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Abstract We propose matrix decomposition algorithms for the efficient solution of
the linear systems arising from Kansa radial basis function discretizations of ellip-
tic boundary value problems in regular polygonal domains. These algorithms exploit
the symmetry of the domains of the problems under consideration which lead to
coefficient matrices possessing block circulant structures. In particular, we consider
the Poisson equation, the inhomogeneous biharmonic equation, and the inhomoge-
neous Cauchy-Navier equations of elasticity. Numerical examples demonstrating the
applicability of the proposed algorithms are presented.
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1 Introduction

Radial basis function (RBF) methods are meshless methods which, due to their sim-
plicity and accuracy, have recently become very popular for the solution of a large
variety of boundary value problems; see, e.g. [7, Chapters 38-45]. The simplest and
most popular such methods are RBF collocation methods [3] and, in particular, the
so-called Kansa method [16]. One of the disadvantages of RBF collocation meth-
ods is the fact that the resulting coefficient matrix in the discretization is dense and
poorly conditioned. This means that RBF collocation methods are not suitable for the
solution of problems where large numbers of degrees of freedom are required. These
difficulties may be alleviated by using the local Kansa-RBF method [23, 25] which,
in contrast to the global Kansa-RBF method, leads to sparse systems. However, as
is the case with other local methods such as the finite element and finite difference
methods, the accuracy of the local Kansa-RBF method is considerably lower than
that of the global Kansa-RBF method due to the fact that only a small number of
neighbouring points are used in the approximation process. Furthermore, for a large
number of collocation points, the search for the neighbouring points becomes very
time consuming.

In the past, various approaches have been proposed to tackle large-scale problems
in which large numbers of interior and boundary collocation points are involved. For
example, Greengard and Rokhlin [11] proposed the fast multipole method for han-
dling very large linear systems and speeding up the computational process. Another
very popular approach is the domain decomposition method (DDM) in which the
domain of the problem in question is split into subdomains, each of which contains
an almost equal number of points. At the interfaces of these subdomains, appropriate
continuity conditions are imposed while on the boundaries of the subdomains which
coincide with the physical boundary of the problem, the physical boundary condi-
tions are imposed. This approach which reduces the problem to solving a sequence
of smaller problems has been particularly effective; see, for example, [10, 15, 17, 24,
26]. Instead of decomposing the domain into smaller ones as is done in the DDM,
there is another well-established numerical technique in which the (large) global sys-
tem is decomposed into a series of smaller systems. This, as will be demonstrated in
this work, leads to considerable savings in both computational time and storage and,
in addition, alleviates to a great extent the ill-conditioning issue. In this work, we
shall consider the discretization of elliptic boundary value problems in regular polyg-
onal domains using a Kansa-RBF method. For any choice of RBF, for an appropriate
choice of collocation points, such discretizations lead to linear systems in which
the coefficient matrices possess block circulant structures and which are solved effi-
ciently using matrix decomposition algorithms (MDAs) [1] in conjunction with fast
Fourier transforms (FFTs). Such MDAs have been used in the past for Kansa-RBF
discretizations of problems possessing radial symmetry in two and three dimensions
in [20] and [28], respectively, as well as in the approximation of functions using RBFs
[14, 21, 22]. The ideas developed in this paper are extensions of the ideas developed
in [19] for the method of fundamental solutions.
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An additional difficulty with Kansa-RBF collocation methods is the selection of an
appropriate value of shape parameter of RBFs leading to optimal accuracy. Although
many algorithms have been proposed for the selection of such a shape parameter [4,
8, 9, 12, 18, 30], this remains an open issue. In the context of MDAs, the leave-
one-out cross validation (LOOCV) algorithm [8, 28, 30] and the average distance
functions [6, 9, 12] have been modified and recently proposed for the selection of
an appropriate value of the shape parameter; see [20, 27, 28] for further details. In
this study, we shall propose another simple method for obtaining a value of the shape
parameter that can produce good accuracy, using the normalized multiquadric (MQ).

In Section 2, we describe the Kansa-RBF method for the solution of Poisson prob-
lems in regular polygonal domains and outline the proposed MDA for the solution
of the resulting linear system. The application of the method and MDA to inhomo-
geneous biharmonic problems is presented in Section 3. In Section 4, a description
of the method and related MDA for inhomogeneous Cauchy-Navier problems are
provided. Finally, in Section 6, we present some conclusions and ideas about future
work.

2 The Poisson equation

We consider the Poisson equation in R
2

�u = ∂2u

∂x2
+ ∂2u

∂y2
= f (x, y) in �, (2.1a)

subject to the Dirichlet boundary conditions

u = g1(x, y) on ∂�1, (2.1b)

u = g2(x, y) on ∂�2, (2.1c)

or the mixed Neumann/Dirichlet boundary conditions

∂u

∂n
= g1(x, y) on ∂�1, (2.1d)

u = g2(x, y) on ∂�2, (2.1e)

where the domain � is the region between two concentric regular N-gons. The
boundary ∂� = ∂�1 ∪ ∂�2, ∂�1 ∩ ∂�2 = ∅ where ∂�1 and ∂�2 are regular N-
gons. A typical domain considered is presented in Fig. 1a. Note that the application
of the methods presented in this paper to regular polygonal domains without a hole
is trivial. In (2.1d), ∂/∂n denotes the derivative along the outward unit normal vector
to the boundary which we denote by n = (nx, ny). Problem (2.1a), (2.1b)–(2.1c) is a
Dirichlet boundary value problem, whereas problem (2.1a), (2.1d)–(2.1e) is a mixed
Neumann/Dirichlet boundary value problem.

2.1 Kansa-RBF method

Let us assume that the radius of the circle circumscribing the inner regular polygon
∂�1 is �1 and that the radius of the circle circumscribing the outer regular polygon
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(a) (b)

Fig. 1 a Typical geometry considered. b Typical Kansa-RBF discretization

∂�2 is �2. We shall define K similar concentric N-gons in �, and on each of the N

sides of each of these polygons, we shall place M collocation points. This will result
in a total of MNK collocation points.

