
Numer Algor (2018) 79:879–897
https://doi.org/10.1007/s11075-017-0465-z

A numerical algorithm to reduce ill-conditioning
in meshless methods for the Helmholtz equation

Pedro R. S. Antunes1

Received: 24 May 2017 / Accepted: 26 December 2017 / Published online: 24 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Some meshless methods have been applied to the numerical solution of
boundary value problems involving the Helmholtz equation. In this work, we focus
on the method of fundamental solutions and the plane waves method. It is well known
that these methods can be highly accurate assuming smoothness of the domains and
the boundary data. However, the matrices involved are often ill-conditioned and the
effect of this ill-conditioning may drastically reduce the accuracy. In this work, we
propose a numerical algorithm to reduce the ill-conditioning in both methods. The
idea is to perform a suitable change of basis. This allows to obtain new basis functions
that span exactly the same space as the original meshless method, but are much better
conditioned. In the case of circular domains, this technique allows to obtain errors
close to machine precision, with condition numbers of order O(1), independently of
the number of basis functions in the expansion.
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1 Introduction

The method of fundamental solutions (MFS) is a numerical method for the solu-
tion of boundary value problems with some partial differential equations, provided
the fundamental solution of such equations is known. It was introduced in 1964 by
Kupradze and Aleksidze [22] and since then it has been widely studied [1, 7, 8, 12,
19, 21, 24]. It is a meshless method that approximates the solution of the boundary
value problem by a linear combination of shifts of the fundamental solution to some
source points that are located on an auxiliary curve that surrounds the domain.

Under smoothness assumption of the domain and the boundary data, the method
may present spectral convergence and it is possible to reach the machine precision
with small matrices. In this smooth setting, commonly the accuracy increases once
we increase the distance between the auxiliary curve and the boundary of the domain.
On the other hand, the matrices involved are dense and often ill-conditioned and this
ill-conditioning can reduce the accuracy that can be achieved. This phenomenon, also
shared by radial basis functions method, is known in the literature as uncertainty
principle [27]. Roughly speaking, it states that it is impossible to keep the error and
the condition number both small. However, in some sense, this was disproved in [13],
where a new numerical algorithm is proposed, the RBF-QR, which reveals that the
ill-conditioning can be completely removed.

The location of the source points is one of the main issues when applying the
MFS. In [7], the authors discussed how the location of these source points can affect
the accuracy of the method, taking into account the behavior of the magnitude of the
linear combination coefficients. In particular, they concluded that the stability and
high accuracy of the method rely on a choice of an auxiliary curve that does not
enclose any singularity of the analytic continuation of the solution.

Another meshless method that was already considered for the solution of boundary
value problems with Helmholtz equation is the plane waves method (PWM) [4,
9, 11]. In this case, the solution is approximated by a linear combination of plane
waves. Taking into account the asymptotic behavior of the fundamental solution, we
conclude that this method can be seen as an asymptotic MFS, when the source points
are placed far from the boundary of the domain [4].

Some other methods have been applied for the numerical solution of these kinds
of problems, such as the plane wave partition of unity finite element method [6],
the ultra weak variational formulation [10], the plane wave discontinuous Galerkin
method [14, 15], or the plane wave least-squares method [17, 25]. In these methods,
the domain is discretized into a mesh. Then, in each of the elements of the mesh,
the solution is approximated by a linear combination of particular solutions of the
Helmholtz equation, such as plane waves or Bessel functions. This procedure allows
to control the conditioning of the linear system that is obtained.

In this work, we consider the numerical solution of boundary value problems for
the Helmholtz equation in planar regions and adapt the main idea of the RBF-QR to
reduce the ill-conditioning of the MFS and the PWM. This allows to propose an algo-
rithm that applies a change of basis to the classical MFS and PWM basis functions.
The new functions span the same space as the original method, but are much better
conditioned. In the case of circular domains, the algorithm allows to obtain errors
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close to machine precision, with condition numbers of order O(1), independently of
the number of basis functions.

