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Abstract In this paper, we introduce an inertial subgradient-type algorithm to find
the common element of fixed point set of a family of nonexpansive mappings and the
solution set of the single-valued variational inequality problem. Under the assump-
tion that the mapping is monotone and Lipschitz continuous, we show that the
sequence generated by our algorithm converges strongly to some common element
of the fixed set and the solution set. Moreover, preliminary numerical experiments
are also reported.

Keywords Inertial subgradient-type method · Single-valued variational inequalities ·
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1 Introduction

The well-known variational inequality problem is to find x∗ ∈ C satisfying

〈F(x∗), y − x∗〉 ≥ 0, ∀ y ∈ C, (1.1)
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where C is a nonempty closed convex subset in real Hilbert space H, F is a single-
valued mapping onH, and 〈·, ·〉 and ‖·‖ denote the usual inner product and norm inH,
respectively. Let V I (F, C) be the solution set of the problem (1.1), i.e., V I (F, C) =
{x∗ ∈ C : 〈F(x∗), y − x∗〉 ≥ 0, ∀ y ∈ C}. Let PC(x) be the projection of x onto
the nonempty closed convex set C, i.e, PC(x) = argmin

y∈C
‖x − y‖.

A mapping F : H → H is called monotone, if

〈Fx − Fy, x − y〉 ≥ 0, ∀ x, y ∈ H. (1.2)

A mapping F : H → H is called strongly monotone, if there exists a constant γ > 0
satisfying

〈Fx − Fy, x − y〉 ≥ γ ‖x − y‖2, ∀ x, y ∈ H. (1.3)

A mapping F : H → H is called κ−inverse strongly monotone, if there exists a
constant κ > 0 satisfying

〈Fx − Fy, x − y〉 ≥ κ‖F(x) − F(y)‖2, ∀ x, y ∈ H; (1.4)

A mapping F : H → H is called L−Lipschitz continuous on H, if there exists a
scalar L > 0 satisfying

‖Fx − Fy‖ ≤ L‖x − y‖, ∀ x, y ∈ H. (1.5)

A mapping T : C → C is called nonexpansive, if

‖T x − Ty‖ ≤ ‖x − y‖, ∀ x, y ∈ C. (1.6)

Let Fix(T ) be the set of fixed point of T in C, i.e., Fix(T ) = {x ∈ C : T (x) = x}.
Variational inequality theory has emerged as an important tool in studying a wide

class of obstacle, unilateral, and equilibrium problems. Due to this, the research of
algorithms for solving variational inequality problem (1.1) has received extensive
attention; see [10, 11, 13–19, 26, 28–30] and the references therein. In 1970, Sibony
[25] proposed the following gradient projection algorithm:

xi+1 := PC[xi − αF(xi)]. (1.7)

In [25], the mapping is required to be strongly monotone and Lipschitz continu-
ous. In order to weak the assumption, Korpelevich [20] introduced an extragradient
algorithm as follows: {

yi := PC[xi − αF(xi)],
xi+1 := PC[xi − αF(yi)]. (1.8)

In this method, the mapping is required to be monotone and Lipschitz continuous. We
note that the projection onto a closed convex set C is related to a minimum distance
problem. If C is a general closed convex set, this might be computationally expen-
sive. To overcome the difficulty, Censor [11] proposed the following subgradient
extragradient algorithm for solving single-valued variational inequality:⎧⎨

⎩
yi = PC(xi − μF(xi)),

Hi = {x ∈ H : 〈(xi − μF(xi)) − yi, x − yi〉 ≤ 0},
xi+1 = PHi

(xi − μF(yi)),

(1.9)
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Under the assumption that the mapping F is monotone and Lipschitz continuous,
they proved that the sequences {xi} and {yi} generated by (1.9) converge weakly to
the same point x∗ ∈ V I (F, C) with x∗ = limi→∞ PV I (F,C)(xi) .

