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Abstract Using the double projection and Halpern methods, we prove two strong
convergence results for finding a solution of a variational inequality problem involv-
ing uniformly continuous monotone operator which is also a fixed point of a
quasi-nonexpansive mapping in a real Hilbert space. In our proposed methods, only
two projections onto the feasible set in each iteration are performed, rather than one
projection for each tentative step during the Armijo-type search, which represents
a considerable saving especially when the projection is computationally expensive.
We also give some numerical results which show that our proposed algorithms are
efficient and implementable from the numerical point of view.

Keywords Monotone mappings · Double projection Method · Halpern method ·
Quasi-nonexpansive mapping · Strong convergence · Hilbert spaces

Mathematics Subject Classification (2010) 47H06 · 47H09 · 47J05 · 47J25

The first author is currently an Alexander von Humboldt Postdoctoral Fellow at the Institute of
Mathematics, University of Wurzburg, Germany

� Yekini Shehu
yekini.shehu@unn.edu.ng

Olaniyi S. Iyiola
olaniyi.iyiola@mnstate.edu

1 Department of Mathematics, University of Nigeria, Nsukka, Nigeria

2 Department of Mathematics, Minnesota State University, Moorhead, MN, USA

Numer Algor (2018) 79:529–553

/ Published online: 27 November 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0449-z&domain=pdf
http://orcid.org/0000-0001-9224-7139
mailto:yekini.shehu@unn.edu.ng
mailto:olaniyi.iyiola@mnstate.edu


1 Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖. Let C be a
nonempty, closed and convex subset of H and A be a mapping of C into H . Then A

is called monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C. (1.1)

We say that A is L-Lipschitz continuous if there exists a positive constant L such that

‖Ax − Ay‖ ≤ L‖x − y‖,∀x, y ∈ C.

Let us consider the following variational inequality (for short, VI(A,C)): find x ∈ C

such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.2)

Let � be the set of solutions of VI(A,C) (1.2). It is well known that x solves the
VI(A,C) (1.2) if and only if x solves the fixed point equation (see [12, 13, 33] for the
details):

x = PC(x − γAx), γ > 0 and rγ (x) := x − PC(x − γAx) = 0.

Variational inequality theory is an important tool in studying a wide class of obsta-
cle, unilateral, and equilibrium problems arising in several branches of pure and
applied sciences in a unified and general framework, e.g., see [3, 4, 13, 20, 22, 33].
This field is dynamic and is experiencing an explosive growth in both theory and
applications. Several numerical methods have been developed for solving variational
inequality and related optimization problems, see books [5, 12, 22] and the references
therein.

The extragradient method, introduced in 1976 by Korpelevich [21] and Antipin [1]
for a finite-dimensional space, provides an iterative process converging to a solution
of VI(A,C) by only assuming that C ⊂ R

n is nonempty, closed and convex and
A : C → R

n is monotone and L-Lipschitz continuous. Some other methods have
been introduced in the literature for finding a solution to VI(A,C) (1.2) when the
monotone operator A is continuous in Rn (see, for example, [14, 36]). Quite recently,
Mainge [27] introduced the following projected reflected gradient-type method in
R

n for VI(A,C) (1.2) by incorporating a linesearch procedure that does not require
any additional evaluation of PC when A is monotone and continuous mapping in Rn.
Similarly, the extragradient method has been further extended to infinite dimensional
spaces by many authors; see for instance, [2, 8–10, 15–17, 23, 24, 26, 28, 29, 32, 36,
37].

A mapping S : C → C is called

• nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖,∀x, y ∈ C;
and

• quasi-nonexpansive if

‖Sx − p‖ ≤ ‖x − p‖, ∀x ∈ C, p ∈ F(S),
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where F(S) denotes its fixed point set, i.e.,

F(S) := {x ∈ C : Sx = x}.
In [31], Nadezhkina and Takahashi obtained weak convergence result for finding the
common element of the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality problem for a monotone, Lipschitz-continuous
mapping and in [32], they introduced an iterative process for finding a common ele-
ment of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequality problem (1.2) for a monotone, Lipschitz-continuous map-
ping using the two well-known methods of hybrid and extragradient and obtained a
strong convergence theorem for the sequence generated by this process. Similarly,
weak and strong convergence results have been obtained for finding a common ele-
ment of the set of fixed points of a nonexpansive mapping (or quasi-nonexpansive)
and the set of solutions of the variational inequality problem for a monotone,
Lipschitz-continuous mapping using the subgradient extragradient method in [9, 10,
25].

Inspired by the subgradient extragradient method studied by Censor et al. in
[9, 10], Kraikaew and Saejung [25] proved the strong convergence of the itera-
tive sequence generated by a combination of subgradient extragradient method and
Halpern method for the problem of finding a common element of the solution set of
a variational inequality and the fixed-point set of a quasi-nonexpansive mapping in
real Hilbert spaces. In particular, they proved the following theorem.

Theorem 1.1 Let S : H → H be a quasi-nonexpansive mapping such that I − S

is demiclosed at zero and A : H → H a monotone and L-Lipschitz mapping on C.
Let λ be a positive real number such that λL < 1. Suppose that F(S) ∩ � �= ∅. Let
{xn} ⊂ H be a sequence generated by x1 ∈ H ,

⎧
⎪⎪⎨

⎪⎪⎩

yn = PC(xn − λAxn),

Tn := {w ∈ H : 〈xn − λAxn − yn, w − yn〉 ≤ 0},
zn = αnx1 + (1 − αn)PTn(xn − λAyn),

xn+1 = βnxn + (1 − βn)Szn,

where {βn} ⊂ [a, b] ⊂]0, 1[ for some a, b ∈]0, 1[ and {αn} is a sequence in ]0, 1[
satisfying lim

n→∞αn = 0 and
∑

αn = ∞. Then {xn} converges strongly to PF(S)∩�x1.

We remark here that the framework presented by Kraikaew and Saejung [25]
requires the Lipschitz constant of A as an input parameter. Thus, the result cannot be
applied to the case when eitherA isL-Lipschitz continuous but the Lipschitz constant
L is unknown or A is uniformly continuous monotone mapping.