2 The direct approach of the method of fundamental solutions

Let � be a smooth bounded planar domain. We consider the following boundary
value problem, {

�u + κ2u = 0 in �,

u = g on ∂�,
(2.1)

for some given function g defined on ∂�.
We will denote by �κ a fundamental solution of the Helmholtz equation,

�κ(x) = i

4
H

(1)
0 (κ|x|),

where H
(1)
0 is a Hankel function of the first kind of order zero. This fundamental

solution is analytic, except at the origin, where it has a logarithmic-type singularity.
The standard approach of the method of fundamental solutions, which will be called
Direct-MFS, approximates the solution of the boundary value problem (2.1) by a
linear combination

uMFS−Dir
N (x) =

N∑
j=1

αMFS−Dir
j �κ(x − yj ). (2.2)

Each base function is a translation of the fundamental solution to some source point
yj placed on some admissible source set �̂ that does not intersect �̄. Thus, by con-
struction, it satisfies the PDE of the problem. The approximation of the boundary
condition can be justified by density results,

span
{
�κ(• − y)|� : y ∈ �̂

}

is dense in Hκ = {
v ∈ H 1(�) : (� + κ2)v = 0

}
, with the H 1 topology (e.g., [3]).

The location of the source points motivated a lot of studies (e.g., [1–3, 7, 16]). We
will use the notation

R� := max
x∈∂�

‖x‖ , r� := min
x∈∂�

‖x‖
and will assume that the source points are distributed uniformly on a circumference
of radius R > R�,

yj = R
(
cos(γj ), sin(γj )

)
, j = 1, ..., N, γj = 2πj

N
. (2.3)

The coefficients of the linear combination (2.2) can be determined by collocation,
forcing the boundary conditions of the problem. We consider P collocation points
xi , i = 1, 2, ..., P , and solve

AMFS−DirαMFS−Dir = G, (2.4)
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where
AMFS−Dir = [

�κ(xi − yj )
]
P×N

, G = [g(xi)]P×1

and αMFS−Dir is a vector with all the coefficients of the Direct-MFS linear com-
bination (2.2). In this work, we took P = 2N and solved (2.4) in the least-squares
sense.

The Direct-MFS can be highly accurate, even with a small number of source
points. For example, the method can achieve exponential convergence on analytic
domains and boundary data ([7, 19–21]). On the other hand, the linear least-
squares problem is often ill-conditioned, which affects the accuracy and prevents
the exponential convergence to be observed in the numerical simulations. In the fol-
lowing section, we will describe a different approach that reduces the problem of
ill-conditioning of the Direct-MFS, which was already applied to boundary value
problems with Laplace equation in [5].

3 A new formulation—the MFS-QR algorithm

We assume that the source points are given by (2.3), for R > R�. Dropping the
constant i/4 that may be incorporated in the coefficients of the linear combination,
by Graf’s addition theorem ([11]), each MFS base function can be written as

H
(1)
0 (κ|x−yj |) = H

(1)
0 (κ|yj |)J0(κ|x|)+2

∞∑
n=1

H(1)
n (κ|yj |)Jn(κ|x|) cos(nβ), (3.1)

where β denotes the angle between x and yj . We will use the notation x̂ = x/|x| and
ŷj = yj /|yj | and write x̂ = (cos(θ), sin(θ)), for some θ ∈ [0, 2π). Then,

x̂.ŷj = cos(θ) cos(γj ) + sin(θ) sin(γj ) = cos(θ − γj )

and by the law of cosines,

x̂.ŷj = |x̂||ŷj | cos(β) = cos(β).

Therefore, writing (3.1) in polar coordinates, we have

ψj (r, θ) := H
(1)
0 (κR)J0(κr)+

2
∞∑

n=1

H(1)
n (κR)Jn(κr)

(
cos(nθ) cos(nγj ) + sin(nθ) sin(nγj )

)
.

Now, it is convenient to define, for each n, the quantities J ∗
n,κ and R∗

n defined through

R∗
n = argmaxr∈[r�,R�]|Jn(κr)|, J ∗

n,κ = Jn(κR∗
n)

and

cn =
{

H
(1)
0 (κR)J ∗

0,κ n = 0

2H
(1)
n (κR)J ∗

n,κ n > 0.
(3.2)

In our algorithm, the approximations for J ∗
n,κ were obtained simply by evaluating

|Jn(κri)|, for 10000 equally spaced points ri ∈ [r�, R�] and taking the maxi-
mum among the values that were obtained. This task is very cheap in terms of
computational cost and the cost does not depend much on κ.
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The MFS basis functions are given by⎡
⎢⎢⎢⎣

ψ1(r, θ)

ψ2(r, θ)
...