The inertial methods have been studied extensively in the literature[1–3, 5, 7–9,
22]. Recently, Bot and Csetnek [4] proposed an inertial version of the Krasnosel’skiı̌-
Mann algorithm for approximating the set of fixed points of a nonexpansive operator.
Specifically, given xi−1 and xi , the next point xi+1 is determined via{

wi := xi + θi(xi − xi−1),

xi+1 := (1 − αi)wi + αiF (wi), ∀ i ≥ 1,
(1.10)

where (θi)i≥1 is nondecreasing with θ1 = 0 and 0 ≤ θi ≤ θ < 1 for every i ≥ 1 and
β, σ, δ > 0 such that

δ >
θ2(1 + θ) + θσ

1 − θ2
, (1.11)

and

0 < α ≤ αi ≤ δ − θ [θ(1 + θ) + θδ + σ ]
δ[1 + θ(1 + θ) + θδ + σ ] , ∀ i ≥ 1. (1.12)

It was showed in [4] that the sequence {xi} generated by (1.10) converges weakly to
some element in Fix(F ).

Dong [12] proposed the following algorithm by combining inertial terms with the
extragradient method:⎧⎨

⎩
wi := xi + θi(xi − xi−1),

yi := PC(wi − λF(wi)),

xi+1 := (1 − αi)wi + αiPC(wi − λF(yi)),

(1.13)

where {θi} is nondecreasing with θ1 = 0, 0 ≤ θi ≤ θ < 1 for every i ≥ 1 and
τ, σ, δ > 0 satisfying

δ >
θ [(1 + λL)2θ(1 + θ) + (1 − λ2L2)θσ + σ(1 + λL)2]

1 − λ2L2
, (1.14)

and

0<λ≤αi ≤ δ(1−λ2L2)−θ [(1+λL)2θ(1+θ)+(1−λ2L2)θσ +σ(1+λL)2]
δ[(1+λL)2θ(1+θ) + (1−λ2L2)θσ +σ(1+λL)2] . (1.15)

Under the assumptions that the mapping F is monotone and Lipschitz continuous,
they proved that the sequence {xi} generated by (1.13) converges weakly to some
element of V I (F, C).

Motivated by the research works mentioned above, we presented an inertial
subgradient-type algorithm for solving the single-valued variational inequality prob-
lems and fixed point problems. In our method, the mapping F is assumed to be
monotone and Lipschitz continuous, Ti : C → C is a nonexpansive mapping for

every i ∈ N , and� := V I (F, C)∩
∞⋂
i=1

Fix(Ti) 
= ∅. Under those assumptions above,

we prove that the iterative sequence {xi} generated by our method converges strongly
to P�(x0). We also compare the performance of our method with the algorithm iEgA
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in [12] through numerical experiments. Now let us compare our Algorithm 3.1 with
the method (1.13). First, we incorporate the inertial effects into subgradient-type
method rather than extragradient method in [12]. Secondly, the proof methods of the
convergence for the two algorithms are also different. In our method, we do not need
to apply the Lemma 2.1 in [12] as in [4]. In addition, the assumption for αi is weaker
in our method than in [12]. In [12], the parameter αi is closely related to the parame-
ters λ,L and θ ; see (1.14), (1.15) and Algorithm 3.1. At the same time, we obtain the
strong convergence results by applying the hybrid projection step; see Step 5 in Algo-
rithm 3.1. Finally, it is worth mentioning that we answer the open problem proposed
by the authors in [12].

This paper is organized as follows. We recall some concepts and propositions
in the next section and describe our algorithm formally in Section 3. Numerical
experiments are reported in Section 4.

2 Preliminaries

In this section, we shall recall some notations, definitions and other results, which
will be used in the sequel.

Lemma 2.1 [21] Let C be a nonempty, closed and convex subset of real Hilbert
space H. If T : C → C is a nonexpansive mapping and the fixed point set Fix(T ) of
T is nonempty, then Fix(T ) is closed and convex.

In this paper, we adopt the following notations.

• xi ⇀ x stands for the weak convergence of {xi} to x;
• xi → x stands for the strong convergence of {xi} to x;
• ωw(xi) := {x ∈ H : xij ⇀ x for some subsequence {ij } of {i}}.

It is known that H satisfies the Opial’s condition (see [23]) that, for any sequence
{xi} with xi ⇀ x, the following inequality holds

lim inf
i→∞ ‖xi − x‖ < lim inf

i→∞ ‖xi − y‖, ∀ y ∈ H with y 
= x.