Weak convergence result for variational inequality problem (1.2) involving uni-
formly continuous monotone operator in infinite dimensional Banach spaces was
obtained in [16] and its strong convergence result in infinite dimensional Hilbert
spaces using the Haugazeau method was given in [6]. We remark that in order to
implement the iterative method introduced in [6] one has to calculate, at each iteration
step, the metric projection onto the intersection of two half spaces and the feasible
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set C. This is a drawback to the iterative algorithm introduced in [6] since the projec-
tion onto this intersection can be very difficult to compute as the intersection changes
from iteration to iteration.

It is our aim in this paper to establish strong convergence results for approximat-
ing a solution of VI(A,C) (1.2) when A is a uniformly continuous monotone operator
and the solution is also a fixed point of a quasi-nonexpansive mapping in real Hilbert
spaces. We propose two convergence methods and prove strong convergence of the
sequences generated by our proposed methods. Our proposed algorithms are based
on known processes of double projection and Halpern methods and our results extend
most of the existing known results on this subject, including [9, 10, 25, 31, 32]
from Lipschitz monotone variational inequality to uniformly continuous variational
inequality with only two projections onto feasible set C per iteration, unlike other
variants, e.g., [11, 35] with projections onto C inside the inner loop for the search.
Our scheme and method of proof is different from the method of proof given in [6].
We also give some numerical implementation of our results.

The paper is therefore organized as follows: We first recall some basic results
which will be used in the sequel in Section 2 and the main contribution of the paper
is given in Section 3. In Section 4, we give some numerical examples of our result
and finally in Section 5, we conclude with some final remarks on our next focus on
monotone variational inequalities.

2 Preliminaries

Let H be a real Hilbert space and C a nonempty, closed and convex subset of H . For
any point u ∈ H , there exists a unique point PCu ∈ C such that

‖u − PCu‖ ≤ ‖u − y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C. It is also known that PC satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, (2.1)

for all x, y ∈ H . Furthermore, PCx is characterized by the properties PCx ∈ C,

〈x − PCx, PCx − y〉 ≥ 0, (2.2)

for all y ∈ C and

‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2 (2.3)

for all x ∈ H and y ∈ C.
We state the following well-known lemmas which will be used in the sequel.

Lemma 2.1 Let H be a real Hilbert space. Then there holds the following well-
known results:

(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, ∀x, y ∈ H.

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.
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(iii) ‖tx + sy‖2 = t (t + s)‖x‖2+ s(t + s)‖y‖2− st‖x −y‖2, ∀x, y ∈ H, ∀t, s ∈ R.

(iv) 2〈x − y, x − z〉 = ‖x − y‖2 + ‖x − z‖2 − |y − z‖2∀x, y, z ∈ H.

Lemma 2.2 (Xu [38]) Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 1,

where

(i) {an} ⊂ [0, 1], ∑
αn = ∞;

(ii) lim sup σn ≤ 0;
(iii) γn ≥ 0; (n ≥ 1), �γn < ∞.

Then, an → 0 as n → ∞.

Lemma 2.3 ([18]) For all 0 �= v ∈ H , ỹ ∈ H , x ∈ D+ and x̄ ∈ D−, we have that
‖x̄ − x‖2 ≥ ‖x̄ − z‖2 + ‖z − x‖2, where z is the unique minimizer of 1

2‖. − x‖2
on D where D := {y ∈ H : 〈v, y − ỹ〉 = 0}, D+ := {y ∈ H : 〈v, y − ỹ〉 ≥ 0},
D− := {y ∈ H : 〈v, y − ỹ〉 ≤ 0}.

Lemma 2.4 ([18]) LetH1 andH2 be two real Hilbert spaces. SupposeA : H1 → H2
is uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1.
Then A(M) is bounded.

Lemma 2.5 (See Lemma 7.1.7 of [39]) Let C be a nonempty, closed and convex
subset of a Hilbert spaceH . LetA : C → H be a monotone and continuous mapping
and z ∈ C. Then

z ∈ V I (C, A) ⇔ 〈Ax, x − z〉 ≥ 0 for all x ∈ C.

3 Main result

3.1 The first Halpern type double projection method

In this subsection, we propose our first Halpern type double projection algorithm and
prove that the sequences generated by the proposed method converge strongly to an
element of � which is also a fixed point of a quasi-nonexpansive mapping. Let C be
a nonempty, closed, and convex subset of a real Hilbert space H . Let S : C → C

be a quasi-nonexpansive mapping such that I − S is demiclosed at the origin (i.e.,
if {xn} is a sequence in H such that xn ⇀ x and Sxn − xn → 0, as n → 0, then
x = Sx ). Let A : C → C be a monotone mapping which is uniformly continuous
on bounded subsets of C and F(S) ∩ � �= ∅. Suppose {xn}∞n=1 is generated in the
following manner:
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Algorithm 3.1

1: Choose γ ∈ (0, 1), σ ∈ (0, 1), and ρ > 0, and {αn}∞n=1 and {βn}∞n=1 real
sequences in (0,1)

2: Given x1 ∈ C, starting point
3: Compute: r(xn) := xn − PC(xn − Axn)

4: Compute:
yn := (1 − ηn)xn + ηnPC(xn − Axn),

where the stepsize ηn := ργ mn and
mn is the smallest nonnegative integer m satisfying

〈Ayn, r(xn)〉 ≥ σ

2
‖r(xn)‖2.

5: Compute:
zn = αnx1 + (1 − αn)PC(xn − λnAyn)

where λn := 〈Ayn,xn−yn〉
‖Ayn‖2

6: Then compute:
xn+1 = βnxn + (1 − βn)Szn, n ≥ 1,

7: Set n ← n + 1 and goto 3.

We first show that Algorithm 3.1 is well defined and implementable. This was
done in [19] but we include the proof for the sake of completeness.

Lemma 3.1 The stepsize procedure in Step 4 of Algorithm 3.1 is well-defined, i.e. it
terminates after finitely many inner loops.

Proof Consider an arbitrary index n ∈ N. Observe that we assume implicitly that
r(xn) �= 0. Assume that the stepsize rule does not terminate finitely at this iteration
n. Then we have

〈
A((1 − ργ m)xn + ργ mPC(xn − Axn)), r(xn)

〉
<

σ

2
‖r(xn)‖2, ∀m ≥ 1.

Since A is continuous, we obtain for m → ∞ that

〈
Axn, xn − PC(xn − Axn)

〉 ≤ σ

2
‖xn − PC(xn − Axn)‖2.