ψN(r, θ)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

1 cos(α1) sin(α1) cos(2α1) sin(2α1) cos(3α1) sin(3α1) . . .

1 cos(α2) sin(α2) cos(2α2) sin(2α2) cos(3α2) sin(3α2) . . .
...

...
...

...
...

...
...

. . .

1 cos(αN) sin(αN) cos(2αN) sin(2αN) cos(3αN) sin(3αN) . . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1

c1
c2

c2
c3

c3
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J0(κr)/J ∗
0,κ

J1(κr)/J ∗
1,κ cos(θ)

J1(κr)/J ∗
1,κ sin(θ)

J2(κr)/J ∗
2,κ cos(2θ)

J2(κr)/J ∗
2,κ sin(2θ)

J3(κr)/J ∗
3,κ cos(3θ)

J3(κr)/J ∗
3,κ sin(3θ)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)

After truncating this expansion for some M ∈ N (such that 2M +1 > N) the (3.3)
can be written as

�(r, θ) = B D F(r, θ). (3.4)

Note that the matrix B is well-conditioned, even for large values of N , see for
example Lemma 3.3 of [14], and the condition number is equal to

√
2, independently

of N . The ill-conditioning of the Direct-MFS arises essentially from the diagonal
matrix D. To reduce this ill-conditioning, we adapt the construction of the RBF-QR
[13] which allows to construct new basis functions. The main idea is to use the fact
that if we multiply an invertible matrix from the left in (3.4), this procedure will
change the basis functions without modifying the functional space that is generated
by them. Thus, we try to find such a suitable matrix to be multiplied from the left.

We start by calculating a QR factorization of the matrix B,

B = Q R,

where Q is unitary and R is upper triangular. Therefore, we have

�(r, θ) = Q R︸︷︷︸
B

D F(r, θ).

The new basis functions are calculated by multiplying from the left the matrix
D1

−1 QT , where D1 is the first N ×N block of the matrix D. Thus, since Q is unitary,
we have QT Q = I which implies that

�(r, θ) = D1
−1 QT Q R D F(r, θ) = D1

−1 R D F(r, θ).

The product D1
−1 R D must be calculated carefully, in order to avoid floating point

underflow and/or overflow. The matrix R is upper triangular and D and D1 are
diagonal. Thus,

D1
−1 R D = TL ◦ R ◦ TR, (3.5)

where ◦ denotes the Hadamard product of matrices,

(A ◦ B)i,j = (A)i,j .(B)i,j ,
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and the matrices TR and TL are defined by

TR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c1 c2 c2 . . . cM cM

c1 c1 c2 c2 . . . cM cM

c1 c2 c2 . . . cM cM

c2 c2 . . . cM cM

c2 . . . cM cM

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×(2M+1)

and

TL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/c0 1/c0 1/c0 1/c0 1/c0 . . . 1/c0 1/c0
1/c1 1/c1 1/c1 1/c1 . . . 1/c1 1/c1

1/c1 1/c1 1/c1 . . . 1/c1 1/c1
1/c2 1/c2 . . . 1/c2 1/c2

1/c2 . . . 1/c2 1/c2
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×(2M+1)

.

Now we note that the Hadamard product is commutative, which implies that

D1
−1 R D = TL ◦ R ◦ TR = TL ◦ TR ◦ R = T̃ ◦ R := R̃, (3.6)

where

T̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 c1/c0 c1/c0 c2/c0 c2/c0 . . . cM/c0 cM/c0
1 1 c2/c1 c2/c1 . . . cM/c1 cM/c1

1 c2/c1 c2/c1 . . . cM/c1 cM/c1
1 1 . . . cM/c2 cM/c2

1 . . . cM/c2 cM/c2
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×(2M+1)

.

