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Abstract In this paper, the limit cycles, period-doubling, and quasi-periodic solu-
tions of the forced Van der Pol oscillator and the forced Van der Pol-Duffing oscillator
are studied by combining the homotopy analysis method (HAM) with the multi-scale
method analytically. Comparisons of the obtained solutions and numerical results
show that this method is effective and convenient even when t is large enough, and
the convergence of the approximate solutions is discussed by the so-called discrete
square residual error. This method is a capable tool for solving this kind of nonlinear
problems.
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1 Introduction

Research in nonlinear oscillatory systems has a long history [1–4]. As the typical
examples, the Van der Pol equation and the Van der Pol-Duffing equation have a long
history of being used in both the physical and biological sciences. For instance, in
biology, Fitzhugh [5] and Nagumo [6] extended the equations in a planar field as a
model for action potentials of neurons. The equations have also been utilised in seis-
mology to model the two plates in a geological fault [7], and in studies of phonation to
model the right and left vocal fold oscillators [8]. In addition to the right applications
of the physical model, the jump phenomena, limit cycles, period-doubling solutions,
and quasi-periodic solutions of the forced Van der Pol oscillator and the forced
Van der Pol-Duffing oscillator have been paid attention and researched wildly these
years [9, 10]. It is worth mentioning that the Polish scientist Szemplinska-Stupnicka
studied the properties of the Van der Pol-Duffing system using the numerical sim-
ulation, integro-differential methods, spectral analysis method, and Neimark-Sacker
bifurcation theory, and concluded that “It is known that in the literature on nonlin-
ear oscillations and on approximate analytical methods one can hardly find a clear
indication as to how to determine an almost-periodic solution in the Van der Pol-
Duffing system” [11]. Fortunately, in the latest studies, some good results about
quasi-periodic solutions of the forced Van der Pol-Duffing oscillator were obtained
by Shukla et al. using the homotopy analysis method (HAM) [12]. However, Fig. 1
illustrates that the results obtained by Shukla et al. are invalid when t is large
(t ∈ [990, 1000]). In fact, their results are valid only when t is small, such as
t ∈ [0, 100]. So, a new method put forward in this paper to correct Shukla’s results
is necessary.

In this paper, we investigate the limit cycles and quasi-periodic solutions of the
forced Van der Pol-Duffing oscillator in the form

u′′ − μ(1 − u2)u′ + αu + βu3 = g cos(ωf t) (1)

subject to the initial conditions

u(0) = a, u′(0) = 0 (2)

where the prime denotes the differential with respect to the time t ,ωf is the frequency
of the external force F = g cos(ωf t), and μ > 0, α, β, g are constant physical
parameters, and a is the amplitude of the oscillator which is unknown, respectively.

Particular cases of (1) namely, the Van der Pol oscillator (α = 1, β = 0, g = 0)
and the Van der Pol-Duffing oscillator (α = 1, g = 0) have been solved analytically
in [13] and [14], respectively by Chen and Liu. They have used the HAM to obtain
closed form limit cycle solutions without external forcing. We know that a limit cycle
solution depends on two physical quantities, one is the amplitude of the oscillator,
and the other is its frequency. Approximately, analytical solutions for the forced Van
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Fig. 1 Comparison of the u− u̇ plane projection among the 15th-order approx. of our solution, 15th-order
approx. of Shukla’s paper and the numerical results when t ∈ [990, 1000] in the case of μ = 1

10 , β =
0, α = 1, g = 1

2 , wf = 2. Solid: 15th-order approx. of our solution; Dashed: 15th-order approx. of
Shukla’s paper; Filled circle: numerical results

der Pol-Duffing oscillator (1) have been reported by Kimiaeifar et al. [15], but they
have not discussed limit cycle behavior.