Let wn := xn − Axn. Then we get

2
〈
xn − wn, xn − PC(xn − Axn)

〉 ≤ σ‖xn − PC(xn − Axn)‖2.
Using Lemma 2(iv), we obtain from the previous inequality

‖PC(xn − Axn) − xn‖2 + ‖xn − wn‖2 − ‖PC(xn − Axn) − wn‖2
≤ σ‖PC(xn − Axn) − xn‖2.
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Since ‖PC(xn − Axn) − xn‖ = ‖r(xn)‖ > 0 and σ ∈ (0, 1), we obtain

‖PC(xn − Axn) − xn‖2 + ‖xn − wn‖2 − ‖PC(xn − Axn) − wn‖2
≤ σ‖PC(xn − Axn) − xn‖2
< ‖PC(xn − Axn) − xn‖2.

Hence, ‖xn − wn‖ < ‖PC(xn − Axn) − wn‖. Since wn = xn − Axn by definition
and xn ∈ C, this contradicts the definition of a metric projection.

A direct consequence of the previous result is that the scalar λn in Step 5 and Step
6 of Algorithm 3.1 are also well-defined.

Corollary 3.2 We have 〈Ayn, xn − yn〉 > 0; in particular, Ayn �= 0 and, therefore
λn is well-defined and positive.

Proof Consider once again a fixed iteration index n ∈ N, and recall that ‖xn −
PC(xn − Axn)‖ = ‖r(xn)‖ > 0 holds due to our implicit assumption regarding
termination of the algorithm. Since the stepsize rule in Step 4 is well-defined by
Lemma 3.1, the definition of yn yields

〈Ayn, xn − yn〉 = ηn

〈
Ayn, xn − PC(xn − Axn)

〉 ≥ σηn

2
‖xn − PC(xn − Axn)‖2 > 0,

so the statements follow.

We now prove the following theorem.

Theorem 3.3 Assume that

(a) lim
n→∞αn = 0;

(b)
∞∑

n=1
αn = ∞;

(c) 0 < a ≤ βn ≤ b < 1.

Then the sequences {xn}∞n=1 and {yn}∞n=1 generated by Algorithm 3.1 strongly
converge to z ∈ F(S) ∩ �, where z = PF(S)∩�x1.

Proof Let z = PF(S)∩�x1. Let us define for each n,

D−
n := {x ∈ H : 〈Ayn, x − yn〉 ≤ 0},

Dn := {x ∈ H : 〈Ayn, x − yn〉 = 0},
and

D+
n := {x ∈ H : 〈Ayn, x − yn〉 ≥ 0},

where {yn} is generated by Algorithm 3.1.
Since A is monotone, we have that

〈Ax, x − z〉 ≥ 0, ∀x ∈ C.
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This implies that z ∈ D−
n . Also, observe that if the Algorithm 3.1 does not stop at

iteration n, then

〈Ayn, xn − yn〉 = 〈Ayn, xn − PC(xn − Axn)〉
≥ ηnσ

2
‖r(xn)‖2 > 0.

Therefore, xn ∈ D+
n and xn /∈ D−

n . Let un := xn − λnAyn. Using the definition of
λn, we have that

un = xn − λnAyn

= xn − 〈Ayn, xn − yn〉
‖Ayn‖2 Ayn

= PDn(xn),

where Dn := {y ∈ H : 〈Ayn, y −yn〉 = 0}. Thus, un ∈ Dn. Furthermore, by Lemma
2.3, we get that

‖xn − z‖2 ≥ ‖un − z‖2 + ‖un − xn‖2, (3.1)

By Lemma 2.1 (iv), (2.2) and the fact that vn := PC(xn − λnAyn), we obtain

‖vn − z‖2 + ‖vn − un‖2 − ‖un − z‖2
= 2〈vn − un, vn − z〉 ≤ 0.

This implies that

‖un − z‖2 ≥ ‖vn − z‖2 + ‖vn − un‖2. (3.2)

It then follows from (3.1) and (3.2) that

‖xn − z‖2 ≥ ‖vn − z‖2 + ‖vn − un‖2
+‖un − xn‖2.

Therefore,

‖vn − z‖2 ≤ ‖xn − z‖2 − ‖vn − un‖2 − ‖un − xn‖2. (3.3)

Thus,

‖vn − z‖ ≤ ‖xn − z‖.
We then obtain from Step 6 of Algorithm 3.1 and (3.3) that

‖xn+1 − z‖ ≤ βn‖xn − z‖ + (1 − βn)‖Szn − z‖
≤ βn‖xn − z‖ + (1 − βn)‖zn − z‖
= βn‖xn − z‖ + (1 − βn)‖αn(x1 − z) + (1 − αn)(vn − z)‖
≤ βn‖xn − z‖ + (1 − βn)(αn‖x1 − z‖ + (1 − αn)‖vn − z‖)
≤ βn‖xn − z‖ + (1 − βn)(αn‖x1 − z‖ + (1 − αn)‖xn − z‖)
≤ max

{
‖xn − z‖, ‖x1 − z‖

}

...

≤ max
{
‖x1 − z‖, ‖x1 − z‖

}
.
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This shows that {xn} is bounded. Furthermore, by the fact that A is uniformly contin-
uous on bounded subsets of C (see Lemma 2.4), we have that {PC(xn − Axn}, {yn}
and {Ayn} are all bounded.

Then, using Lemma 2.1 (ii), (iii), and (3.3), we have

‖xn+1 − z‖2 = ‖βn(xn − z) + (1 − βn)(Szn − z)‖2
= βn‖xn − z‖2 + (1 − βn)‖Szn − z‖2 − βn(1 − βn)‖xn − Szn‖2
≤ βn‖xn − z‖2 + (1 − βn)‖zn − z‖2 − βn(1 − βn)‖xn − Szn‖2
= βn‖xn − z‖2 + (1 − βn)‖αn(x1 − z) + (1 − αn)(tn − z)‖2

−βn(1 − βn)‖xn − Szn‖2
≤ βn‖xn − z‖2 − βn(1 − βn)‖xn − Szn‖2

+(1 − βn)((1 − αn)
2‖vn − z‖2 + 2αn〈x1 − z, zn − z〉)

≤ βn‖xn − z‖2 − βn(1 − βn)‖xn − Szn‖2
+(1 − βn)((1 − αn)‖vn − z‖2 + 2αn〈x1 − z, zn − z〉)

≤ (1 − αn(1 − βn))‖xn − z‖2 + 2αn(1 − βn)〈x1 − z, zn − z〉
−βn(1 − βn)‖xn − Szn‖2. (3.4)

Furthermore, we obtain

‖xn+1 − z‖2 ≤ (1 − αn(1 − βn))‖xn − z‖2 + 2αn(1 − βn)〈x1 − z, zn − z〉.(3.5)
The rest of the proof will be divided into two parts.