The new basis functions are defined by the N entries of the vector

�(r, θ) = D1
−1 R D F(r, θ) = R̃F(r, θ)

and the MFS-QR approximation is given in polar coordinates by the linear combina-
tion

u
MFS−QR
N (r, θ) =

N∑
n=1

αMFS−QR
n �n(r, θ). (3.7)

Remark 1 Our algorithm is based on the expansion (3.4), which depends on the
choice of the parameter M . This parameter is chosen iteratively, in a such a way that
the terms of the matrices R̃ are small enough. In praxis, we start choosing M =
2N + 1 and then increase M until all the components of the Mth column of R̃ are
smaller than machine precision. A good improvement of the algorithm would be to
derive bounds for the components of the matrix R̃ which would allow to choose a
convenient value of M , avoiding the iterative procedure that was considered in this
paper.
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The calculation of the matrix T̃ shall be performed in a convenient way to avoid
underflow/overflow problems. In this context, some asymptotic expansions for the
Bessel functions can be used. For example, we have [26]

Jm(z) ∼ 1√
2πm

( ez

2m

)m

, m → ∞
and

Ym(z) ∼ −
√

2

πm

( ez

2m

)−m

, m → ∞.

In practice, the construction of the matrix T̃ involves the calculation of ratios of
type cP /cQ, for P > Q, but for large values of Q, we will have underflow problems
and the program will give cQ = 0. In that case, the calculation of the ratio cP /cQ is
replaced by the quantity obtained from the previous two asymptotic formulas.

The MFS-QR procedure is summarized in Algorithm 1.

Algorithm 1 Algorithm of the MFS-QR method

1: Choose N and R.
2: Choose M = 2N .
3: Compute J ∗

n,κ and cn, n = 0, 1, ...,M .
4: Repeat
5: M → M + 1.
6: Compute the QR factorization of the matrix B.
7: Compute J ∗

M,κ and cM .

8: Compute R̃.
9: Until all the components Mth column of R̃ are smaller then machine precision

10: Evaluate F(r, θ) at the desired points and multiply against R̃.

Again, the coefficients of the linear combination can be determined impos-
ing the boundary conditions of the boundary value problem, by solving the linear
least-squares problem

AMFS−QR αMFS−QR = G, (3.8)
where AMFS−QR = [�(xi)]T or equivalently

[F(xi)]
T R̃T αMFS−QR = G.

By construction, the MFS-QR approximation is a particular solution of the
Helmholtz equation, because the components of F(r, θ) also satisfy the equation.

The quality of the approximation ũ obtained from the Direct-MFS or from the
MFS-QR can be checked a posteriori by measuring the L2 norm of the error on the
boundary. As proved in [23], if κ2 is not a Dirichlet eigenvalue of the Laplacian, then
we have the following bound for the error

‖u − ũ‖L2(�) ≤ C

d
‖u − ũ‖L2(∂�) = C

d
‖g − ũ‖L2(∂�) , (3.9)

where C is a constant that depends just on the domain, d := minj |κ2 − λj |/λj , and
λj are the Dirichlet-Laplacian eigenvalues of �.
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4 The MPW-QR algorithm

Another Treffz-type method is the plane waves method (PWM). In this case, for given
unitary directions d1, d2, ..., dN , the numerical approximation for the solution of the
boundary value problem is a linear combination of plane waves,

uPWM−Dir
N (x) =

N∑
j=1

αPW−Dir
j eiκx.dj . (4.1)

As discussed in [4], taking into account the asymptotic properties of the funda-
mental solution, the PWM may be seen as a limit case of the MFS with source points
located on a circumference with large radius.

The approximation of the boundary condition is justified by a density result, stat-
ing that if � is a bounded simply connected domain and κ is not an eigenfrequency
of �, then (e.g., [11])

L2(∂�) = span
{
eiκx.d : d ∈ S1

}
.

It is straightforward to apply the ideas of the MFS−QR in the context of the plane
waves method and we will call to this new approach PWM − QR. By Jacobi-Anger
expansion ([11]), we have

eiκx.d = J0(κ|x|) + 2
∞∑

n=1

inJn(κ|x|) cos(nβ), (4.2)

where in this case β is the angle between x and d. Thus, writing dj =(
cos(γj ), sin(γj )

)
each basis function is written in polar coordinates as

φj (r, θ) := J0(κr) + 2
∞∑

n=1

inJn(κr)
(
cos(nθ) cos(nγj ) + sin(nθ) sin(nγj )

)
.

and defining,

cn =
{

J ∗
0,κ n = 0

2inJ ∗
n,κ n > 0,

(4.3)

we get an expansion similar to (3.3) and then, we follow the MFS − QR approach
step by step.