We first define the M angles

ϑm = 2π(m − 1)

MN
, m = 1, . . . , M, (2.2)

and the K radii

rk = �1 + (�2 − �1)
k − 1

K − 1
, k = 1, . . . , K. (2.3)

The collocation points {(xnmk, ynmk)}N,M,K
n=1,m=1,k=1 are then defined as follows:

xnmk = rk
cos

(
π
N

)
cos

(
ϑm + 2π

N
(n − 1)

)

cos
(

π
N

− ϑm

) , ynmk = rk
cos

(
π
N

)
sin

(
ϑm + 2π

N
(n − 1)

)

cos
(

π
N

− ϑm

) ,

(2.4)
for n = 1, . . . , N, m = 1, . . . , M, k = 1, . . . , K . A typical distribution of
collocation points is depicted in Fig. 1b.

We approximate the solution of boundary value problem (2.1) by

u(x, y) � û(x, y) =
N∑

n=1

M∑

m=1

K∑

k=1

anmkφnmk(x, y), (x, y) ∈ �, (2.5)

where the φnmk are RBFs defined by

φnmk(x, y) = 	(rnmk), where r2
nmk = (x − xnmk)

2 + (y − ynmk)
2. (2.6)
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The unknown coefficients {(anmk)}N,M,K
n=1,m=1,k=1 are determined by collocating the

differential equation (2.1a) and the boundary conditions (2.1b)–(2.1c) or (2.1d)–
(2.1e) as follows:

�û(xnmk, ynmk) = f (xnmk, ynmk), n = 1, . . . , N, m = 1, . . . , M, k = 2, . . . , K − 1,

û(xnm1, ynm1) = g1(xnm1, ynm1), n = 1, . . . , N, m = 1, . . . , M,

or
∂û

∂n
(xnm1, ynm1) = g1(xnm1, ynm1), n = 1, . . . , N, m = 1, . . . , M,

and û(xnmK, ynmK) = g2(xnmK, ynmK), n = 1, . . . , N, m = 1, . . . , M. (2.7)

By vectorizing the arrays of unknown coefficients and collocation points from

a(k−1)MN+(m−1)N+n = anmk, x(k−1)MN+(m−1)N+n = xnmk, y(k−1)MN+(m−1)N+n = ynmk,
(2.8)

for n = 1, . . . , N, m = 1, . . . , M, k = 1, . . . , K, (2.7) yield a system of the form

A a =

⎛

⎜⎜⎜
⎝

A1,1 A1,2 . . . A1,L

A2,1 A2,2 . . . A2,L

...
...

. . .
...

AL,1 AL,2 . . . AL,L

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

a1
a2
...

aL

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

b1
b2
...

bL

⎞

⎟⎟⎟
⎠

= b , (2.9)

where L = MK .
The N × N submatrices A
1,
2 , 
1, 
2 = 1, . . . , L, are defined as follows:

(
Am1,(k2−1)M+m2

)
n1,n2

= φn2,m2,k2(xn1,m1,1, yn1,m1,1), (2.10a)

or
(
Am1,(k2−1)M+m2

)
n1,n2

= ∂φn2,m2,k2

∂n
(xn1,m1,1, yn1,m1,1), (2.10b)

and
(
A(K−1)M+m1,(k2−1)M+m2

)
n1,n2

= φn2,m2,k2(xn1,m1,K, yn1,m1,K), (2.10c)

for n1, n2 = 1, . . . , N, m1, m2 = 1, . . . , M, k2 = 1, . . . , K, and
(
A(k1−1)M+m1,(k2−1)M+m2

)
n1,n2

= �φn2,m2,k2(xn1,m1,k1, yn1,m1,k1), (2.10d)

for n1, n2 = 1, . . . , N, m1, m2 = 1, . . . , M, k1 = 2, . . . , K − 1, k2 = 1, . . . , K,

while the N × 1 vectors a
, b
, 
 = 1, . . . , L, are defined as
(
a(k−1)M+m

)
n

= anmk, n = 1, . . . , N, m = 1, . . . , M, k = 1, . . . , K,

(
b(k−1)M+m

)
n

= f (xnmk, ynmk), n = 1, . . . , N, m = 1, . . . ,M, k = 2, . . . , K−1,

(bm)n = g1(xnm1, ynm1),
(
b(K−1)M+m

)
n

= g2(xnmK, ynmK), n = 1, . . . , N, m = 1, . . . ,M.

Each of the N × N submatrices A
1,
2 , 
1, 
2 = 1, . . . , L, in the coefficient
matrix in (2.9) is circulant [5]. Hence, matrix A in system (2.9) is block circulant.
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2.2 Matrix decomposition algorithm

We shall be using an MDA similar to the one proposed in [28, Section2.3] as well as
properties of circulant matrices [5].

First, we define the unitary N × N Fourier matrix

UN = 1√
N

⎛

⎜⎜⎜⎜⎜
⎝

1 1 1 · · · 1
1 ω̄ ω̄2 · · · ω̄N−1

1 ω̄2 ω̄4 · · · ω̄2(N−1)

...
...

...
...

1 ω̄N−1 ω̄2(N−1) · · · ω̄(N−1)(N−1)

⎞

⎟⎟
⎟⎟⎟
⎠

, where ω = e2π i/N , i2 = −1.

(2.11)
If IL is the L×L identity matrix, pre-multiplication of system (2.9) by IL⊗UN yields

(IL ⊗ UN) A
(
IL ⊗ U∗

N

)
(IL ⊗ UN) a = (IL ⊗ UN) b or Ãã = b̃, (2.12)

where

Ã = (IL ⊗ UN) A
(
IL ⊗ U∗

N

) =

⎛

⎜⎜⎜
⎝

D1,1 D1,2 · · · D1,L

D2,1 D2,2 · · · D2,L

...
...

...

DL,1 DL,2 · · · DL,L

⎞

⎟⎟⎟
⎠

, (2.13)

with D
1,
2 = UNA
1,
2U
∗
N, 
1, 
2 = 1, . . . , L, and

ã=(IL ⊗ UN) a=

⎛

⎜⎜⎜
⎝

ã1
ã2
...