Case 1

Suppose that there exists n0 ∈ N such that {‖xn − z‖}∞n=n0
is nonincreasing. Then

{‖xn − z‖}∞n=1 converges and ‖xn − z‖2 − ‖xn+1 − z‖2 → 0, n → ∞. From (3.4),
we have that

βn(1 − βn)‖xn − Szn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + αnM1, (3.6)

for some M1 > 0. Thus,

‖xn − Szn‖ → 0, n → ∞.

Furthermore, we have from Step 6 of Algorithm 3.1 and (3.3) that

0 = lim inf
n→∞ (‖xn+1 − z‖ − ‖xn − z‖)

≤ lim inf
n→∞ (βn‖xn − z‖ + (1 − βn)‖Szn − z‖ − ‖xn − z‖)

≤ lim inf
n→∞ (1 − βn)(αn‖x1 − z‖ + (1 − βn)‖vn − z‖ − ‖xn − z‖)

= lim inf
n→∞ (1 − βn)(‖vn − z‖ − ‖xn − z‖)

≤ (1 − a)lim inf
n→∞ (‖vn − z‖ − ‖xn − z‖)

≤ (1 − a)lim sup
n→∞

(‖vn − z‖ − ‖xn − z‖)
≤ 0.
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So,
lim sup
n→∞

(‖vn − z‖ − ‖xn − z‖) = 0.

We obtain from (3.3) that

‖un − xn‖2 ≤ ‖xn − z‖2 − ‖vn − z‖2
= (‖xn − z‖ − ‖tn − z‖)(‖xn − z‖ + ‖vn − z‖)
≤ (‖xn − z‖ − ‖vn − z‖)M2,

for some M2 > 0. Thus
lim sup
n→∞

‖xn − un‖ = 0

and this implies that
‖xn − un‖ → 0, n → ∞.

From (3.3) again, we have

‖un − vn‖2 ≤ ‖xn − z‖2 − ‖vn − z‖2
= (‖xn − z‖ − ‖vn − z‖)(‖xn − z‖ + ‖vn − z‖)
≤ (‖xn − z‖ − ‖vn − z‖)M2, (3.7)

from which we have
‖un − vn‖ → 0, n → ∞.

Furthermore,

‖xn − vn‖ ≤ ‖xn − un‖ + ‖un − tn‖ → 0, n → ∞
and from Step 5 of Algorithm 3.1, we get

‖zn − vn‖ = αn‖u − vn‖ → 0, n → ∞
and

‖xn − zn‖ ≤ ‖xn − vn‖ + ‖zn − vn‖ → 0, n → ∞.

Also

‖zn − Szn‖ ≤ ‖zn − vn‖ + ‖xn − Szn‖ + ‖xn − vn‖ → 0, n → ∞
and

‖xn+1 − xn‖ = (1 − βn)‖xn − Szn‖ → 0, n → ∞.

Furthermore, we get (since un ∈ Dn) that

0 = 〈Ayn, un − yn〉 = 〈Ayn, un − wn〉 + 〈Ayn, wn − yn〉.
Hence,

|〈Ayn, xn − yn〉| = |〈Ayn, xn − un〉|
≤ ‖Ayn‖‖xn − un‖ → 0, n → ∞.

Therefore,

lim
n→∞〈Ayn, xn − yn〉 = 0. (3.8)

Since {xn} is bounded, it has a subsequence {xnk
} such that {xnk

} converges weakly
to some p ∈ C and lim sup

n→∞
〈x1 − z, xn − z〉 = lim

k→∞〈x1 − z, xnk
− z〉.
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We next claim that there exists at least a subsequence {xnk
} such that 0 ≤

lim infk→∞〈Axnk
, x − xnk

〉, ∀x ∈ C.
To achieve this, let us define snk

:= PC(xnk
− Axnk

). Observe that since {ηn} is
a bounded sequence of real numbers, it has a convergent subsequence and this gives
rise to the following two sub-cases to be considered:

Sub-case 1: Suppose that there exists a subsequence {ηnk
} of {ηn} which converges

to zero. In this case, we first show that lim supk→∞ ‖snk
− xnk

‖ = 0. Assume the
contrary that lim supk→∞ ‖snk

−xnk
‖ = δ > 0. Let ȳk := 1

γ
ηnk

snk
+(1− 1

γ
ηnk

)xnk

or equivalently ȳk − xnk
= 1

γ
ηnk

(snk
− xnk

). Since {snk
− xnk

} is bounded and
lim supk→∞ ηnk

= 0, it follows that

lim sup
k→∞

‖ȳk − xnk
‖ = 0.

This implies that

lim
k→∞ ‖ȳk − xnk

‖ = 0. (3.9)

From the line search and the definition of ȳk , we have

〈Aȳk, xnk
− snk

〉 <
σ

2
‖xnk

− snk
‖2, ∀k ∈ N.

Since A is uniformly continuous on bounded subsets of C and σ ∈ (0, 1), we
obtain from (3.9) that there exists N ∈ N such that

2〈Axnk
, xnk

− snk
〉 < ‖xnk

− snk
‖2, ∀k ∈ N.

Therefore,

2〈xnk
− tnk

, xnk
− snk

〉 < ‖xnk
− snk

‖2, ∀k ∈ N,

where tnk
:= xnk

− Axnk
. Using Lemma 2.1 (b) in the last inequality, we obtain

‖xnk
− snk

‖2 + ‖xnk
− tnk

‖2 − ‖snk
− tnk

‖2 < ‖xnk
− snk

‖2.
Thus,

‖xnk
− tnk

‖ < ‖snk
− tnk

‖.
This is a contradiction to the definition of snk

= PC(tnk
) = PC(xnk

− Axnk
).

Therefore, lim supk→∞ ‖snk
− xnk

‖ = 0.
Furthermore, observe that from Algorithm 3.1 and (2.2) that

〈xnk
− Axnk

− snk
, x − snk

〉 ≤ 0, ∀x ∈ C,

which implies that

〈xnk
− snk

, x − snk
〉 ≤ 〈Axnk

, x − snk
〉, ∀z ∈ C.