The algorithm that we proposed in this paper is able to improve the conditioning in
some simple situations. It would be interesting to investigate if it could be applied to
improve other Trefftz-type methods, which typically lead to ill-conditioned matrices.
For example, in [15], the authors studied the p-version of the plane wave discontin-
uous Galerkin method (PWDG). In that case, the domain � is discretized in a finite
element partition and for each of the elements, the numerical approximation is given
by a linear combination of p plane waves, as in (4.1). The PWDG is a powerful
method that is efficient even in a much more general context than that was con-
sidered in this paper. For example, it is effective for complicated domains or more
general models with piecewise constant wave numbers. However, as was pointed out
in that reference, for high-dimensional local bases, it has been observed that PWDG
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approaches suffer from serious ill-conditioning and without an appropriate precondi-
tioning (e.g., [18]) or a good choice of the bases, it is impossible to obtain meaningful
results for large p. Instead of the local expansion in terms of plane waves, we wonder
if expanding in terms of the new base functions of the PWM-QR, which spans the
same functional space as the plane waves, could improve the conditioning allowing
to consider larger choices of p. The main difficulty in that case, probably, would be
the fact that we will not have a closed form for computing the oscillatory integrals
needed to build the matrix, and would need to use expensive numerical quadratures.

5 Numerical results

Next, we illustrate the performance of the MFS-QR and PWM-QR through some
numerical examples. We will show results for the error in the L2 norm on the bound-
ary which was estimated by a quadrature rule involving 10,000 points zi ∈ ∂�.
We will also present some results for the condition number which was calculated
as the quotient between the largest and smallest singular values of the matrices of
the systems (2.4) or (3.8) and similar systems for the plane waves method. In some
cases, we will also present some numerical results obtained with the Direct-MFS
and Direct-PWM. In these cases, the least-squares problems for calculating the coef-
ficients of the linear combination were solved by using Matlab command linsolve,
which uses QR factorization with column pivoting. We will observe that the results
obtained with the MFS-QR and PWM-QR are much better, which shows that the algo-
rithm proposed in this paper is better than just computing the QR decomposition of
the MFS/PWM stiffness matrices, assembled with the usual bases in a standard way.

5.1 Unit disk

The first example was already considered in [7]. The domain � is the unitary disk
and the solution of the boundary value problem is given by

u(x) = −1

4
Y0(κ|x − ρ|), x ∈ �̄,

where ρ = (x0, 0), for some x0 > 1 and we took κ = 8.
The first row of plots of Fig. 1 shows the errors (left plot) and the condition number

(right plot), as a function of N , obtained when applying the Direct-MFS, the MFS-
QR, the Direct-PWM, and the PWM-QR, for R = 1.5 and x0 = 3.

The left plot shows that the Direct-MFS and the MFS-QR present similar results
and allow to reach the machine precision, for N > N0 ≈ 90. However, the condition
number associated with Direct-MFS grows exponentially while for the MFS-QR, the
condition number is very small and almost constant, independently of N . The Direct-
PWM and PWM-QR allow to obtain similar results for N < N1 ≈ 60 and in this
case the convergence is faster than that was obtained with the MFS. For N > N1, the
PWM-QR is superior due to the high ill-conditioning of the Direct-PWM. In Fig. 2
(left), we plot the l∞ norm of the vectors αDirect−MFS , αMFS−QR , αDirect−PWM ,
and αPWM−QR (as a function of N) which are smaller than one in all the cases.
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Fig. 1 Plot of the errors (left plot) and the condition number (right plot), as a function of N for the
Direct-MFS, MFS-QR, Direct-PWM, and PWM-QR for a x0 = 3 > R = 1.5 and b x0 = 1.1 < R = 1.5