2 Homotopy analysis method

As mentioned by Kartashova [16], “physical classification of PDEs is based not on
the form of equations, but on the form of solutions.” So, let us consider here such a
“stationary” solution of u(t) that can be expressed in the form

u(t) =
+∞∑

m=0

+∞∑

n=−∞
am,n cos(mωt + nωf t) + bm,n sin(mωt + nωf t) (3)

where ω is the eigen-frequency of the oscillation, which is unknown, and am,n, bm,n

are constants, i.e., independent of time.
Based on the multi-scale method, two-time scales

τ = ωt, ξ = ωf t (4)

are introduced, we search for the solution expressed in the form

u(τ) =
+∞∑

m=0

+∞∑

n=−∞
am,n cos(mτ + nξ) + bm,n sin(mτ + nξ) (5)
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and the original (1) becomes

ω2uττ +2ωf ωuτξ +ω2
f uξξ −μ(1−u2)(ωuτ +ωf uξ )+αu+βu3 = g cos(ξ) (6)

subject to the boundary conditions

u = a, ωuτ + ωf uξ = 0, when τ = 0, ξ = 0 (7)

We call (5) the solution expression.
Choose the auxiliary linear operator

Lu = uττ + uξξ + u (8)

with the properties
L[cos τ ] = 0, L[cos ξ ] = 0, (9)

L[sin τ ] = 0, L[sin ξ ] = 0, (10)

and

L[cos(mτ ± nξ)] = [(1 − (m2 + n2))] cos(mτ ± nξ), when m2 + n2 > 1. (11)

L[sin(mτ ± nξ)] = [(1 − (m2 + n2))] sin(mτ ± nξ), when m2 + n2 > 1. (12)

Therefore, the inverse operator reads

L−1[cos(mτ ± nξ)] = cos(mτ ± nξ)

(1 − (m2 + n2))
, when m2 + n2 > 1. (13)

L−1[sin(mτ ± nξ)] = sin(mτ ± nξ)

(1 − (m2 + n2))
, when m2 + n2 > 1. (14)

According to (6), a nonlinear operator is defined as

N [U(τ, ξ ; q), �(q)] = �2(q)Uττ (τ, ξ ; q) + 2ωf �(q)Uτξ (τ, ξ ; q)

+ω2
f Uξξ (τ, ξ ; q)

−μ[1 − U2(τ, ξ ; q)][�(q)Uτ (τ, ξ ; q) + ωf Uξ (τ, ξ ; q)]
+αU(τ, ξ ; q) + βU3(τ, ξ ; q) − g cos(ξ) (15)

Let q ∈ [0, 1] denote the embedding parameter, c0 �= 0 an auxiliary parameter,
u0(τ, ξ), ω0 and a0 the initial approximations of the displacement, eigen-frequency,
and amplitude of the oscillation, respectively. We construct a parameterized family of
equation, namely the zeroth-order deformation equation, in the embedding parameter
q ∈ [0, 1]:

(1 − q)L[U(τ, ξ ; q) − u0(τ, ξ)] = qc0N [U(τ, ξ ; q), �(q)] (16)

subject to the boundary conditions

U(0, 0; q) = A(q) (17)

�(q)Uτ (τ, ξ ; q) + ωf Uξ (τ, ξ ; q) = 0, when τ = 0, ξ = 0 (18)

Obviously, when q = 0, (16), (17), and (18) have the solution

U(τ, ξ ; 0) = u0(τ, ξ), �(0) = ω0, A(0) = a0 (19)
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When q = 1, (16), (17), and (18) are exactly the same as (6) and (7), provided

U(τ, ξ ; 1) = u(τ, ξ), �(1) = ω, A(1) = a (20)

Therefore, as the embedding parameter q increases from 0 to 1, the solution
U(τ, ξ ; q) varies from the initial guess u0(τ, ξ) to the exact solution u(τ, ξ), so does
�(q) from its initial guess ω0 to the exact frequency ω, and A(q) from its initial
guess a0 to the exact amplitude a of the limit cycles, respectively. For brevity, call
(16), (17) and (18) the zeroth-order deformation equations.