Lemma 2.2 [6] Let C be a nonempty, closed and convex subset of a real Hilbert

space H, and Ti : C → C(i = 1, 2, · · · ) be nonexpansive mapping. If
∞⋂
i=1

Fix(Ti) 
=

∅ and T =
∞∑
i=1

kiTi , where
∞∑
i=1

ki = 1, ki ∈ (0, 1), then T is a nonexpansive mapping

on C and Fix(T ) =
∞⋂
i=1

Fix(Ti).

Lemma 2.3 [24] Let C be a nonempty closed convex subset of a Hilbert space H.
Let x ∈ H and let {xi} be a sequence in H. If ωw(xi) ⊆ C, and

‖xi − x‖ ≤ ‖x − PC(x)‖, ∀ i ∈ N,

then the sequence {xi} converges strongly to PC(x).
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Lemma 2.4 [27] Let C be a nonempty closed convex subset of a Hilbert space H.
Let F : C → H be a monotone and hemicontinuous mapping and x∗ ∈ C. Then

x∗ ∈ V I (F, C) ⇐⇒ 〈Fx, x − x∗〉 ≥ 0, ∀ x ∈ C.

Proposition 2.1 [31] Let C be a nonempty closed convex subset ofH. For any x, y ∈
H and z ∈ C

(i) ‖x − PC(x)‖ ≤ ‖x − y‖;
(ii) 〈x − PC(x), z − PC(x)〉 ≤ 0;
(iii) ‖PC(x) − PC(y)‖ ≤ ‖x − y‖;
(iv) ‖PC(x) − z‖2 ≤ ‖x − z‖2 − ‖PC(x) − x‖2.

One can easily show that

‖λx+(1−λ)y‖2=λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x−y‖2, ∀ λ∈[0, 1]. (2.1)

3 Main results

Let the infinite mapping sequence {Tj }∞j=1 be nonexpansive on C and

Li =
i∑

j=1

(lj /ki)Sj , ki =
i∑

j=1

lj , i ≥ 1, (3.1)

where {lj }∞j=1 satisfying lj > 0 and

∞∑
j=1

lj = l < ∞, Sj (x) = TjPC(x), ∀ x ∈ H. (3.2)

Remark 3.1 From (3.2), we know that Sj is nonexpansive for every j ∈ N .

In the following Algorithm 3.1, L denotes the modulus of Lipschitz continuous
mapping F ; see (1.5).

Algorithm 3.1 Choose x0, x1 ∈ H, the parameter λ ∈ (0, 1
L
), and the sequences

{θn} ∈ [0, θ), {αn} ∈ [a, 1], {βn} ∈ [b, c], where θ ∈ (0, 1) and a, b, c ∈ (0, 1). Set
i = 0.

Step 1. Compute wi = xi + θi(xi − xi−1).

Step 2. Compute

yi = PC(wi − λF(wi)). (3.3)

Step 3. Compute

zi = PHi
(wi − λF(yi)), (3.4)
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where

Hi := {x ∈ H : 〈wi − λF(wi) − yi, x − yi〉 ≤ 0}. (3.5)

Step 4. Compute

ti = (1 − αi)wi + αi[βizi + (1 − βi)Lizi]. (3.6)

where Li is the mapping defined by (3.1).

Step 5. Compute xi+1 = PAi

⋂
Bi

(x0), where

Ai := {x ∈ C : 〈xi − x, x0 − xi〉 ≥ 0}, (3.7)

Bi := {x ∈ C : ‖ti − x‖ ≤ ‖wi − x‖}. (3.8)

Let i := i + 1 and go to Step 1.

Remark 3.2 In view of Proposition 2.1(i) and (3.3), we have

〈(wi − λF(wi)) − yi, x − yi〉 ≤ 0, ∀ x ∈ C.

Therefore, C ⊆ Hi .

