 1.63751 385.4753171

RBF [39] 1.3619 7.7815 1.6611 –

FEM [41] 1.3508 7.6551 1.6359 –
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Table 3 Approaching precision and consuming time by Fourier and Wavelet approach with different
number of items in linear case

Item number 9 × 9 17 × 17 33 × 33 65 × 65

Fourier-ErrSQ1 5.07E-02 3.97E-02 3.55E-02 3.37E-02

Fourier-ErrSQ2 2.94E-02 1.16E-02 4.99E-03 2.26E-03

Wavelet-ErrSQ1 2.52E-01 6.70E-02 6.98E-03 5.17E-04

Wavelet-ErrSQ2 1.70E-01 4.38E-02 4.49E-03 3.33E-04

Fourier-Time (s) 2.24E+02 1.40E+03 4.25E+03 3.85E+04

Wavelet-Time (s) 7.66E-01 1.09E+00 3.22E+00 3.58E+01

(a)

(b)

Fig. 5 a, b Norm of Mth order solution and residual vary with iteration subjected to circled simply
supported boundary. Square: j = 3; circle: j = 4; delta: j = 5; nabla: j = 6
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Table 4 Convergent results of order M = 15 in different resolution level j subjected to simply supported
boundary

j 3 4 5 6

Item number 9 × 9 17 × 17 33 × 33 65 × 65

Errw 2.07E-03 5.88E-05 9.54E-05 1.96E-04

Errϕ 4.73E-04 5.10E-05 8.23E-05 1.68E-04

ErrSQw 8.71E-03 1.40E-04 2.33E-06 8.35E-08

ErrSQϕ 5.69E-03 1.19E-04 2.10E-06 7.10E-08

Time (s) 1.90E-02 8.33E-01 1.83E+01 2.53E+02

errors are reduced to a certain order of magnitude that is a straight line, as illustrated
in Fig. 5b. Due to this reason, too many iterations in our approach are unneces-
sary. Particularly, by increasing the resolution level, the approaching precision can
be improved but the computing process becomes more time-consuming. Therefore,
by choosing an appropriate convergent precision corresponding to a prescribed j , we
are able to achieve our target effectively using our proposed approach.

Further, to validate the generality of our technique for adapting other kinds of
boundary conditions, the large deflection plate subjected to the circled rigid fixed
and combined boundaries is considered; the parameters for this problem are defined
in Appendix 2. By setting proper convergence control parameters and modifying dif-
ference coefficient matrices, in the case of λ = 1 and Ke = 9/100, our results are
also in accordance with the analytical ones, as illustrated hereinafter. From Tables 5
and 6, the solutions of w and ϕ are successfully given with high precision and effi-
ciency. The residuals decrease into order of magnitude around 10−4, 10−6, and 10−8

at the resolution level j = 4, 5 and 6 within nearly 0.74s, 17.3s, and 268.69s,
respectively. Moreover, the comparison of deformation in middle line x = 0.5 with
the analytical solution and the absolute errors is presented in Fig. 6. It is seen that
the deflection results are in coincidence with the exact ones, the absolute average
errors are in the level of 10−4.5, 10−3, and 10−3.2 corresponding to the three different
boundaries.

Table 5 Convergent results of order M = 15 in different resolution level j subjected to clamped edge

j 3 4 5 6

Item number 9 × 9 17 × 17 33 × 33 65 × 65

Errw 1.71E-03 3.43E-05 2.72E-05 5.06E-05

Errϕ 2.49E-04 1.49E-05 2.11E-05 4.11E-05

ErrSQw 7.95E-03 4.95E-05 2.13E-06 2.04E-08

ErrSQϕ 9.59E-03 1.91E-04 2.71E-06 7.27E-08

Time (s) 1.90E-02 7.41E-01 1.73E+01 2.69E+02
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Table 6 Convergent results of order M = 15 in different resolution level j subjected to combined
boundary

j 3 4 5 6

Item number 9 × 9 17 × 17 33 × 33 65 × 65

Errw 2.91E-03 2.61E-04 3.86E-04 7.67E-04

Errϕ 2.37E-04 4.51E-05 7.27E-05 1.45E-04

ErrSQw 9.87E-04 5.13E-06 4.96E-08 5.05E-08

ErrSQϕ 4.99E-03 1.13E-04 2.02E-06 7.07E-08

Time (s) 2.05E-02 7.46E-01 1.72E+01 2.67E+02

4.2.2 Comparison with the fourier approach

Here, we revisit Gorder’s problem [19] by the Fourier approach. The solution series
for Mth orders in nondimensional form are

w(x, y) ≈ 4

π4

M∑
k=0

Mw∑
m=1

Nw∑
n=1

w
[k]
m,n sin(mπx) sin(nπx)

(λm2 + λ−1n2)2
, (52a)

ϕ(x, y) ≈ 4

π4

M∑
k=0

Mϕ∑
m=1

Nϕ∑
n=1

ϕ
[k]
m,n sin(mπx) sin(nπx)

(λm2 + λ−1n2)2
, (52b)

where Mw, Nw and Mϕ, Nϕ are number of items.