ãL

⎞

⎟⎟⎟
⎠

, b̃=(IL ⊗ UN) b=

⎛

⎜⎜⎜
⎝

b̃1

b̃2
...

b̃L

⎞

⎟⎟⎟
⎠

, (2.14)

with ã
 = UNa
, b̃
 = UNb
, 
 = 1, . . . , L. From the properties of circulant
matrices [5], each of the N × N matrices D
1,
2 , 
1, 
2 = 1, . . . , L, is diagonal. If,
in particular

D
1,
2 = diag
(
D
1,
21 ,D
1,
22 , . . . , D
1,
2N

)
and A
1,
2 = circ

(
A
1,
21 , A
1,
22 . . . , A
1,
2N

)
,

we have, for 
1, 
2 = 1, . . . , L,

D
1,
2n
=

N∑

k=1

A
1,
2k
ω(k−1)(n−1), n = 1, . . . , N. (2.15)

Since the matrix Ã consists of L2 blocks of order N , each of which is diagonal, the
solution of system (2.12) can be decomposed into solving the N independent systems
of order L

En xn = yn, n = 1, . . . , N, (2.16)
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where

(En)
1,
2
= D
1,
2n

, 
1, 
2 = 1, . . . , L, and (xn)
 = (ã
)n ,
(
yn

)



=
(
b̃


)

n
, 
 = 1, . . . , L.

(2.17)
Having obtained the vectors xn, n = 1, . . . , L, we can recover the vectors ã
, 
 =
1, . . . , L, and, subsequently, the vector a from (2.14), i.e.,

a=

⎛

⎜⎜⎜
⎝

a1
a2
...

aL

⎞

⎟⎟⎟
⎠

=(
IL ⊗ U∗

N

)
ã=

⎛

⎜⎜⎜
⎝

U∗
N ã1

U∗
N ã2
...

U∗
N ãL

⎞

⎟⎟⎟
⎠

. (2.18)

In conclusion, the MDA can be summarized as follows:

Algorithm 1

Step 1: Compute b̃
 = UNb
, 
 = 1, . . . , L.
Step 2: Construct the diagonal matrices D
1,
2 from (2.15).
Step 3:Solve the N, L×L systems (2.16) to obtain the {xn}Nn=1,

and subsequently the {ã
}L
=1 from (2.17).
Step 4: Recover the vector of coefficients a from (2.18).

In Steps 1, 2, and 4, FFTs are used while the most expensive part of the algorithm
is the solution of N linear systems, each of order L. The FFTs are carried out using
the MATLAB© [29] commands fft and ifft. The dominant cost of the algorithm
is thus O(NL3). Note that we have also implemented the slightly different approach
proposed in [14, Appendix] where, in order to solve system (2.12), the sparse matrix
Ã in (2.13) is reordered as a block diagonal matrix.

Moreover, from the description of the algorithm, it is obvious that the larger N ,
i.e., the more sides the regular polygonal domain has, the more the savings that can
be achieved. This is because for larger N, we can take a smaller M in (2.2) and thus
L will be smaller.

3 The biharmonic equation

3.1 The problem

We next consider the biharmonic equation in R
2

�2u = ∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂4u

∂y4
= f (x, y) in �, (3.1a)
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subject to the boundary conditions

u = g1(x, y) and
∂u

∂n
= h1(x, y) on ∂�1, (3.1b)

and

u = g2(x, y) and
∂u

∂n
= h2(x, y) on ∂�2, (3.1c)

or the boundary conditions

u = g1(x, y) and �u = h1(x, y) on ∂�1, (3.1d)

and
u = g2(x, y) and �u = h2(x, y) on ∂�2, (3.1e)

where the domain � is the region between two concentric regular N-gons as in (2.1).
Boundary problem (3.1a), (3.1b)–(3.1c) is known as the first biharmonic problem
whereas boundary problem (3.1a), (3.1d)–(3.1e) is known as the second biharmonic
problem.

3.2 Kansa-RBF method

The collocation points are defined from (2.4) as in Section 2.1. The approximation
of the solution of boundary value problem (3.1) is given by (2.5).

The unknown coefficients {(anmk)}N,M,K
n=1,m=1,k=1 are determined by collocating the

differential equation (3.1a) and the boundary conditions (3.1b)–(3.1c) or (3.1d)–
(3.1e) as follows:

�2û(xnmk, ynmk) = f (xnmk, ynmk), n = 1, . . . , N, m = 1, . . . , M, k = 3, . . . , K − 2,

û(xnm1, ynm1) = g1(xnm1, ynm1),
∂û

∂n
(xnm1, ynm1) = h1(xnm1, ynm1),

and

û(xnmK, ynmK) = g2(xnmK, ynmK),
∂û

∂n
(xnmK, ynmK) = h2(xnmK, ynmK),

or

û(xnm1, ynm1) = g1(xnm1, ynm1), �û(xnm1, ynm1) = h1(xnm1, ynm1),

and

û(xnmK, ynmK) = g2(xnmK, ynmK), �û(xnmK, ynmK) = h2(xnmK, ynmK), (3.2)

for n = 1, . . . , N, m = 1, . . . , M .
By vectorizing the arrays of unknown coefficients and collocation points as

in (2.8), we obtain a system of the form (2.9) where the N × N submatrices
A
1,
2 , 
1, 
2 = 1, . . . , L, are defined as follows:

(
Am1,(k2−1)M+m2

)
n1,n2

= φn2,m2,k2(xn1,m1,1, yn1,m1,1), (3.3a)

and
(
AM+m1,(k2−1)M+m2

)
n1,n2

= ∂φn2,m2,k2

∂n
(xn1,m1,1, yn1,m1,1), (3.3b)
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or (
AM+m1,(k2−1)M+m2