From now on, we adopt the following assumptions:

(A1) the mapping F : H → H is monotone and L−Lipschitz continuous on H

with constant L > 0;
(A2) the mapping Ti : C → C is nonexpansive for every i ∈ N ;

(A3) � := V I (F, C)
⋂

� 
= ∅, where � :=
∞⋂
i=1

Fix(Ti) and Fix(Ti) := {x ∈ C :
Tix = x}.

Proposition 3.1 Let Li be defined by (3.1) and (3.2), and T = 1
l

∞∑
j=1

lj Sj , then both

T and Li are nonexpansive and � = Fix(T ) ⊆ Fix(Li);

Proof Let Fix(TjPC) := {x ∈ H : TjPC(x) = x} and Fix(Li) := {x ∈ H : Li(x) =
x}. It is obvious that Fix(Tj ) = Fix(TjPC) for every nonexpansive mapping Tj on
C. According to the definition of Sj , we have Fix(Tj ) = Fix(Sj ) for every j ∈ N

and hence
∞⋂

j=1
Fix(Sj ) = �. Applying (3.2), we have

lj

l
∈ (0, 1), and

∞∑
j=1

lj

l
= 1. (3.9)

It follows from Lemma 2.2 that the mapping T is nonexpansive and Fix(T ) =
∞⋂

j=1
Fix(Sj ) = �.
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Next, we show that the mapping Li is nonexpansive for every i ∈ N and � ⊆
Fix(Li). Suppose that x ∈ �. By (3.1), we have

Lix =
i∑

j=1

(
lj

ki

)Sj x =
i∑

j=1

(
lj

ki

)x = x

i∑
j=1

lj

ki

= x. (3.10)

Therefore, � ⊆ Fix(Li).
Besides, for every x, y ∈ H, we have

‖Lix − Liy‖ ≤ ‖
i∑

j=1

(
lj

ki

)Sj x −
i∑

j=1

(
lj

ki

)Sj y‖

≤
i∑

j=1

(
lj

ki

)‖Sjx − Sjy‖

≤
i∑

j=1

(
lj

ki

)‖x − y‖

≤ ‖x − y‖, (3.11)

which implies that the mapping Li is nonexpansive for every i ∈ N . This completes
the proof.

Proposition 3.2 Suppose that the mapping Ti(i = 1, 2, · · · ) is nonexpansive on C

and the mapping F is monotone and L−Lipschitz continuous on H. If x∗ ∈ �, then

‖ti − x∗‖2 ≤ ‖wi −x∗‖2−(1 − λL)αi‖wi −yi‖2−(1−λL)αi‖yi −zi‖2
−αiβi(1−βi)‖Lizi − zi‖2. (3.12)

Proof Applying Proposition 2.1 (iv), from (3.4), we have

‖zi − x∗‖2 = ‖PHi
(wi − λF(yi)) − x∗‖2

≤ ‖(wi − λF(yi)) − x∗‖2 − ‖(wi − λF(yi)) − zi‖2
= ‖wi − x∗‖2 − ‖wi − zi‖2 − 2λ〈F(yi), zi − x∗〉. (3.13)

Since x∗ ∈ V I (F, C), we have

〈F(x∗), x − x∗〉 ≥ 0, ∀ x ∈ C. (3.14)

By the monotonicity of F , we get

〈F(x), x − x∗〉 ≥ 0, ∀ x ∈ C. (3.15)

Since yi = PC(wi − λF(wi)),

〈F(yi), yi − x∗〉 ≥ 0, (3.16)

which implies that

〈F(yi), zi − x∗〉 ≥ 〈F(yi), zi − yi〉. (3.17)
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Combining (3.13) and (3.17), we obtain

‖zi − x∗‖2 ≤ ‖wi − x∗‖2 − ‖wi − zi‖2 − 2λ〈F(yi), zi − yi〉
= ‖wi − x∗‖2 − ‖wi − yi‖2 − ‖yi − zi‖2 + 2〈wi − λF(yi) − yi, zi − yi〉
= ‖wi − x∗‖2 − ‖wi − yi‖2 − ‖yi − zi‖2 + 2〈wi − λF(wi) − yi, zi − yi〉

+ 2λ〈F(wi) − F(yi), zi − yi〉
≤ ‖wi − x∗‖2 − ‖wi − yi‖2 − ‖yi − zi‖2 + 2λ〈F(wi) − F(yi), zi − yi〉
≤ ‖wi − x∗‖2 − ‖wi − yi‖2 − ‖yi − zi‖2 + 2λL‖wi − yi‖‖zi − yi‖
≤ ‖wi − x∗‖2 − (1 − λL)‖wi − yi‖2 − (1 − λL)‖yi − zi‖2, (3.18)

where the second inequality follows from (3.4) and (3.5), the third inequality follows
from the L−Lipschitz continuity of F .