Fig. 6 Comparison of calculated deformation with analytical one at x = 1/2 subjected to different bound-
ary conditions. Line: analytical solution; scatter: calculated solution. Solid and square: circled simply
supported edge(SSSS); dash and up triangle: circled clamped edge(CCCC); dot and diamond: combined
edge (SCSC)
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As shown in Table 7, both the errors ErrSQw and ErrSQψ decrease as the valid
number of series terms increase. The computational time increases as more terms
involve. Here, the valid terms denote the odd coefficients of the series expansions,
which have relationships Mw = Nw = 2m − 1 and Mϕ = Nϕ = 2n − 1. Using
the software Mathematica, the complex integral operation is simplified to a set of
trigonometric product terms that can be readily used for summation and algebra
operation.

In general, increase of number of the series items can improve the accuracies of
both methods, but the approximating precision of our homotopy-wavelet approach is
better than the Fourier method if the same number of series items is chosen. From
Tables 4 and 7, we know that the results by 8 × 8 trigonometric basis are equivalent
to those ones by the Coiflets at j = 3. In both cases, the errors of w, ϕ are in level
of 10−3 . To achieve such accuracies, Fourier method consume 846.59 s, but our pro-
posed approach only needs 0.02 s. We only need a few iterations to achieve accurate
results whose errors can reduce to 10−6 and 10−8 with 32× 32 and 64× 64 at j = 5
and j = 6 within 18.27 and 253.33 s, respectively. Particular attention should be
paid for lower order computation, which is usually hard to give solutions with high
precision. As a result, the high-order computation is often employed to improve on
the computational accuracies. To avoid wasting computational time, iterating HAM
technique is used in the calculation.

Essentially, there are several differences between the two approaches. Firstly,
different ways for handling boundary conditions. In Fourier method, the boundary
conditions are automatically satisfied by the proper choice of the solution expressions
and initial guesses. While in wavelet technique, the boundary polynomial interpo-
lation extension is adopt to avoid the secular term and the computational precision
loss. Secondly, different techniques for handling nonlinear parts. In Fourier method,
the nonlinear parts are expanded as the summation of a series of functions which
grow exponentially as the computational order increases. Nevertheless, in wavelet
approach, the nonlinear parts are considered as a whole function to be approached by

Table 7 Results of HAM by Fourier approach with iteration subjected to simply supported boundary

Valid items 3 × 3 4 × 4 5 × 5 6 × 6

Mw,Nw,Mϕ,Nϕ 5 7 9 11

(M ,iteration) (10,1) (10,1) (8,1) (8,1)

ErrSQw 2.41E-02 1.93E-02 1.52E-02 1.29E-02

ErrSQϕ 1.40E-01 8.32E-02 4.13E-02 2.69E-02

Time (s) 1.58E+01 3.21E+01 6.63E+01 1.76E+02

Valid items 7 × 7 8 × 8 9 × 9 10 × 10

Mw,Nw,Mϕ,Nϕ 13 15 17 19

(M ,iteration) (5,1) (4,2) (3,3) (2,5)

ErrSQw 8.12E-03 4.12E-03 2.08E-03 1.36E-03

ErrSQϕ 1.22E-02 7.15E-03 4.19E-03 2.98E-03

Time (s) 4.16E+02 8.46E+02 1.53E+03 2.72E+03
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wavelet basis, which greatly decreases the computational complexity. Thirdly, differ-
ent way for controlling precision of solutions. In Fourier method, the effective way
to improve on the solution precision is to involve more terms into the computation,
which are very time-consuming. In wavelet approach, the precision is only related to
resolution level j without considering approximating functions. Once j is given, the
projecting function space scale and the number of items are determined in the mean-
time. It is very convenient to obtain the reconstitution solution with certain accuracies
if the convergence control parameters are properly chosen.