)
n1,n2

= �φn2,m2,k2(xn1,m1,1, yn1,m1,1), (3.3c)

and
(
A(K−1)M+m1,(k2−1)M+m2

)
n1,n2

= φn2,m2,k2(xn1,m1,K, yn1,m1,K), (3.3d)

and
(
A(K−2)M+m1,(k2−1)M+m2

)
n1,n2

= ∂φn2,m2,k2

∂n
(xn1,m1,K, yn1,m1,K), (3.3e)

or
(
A(K−2)M+m1,(k2−1)M+m2

)
n1,n2

= �φn2,m2,k2(xn1,m1,K, yn1,m1,K), (3.3f)

for n1, n2 = 1, . . . , N, m1, m2 = 1, . . . , M, k2 = 1, . . . , K,

and
(
A(k1−1)M+m1,(k2−1)M+m2

)
n1,n2

= �2φn2,m2,k2(xn1,m1,k1, yn1,m1,k1), (3.3g)

for n1, n2 = 1, . . . , N, m1, m2 = 1, . . . , M, k1 = 2, . . . , K − 1, k2 = 1, . . . , K,

while the N × 1 vectors a
, b
, 
 = 1, . . . , L are defined as
(
a(k−1)M+m

)
n

= anmk, n = 1, . . . , N, m = 1, . . . , M, k = 1, . . . , K,
(
b(k−1)M+m

)
n

= f (xnmk, ynmk), n = 1, . . . , N, m = 1, . . . ,M, k = 3, . . . , K−2,

(bm)n = g1(xnm1, ynm1), (bM+m)n = h1(xnm1, ynm1), n = 1, . . . , N, m = 1, . . . ,M,

(
b(K−1)M+m

)
n

= g2(xnmK, ynmK),
(
b(K−2)M+m

)
n

= h2(xnmK, ynmK), n = 1, . . . , N, m= 1,. . . ,M.

As in the case of the Poisson equation in Section 2.1, each of the L×L submatrices
An1,n2 , n1, n2 = 1, . . . , L, is circulant, and hence, the matrix A is again block
circulant. The resulting system can therefore be solved efficiently using the MDA
(Algorithm 1) described in Section 2.2.

4 The Cauchy-Navier equations of elasticity

We finally consider the Cauchy-Navier system in R
2 for the displacements (u1, u2)

in the form (see, e.g. [13])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1(u1, u2) ≡ L11u1 + L12u2 ≡ μ�u1 + μ

1 − 2ν

(
∂2u1

∂x2
+ ∂2u2

∂x∂y

)

= f1,

in �,

L2(u1, u2) ≡ L21u1 + L22u2 ≡ μ

1 − 2ν

(
∂2u1

∂x∂y
+ ∂2u2

∂y2

)

+ μ�u2 = f2,

(4.1a)

subject to the Dirichlet boundary conditions
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u1 = g1 and u2 = h1 on ∂�1, (4.1b)
and

u1 = g2 and u2 = h2 on ∂�2, (4.1c)
or the mixed Neumann/Dirichlet boundary conditions

t1 = g1 and t2 = h1 on ∂�1, (4.1d)

and
u1 = g2 and u2 = h2 on ∂�2, (4.1e)

where the domain � is the region between two concentric regular N-gons as in (2.1).
In (4.1a), the constant ν ∈ [0, 1/2) is Poisson’s ratio and μ > 0 is the shear modulus.
Also, in (4.1a), the operators L11,L12,L21, and L22 are defined by

L11 ≡ μ�+ μ

1 − 2ν

∂2

∂x2
, L12 ≡ μ

1 − 2ν

∂2

∂x∂y
, L21 ≡ L12, L22 ≡ μ�+ μ

1 − 2ν

∂2

∂y2
.

In (4.1d), t1 and t2 are the tractions [13] defined by

t1 = 2μ

[(
1 − ν

1 − 2ν

)
∂u1

∂x
+

(
ν

1 − 2ν

)
∂u2

∂y

]
nx + μ

[
∂u1

∂y
+ ∂u2

∂x

]
ny,

t2 = μ

[
∂u1

∂y
+ ∂u2

∂x

]
nx + 2μ

[(
ν

1 − 2ν

)
∂u1

∂x
+

(
1 − ν

1 − 2ν

)
∂u2

∂y

]
ny.

Problem (4.1a), (4.1b)–(4.1c) is a Dirichlet boundary value problem whereas problem
(4.1a), (4.1d)–(4.1e) is a mixed Neumann/Dirichlet boundary value problem.

4.1 Kansa-RBF method

The collocation points are defined from (2.4) as in Section 2.1.
We approximate the solution (u1, u2) of boundary value problem (4.1) by

û(
)(x, y) =
N∑

n=1

M∑

m=1

K∑

k=1

a
(
)
nmkφnmk(x, y), 
 = 1, 2, (x, y) ∈ �. (4.2)

The unknown coefficients
{(

a
(
)
nmk

)}N,M,K

n=1,m=1,k=1
, 
 = 1, 2, are determined by col-

locating the differential equations (4.1a) and the boundary conditions (4.1b)–(4.1c)
or (4.1d)–(4.1e) as follows:

L
(û
(1), û(2))(xnmk, ynmk) = f
(xnmk, ynmk), 
 = 1, 2,

n = 1, . . . , N, m = 1, . . . , M, k = 2, . . . , K − 1,

û(1)(xnm1, ynm1) = g1(xnm1, ynm1), û(2)(xnm1, ynm1) = h1(xnm1, ynm1),

or

t
(1)
NMK(xnm1, ynm1) = g1(xnm1, ynm1), t

(2)
NMK(xnm1, ynm1) = h1(xnm1, ynm1),

and

û(1)(xnmK, ynmK) = g2(xnmK, ynmK), û(2)(xnmK, ynmK) = h2(xnmK, ynmK),
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n = 1, . . . , N, m = 1, . . . ,M. (4.3)

By vectorizing the arrays of unknown coefficients and collocation points from
(2.8), (4.3) yield a 2MNK × 2MNK system of the form (2.9). The 2N × 2N sub-
matrices A
1,
2 , 
1, 
2 = 1, . . . , L,are now defined as follows: (Note that we are
now defining the matrix and vector elements in (2.9) as 2 × 2 and 2 × 1 arrays,
respectively.)