Since x∗ ∈ �, we have

‖ti − x∗‖2 = ‖(1 − αi)wi + αi [βizi + (1 − βi)Lizi ] − x∗‖2
≤ (1 − αi)‖wi − x∗‖2 + αi‖βizi + (1 − βi)Lizi − x∗‖2
= (1 − αi)‖wi − x∗‖2 + αiβi‖zi − x∗‖2 + αi(1 − βi)‖Lizi − x∗‖2

−αiβi(1 − βi)‖Lizi − zi‖2
≤ (1 − αi)‖wi − x∗‖2 + αi‖zi − x∗‖2 − αiβi(1 − βi)‖Lizi − zi‖2, (3.19)

where the first inequality and the second equality follow from (2.1), the second
inequality follows from Proposition 3.1. Combining (3.18) and (3.19), we get the
conclusion. This completes the proof.

Proposition 3.3 If � 
= ∅, then
(i) xi+1 is well defined;
(ii) ‖xi − x0‖ ≤ ‖xi+1 − x0‖ ≤ ‖x0 − P�(x0)‖.

Proof (i) We only need to prove that Ai

⋂
Bi is a nonempty closed and convex

subset of H.
First, we prove that Ai

⋂
Bi is a closed and convex subset of H for every

i ∈ N . It is obvious that Ai is closed and convex and Bi is closed for every
i ∈ N . Since

Bi = {x ∈ C : 〈ti − wi,
(wi + ti )

2
− x〉 ≤ 0}, (3.20)

Bi is also convex for every i ∈ N .
Next, we prove that � ⊆ Ai

⋂
Bi by induction on i and hence Ai

⋂
Bi is

nonempty. In view of Proposition 3.2, we have that � ⊆ Bi for every i ∈ N .
For i = 0, we have A0 = C and hence � ⊆ A0

⋂
B0. Now, suppose that xi

is given and � ⊆ Ai

⋂
Bi for some i ∈ N . Since xi+1 = PAi

⋂
Bi

(x0) and
� ⊆ Ai

⋂
Bi , it follows from Proposition 2.1(ii) that

〈xi+1 − x, x0 − xi+1〉 ≥ 0, ∀ x ∈ �. (3.21)

Thus, � ⊆ Ai+1 and hence � ⊆ Ai+1
⋂

Bi+1. Furthermore, by Assumption
(A3), we obtain that Ai+1

⋂
Bi+1 
= ∅.
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(ii) Since

〈xi − x, x0 − xi〉 ≥ 0, ∀ x ∈ Ai, (3.22)

xi = PAi
(x0). It follows from xi+1 ∈ Ai that

‖xi − x0‖ = ‖PAi
(x0) − x0‖ ≤ ‖xi+1 − x0‖. (3.23)

Since the solution set V I (F, C) is closed and convex(see [28]), from Lemma
2.1 and Assumption (A3) we know that � is nonempty closed and convex.
Therefore, P�(x0) is well defined. Therefore, it follows from P�(x0) ∈ � ⊆
Ai+1 that

‖xi+1 − x0‖ = ‖PAi+1(x0) − x0‖ ≤ ‖P�(x0) − x0‖. (3.24)

This completes the proof.

Remark 3.3 Proposition 3.3(ii) implies that the sequence {‖xi − x0‖} converges and
hence the sequence {xi} is bounded.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space
H, and {xi} be the infinite sequence generated by Algorithm 3.1. If the assumptions
(A1), (A2) and (A3) hold, then the sequence {xi} converges strongly to P�(x0).

Proof According to Lemma 2.3, we only need to prove that ww(xi) ⊆ �, i.e., every
weak limit point of {xi} belongs to �. The proof is done in several steps.