4.3 Nonlinearity analysis and application

When a flat plate suffers small deflection (w/h ≤ 0.2), the film stress can be
neglected compared to the bending stress. The latter dominates the deformation due
to σm

x = σm
y = τm

xy = 0 which leads ϕ ≈ 0.

Equations (1a) and (b) are simplified as D∇4W = Q using the Fourier way.
The dimensionless maximum deflection on plate is nearly proportional to the load q,
while k1 is supposed to be constant due to the uniform distribution of the load. With
those assumptions, the following relationship can be obtained

wmax = Wmax

h
= k1

Qa2b2

Eh4
= k1

K
q. (53)

It is obviously that the nonlinear part of (2a) and (b) are determined by Ke which
is related to the Poisson’s ratio μ, the length-width ratio λ, and the dimensionless
loads q. In order to study their relations, we set q/Ke as a variable for calculating
the large deformation with different λ. For the sake of comparison, we also use the
linear theory to give solutions. Parameters of the rectangular plate are chosen as μ =
0.3 , E = 2.06 × 1011N/m2, the thickness h = 18mm, the length a = 1m with
length-width ratio being λ = 1, 2, 3, 5 subjected to circled simply supported edge.

As illustrated before, our proposed approach is able to obtain highly accurate
solutions with strong nonlinearity by choosing appropriately convergence control
parameters. Here, we need to make more assumptions to let the problem be physi-
cally realistic. (1) The loads on the plate is finite. (2) The surface bending is within
the elastic range. The ultimate dimensionless loads q are discussed based on these
assumptions.

The influence of q/Ke on the dimensionless deflection W/h is shown in Fig. 7.
Both the linear and the nonlinear results are given, respectively, by the linear the-
ory and by our proposed technique. It is found from the figure that when q/Ke is
small, corresponding to the weak nonlinearity case, the results give by two techniques
are quite similar. This indicates that linear theory can work well for small q/Ke.
While as q/Ke is large, corresponding to the stronger nonlinear case, the results are
markedly different, the linear result is obvious beyond the nonlinear result. The lin-
ear theory is obviously not applicable in such situation. Particularly, if we keep the
convergence-controlled parameters unchanged, there is a maximum q/Ke, beyond
this value, the solution is divergent. The ultimate q/Ke respectively approximates
27.74, 36.99, 41.62, and 57.80 for λ = 1, 2, 3, 5 by setting c1 = c2 = −0.9. To give
accurate results beyond this maximum q/Ke, the convergence-controlled parameters



Numer Algor (2018) 79:993–1020 1013

Fig. 7 Dimensionless calculated deflection W/h vary with q/Ke by linear theory and wavelet approach
in different length-width ratio λ. Solid line, linear results λ = 1; dash line, linear results λ = 2; dot line,
linear results λ = 3; dot line, linear results λ = 3; circle, nonlinear results λ = 1; down triangle , nonlinear
results λ = 2; left triangle, nonlinear results λ = 3; hexagon, nonlinear results λ = 5

have to be altered accordingly. As the nonlinearity become strong, it is more dif-
ficult to give accurate solutions. In this situation, we can adjust the values of the
convergent-controlled parameter to ensure our solution being convergent. As shown
in Fig. 8, by altering the convergent-controlled parameters c1, c2 from − 1 to 0,
the maximum value of q/Ke can be enlarged to around 46.24, 129.48, 208.09, and
289.02 for λ = 1, 2, 3, 5, respectively. For example, in comparison with benchmark
by RBF method [39], q/Ke = 40 corresponds to dimensionless deflection w = 1.36
while w = 1.35546 by our approach and 2.05136 by linear theory.

Fig. 8 Optimal convergence
control parameter c1 vary with
q/Ke in different length-width
ratio λ. Square: λ = 1; circle:
λ = 2; up triangle: λ = 3; down
triangle: λ = 5
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From our computation, we also notice that the length-width ratio λ is an impor-
tant factor to affect the nonlinearity of the governing equations. When λ is small,
the nonlinearity is strong. The difference of solutions between the linear theory and
our proposed method is clear. when λ increases, the nonlinearity becomes weak, the
solutions obtained by two approaches have no evident difference. This indicates that
increase of λ is helpful to improve on the maximum q. On the other hand, if the plate
suffers the same load, the larger λ generates smaller deformation. This is the reason
why 2D cylinder bending plate with large length-width ratio can be transformed into
1D one by lath bean theory.