(
Am1,(k2−1)M+m2

)
n1,n2

=
(

φn2,m2,k2(xn1,m1,1, yn1,m1,1) 0
0 φn2,m2,k2(xn1,m1,1, yn1,m1,1)

)
,

(4.4a)
or

(
Am1,(k2−1)M+m2

)
n1,n2

(4.4b)

= μ

⎛

⎜⎜
⎝

2

(
1 − ν

1 − 2ν

)
∂φn2,m2,k2

∂x
nx + ∂φn2,m2,k2

∂y
ny

(
2ν

1 − 2ν

)
∂φn2,m2,k2

∂y
nx + ∂φn2,m2,k2

∂x
ny

∂φn2,m2,k2

∂y
nx +

(
2ν

1 − 2ν

)
∂φn2,m2,k2

∂x
ny

∂φn2,m2,k2

∂x
nx + 2

(
1 − ν

1 − 2ν

)
∂φn2,m2,k2

∂y
ny

⎞

⎟⎟
⎠ ,

evaluated at the point (xn1,m1,1, yn1,m1,1), and

(
A(K−1)M+m1,(k2−1)M+m2

)
n1,n2

=
(
φn2,m2,k2 (xn1,m1,K , yn1,m1,K) 0

0 φn2,m2,k2 (xn1,m1,K , yn1,m1,K)

)
,

(4.4c)
for n1, n2 = 1, . . . , N, m1, m2 = 1, . . . , M, k2 = 1, . . . , K, and

(
A(k1−1)M+m1,(k2−1)M+m2

)
n1,n2

=
(
L11φn2,m2,k2(xn1,m1,k1, yn1,m1,k1) L12φn2,m2,k2(xn1,m1,k1, yn1,m1,k1)

L21φn2,m2,k2(xn1,m1,k1, yn1,m1,k1) L22φn2,m2,k2(xn1,m1,k1, yn1,m1,k1)

)

(4.4d)

for n1, n2 = 1, . . . , N, m1, m2 = 1, . . . , M, k1 = 2, . . . , K − 1, k2 = 1, . . . , K.

The 2N × 1 vectors a
, b
, 
 = 1, . . . , L, are defined as

(
a(k−1)M+m

)
n

=
(

a
(1)
nmk

a
(2)
nmk

)

, n = 1, . . . , N, m = 1, . . . , M, k = 1, . . . , K,

(
b(k−1)M+m

)
n

=
(

f1(xnmk, ynmk)
f2(xnmk, ynmk)

)
, n = 1, . . . , N, m = 1, . . . , M, k = 2, . . . , K−1,

(bm)n =
(

g1(xnm1, ynm1)

h1(xnm1, ynm1)

)
,

(
b(K−1)M+m

)
n

=
(

g2(xnmK, ynmK)

h2(xnmK, ynmK)

)
, n = 1, . . . , N, m = 1, . . . , M.

Unlike the Poisson and biharmonic problems, the global matrix A does not possess
a block circulant structure which, however, can be obtained by means of a simple
transformation; see, e.g. [28, Section 4.3].
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4.2 Matrix decomposition algorithm

Following the corresponding MDA in [28, Section 4.3], we first introduce the 2N ×
2N matrix

R=

⎛

⎜⎜
⎜⎜⎜
⎝

Rϑ1 0 0 · · · 0 0
0 Rϑ2 0 · · · 0 0
...

...
. . .

...
...

...

0 0 0 · · · RϑN−1 0
0 0 0 · · · 0 RϑN

⎞

⎟⎟
⎟⎟⎟
⎠

, where Rϑn =
(

cos ϑn sin ϑn

sin ϑn −cos ϑn

)
, (4.5)

and ϑn = 2π(n−1)
N

. Since clearly R2
ϑn

= I2 then R2 = I2N .
Keeping in mind that L = MK , we premultiply the 2NL × 2NL system Aa = b

by the 2NL × 2NL matrix IL ⊗ R to get

(IL ⊗ R) Aa = (IL ⊗ R) b or Ãã = b̃, (4.6)

where

Ã = (IL ⊗ R) A (IL ⊗ R) , ã = (IL ⊗ R) a, b̃ = (IL ⊗ R) b.

The 2NL × 2NL matrix Ã can be written as

Ã =

⎛

⎜⎜⎜
⎝

Ã1,1 Ã1,2 . . . Ã1,L

Ã2,1 Ã2,2 . . . Ã2,L

...
...

. . .
...

ÃL,1 ÃL,2 . . . ÃL,L

⎞

⎟⎟⎟
⎠

, (4.7)

where each of the 2N × 2N submatrices Ã
1,
2 = RA
1,
2R.

Moreover, keeping in mind that the elements
(
Ã
1,
2

)

n1,n2
=

((
Ã
1,
2

)

n1,n2

)2

i,j=1
are 2 × 2 arrays, we have

(
Ã
1,
2

)

n1,n2
= Rϑn1

(
A
1,
2

)
n1,n2

Rϑn2
, n1, n2 = 1, . . . , N, 
1, 
2 = 1, . . . , L.

(4.8)
Each submatrix Ã
1,
2 , 
1, 
2 = 1, . . . , L, has a block 2×2 block circulant structure.
The 2NL × 1 vectors ã, b̃ are written as

ã =

⎛

⎜⎜⎜
⎝

ã1
ã2
...

ãL

⎞

⎟⎟⎟
⎠

, b̃ =

⎛

⎜⎜⎜
⎝

b̃1

b̃2
...

b̃L

⎞

⎟⎟⎟
⎠

,

Numer Algor (2018) 79:399–421410



where the 2N × 1 subvectors ã
, b̃
, 
 = 1, . . . L, are defined by ã
 = Ra
, b̃
 =
Rb
 and the 2 × 1 subvectors

(
(ã
)n

)2
i=1 ,

((
b̃


)

n

)2

i=1
, n = 1, . . . , N, are defined

by

(ã
)n = Rϑn (a
)n ,
(
b̃


)

n
= Rϑn (b
)n .