Step 1: ‖wi − ti‖ → 0, ‖wi − yi‖ → 0, ‖Lizi − zi‖ → 0, ‖zi − xi‖ → 0, as
i → ∞. By the definition of Ai , we have

〈xi − x, x0 − xi〉 ≥ 0, ∀ x ∈ Ai. (3.25)

Since xi+1 = PAi

⋂
Bi

(x0),

〈xi − xi+1, x0 − xi〉 ≥ 0. (3.26)

Note that
‖xi+1 − x0‖2 = ‖xi+1 − xi‖2 + ‖xi − x0‖2 + 2〈xi+1 − xi, xi − x0〉. (3.27)

Combining (3.26) and (3.27), we have

‖xi+1 − xi‖2 ≤ ‖xi+1 − x0‖2 − ‖xi − x0‖2. (3.28)

In view of Proposition 3.3, taking i → ∞ in (3.28), we obtain

‖xi+1 − xi‖ → 0. (3.29)

Since

‖wi − xi‖ = ‖xi + θi(xi − xi−1) − xi‖
= θi‖xi − xi−1‖
≤ θ‖xi − xi−1‖, (3.30)
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it follows from (3.29) and (3.30) that

‖wi − xi‖ → 0 as i → ∞. (3.31)

From (3.29) and (3.31), we have

‖wi − xi+1‖ → 0 as i → ∞. (3.32)

Since xi+1 = PAi

⋂
Bi

(x0), we obtain ‖ti − xi+1‖ ≤ ‖wi − xi+1‖. By (3.32), we
have

‖ti − xi+1‖ → 0 as i → ∞. (3.33)

Combining (3.29) and (3.33), we get

‖ti − xi‖ → 0 as i → ∞. (3.34)

In view of (3.31) and (3.34), it is easy to see that

‖ti − wi‖ → 0 as i → ∞. (3.35)

It follows from Proposition 3.2 that, for every i ∈ N

(1 − λL)αi‖wi − yi‖2 ≤ ‖wi − ti‖(‖wi − x∗‖ + ‖ti − x∗‖), (3.36)

(1 − λL)αi‖yi − zi‖2 ≤ ‖wi − ti‖(‖wi − x∗‖ + ‖ti − x∗‖), (3.37)

αiβi(1 − βi)‖Lizi − zi‖2 ≤ ‖wi − ti‖(‖wi − x∗‖ + ‖ti − x∗‖). (3.38)

In view of (3.31) and (3.34), from Remark 3.3, we know that both {wi} and {ti}
are bounded. Since λ < 1

L
, 0 < a ≤ αi , 0 < b ≤ βi ≤ c < 1, from (3.35), we

have, as i → ∞,

‖wi − yi‖ → 0, ‖yi − zi‖ → 0, ‖Lizi − zi‖ → 0. (3.39)

Since ‖zi − xi‖ ≤ ‖zi − yi‖ + ‖yi − wi‖ + ‖wi − xi‖, it follows from (3.31) and
(3.39) that

‖zi − xi‖ → 0 as i → ∞. (3.40)

Since {xi} is bounded, there exists a subsequence {xij } of {xi} such that xij ⇀

x̂ as j → ∞.
Step 2: x̂ ∈ V I (F,C). Since C ⊂ Hi , from (3.5), we have

〈wi − λF(wi) − yi, x − yi〉 ≤ 0, ∀ x ∈ C. (3.41)

Hence,

〈λF(wi), wi − x〉 = 〈λF(wi), wi − yi〉 + 〈λF(wi), yi − x〉
= 〈λF(wi), wi − yi〉 + 〈wi − λF(wi)

−yi, x − yi〉 + 〈wi − yi, yi − x〉
≤ 〈λF(wi), wi − yi〉 + 〈wi − yi, yi − x〉
≤ ‖yi − wi‖(λ‖F(wi)‖ + ‖yi − x‖). (3.42)