Next, we consider x0 = 1.1 for which x0 < R. In the second row of plots of
Fig. 1, we show the error and condition number for this choice of x0. In this case,
the Direct-MFS and MFS-QR provide the same accuracy for N < N0 ≈ 160 and
the same happens for the Direct-PWM and PWM-QR, but now for N < N1 ≈ 60.
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Fig. 2 Plot of the l∞ norm of the vector of coefficients in the Direct-MFS, MFS-QR, Direct-PWM, and
PWM-QR, for x0 = 3 > R = 1.5 (left plot) and x0 = 1.1 < R = 1.5 (right plot)
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Fig. 4 Plots of the restrictions of the basis functions for the Direct-MFS to the unit disc, when N = 12
and κ = 8
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However, for N > N0 (resp. N > N1), the convergence of the Direct-MFS (resp.
Direct-PWM) breaks down due to ill-conditioning, while the MFS-QR (resp. PWM-
QR) presents a smooth convergence curve and again very small condition number,
independently of N .

As discussed in [7], in this case, the auxiliary curve where we place the source
points encloses a singularity of the analytic continuation of the solution u and the
norm of the vector of coefficients shall grow exponentially. This result is illustrated
in Fig. 2 (right). The coefficients of the Direct-PWM also grow exponentially. On the
other hand, the coefficients of the MFS-QR and of the PWM-QR do not grow and are
always smaller than one.

The difference of the performances of the Direct-MFS and the MFS-QR is even
more evident if we increase the parameter R, which means to place the source
points on a larger circumference. If we take R = 5 or R = 50, the convergence
of Direct-MFS stagnates at a value of order 10−3, while the MFS-QR presents a
smooth convergence curve and allows to reach the machine precision, keeping a very
small condition number. Again, the norm of the vector of the Direct-MFS coefficients
grows exponentially but for the MFS-QR, all the coefficients are smaller than one,
independently of N , as illustrated in Fig. 3.

Fig. 5 Plots the basis functions associated with the MFS-QR that spans the same functional space as the
functions plotted in Fig. 4, but are much more better conditioned
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The idea of the MFS-QR is to perform a change of basis to the classical MFS.
The new functions span the same space as the original method, but are much better
conditioned. Next, we will show the plots of the new basis functions. We considered
N = 12 source points placed on a circumference of radius R = 5. In Fig. 4, we
plot the restrictions of the basis functions for the Direct-MFS to the unit disc, when
κ = 8. In Fig. 5, we plot the new basis functions associated with the MFS-QR that
spans the same functional space as the previous functions, but are much more better
conditioned.

In Fig. 6, we plot similar results for the MFS-QR, but for a higher frequency κ =
30.

Next, we consider the case where the exact solution of the boundary value problem
is given (in polar coordinates) by u(r, θ) = eimθJm(κr)/Jm(κ), for m ∈ N. In the
first case, we fix m = 2. Figure 7 shows the convergence curve for κ = 1, 10, 100
(left plot) and κ = 1000 (right plot). We can obtain errors close to machine precision,
but larger values of κ require to use a larger number of source points, N.

In the last simulation with circular domains, we fix κ = 1 and consider the param-
eters m = 10, 50, 90, 130. Figure 8 shows the convergence curve (left plot) and l∞
norm of the vector of coefficients of the MFS-QR (right plot). Again, we can obtain
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Fig. 6 Plots the basis functions associated with the MFS-QR, for N = 12 and κ = 30
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Fig. 7 Convergence curve of the MFS-QR for κ = 1, 10, 100 (left plot) and κ = 1000 (right plot), when
the exact solution is given by u(r, θ) = ei2θ J2(κr)/J2(κ)

errors close to machine precision, for sufficiently large number of source points. The
coefficients of the MFS-QR linear combination are always smaller than one.