Hence,

〈xnk
− snk

, x − snk
〉 + 〈Axnk

, snk
− xnk

〉
≤ 〈Axnk

, x − xnk
〉, (3.10)

Numer Algor (2018) 79:529–553 539 



for all x ∈ C. Fix x ∈ C and let k → ∞ in (3.10) (noting that limi→∞ ‖snk
−

xnk
‖ = 0), we have

0 ≤ lim inf
k→∞ 〈Axnk

, x − xnk
〉, ∀x ∈ C.

Sub-case 2: Suppose that {ηnk
} is any subsequence of {ηn} that is bounded away

from zero. Then, we have ηnk
≥ μ > 0. It follows from the line search in

Algorithm 3.1 that

〈Aynk
, xnk

− ynk
〉 ≥ σ

2
ηnk

‖xnk
− snk

‖2. (3.11)

Therefore, by (3.8) we get that limk→∞ ‖snk
− xnk

‖ = 0. Following the same line
of arguments in (3.10) above, we can show that

0 ≤ lim inf
k→∞ 〈Axnk

, x − xnk
〉, ∀x ∈ C.

Since A is monotone, we have for an arbitrary x ∈ C that

〈Ax, x − xnk
〉 ≥ 〈Axnk

, x − xnk
〉, ∀k ∈ N. (3.12)

Taking lim inf on both sides of (3.12), we have

lim inf
k→∞ 〈Ax, x − xnk

〉 ≥ lim inf
k→∞ 〈Axnk

, x − xnk
〉 ≥ 0.

Since xnk
⇀ p, we have for all x ∈ C that

〈Ax, x − p〉 = lim
k→∞〈Ax, x − xnk

〉
= lim inf

k→∞ 〈Ax, x − xnk
〉 ≥ 0.

This implies by Lemma 2.5 that p ∈ �.
Since {xnk

} converges weakly to some p ∈ C and xn − zn → 0, n → ∞, we
have that {znk

} converges weakly to some p ∈ C. By demiclosedness of I − S at
origin and the fact that ‖zn − Szn‖ → 0, n → ∞, we have that p ∈ F(S). Hence,
p ∈ F(S) ∩ �.

Since z = PF(S)∩�x1, we have that

lim sup
n→∞

〈x1 − z, zn − z〉 = lim
k→∞〈x1 − z, znk

− z〉
= 〈x1 − z, p − z〉
≤ 0.

Using Lemma 2.2 in (3.5), we obtain lim
n→∞‖xn − z‖ = 0. Thus, xn → z, n → ∞.

Case 2

Assume that {‖xn−z‖} is not monotonically decreasing sequence. Set �n = ‖xn−
z‖2 and let τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough)by

τ(n) := max{k ∈ N : k ≤ n, �k ≤ �k+1}.
Clearly, τ is a non decreasing sequence such that τ(n) → ∞ as n → ∞ and

0 ≤ �τ(n) ≤ �τ(n)+1, ∀n ≥ n0.
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This implies that ‖xτ(n) −z‖ ≤ ‖xτ(n)+1−z‖,∀n ≥ n0. Thus lim
n→∞‖xτ(n) −z‖ exists.

Following the arguments in Case 1, we can show that

‖xτ(n) − Szτ(n)‖ → 0, n → ∞,

lim sup
n→∞

(‖vτ(n) − z‖ − ‖xn − τ(n)‖) = 0,

‖xτ(n) − vτ(n)‖ → 0, n → ∞,

‖zτ(n) − vτ(n)‖ → 0, n → ∞,

‖xτ(n)+1 − xτ(n)‖ → 0, n → ∞
and

‖zτ(n) − Szτ(n)‖ → 0, n → ∞.

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by {xτ(n)}
which converges weakly to p. Observe that since lim

n→∞‖xτ(n) − zτ(n)‖ = 0, we also

have zτ(n) ⇀ p. By similar argument in Case 1, we can show that w ∈ F(S)∩� and

lim sup
n→∞

〈x1 − z, zτ(n) − z〉 ≤ 0.

By (3.5), we obtain that

‖xτ(n)+1 − z‖2 ≤ (1 − ατ(n)(1 − βτ(n)))‖xτ(n) − z‖2 + 2ατ(n)(1 − βτ(n))〈x1 − z, zτ(n) − z〉.
which implies that (noting that �τ(n) ≤ �τ(n)+1 and ατ(n)(1 − βτ(n)) > 0)

‖xτ(n) − z‖2 ≤ 2〈x1 − z, zτ(n) − z〉.
This implies that

lim sup
n→∞

‖xτ(n) − z‖ ≤ 0.

Thus,

lim
n→∞‖xτ(n) − z‖ = 0.

and
‖xτ(n)+1 − z‖ ≤ ‖xτ(n) − z‖ + ‖xτ(n)+1 − xτ(n)‖ → 0, n → ∞.

Therefore,
lim

n→∞ �τ(n) = lim
n→∞ �τ(n)+1 = 0.

Furthermore, for n ≥ n0, it is easy to see that �τ(n) ≤ �τ(n)+1 if n �= τ(n) (that is
τ(n) < n), because �j ≥ �j+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain
for all n ≥ n0,

0 ≤ �n ≤ max{�τ(n), �τ(n)+1} = �τ(n)+1.

Hence, lim�n = 0, that is, lim
n→∞‖xn − z‖ = 0. Hence, {xn} converges strongly to z.

Similarly, yn → z. This completes the proof.

Remark 3.4 Our strong convergence result using Algorithm 3.1 extends the strong
convergence results of Kraikaew and Saejung [25] (see also [26, 29, 32]) from mono-
tone mapping A which is Lipschitz continuous to uniformly continuous monotone
mapping in infinite dimensional Hilbert space.
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3.2 The second Halpern type double projection method

In this subsection, we present another Halpern type double projection method which
finds a solution of the Variational inequality for a uniformly continuous monotone
operator which is also a fixed point of a given quasi-nonexpansive mapping. Then,
we establish a strong convergence theorem of the sequence generated by our scheme.

Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
S : C → C be a quasi-nonexpansive mapping such that I − S is demiclosed at the
origin and denote by F(S) its fixed point set. Let A : C → C be a monotone and
uniformly continuous on bounded subsets of C and F(S) ∩ � �= ∅. Suppose {xn}∞n=1
and {yn}∞n=1 are sequences generated by the following manner:

Algorithm 3.2

1: Choose γ ∈ (0, 1), σ ∈ (0, 1), ρ > 0, and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 and
{ωn}∞n=1 real sequences in (0,1) such that αn + βn + γn = 1

2: Given x1 ∈ C, starting point.
3: Compute: r(xn) := xn − PC(xn − Axn)

4: Compute:
yn := (1 − ηn)xn + ηnPC(xn − Axn),

where the stepsize ηn := ργ mn and
mn is the smallest nonnegative integer m satisfying

〈Ayn, r(xn)〉 ≥ σ

2
‖r(xn)‖2.

5: Compute:

xn+1 = αnx1 + βnxn + γn(ωnSxn + (1 − ωn)PC(xn − λnAyn)), n ≥ 1,

where λn := 〈Ayn,xn−yn〉
‖Ayn‖2

6: Set n ← n + 1 and goto 3.

Remark 3.5 By Lemma 3.1, Algorithm 3.2 is well defined and implementable.

Theorem 3.6 Assume that

(a) lim
n→∞αn = 0;

(b)
∞∑

n=1
αn = ∞;

(c) βn ≥ ε1 > 0, γn ≥ ε2 > 0;
(d) 0 < c ≤ ωn ≤ d < 1.

Then the sequences {xn}∞n=1 and {yn}∞n=1 generated by Algorithm 3.2 strongly
converge to z ∈ F(S) ∩ �, where z = PF(S)∩�x1.
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Proof Let z = PF(S)∩�x1. Then following the method of proof in Theorem 3.3, we
can show that

‖vn − z‖2 ≤ ‖xn − z‖2 − ‖vn − un‖2 − ‖un − xn‖2.
Let zn := ωnSxn + (1 − ωn)vn, ∀n ≥ 1. Then

‖zn − z‖ ≤ ωn‖Sxn − z‖ + (1 − ωn)‖vn − z‖
≤ ωn‖xn − z‖ + (1 − ωn)‖xn − z‖
= ‖xn − z‖.

Furthermore, by (5), we have

‖xn+1 − z‖ ≤ αn‖x1 − z‖ + βn‖xn − z‖ + γn‖zn − z‖
≤ αn‖x1 − z‖ + βn‖xn − z‖ + γn‖xn − z‖
= αn‖x1 − z‖ + (1 − αn)‖xn − z‖
≤ max

{
‖xn − z‖, ‖x1 − z‖

}
,

which by induction implies that {xn} is bounded. So also is {zn}. By Lemma 2.1 (ii)
and (iii), we get

‖xn+1 − z‖2 = ‖αn(x1 − z) + βn(xn − z) + γn(zn − z)‖2
≤ ‖βn(xn − z) + γn(zn − z)‖2 + 2αn〈x1 − z, xn+1 − z〉
= βn(βn + γn)‖xn − z‖2 + γn(βn + γn)‖zn − z‖2

−βnγn‖zn − xn‖2 + 2αn〈x1 − z, xn+1 − z〉
≤ βn(βn + γn)‖xn − z‖2 + γn(βn + γn)‖xn − z‖2

−βnγn‖zn − xn‖2 + 2αn〈x1 − z, xn+1 − z〉
= (βn + γn)

2‖xn − z‖2 − βnγn‖zn − xn‖2
+2αn〈x1 − z, xn+1 − z〉

≤ (1 − αn)‖xn − z‖2 − βnγn‖zn − xn‖2
+2αn〈x1 − z, xn+1 − z〉. (3.13)

We now distinguish two cases

Case 1

Suppose that there exists n0 ∈ N such that {||xn − z||}∞n=n0
is nonincreasing. Then

{||xn − z||}∞n=1 converges and ||xn − z||2 − ||xn+1 − z||2 → 0, n → ∞. By the
boundedness of {xn}, we have from (3.13) that

βnγn‖zn − xn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + αnM, (3.14)

for some M > 0. By Condition (c), we have that

lim
n→∞‖xn − zn‖ = 0.
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Observe that

xn+1 − xn = αnx1 + βnxn + γnzn − (αnxn + βnxn + γnxn)

= αn(u − xn) + γn(zn − xn).

This implies that

‖xn+1 − xn‖ ≤ αn‖x1 − xn‖ + γn‖zn − xn‖ → 0, n → ∞.

Also,
‖xn+1 − zn‖ ≤ ‖xn+1 − xn‖ + ‖xn − zn‖ → 0, n → ∞.

By (5), we have

‖xn+1 − z‖2 ≤ αn‖x1 − z‖2 + βn‖xn − z‖2 + γn‖zn − z‖2
≤ αn‖x1 − z‖2 + βn‖xn − z‖2 + γn

(
ωn‖Sxn − z‖2

+(1 − ωn)‖vn − z‖2
)

≤ αn‖x1 − z‖2 + βn‖xn − z‖2 + ωnγn‖xn − z‖2
+γn(1 − ωn)‖vn − z‖2.

Thus,

− ‖vn − z‖2 ≤ 1

γn(1 − ωn)

[
αn‖u − z‖2 + βn‖xn − z‖2

+ωnγn‖xn − z‖2 − ‖xn+1 − z‖2
]
. (3.15)

Using (3.15) in (3.3), we have

‖un − xn‖2 ≤ ‖xn − z‖2 − ‖vn − z‖2

≤ ‖xn − z‖2 − 1

γn(1 − ωn)
‖xn+1 − z‖2 + αn

γn(1 − ωn)
‖x1 − z‖2

+ βn + ωnγn

γn(1 − ωn)
‖xn − z‖2

= 1 − αn

γn(1 − ωn)
‖xn − z‖2 − 1

γn(1 − ωn)
‖xn+1 − z‖2

+ αn

γn(1 − ωn)
‖x1 − z‖2

= 1

γn(1 − ωn)

[
‖xn − z‖2 − ‖xn+1 − z‖2

]

+ αn

γn(1 − ωn)

[
‖x1 − z‖2 − ‖xn − z‖2

]
.

This implies that
‖xn − un‖ → 0, n → ∞.