It follows from the boundedness of {wi} and the continuity of F that {F(wi)} is
bounded. Besides, by (3.39), it follows from λ > 0 that

lim sup
i→∞

〈F(wi), wi − x〉 ≤ 0. (3.43)
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Applying the monotonicity of F , we obtain

lim sup
i→∞

〈F(x),wi − x〉 ≤ 0. (3.44)

Since xi − wi → 0 as i −→ ∞, we have that wij ⇀ x̂ as j −→ ∞. Therefore,
we have

〈F(x), x̂ − x〉 ≤ 0. (3.45)

In view of Lemma 2.4, we have that x̂ ∈ V I (F, C).
Step 3: x̂ ∈ �. Since xi − zi → 0(i → ∞), we have that zij ⇀ x̂(j → ∞). In

view of Proposition 3.1, we only need to prove T (x̂) = x̂. Suppose that T x̂ 
= x̂.
Applying Opial’s condition, we have

lim inf
j→∞ ‖zij − x̂‖ < lim inf

j→∞ ‖zij − T (x̂)‖
≤ lim inf

j→∞ (‖zij − Lij (zij )‖ + ‖Lij (zij ) − T (zij )‖ + ‖T (zij ) − T (x̂)‖)
≤ lim inf

j→∞ (‖zij − Lij (zij )‖ + ‖Lij (zij ) − T (zij )‖ + ‖zij − x̂‖). (3.46)

Since {zi} is bounded and {Si} is nonexpansive, there exists some M > 0 such
that M = sup

i≥1
‖Sizi‖ < ∞. Thus, we obtain

‖Lizi − T (zi)‖ = ‖ 1

ki

i∑
j=1

lj Sj zi − 1

l

∞∑
j=1

lj Sj zi‖

≤ l − ki

lki

i∑
j=1

lj‖Sj zi‖ + 1

l

∞∑
j=i+1

lj‖Sj zi‖

≤ M(l − ki)

lki

i∑
j=1

lj + M

l

∞∑
j=i+1

lj

= 2
M

l

∞∑
j=i+1

lj . (3.47)

It follows from (3.2) that
∞∑

j=i+1
lj → 0 as j → ∞. In view of (3.47), we have

‖Lizi − T (zi)‖ → 0 as i → ∞. (3.48)

Therefore,

lim inf
j→∞ ‖zij − x̂‖ < lim inf

j→∞ ‖zij − x̂‖ (3.49)

This contradiction implies that x̂ ∈ � and hence x̂ ∈ �. This completes the proof.
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4 Numerical experiments

In this section, we present some numerical experiments for the proposed algorithm.
The MATLAB codes are run on a PC (with Intel(R) Core(TM) i3-2367M CPU @
1.40 GHZ) under MATLAB Version 7.14.0.739(R2012a) Service Pack 1. Applying

our method, we will find the common element of V I (F, C) and
∞⋂
i=1

Fix(Ti). In the

following two examples, we take Ti(x) = 1
10i x(i = 1, 2, · · · ). In Example 4.1, we

choose λ = 0.19, θi = 0.31, βi = 1(i = 1, 2, · · · ) for the algorithm iEgA in [12] and
λ = 0.05, αi = 0.79, βi = 0.31, θi = 0.31(i = 1, 2, · · · ) for our Algorithm 3.1. In
Example 4.2, we choose λ = 0.01, θi = 0.6, βi = 5(i = 1, 2, · · · ) for the algorithm
iEgA in [12] and λ = 0.02, αi = 0.88, βi = 0.08, θi = 0.01(i = 1, 2, · · · ) for our
Algorithm 3.1.

Furthermore, we use the sequence {‖xi − x∗‖}(i = 1, 2, · · · ) to check the con-
vergence of the algorithms, where x∗ ∈ �. If the sequence {‖xi − x∗‖} tends to 0
as i −→ ∞, then the sequence {xi} generated by the algorithms converges to some
element of the solution set �. In Tables 1 and 2, “Iter.” denotes number of itera-
tion and “CPU” denotes the CPU time in seconds. The tolerance ε means that when
‖xi − x∗‖ ≤ ε, the procedure stops. Besides,the “ISE” and “IE” in the graphical
annotation denote our Algorithm 3.1 and the algorithm iEgA in [12], respectively.
In the following figures, the ordinate denotes the value of {‖xi − x∗‖}(i = 1, 2, · · · )
while the abscissa denotes the number of iterations or the elapsed time. In addition,
the graphical annotations “ISE” and “IE” denote our Algorithm 3.1 and the algorithm
iEgA in [12], respectively.