5 Conclusion

In this paper, we present a novel technique that combines the HAM technique and the
wavelet basis to obtain highly accurate solutions of partial differential equations with
strong nonlinearity. Nonlinear equations are transformed into a set of infinite linear
ones by selecting proper convergence-controlled parameters. Then, by the wavelet-
Galerkin method, the high-order deformation equations are solved using the Coiflets
basis. The process is to transform linear differential equations into linear algebra
ones in certain approximation accuracy decided by the vanishing moment and the
resolution level. The Föppl-von Kármán equations are used as an example to illus-
trate the validity and efficiency of our proposed technique. Dimension analysis of
the Föppl-von Kármán equations is conducted, which shows that the nonlinearity
of dimensionless ones is related to dimensionless loads q, length-width ratio λ, and
materials decided by μ. Linear equation governed by biharmonic operator and non-
linear Föppl-von Kármán equations are considered as a comparative example. Results
reveal that the linear theory is only valid for the weak nonlinear case, while our pro-
posed technique is valid for both the weak and strong nonlinear cases. In summary,
the following conclusions can be reached:

1. The Coiflets wavelet basis is introduced into HAM technique. The novel tech-
nique is fit for strong nonlinear problems with better computational efficiency.

2. The series items are fixed in this technique for solving the high-order deforma-
tion equations, which is totally different from the traditional HAM technique.
The computational accuracy is only related to the resolution level when the
approaching function space is finite. The essence is to obtain projection in
function space spanned by Coiflets, which sacrifices systemic errors between
projection and analytical solutions to improve computational efficiency.

3. This approach is suitable for various homogenous boundary conditions concern-
ing simply supported, clamped, and combined ones while reconstituted solutions
are in agreement with analytical or numerical ones.

4. With the assumptions that the Kirchhoff hypothesis of surface bending is valid
and within the elastic range, the linearized equation is only effective on a certain
accuracy denoting plate under weak loads. While our approach has powerful
ability and high computing efficiency to obtain convergent solutions for large
deflection without linearization.
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Appendix 1: Derivative process of governing equations

In classic elastic mechanics, U , V , and W denote displacement of mass point on
plate. Thus, the relationship between strain and displacement by neglecting all other
higher order terms can be written as

εm
X = ∂U

∂X
+ 1

2

(
∂W

∂X

)2
εb
X = −Z

∂2W

∂X2
, (54a)

εm
Y = ∂V

∂Y
+ 1

2

(
∂W

∂Y

)2
εb
Y = −Z

∂2W

∂Y 2
, (54b)

γ m
XY = ∂U

∂Y
+ ∂V

∂X
+ ∂W

∂X

∂W

∂Y
γ b
XY = −2Z

∂2W

∂X∂Y
, (54c)

where ε is the normal strain, γ is the shearing strain, the superscript m and b means
that the strains are the film strain and the bending strain respectively while total strain
is the sum

εX = εm
X + εb

X, (55a)

εY = εm
Y + εb

Y , (55b)

γXY = γ m
XY + γ b

XY . (55c)

Eliminating the bending strain from above equations, we obtain

∂2εm
X

∂X2
+ ∂2εm

Y

∂Y 2
− ∂2γ m

XY

∂X∂Y
=
(

∂2W

∂X∂Y

)2
− ∂2W

∂X2

∂2W

∂Y 2
. (56)

Based on the Hooke law, the bending and film stress are written as

σX = σm
X + σb

X = E

1 − μ2
(εX + μεY ), (57a)

σY = σm
Y + σb

Y = E

1 − μ2
(εY + μεX), (57b)

τXY = τYX = τm
XY + τb

XY = E

2(1 + μ)
γXY . (57c)

Assuming that the plate is homogeneous, the bending momentsMX, MY and shear
moment MXY are obtained, by integrating stress along the thickness direction, as

MX =
∫ h/2

−h/2
σXZdZ = −D

(
∂2W

∂X2
+ μ

∂2W

∂Y 2

)
, (58a)

MY =
∫ h/2

−h/2
σY ZdZ = −D

(
∂2W

∂Y 2
+ μ

∂2W

∂X2

)
, (58b)

MXY = MYX =
∫ h/2

−h/2
τXY ZdZ = −D(1 − μ)

∂2W

∂X∂Y
. (58c)



1016 Numer Algor (2018) 79:993–1020

The axial forces NX, NY and circumferential force S are given by

NX =
∫ h/2

−h/2
σXdZ = Eh

1 − μ2
(εm

X + μεm
Y ) = hσm

X , (59a)

NY =
∫ h/2

−h/2
σY dZ = Eh

1 − μ2
(εm

Y + μεm
X) = hσm

Y , (59b)