We next rewrite system (4.6) in the form
(

B11 B12

B21 B22

)(
c1

c2

)
=

(
d1

d2

)
, (4.9)

where the NL × NL matrices Bij , i, j = 1, 2, are expressed in the form

Bij =

⎛

⎜⎜⎜⎜
⎝

B̃
ij

1,1 B̃
ij

1,2 . . . B̃
ij

1,L

B̃
ij

2,1 B̃
ij

2,2 . . . B̃
ij

2,L
...

...
. . .

...

B̃
ij

L,1 B̃
ij

L,2 . . . B̃
ij
L,L

⎞

⎟⎟⎟⎟
⎠

.

Each N × N submatrix B̃
ij


1,
2
, i, j = 1, 2, 
1, 
2 = 1, . . . , L, is circulant and

defined from
(
B̃

ij


1,
2

)

n1,n2
=

((
Ã
1,
2

)

n1,n2

)

i,j

, n1, n2 = 1, . . . , N. (4.10)

Also, the NL × 1 vectors ci , d i , i = 1, 2, are defined from

ci =

⎛

⎜⎜⎜
⎝

c̃i
1

c̃i
2
...

c̃i
L

⎞

⎟⎟⎟
⎠
, d i =

⎛

⎜⎜⎜⎜
⎝

d̃
i

1

d̃
i

2
...

d̃
i

L

⎞

⎟⎟⎟⎟
⎠
, where

(
c̃i



)

n
= (

(ã
)n
)
i
,

(
d̃ i



)

n
=

((
b̃


)

n

)

i
, n = 1, . . . , N.

(4.11)

We premultiply system (4.9) by the matrix I2 ⊗ IL ⊗ UN to get

(I2 ⊗ IL ⊗ UN)

(
B11 B12

B21 B22

) (
I2 ⊗ IL ⊗ U∗

N

)
(I2 ⊗ IL ⊗ UN)

(
c1

c2

)

= (I2 ⊗ IL ⊗ UN)

(
d1

d2

)
, (4.12)

or (
B̃11 B̃12

B̃21 B̃22

)(
p1
p2

)
=

(
q1
q2

)
, (4.13)

where
(

p1

p2

)
= (I2 ⊗ IL ⊗ UN)

(
c1

c2

)
,

(
q1

q2

)
= (I2 ⊗ IL ⊗ UN)

(
d1

d2

)
,
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where for i = 1, 2,

pi =

⎛

⎜⎜⎜
⎝

p̃i
1

p̃i
2
...

p̃i
L

⎞

⎟⎟⎟
⎠

, qi =

⎛

⎜⎜⎜
⎝

q̃i
1

q̃i
2
...

q̃ i
L

⎞

⎟⎟⎟
⎠

, with p̃i

 = UN c̃i


, q̃i

 = UN d̃

i


, 
 = 1, . . . , L.

The matrices B̃ij , i, j = 1, 2, are given from

B̃ij = (IL ⊗ UN) Bij

(
IL ⊗ U∗

N

)
,

and since each of the matrices Bij , i, j = 1, 2 is block circulant, from (2.13) it
follows that

B̃ij =

⎛

⎜⎜⎜⎜
⎝

D
ij

1,1 D
ij

1,2 · · · D
ij

1,L

D2,1 D
ij

2,2 · · · D
ij

2,L
...

...
...

D
ij

L,1 D
ij

L,2 · · · D
ij
L,L

⎞

⎟⎟⎟⎟
⎠

, (4.14)

where each N × N matrix D
ij

1,
2

, 
1, 
2 = 1, . . . , L, is diagonal. More specifically,
if

D
ij

1,
2

= diag
(
D

ij

1,
21

,D
ij

1,
22

, . . . , D
ij

1,
2N

)
and B̃

ij

1,
2

= circ
(
B̃

ij

1,
21

, B̃
ij

1,
22

. . . , B̃
ij

1,
2N

)
,

we have, for 
1, 
2 = 1, . . . , L,

D
ij


1,
2n
=

N∑

k=1

B̃
ij


1,
2k
ω(k−1)(n−1), n = 1, . . . , N. (4.15)

Since each matrix B̃ij , i, j = 1, 2, consists of L2 blocks of order N each of which
is diagonal, the solution of system (4.13) can be decomposed into solving the N

systems of order 4L

(
En

11 En
12

En
21 En

22

)(
xn

1
xn

2

)
=

(
yn

1
yn

2

)
, n = 1, . . . , N, (4.16)

where

(
En

ij

)


1,
2
= D

ij

1,
2n

, 
1, 
2 = 1, . . . , L, and
(
xn

i

)



=
(
p̃i




)

n
,

(
yn

i

)



=
(
q̃i




)

n
, 
 = 1, . . . , L.

(4.17)
From the vectors xn

i , i = 1, 2, n = 1, . . . , L we can obtain the vectors p1, p2 and the
vectors c1, c2, and subsequently the vector ã, before finally obtaining the vector a.

The MDA, in this case, can be summarized as follows:
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Algorithm 2

Step 1: Compute b̃ = (IL ⊗ R)b.

Step 2: Calculate the 2 × 2 arrays
(
Ã
1,
2

)

1,n2
.

Step 3: Compute q̃i

 = UN d̃

i


, 
 = 1, . . . , L and hence
yn

i , n = 1, . . . , N from (4.17).

Step 4: Construct the diagonal matrices D
ij

1,
2

from
(4.15) and hence matrices En

ij in (4.16).
Step 5: Solve the N, 4L × 4L systems (4.16) to obtain
the xn

i , i = 1, 2; n = 1, . . . , N, and subsequently the vectors
pi , i = 1, 2.
Step 6: Recover the vectors ci , i = 1, 2 from c̃i


 = U∗
N p̃i


, 
 =
1, . . . , L.
Step 7: Reorder vectors ci , i = 1, 2 to obtain vector ã.
Step 8: Compute a = (IL ⊗ R)ã.

In Steps 3, 4, and 6, FFTs are used while the most expensive part of the algorithm
is the solution of N linear systems, each of order 4L.