From the Taylor’s theorem, U(τ, ξ ; q), �i(q), and Ai(q) are expanded in power
series of q as follows:

U(τ, ξ ; q) = u0(τ, ξ) +
∞∑

n=1

un(τ, ξ)qn, (21)

�(q) = ω0 +
∞∑

n=1

ωnq
n, (22)

A(q) = a0 +
∞∑

n=1

anq
n, (23)

where

un(τ, ξ) = 1

n!
∂nU(τ, ξ ; q)

∂qn

∣∣∣∣
q=0

, (24)

ωn = 1

n!
dn�(q)

dqn

∣∣∣∣
q=0

, (25)

an = 1

n!
dnA(q)

dqn

∣∣∣∣
q=0

. (26)

Assume that the value of c0 is properly chosen that (21), (22), and (23) are convergent
at q = 1. Then, due to (20), there holds

ui(τ, ξ) = u0(τ, ξ) +
∞∑

n=1

un(τ, ξ), (27)

ω = ω0 +
∞∑

n=1

ωn, (28)

a = a0 +
∞∑

n=1

an. (29)

For the simplicity, three vectors are defined as
un = {u0, u1, u2, . . . , un}, (30)

ωn = {ω0, ω1, ω2, . . . , ωn}, (31)

an = {a0, a1, a2, . . . , an}. (32)
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The results at the mth-order approximation are given by

ui(τ, ξ) = u0(τ, ξ) +
m∑

n=1

un(τ, ξ), (33)

ω = ω0 +
m∑

n=1

ωn, (34)

a = a0 +
m∑

n=1

an. (35)

Differentiating the zeroth-order deformation equation m times with respect to q,
then dividing them by m!, and setting q = 0, we have the mth-order deformation
equation as follows:

L[um − χmum−1] = c0
m−1(um−1, ωm−1, am−1) (36)

subject to the boundary conditions

um(0, 0) = am,

m∑

i=0

ωium−i,τ (0, 0) + ωf um,ξ (0, 0) = 0. (37)

where


m−1(um−1, ωm−1) =
m−1∑

i=0

ui,ττ

m−1−i∑

j=0

ωjωm−1−i−j + 2ωf

m−1∑

i=0

ωium−1−i,τξ

+ω2
f um−1,ξξ − μ(

m−1∑

i=0

ωium−1−i,τ + ωf um−1,ξ )

+μ(

m−1∑

i=0

ωi

m−1−i∑

j=0

uj,τ

m−1−i−j∑

r=0

urum−1−i−j−r

+ωf

m−1∑

i=0

ui,ξ

m−1−i∑

j=0

ujum−1−i−j ) + αum−1

+β

m−1∑

i=0

ui

m−1−i∑

j=0

ujum−1−i−j − (1 − χm)g cos(ξ) (38)

and

χm =
{
0, m ≤ 1,
1, m > 1.

(39)

Based on the solution from (5) and boundary conditions (37), we choose the initial
guess

u0(τ, ξ) = (a0 − B0) cos τ + B0 cos ξ + G0 sin τ − G0ω0

ωf

sin ξ (40)

where B0 and G0 are unknown constants. Thus, we have four unknown constants
B0, G0, a0, and ω0 right now for the initial guess u0(τ, ξ).
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When m = 1,


0(u0, ω0) = a1,0 cos τ + a0,1 cos ξ + b1,0 sin τ + b0,1 sin ξ

+ . . . . . . (41)

where

a1,0 = a0α − αB0 + 3a30β

4
− 9

4
a20B0β + 15

4
a0B

2
0β − 9B3

0β

4
+ 3

4
a0G

2
0β

−3

4
B0G

2
0β − G0μω0 + 1

4
a20G0μω0 − 1

2
a0B0G0μω0 + 3

4
B2
0G0μω0

+1

4
G3

0μω0 − a0ω
2
0 + B0ω

2
0 + 3a0G2

0βω2
0

2ω2
f

− 3B0G
2
0βω2

0

2ω2
f

+ G3
0μω3

0

2ω2
f

(42)