Similarly, by (3.15) and (3.3), we can show that

‖un − vn‖ → 0, n → ∞.
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Hence,
‖xn − vn‖ ≤ ‖xn − un‖ + ‖un − vn‖ → 0, n → ∞.

Now,
‖zn − vn‖ ≤ ‖xn − vn‖ + ‖xn − zn‖ → 0, n → ∞.

From zn = ωnSxn + (1 − ωn)vn, we get

‖Sxn − vn‖ = 1

ωn

‖zn − vn‖ → 0, n → ∞.

Furthermore,

‖xn − Sxn‖ ≤ ‖Sxn − vn‖ + ‖xn − vn‖ → 0, n → ∞. (3.16)

Since {xn} is bounded, it has a subsequence {xnk
} such that {xnk

} converges weakly to
some p ∈ C and lim sup

n→∞
〈x1−z, xn−z〉 = lim

k→∞〈x1−z, xnk
−z〉. Following the method

of proof in Theorem 3.3, we can show that p ∈ �. Also, by the demiclosedness
principle of I − S and (3.16), we have that p ∈ F(S). Hence, p ∈ F(S) ∩ �.
Consequently,

lim sup
n→∞

〈x1 − z, xn − z〉 = lim
k→∞〈x1 − z, xnk

− z〉
= 〈x1 − z, p − z〉
≤ 0.

Since ‖xn+1 − xn‖ → 0, n → ∞, we have that

lim sup
n→∞

〈x1 − z, xn+1 − z〉 ≤ 0.

From (3.13) we have

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn〈x1 − z, xn+1 − z〉. (3.17)

Using Lemma 2.2 in (3.17), we obtain lim
n→∞‖xn − z‖ = 0. Thus, xn → z, n → ∞.

Case 2

Assume that {‖xn−z‖} is not monotonically decreasing sequence. Set �n = ‖xn−
z‖2 and let τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough)by

τ(n) := max{k ∈ N : k ≤ n, �k ≤ �k+1}.
Clearly, τ is a non decreasing sequence such that τ(n) → ∞ as n → ∞ and

0 ≤ �τ(n) ≤ �τ(n)+1, ∀n ≥ n0.

This implies that ‖xτ(n) −z‖ ≤ ‖xτ(n)+1−z‖,∀n ≥ n0. Thus lim
n→∞‖xτ(n) −z‖ exists.

By using similar arguments as in Case 1, we obtain

‖xτ(n) − uτ(n)‖ → 0, n → ∞, ‖uτ(n) − vτ(n)‖ → 0, n → ∞.

and
‖xτ(n)+1 − xτ(n)‖ → 0, n → ∞.

Numer Algor (2018) 79:529–553 545 



Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by {xτ(n)}
which converges weakly to p. Observe that since lim

n→∞‖xτ(n) − uτ(n)‖ = 0, we also

have uτ(n) ⇀ w. By similar argument in Case 1, we can show that p ∈ � and

lim sup
n→∞

〈x1 − z, xτ(n) − z〉 ≤ 0.

Since ‖xτ(n)+1 − xτ(n)‖ → 0, n → ∞ and lim sup
n→∞

〈x1 − z, xτ(n) − z〉 ≤ 0, we can

show that
lim sup
n→∞

〈x1 − z, xτ(n)+1 − z〉 ≤ 0.

By (3.13), we have

‖xτ(n)+1 − z‖2 ≤ (1 − ατ(n))‖xτ(n) − z‖2 + 〈x1 − z, xτ(n)+1 − z〉,
which implies that (noting that �τ(n) ≤ �τ(n)+1 and ατ(n) > 0)

‖xτ(n) − z‖2 ≤ 〈x1 − z, xτ(n)+1 − z〉.
This implies that

lim sup
n→∞

‖xτ(n) − z‖ ≤ 0.

Thus,

lim
n→∞‖xτ(n) − z‖ = 0.

and
lim

n→∞‖xτ(n)+1 − z‖ = 0.

Therefore,
lim

n→∞ �τ(n) = lim
n→∞ �τ(n)+1 = 0.

Furthermore, for n ≥ n0, it is easy to see that �τ(n) ≤ �τ(n)+1 if n �= τ(n) (that is
τ(n) < n), because �j ≥ �j+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain
for all n ≥ n0,

0 ≤ �n ≤ max{�τ(n), �τ(n)+1} = �τ(n)+1.

Hence, lim�n = 0, that is, lim
n→∞‖xn − z‖ = 0. Hence, {xn} converges strongly to z.

This completes the proof.

4 Numerical example

In this section, we provide some concrete example including numerical results of
the problem considered in Section 3 of this paper. All codes were written in Matlab
2012b and run on Hp i − 5 Dual-Core 8.00 GB (7.78 GB usable) RAM laptop.

Suppose that H = L2([0, 1]) with norm ‖x‖ :=
(∫ 1

0 |x(t)|2dt
) 1

2
and inner

product 〈x, y〉 := ∫ 1
0 x(t)y(t)dt, x, y ∈ H, t ∈ [0, 1]. Furthermore, let us take

C := {x ∈ L2([0, 1]) : 〈a, x〉 ≤ b},
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where 0 �= a ∈ L2([0, 1]) and b ∈ R, then (see [7] and a projection formula for a
half-space)

PC(x) =
{

b−〈a,x〉
‖a‖ a + x, 〈a, x〉 > b

x, 〈a, x〉 ≤ b,

We consider the following VI(A,C) problem:
find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C and Sx = x, (4.1)

where C := {x ∈ L2([0, 1]) : ∫ 1
0 (t2 + 1)x(t)dt ≤ 1} and S : C → C is a quasi-

nonexpansive mapping. Define operator A : C → C by (Ax)(t) := max{0, x(t)} for
all x ∈ C. Then it can be easily verified thatA is monotone and uniformly continuous
on bounded subsets of C.

Define a function S : C → C by (Sx)(t) = 1
t+2x(t). Then it is clear that S is

a quasi-nonexpansive mapping. Observe that 0 ∈ F(S) ∩ � and so F(S) ∩ � �= ∅.
Take αn = 1

n+1 , βn = γn = ωn = n
2(n+1) . Then our Algorithm 3.1 and Algorithm

3.2 respectively become:

Algorithm 4.3

1: Choose γ ∈ (0, 1), σ ∈ (0, 1) and ρ > 0
2: Given x1 ∈ C, starting point
3: Compute: r(xn(t)) := xn − PC(xn(t) − Axn(t))

4: Compute:
yn(t) := (1 − ηn)xn(t) + ηnPC(xn(t) − Axn(t)),

where the stepsize ηn := ργ mn and
mn is the smallest nonnegative integer m satisfying

〈Ayn(t), r(xn(t))〉 ≥ σ

2
‖r(xn(t))‖2.