5 Numerical examples

The maximum relative error was calculated on a set of test points in � defined from
the M angles

θm = 2π(m − 1)

MN
, m = 1, . . . ,M, (5.1)

and the K radii

rk = �1 + (�2 − �1)
k − 1

K − 1
, k = 1, . . . ,K. (5.2)
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Fig. 2 Example 1: error versus c for the Poisson problem with N = 9,M = K = 35. a Dirichlet problem.
b Neumann/Dirichlet problem
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Fig. 3 Example 1: the relation of the number of collocation points and c

The test points {(xnmk, ynmk)}N,M,K
n=1,m=1,k=1 were taken as follows:

xnmk = rk

cos
(

π
N

)
cos

(
θm + 2π

N
(n − 1)

)

cos
(

π
N

− θ
) , ynmk = rk

cos
(

π
N

)
sin

(
θm + 2π

N
(n − 1)

)

cos
(

π
N

− θ
) ,

(5.3)

for n = 1, . . . , N, m = 1, . . . ,M, k = 1, . . . ,K. Unless otherwise stated, we took
M = K = 7, so that the test points are different from the collocation points. The
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Fig. 4 Example 1: number of collocation points N versus copt
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Table 1 Example 1: Dirichlet Poisson boundary value problem. Optimal and approximate shape
parameters and their corresponding accuracy for various numbers of collocation points

N copt Eopt capp E

2916 2.9 5.169(−7) 2.850 1.062(−6)

15129 7.8 2.443(−7) 7.414 2.726(−7)

25281 9.8 1.408(−7) 9.735 1.675(−7)

40401 13.0 1.275(−7) 12.935 1.374(−7)

47961 14.1 1.012(−7) 13.737 2.902(−7)

maximum relative error E is defined as

E = ||u − û||∞,�

||u||∞,�

. (5.4)

In all examples, we shall denote by N = N × M × K and use the normalized MQ
basis functions

φj (x, y) =
√

r2
j c2 + 1, r2

j = (x−xj )
2+(y−yj )

2, where c is the shape parameter.

The computations in this section were carried out using MATLAB© R2015a on the
cluster BEM in the Wroclaw Centre for Networking and Supercomputing (Wroclaw,
Poland) with Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz and 24 cores in the
computing node (or Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz and 28 cores in
the computing node), 64 to 512 GB memory, in Linux CentOS 6.

Example 1 We first considered the Poisson Dirichlet boundary value problem (2.1a),
(2.1b)–(2.1c) corresponding to the exact solution u(x, y) = e2x+y in a regular polyg-
onal domain defined by N = 9 (nonagon) and �1 = 0.5 and �2 = 1. In Fig. 2a,
we present the error E in the case M = 35, K = 35 versus the shape parameter c.
The corresponding results for the Poisson mixed Neumann/Dirichlet boundary value
problem (2.1a), (2.1d)–(2.1e) are presented in Fig. 2b.

As is well known, when using RBF approximations, the determination of an appro-
priate shape parameter remains a challenging issue. From Fig. 2, we observe that

Table 2 Example 1: Neumann/Dirichlet Poisson boundary value problem. Optimal and approximate
shape parameters and their corresponding accuracy for various numbers of collocation points

N copt Eopt capp E

2916 2.9 5.092(−7) 2.850 1.619(−6)

15129 7.3 2.444(−7) 7.414 3.705(−7)

25281 10.1 2.099(−7) 9.735 5.138(−7)

40401 12.8 1.414(−7) 12.935 1.845(−7)

47961 13.8 1.142(−7) 13.737 3.170(−7)
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Fig. 5 Example 2: error versus c for the case N = 6,M = K = 44. a First biharmonic problem.
b Second biharmonic problem

if we can find a way of estimating a value of the shape parameter capp close to its
optimal value copt , we can still obtain satisfactory accuracy. For the normalized MQ,
we observe that the higher the density of the collocation points, the larger the value
of the optimal shape parameter (see Fig. 3). In our problems, the collocation points
are all confined in polygons inscribed in the unit circle and the value of the opti-
mal shape parameter depends on the density of the collocation points. Based on this
observation, we solved the Dirichlet boundary value problem with eight different sets
of collocation points (each yielding a different number of collocation points N ). For
each set of collocation points, we recorded the optimal value of the shape parameter
(see Fig. 4) and corresponding error obtained by brute force. These eight sets of data
were interpolated using the RBF φ(r) = r3 in order to predict the optimal value of
the shape parameter for different numbers of collocation points.
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Fig. 6 Example 2: number of collocation points N versus copt for biharmonic problems
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Table 3 Example 2: first biharmonic problem. Optimal and approximate shape parameters and their
corresponding accuracy for various numbers of collocation points

N copt Eopt capp E

2400 2.9 2.578(−6) 3.109 3.000(−6)

13254 9.0 6.675(−6) 9.121 1.667(−5)

21600 11.5 7.761(−6) 11.276 9.394(−6)

30246 14.9 1.008(−5) 14.691 1.312(−5)

34656 16.3 1.078(−5) 16.916 2.457(−5)

In Tables 1 and 2, we let copt be the optimal shape parameter and Eopt the cor-
responding maximum error (obtained by brute force), and capp be the approximate
shape parameter. From these tables, we observe that for various numbers of collo-
cation points and for both the Dirichlet and the mixed Neumann/Dirichlet boundary
value problem, the calculated capp is close to copt and the maximum error E obtained
with capp is very close to Eopt .

We subsequently used the same eight data sets to predict an appropriate value of
the shape parameter for Poisson problems in different regular polygons with different
exact solutions. The results obtained were consistent with the optimal values of the
shape parameter obtained by brute force, as was the case in the current example. This
observation implies that we may choose a sample regular polygonal problem with a
known exact solution and use the procedure mentioned above to predict appropriate
values of the shape parameter for different regular polygonal problems without know-
ing their exact solution. This approach proved effective not only for the Dirichlet and
mixed Neumann/Dirichlet Poisson boundary problems as shown in this example but
also, as we shall see in Example 3, for the Cauchy-Navier equations.