S =
∫ h/2

−h/2
τXY dZ = Eh

1 + μ

(
∂U

∂Y
+ ∂V

∂X
+ ∂W

∂X

∂W

∂Y

)
= hτm

XY . (59c)

In order to keep the plate element in balance, the independent equilibrium equa-
tions due to force analysis are given, by neglecting small amount of high orders, in
the following forms

∑
FX = 0

∂NX

∂X
+ ∂S

∂Y
= 0, (60a)

∑
FY = 0

∂NY

∂Y
+ ∂S

∂X
= 0, (60b)

∑
FZ = 0

∂QX

∂X
+ ∂QY

∂Y
+ Q + NX

∂2W

∂X2
+NY

∂2W

∂Y 2
+2S

∂2W

∂X∂Y
= 0,(60c)

∑
MYOZ = 0

∂MY

∂Y
+ ∂MXY

∂X
− QX = 0, (60d)

∑
MXOZ = 0

∂MX

∂X
+ ∂MXY

∂Y
− QY = 0. (60e)

Substituting (58a–c) into (60d,e), we obtain the vertical forces QX, QY by
integration in the following forms

QX =
∫ h/2

−h/2
τXZdZ = −D

∂

∂X

(
∂2W

∂X2
+ ∂2W

∂Y 2

)
, (61a)

QY =
∫ h/2

−h/2
τYZdZ = −D

∂

∂Y

(
∂2W

∂X2
+ ∂2W

∂Y 2

)
. (61b)

To make simplification of the original Föppl-von Kármán equations, the Airy
function � is introduced satisfying

NX = h
∂2�

∂X2
, NY = h

∂2�

∂Y 2
, S = −h

∂2�

∂X∂Y
. (62)

Substituting (61a,b) and (62) into (60c), (1a) can be obtained. On the other hand,
from (59a–c) and (58a–c), we can find forces are only contributed by film stresses
which are not related to bending stresses while moments are the opposite. we sub-
stitute film stresses expressed by Airy function � into (57a–c) to obtain film strains
by combining (59a–c) and (62), then substitute the resulting equations into (56) with
consideration of deformation compatibility condition, the full Föppl-von Kármán
equations are finally given.
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Appendix 2: Symbolic definitions and test functions

Operator • is given in order to emphasize multiplication of tensor matrix with straight
vector and matrix A is a tensor product expressed Ã. Ĝ is straight vector of point
value of G(x, y) and elements are coefficients of Coiflets series, which is used to
estimate its derivatives vector Ĝd,j

u,v by (63) with tensors by resolution Coiflets.

Ĝd,j
u,v = (�̃j

u

⊗
�̃j

v

)T • Ĝ (63)

where straight vectors of point value and tensors are

�̃
j
u =
{
a

j
k,s = φ

(u)
j,k

(
s

2j

)}
, Ĝ =

{
go = G

(
k

2j
,

l

2j

)}
,

Ĝd
u,v =

{
gd

p = ∂u+v

∂xu∂yv
G

(
s

2j
,

t

2j

)}
,

o = 2j k + l + 1, p = 2j s + t + 1, k, l, s, t = 0 ∼ 2j .

Definition 1 (Straight Vector) If Matrix A = {ak,l}m×n ∈ R
m×n, then its horizontal

straight vectorOA and vertical straight vector Ǎ are defined

OA = {cr }mn×1 ak,l = cl+(k−1)m, (64)
LA = {cr }mn×1 ak,l = ck+(l−1)m. (65)

Definition 2 (Hadamard/Schur Product) If Matrix A = {ak,l}m×n and B =
{bk,l}m×n ∈ R

m×n (vectors when m = 1 and n = 1 ), then their Hadamard/Schur
Product

⊙
is defined

A
⊙

B = {ck,l = ak,lbk,l}m×n. (66)

Definition 3 (Kronecker Tensor Product) If Matrix A = {ak,l}m×n and B =
{bk,l}p×q ∈ R

p×q (vectors when m = 1 and n = 1 ), then their Kronecker Tensor
Product

⊗
is defined

A
⊗

B = {ak,lB}mp×nq . (67)

Definition 4 (Dot Product) If Matrix A = {ak,l}m×n ∈ R
m×n is a tensor product, as

expressed Ã. B̂ = {bk}n×1 ∈ R
n×1 is straight vector of matrixB = {bk,l}p×q ∈ R

p×q

while n = pq, then their matrix product • is emphasized

Ã • B̂ = {ak,lbk}m×1. (68)
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In linear cases, test Function T (x, y) with exact solution U(x, y)

T (x, y) = 294912
[
x6(5y2 − 5y + 1) − 3x5(5y2 − 5y + 1)

+ x4(25y4 − 50y3 + 45y2 − 20y + 3)

+ x3(−50y4 + 100y3 − 65y2 + 15y − 1)

+ x2y(5y5 − 15y4 + 45y3 − 65y2 + 36y − 6)

+ x(−5y6 + 15y5 − 20y4 + 15y3 − 6y2 + y) + (y − 1)3y3].
U(x, y) = 212(1 − x)3x3(1 − y)3y3.