5: Compute:

zn(t) = 1

n + 1
x1(t) +

(

1 − 1

n + 1

)

PC(xn(t) − λnAyn(t))

where λn := 〈Ayn(t),xn(t)−yn(t)〉
‖Ayn(t)‖2

6: Then compute:

xn+1(t) = n

2(n + 1)
xn(t) +

(

1 − n

2(n + 1)

)
1

t + 2
zn(t), n ≥ 1,

7: Set n ← n + 1 and goto 3.
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Algorithm 4.4

1: Choose γ ∈ (0, 1), σ ∈ (0, 1) and ρ > 0
2: Given x1 ∈ C, starting point.
3: Compute: r(xn(t)) := xn − PC(xn(t) − Axn(t))

4: Compute:
yn(t) := (1 − ηn)xn(t) + ηnPC(xn(t) − Axn(t)),

where the stepsize ηn := ργ mn and
mn is the smallest nonnegative integer m satisfying

〈Ayn(t), r(xn(t))〉 ≥ σ

2
‖r(xn(t))‖2.

5: Compute:

xn+1 = 1

n + 1
x1(t) + n

2(n + 1)
xn(t) + n

2(n + 1)

[
n

2(n + 1)

1

t + 2
xn(t)

+
(

1 − n

2(n + 1)

)

PC(xn(t) − λnAyn(t))

]

, n ≥ 1,

where λn := 〈Ayn(t),xn(t)−yn(t)〉
‖Ayn(t)‖2

6: Set n ← n + 1 and goto 3.

The parameters in Algorithm 4.1 and Algorithm 4.2 are chosen as σ = 10−3 and
ρ = 1. We carry out our computation using different choices of x1(t) with different
choices of γ . We terminate the iteration if ‖xn+1−xn‖

‖x2−x1‖ < 10−2.
The comparison between the iterative Algorithm 4.1 and Algorithm 4.2 is done

using the following cases:

Case I: x1 = 2
5 t

2 sin(3t)e2t and γ = 0.1 & 0.8.
Case II: x1 = 1

85 (t
3 + 1)e5t and γ = 0.1 & 0.8

Remark 4.1 (1) Over all, we could see from Table 1 and Figs. 1, 2, 3, and 4 that
both Algorithm 4.1 and Algorithm 4.2 are consistent, efficient and easy to
implement.

Table 1 Comparison between Algorithm (4.1) and Algorithm (4.1) with different Cases

γ = 0.1 γ = 0.8

Case I Case II Case I Case II

Algorithm 4.1 No. of Iterations 13 12 13 12

CPU (Time) 0.008572 0.0072221 0.0085952 0.0081592

Algorithm 4.2 No. of Iterations 126 122 124 121

CPU (Time) 0.071375 0.071602 0.072572 0.068813
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Fig. 1 The L2-norm of the residual: case I with γ = 0.1

(2) We observe from Table 1 and Figs. 1, 2, 3, and 4 that Algorithm 4.1 ter-
minates successfully after about 12 iterations while Algorithm 4.2 terminates
successfully after about 122 iterations. So, Algorithm 4.1 performs better than
Algorithm 4.2 in terms of number of iterations requires to terminate.

(3) Similarly, Algorithm 4.1 is about eight times faster than Algorithm 4.2 in terms
of CPU time used before termination. However, both Algorithms used relatively
small CPU time before termination.

Remark 4.2 We remark here that our results carry over for the case when S is a β-
demicontractive mapping on a real Hilbert space H with F(S) �= ∅ (i.e., there exists
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Fig. 2 The L2-norm of the residual: case I with γ = 0.8
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Fig. 3 The L2-norm of the residual: case II with γ = 0.1

β ∈ [0, 1) such that ‖Sx − q‖2 ≤ ‖x − q‖2 + β‖x − Sx‖2, ∀x ∈ H, q ∈ F(S)).
It is known that if S is a β-demicontractive mapping on a real Hilbert space H with
F(S) �= ∅ and Sω := (1 − ω)I + ωS for ω ∈ (0, 1], then Sω is quasi-nonexpansive
mapping and F(S) = F(Sω), where ω ∈ (0, 1 − β) (e.g., see [28]).

Remark 4.3 1. In a way, the problem considered in this paper can be re-casted as a
common fixed point problem but caution must be applied here that the sequence
of iterates generated by xn+1 = [T Pc(I−λA)]xn cannot converge to the solution
of the common fixed point problem considered in this paper. Take for example,
A to be a rotation map in R2 and T ≡ I , where I is the identity map in R2.
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Fig. 4 The L2-norm of the residual: case II with γ = 0.8
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2. Our proposed algorithms solve fixed point problem and variational inequal-
ity problem involving uniformly continuous monotone operator simultaneously.
The problem considered here generalizes fixed point problem and variational
inequality problem.

3. Our results can also hold for any finite number of related problems, of one kind or
mixed, and the results can be obtained by Pierra’s [34] product space arguments
if appropriate conditions are imposed such that the conditions in our convergence
analysis are satisfied.

4. In the next project, we shall study the extension of the results in this paper to
certain Banach spaces.

5. Our result can still be obtained if one uses the Moudafi’s viscosity approximation
approach, see, e. g., [30], which uses a contraction instead of the identity operator
I in Halpern idea in our algorithms.

5 Final remarks

In this paper, we proposed two double projection methods for solving variational
inequality and fixed point problem for a quasi-nonexpansive mapping and the
underline monotone operator is uniformly continuous on bounded subsets of C. Fur-
thermore, we established strong convergence results for the two methods and give
numerical results regarding their implementation. Our results in this paper improves
on the results in [11, 35], where one projection for each tentative step during the
Armijo-type search is considered and computationally expensive. Also, our results
extend several other results where common solution to fixed point problem for quasi-
nonexpansive mapping and variational inequality problem for Lipschitz continuous
monotone operator is studied (see, [8, 25, 31, 32]). In the future, we shall design-
ing new algorithms including inexact or perturbed methods as well as inertial-type
extrapolation for the problems considered in this paper.
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