Example 2 We next considered the first biharmonic problem (3.1a), (3.1b)–(3.1c)
corresponding to the exact solution u(x, y) = e2x+y in a regular polygonal domain
defined by N = 6 (hexagon) and �1 = 0.5 and �2 = 1. In Fig. 5a, we present the
error E in the case M = K = 44 versus the shape parameter c. The corresponding
results for the second biharmonic problem (3.1a), (3.1d)–(3.1e) are presented in Fig. 5b.

Table 4 Example 2: second biharmonic problem. Optimal and approximate shape parameters and their
corresponding accuracy for various numbers of collocation points

N copt Eopt capp E

2400 2.7 2.383(−5) 2.533 1.549(−5)

13254 7.6 5.693(−5) 7.159 6.606(−5)

21600 10.4 1.289(−4) 9.839 2.366(−4)

30246 12.6 1.746(−4) 12.764 2.103(−4)

34656 13.1 1.405(−4) 14.213 1.413(−4)
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Fig. 7 Example 3: error versus c for N = 12,M = K = 35. a Dirichlet Cauchy-Navier problem.
b Neumann/Dirichlet Cauchy-Navier problem

In general, the numerical solution of fourth-order partial equations by RBF collo-
cation methods is less stable than the numerical solution of second-order problems.
In particular, the second biharmonic problem which includes a Laplacian boundary
condition is very sensitive to the value of the shape parameter. In this example, as in
Fig. 4 of Example 1, we chose seven data sets each for the both the first and second
biharmonic problems using brute force to identify the values of the optimal shape
parameters (see Fig. 6). We then used these data sets to predict the optimal value
of the shape parameter copt for various numbers of collocation points as shown in
Tables 3 and 4. From these tables, we observe that there is good agreement between
E and Eopt for various values of N . We also observe that the results obtained in this
example are two to three orders of magnitude less accurate than results obtained for
the second-order problems examined in Example 1.

Example 3 We next considered the Dirichlet Cauchy-Navier problem (4.1a), (4.1b)–
(4.1c) corresponding to the exact solution u1 = e2x+y, u2 = sin(x + 3y) in a regular
polygonal domain defined by N = 12 (dodecagon) and �1 = 0.5 and �2 = 1. We
took Poisson’s ratio and the shear modulus to be ν = 0.3 and μ = 1, respectively.
In Fig. 7a, we present the maximum relative errors E1 and E2 in u1 and u2, respec-
tively (defined as in (5.4)), in the case M = K = 35 versus the shape parameter c.

Table 5 Example 3: Dirichlet Cauchy-Navier problem. Optimal and approximate shape parameters and
their corresponding accuracy for various N

N copt E1(opt) E2(opt) capp E1 E2

3072 2.82 1.088(−6) 4.907(−6) 2.944 2.066(−6) 1.003(−5)

7500 4.70 6.892(−7) 3.162(−6) 5.118 1.131(−6) 5.090(−6)

12288 6.82 1.181(−6) 2.288(−6) 6.645 9.805(−7) 5.750(−6)

17328 7.63 5.505(−7) 2.066(−6) 7.983 7.020(−7) 8.184(−6)

22188 9.11 6.364(−7) 1.643(−6) 9.116 6.234(−7) 4.032(−6)

27648 10.63 7.143(−7) 1.434(−6) 10.185 6.048(−7) 4.966(−6)
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Table 6 Example 3: Neumann/Dirichlet Cauchy-Navier problem. Optimal and approximate shape
parameters and their corresponding accuracy for various N

N copt E1(opt) E2(opt) capp E1 E2

3072 2.61 1.173(−6) 8.470(−6) 2.944 3.569(−6) 2.885(−5)

7500 4.74 1.304(−6) 8.615(−6) 5.118 1.563(−6) 1.060−5)

12288 6.76 1.129(−6) 6.358(−6) 6.645 1.722(−6) 1.668(−5)

17328 8.44 1.738(−6) 6.383(−6) 7.983 1.764(−6) 1.442(−5)

22188 8.98 8.420(−7) 6.804(−6) 9.116 3.262(−6) 3.272(−5)

27648 9.45 6.483(−7) 7.556(−6) 10.185 2.434(−6) 1.800(−5)

The corresponding results for the mixed Neumann/Dirichlet Cauchy-Navier problem
(4.1a), (4.1d)–(4.1e) are presented in Fig. 7b.

Since Cauchy-Navier problems are governed by second-order partial differential
equations, we use the same method as in Example 1 to predict the optimal value of
the shape parameter. In other words, we use the same data sets as shown in Fig. 4
to approximate the shape parameters for various values of N . The results shown in
Tables 5 and 6 are quite satisfactory, especially in view of the fact that no additional
cost is needed to produce the eight data sets presented in Fig. 4, for the prediction of
the shape parameter.

6 Conclusions

A Kansa-RBF method has been applied for the solution of three types of ellip-
tic boundary value problems in regular polygonal domains. In the case of Poisson
and inhomogeneous biharmonic problems, by appropriately choosing the colloca-
tion points, the RBF discretization leads to linear systems possessing block circulant
structures. In the case of problems governed by the inhomogeneous Cauchy-Navier
equations of elasticity, an additional step is required before, again, obtaining block
circulant linear systems. In all three cases, the block circulant linear systems are
solved efficiently using MDAs with FFTs. This leads to substantial savings in both
computational time and storage. The more sides the regular polygon possesses the
higher the savings.

The determination of an appropriate value for shape parameter in RBFs has always
been a challenging issue. In this paper, a novel method for obtaining such a value
for the shape parameter is proposed which is based on the observation that there
is a strong correlation between the density of the collocation points and the value
of the optimal shape parameter. The proposed approach is more effective for the
second-order partial differential equations than for fourth-order ones.

Although all the regular polygonal domains considered in this work had a regular
polygonal hole, the application of the proposed MDAs to regular polygonal domains
without a hole is trivial. Moreover, the proposed MDAs are applicable for any choice
of RBF which does not involve polynomial terms.
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Possible areas of future research include the application of the proposed method
using compactly supported RBFs, see, e.g. [2] and localized RBF collocation, see,
e.g. [25], as well as certain three-dimensional polyhedra possessing a form of axial
symmetry, such as regular polygonal prisms.
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