(69)

In nonlinear validation case, for simply supported boundary

q1(x, y) =1

8

[− 9π4 cos(πx + πy) + 25π4 cos(3πx + πy)

− 100π4 cos(πx + 2πy) + 25π4 cos(πx + 3πy)

− 9π4 cos(3πx + 3πy) − 9π4 cos(πx − πy)

+ 25π4 cos(3πx − πy) + 100π4 cos(πx − 2πy)

+ 25π4 cos(πx − 3πy) − 9π4 cos(3πx − 3πy)
]
.

(70)

p1(x, y) = 1

50

[
625π4 cos(2πx + πy) + 625π4 cos(2πx − πy)

− 9π4 cos(2πx) − 9π4 cos(4πy)
] (71)

with the analytical solutions

w1(x, y) = sin(2πx) sin(πy), ϕ1(x, y) = sin(πx) sin(2πy). (72)

For circled clamped boundary

q2(x, y) = 2π4 cos(πx + 2πy) − 3π4 cos(3πx + 2πy)

+ 50π4 cos(2πx + 4πy) − 3π4 cos(πx + 6πy)

− 2π4 cos(πx − 2πy) + 3π4 cos(3πx − 2πy)

+ 50π4 cos(2πx − 4πy) + 3π4 cos(πx − 6πy)

− 4π4 cos(2πx) − 64π4 cos(4πy),

(73)

p2(x, y) = 1

100

[− 1250π4 cos(πx + 2πy) + 18π4 cos(2πx + 4πy)

− 9π4 cos(4πx + 4πy) − 9π4 cos(2πx + 8πy)

+ 1250π4 cos(πx − 2πy) + 18π4 cos(2πx − 4πy)

− 9π4 cos(4πx − 4πy) − 9π4 cos(2πx − 8πy)

− 18π4 cos(2πx) + 18π4 cos(4πx)

− 18π4 cos(4πy) + 18π4 cos(8πy)
]
.

(74)

with the analytical solutions

w2(x, y) = 1

4
(1 − cos 2πx)(1 − cos 4πy), ϕ2(x, y) = sin(πx) sin(2πy). (75)
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and combined boundary corresponding to

q3(x, y) = 1

16

[− 11π4 sin(πx + πy) − 100π4 sin(2πx + πy)

+ 25π4 sin(3πx + πy) + 27π4 sin(πx + 3πy)

− 9π4 sin(3πx + 3πy) − 11π4 sin(πx − πy)

+ 100π4 sin(2πx − πy) + 25π4 sin(3πx − πy)

+ 27π4 sin(πx − 3πy) − 9π4 sin(3πx − 3πy)

+ 8π4 sin(πy)
]
,

(76)

p3(x, y) = 1

400

[− 5000π4 cos(πx + 2πy) + 9π4 cos(2πx + 2πy)

+ 5000π4 cos(πx − 2πy) + 9π4 cos(2πx − 2πy)

− 18π4 cos(2πx) + 18π4 cos(4πx) − 18π4 cos(2πy)
]

(77)

with the analytical solutions

w3(x, y) = 1

2
(1 − cos 2πx) sin(πy), ϕ3(x, y) = sin(πx) sin(2πy). (78)
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incompatible strains. Proc. R. Soc. Lond. 467(2126), 402–426 (2011)
10. Xue, C.X., Pan, E., Zhang, S.Y., Chu, H.J.: Large deflection of a rectangular magnetoelectroelastic

thin plate. Mech. Res. Commun. 38(7), 518–523 (2011)
11. Ciarlet, G.P., Gratie, L., Kesavan, S.: Numerical analysis of the generalized von Kármán equations.

Comptes Rendus Mathematique 341(11), 695–699 (2005)
12. Ciarlet, P.G., Gratie, L., Kesavan, S.: On the generalized von Kármán equations and their approxima-
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