5.2 Elliptical domains

In this section, we will show some numerical results obtained for elliptical domains,
whose boundary is parameterized by

{(2 cos(θ), sin(θ)), 0 ≤ θ < 2π} (5.1)

for some a > 0.
The first example was considered in [4]. We define a = 2 and the boundary data

is given by g(x, y) = ei(x2+y2) sin(x + y). As in [4], the source points for the MFS
were taken for R = 50. Figure 9 shows results for the error and condition number of
the four numerical approaches considered in this paper.
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Fig. 8 Convergence curve (left plot) and l∞ norm of the vector of coefficients of the MFS-QR (right plot)
for κ = 1 and m = 10, 50, 90, 130. In each case, the exact solution is given by u(r, θ) = eimθJm(r)/Jm(1)
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Fig. 9 Plot of the errors (left plot) and the condition number (right plot), as a function of N for the
Direct-MFS, MFS-QR, Direct-PWM, and PWM-QR for an elliptical domain

In this case, the MFS and the PWM present similar results, as expected, since the
source points are located in a large circumference. However, as was also observed
in [4], the convergence of the Direct-MFS and Direct-PWM stagnates at a value
of order 10−11, while the MFS-QR and PWM-QR proposed in this paper allow to
exhaust the machine precision level for N > N0 ≈ 60.

Next, we show some numerical results for ellipses with growing eccentricity. In
Fig. 10, we plot the convergence curve (left plot) and the condition number (right
plot) for a = 2, 3, 4, 5, 6, 7, obtained with the MFS-QR. We observe that for very
elongated ellipses, the results were not so good. For example, for a = 7, we are not
able to improve an error of order 10−2. In this case, placing the source points on a
circumference, as we consider in this paper, is not a good strategy (e.g., [2, 7]) and
we should consider a different curve, like an elongated ellipse containing �̄.
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Fig. 10 Convergence curve (left plot) and the condition number (right plot), for elliptical domains with
a = 2, 3, 4, 5, 6, 7, as a function of N
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Fig. 11 Plots of the solutions of the boundary value problem for κ = 3 (left plot) and κ = 50 (right plot)

5.3 General smooth domain: smooth boundary data

In this example, we considered the application of the Direct-MFS, MFS-QR, Direct-
PWM, and PWM-QR in an example with the domain whose boundary is defined
though {

(1 + 3

20
cos(3θ))(cos(θ), sin(θ)), 0 ≤ θ < 2π

}
(5.2)

and the boundary data is given by g(x, y) = 1. We considered simulations with two
different frequencies (κ = 3 and κ = 50) and obtained the following results for the
L2 norm of the error on the boundary, when applying the PWM-QR with N = 300:

‖e‖L2(∂�) = 2.4 × 10−13, for κ = 3

and
‖e‖L2(∂�) = 2.13 × 10−7, for κ = 50.
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Fig. 12 Plot a domain parametrized by (5.3)
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Fig. 13 Plot of the errors (left plot) and the condition number (right plot), as a function of N for the
Direct-MFS, MFS-QR, Direct-PWM, and PWM-QR in an example with non-smooth boundary data

Similar results were obtained with the MFS-QR. In Fig. 11, we plot the solutions of
the boundary value problem for κ = 3 and κ = 50.

5.4 General smooth domain: non-smooth boundary data

The last example was also considered in [4]. The boundary of the domain is
parametrized by

{
1

4

(
cos(θ)

(
2 + cos(θ) + 1

2
sin(2θ)

)
, sin(θ)

(
2 − cos(θ) + sin(4θ)

2

))
, 0 ≤ θ < 2π

}

(5.3)
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Fig. 14 Plot of the l∞ norm of the vector of coefficients in the Direct-MFS, MFS-QR, Direct-PWM, and
PWM-QR, for an example with non-smooth boundary data
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which is plotted in Fig. 12. The boundary data is non-smooth and given by g(x, y) =
|sin(x) + y| and we took κ = 8 and R = 1.

Figure 13 shows results obtained with the Direct-MFS, MFS-QR, Direct-PWM,
and PWM-QR. In this case, the results are not so good, which was expected since
the boundary data are non-smooth. However, even in this case, the MFS-QR and
PWM-QR are superior to the Direct-MFS and Direct-PWM. The magnitude of the
coefficients of the linear combinations are plotted in Fig. 14.

6 Conclusions

We proposed an algorithm for performing a change of basis in the method of fun-
damental solutions and the plane waves method. This allows to obtain a new set of
basis functions that span exactly the same functional space of the original meshless
method, but is much better conditioned. For the particular case of circular domains,
the new algorithm allows to reach the machine precision, keeping the condition
number of order O(1), independently of the number of basis functions.

Acknowledgements I would like to thank the anonymous referees for many suggestions that clearly
improved the paper.
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