Table 1 Example 4.1

IE ISE

Tolerance ε Iter. CPU Iter. CPU

10 9 0.5588023 3 0.5444024

10−1 22 1.2488073 13 1.0100009

10−2 27 1.4376096 18 1.1888098

10−3 31 1.6368103 22 1.2856101

10−4 36 1.8332122 27 1.3924104

10−5 41 1.9940135 31 1.5080105

10−6 46 2.1600150 35 1.6204109

10−7 51 2.3244174 40 1.7728113

10−8 56 2.4652192 44 1.9011500

10−9 61 2.6048208 48 2.0164119

10−10 66 2.7802200 53 2.1788123

10−11 71 2.9124229 57 2.3112127

10−12 75 3.0596241 61 2.4336131
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Table 2 Example 4.2

IE ISE

Tolerance ε Iter. CPU Iter. CPU

10−1 17 2.1216136 7 2.2056276

10−2 31 3.1668203 12 3.1643190

10−3 46 4.2432272 17 4.1088348

10−4 60 5.2416336 22 5.0156376

10−5 74 6.2712402 27 5.6912402

10−6 88 7.3476471 32 6.5456426

10−7 102 8.6112552 38 7.4948458

10−8 116 9.6252617 43 8.1504484

10−9 130 10.6860685 48 8.9304534

10−10 144 11.7468753 53 9.6408618

10−11 158 12.5736806 58 10.2804659

10−12 172 13.4160860 63 10.9512702

10−13 187 14.4924929 69 11.8404759

Example 4.1 Let

C := {x = (x1, x2) ∈ R
2+ : 0 ≤ xi ≤ 100, i = 1, 2}, (4.1)

and F : R2 → R
2 be defined by

F(x) = (x1 + x2 + sin x1, −x1 + x2 + sin x2), ∀ x = (x1, x2) ∈ R
2. (4.2)
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Fig. 1 ‖xi − x∗‖ and iterations in Example 4.1
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Fig. 2 ‖xi − x∗‖ and time in Example 4.1

Example 4.1 was tested in [12], where the mapping F is monotone and
L−Lipschitz continuous with parameter L = √

10. It is easy to verify that the point

x∗ = 0 is a common element of V I (F, C) and
∞⋂
i=1

Fix(Ti). Moreover, all the assump-

tions in Theorem 3.1 are satisfied. In the numerical experiment, we choose the initial
point x0 = x1 = (− 100, 200) ∈ R

2 for finding an element x∗ ∈ �(Table 1 and
Figs. 1 and 2).

Example 4.2 Let n = 100,

C :={x =(x1, x2, · · · , xn) ∈ R
n : −1≤x1≤3, −1≤xi ≤1, i =2, 3, · · · , n}, (4.3)
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Fig. 3 ‖xi − x∗‖ and iterations in Example 4.2
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Fig. 4 ‖xi − x∗‖ and time in Example 4.2

and F : Rn → R
n be defined by F(x) = Mx + d with M randomly generated as

follows:

M = AAT + B + D, (4.4)

where the every entry of the n × n matrix and the n × n skew-symmetric matrix B

is uniformly generated from (− 5, 5), and every diagonal entry of the n × n diagonal
matrix D is uniformly generated from [1, 100] (so M is positive definite), with every
entry of d uniformly generated from [− 100, 0].

Example 4.2 was tested in [26], where the mapping F is monotone and
L−Lipschitz continuous with L = ‖M‖ because of the positive definiteness of the
matrix M . It is easy to verify that the point x∗ = 0 is a common element of V I (F, C)

and
∞⋂
i=1

Fix(Ti). Moreover, all the assumptions in Theorem 3.1 are satisfied. In the

numerical experiment, we choose the initial point x0 = x1 = (1, 0, · · · , 0) ∈ R
n for

finding an element x∗ ∈ �(Table 2 and Figs. 3 and 4).
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