a0,1 = αB0 + 3a20B0β

2
− 3a0B

2
0β + 9B3

0β

4
+ 3

2
B0G

2
0β − g

+G0μω0 − 1

2
a20G0μω0 + a0B0G0μω0 − 3

4
B2
0G0μω0

−1

2
G3

0μω0 + 3B0G
2
0βω2

0

4ω2
f

− G3
0μω3

0

4ω2
f

− B0ω
2
f (43)

b1,0 = αG0 + 3a20G0β

4
− 3

2
a0B0G0β + 9

4
B2
0G0β + 3G3

0β

4
+ a0μω0 − 1

4
a30μω0

−B0μω0 + 3

4
a20B0μω0 − 5

4
a0B

2
0μω0 + 3

4
B3
0μω0 − 1

4
a0G

2
0μω0

+1

4
B0G

2
0μω0 − G0ω

2
0 + 3G3

0βω2
0

2ω2
f

− a0G
2
0μω3

0

2ω2
f

+ B0G
2
0μω3

0

2ω2
f

(44)

b0,1 = 3G3
0βω3

0

4ω3
f

− αG0ω0

ωf

− 3a20G0βω0

2ωf

+ 3a0B0G0βω0

ωf

−9B2
0G0βω0

4ωf

− 3G3
0βω0

2ωf

− B0G
2
0μω2

0

4ωf

+ B0μωf

−1

2
a20B0μωf + a0B

2
0μωf − 3

4
B3
0μωf − 1

2
B0G

2
0μωf + G0ω0ωf (45)

Obviously, the term cos τ, cos ξ, sin τ , and sin ξ of 
0 must disappear. Thus, we have
to enforce

a1,0 = 0, a0,1 = 0, b1,0 = 0, b0,1 = 0 (46)

and B0, G0, a0, and ω0 can be determined by the system of nonlinear (46). Further-
more, we can have the first-order solution

u1(τ, ξ) = u∗
1(τ, ξ) + B1 cos τ + G1 cos ξ + C1 sin τ + D1 sin ξ (47)

where
u∗
1(τ, ξ) = L−1[c0
0] (48)

B1, G1, C1, D1 are constants to be determined. Using the boundary conditions (37),
we can determine the constants C1 and D1 which can be expressed by B1 and G1.
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Thus, till now, only B1, G1, a1, and ω1 are unknown. They can be determined by
avoiding the secular terms cos τ, cos ξ, sin τ , and sin ξ in 
1 when m = 2.

Similarly, when m > 1, we can have the mth-order approximation

um(τ, ξ) = χmum−1(τ, ξ) + u∗
m(τ, ξ) + Bm cos τ + Gm cos ξ + Cm sin τ + Dm sin ξ

(49)
where

u∗
m(τ, ξ) = L−1[c0
m−1] (50)

Cm and Dm can be also expressed by Bm and Gm according to the boundary condi-
tions (37), and Bm, Gm, am, and ωm can be determined by avoiding the four secular
terms cos τ, cos ξ, sin τ , and sin ξ in 
m in the next order m + 1.

In order to choose a proper value of c0, the squared residual error is defined

Ei (c0) =
∫ 2π

0
(N [u(t), ω, a])2dt. (51)

For the sake of computational efficiency, the squared residual error Ei is calculated
numerically,

Ei (c0) ≈ Ēi (c0) = 1

N + 1

N∑

k=0

(
N [u(t), ω, a]

∣∣∣
t=k
t

)2
, (52)

where 
t = 2π/N and N is an integer. Obviously, the above expression is a good
approximation of Ei for large enough N . In this paper, N = 50. Given the initial
guess u0(τ, ξ) and the auxiliary linear operator L, the discrete squared residual error
Ēi is only dependent on the convergence-control parameters c0, whose optimal value
are determined by the minimum of Ēi . Thus, unlike other analytic methods, the HAM

-0.4 -0.3 -0.2 -0.1 0
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-5
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Fig. 2 Discrete square residual Ēm(c0) in the case of μ = 1
10 , β = 0, α = 1, g = 1

2 , wf = 2 by

the corresponding optimal convergence-control parameter c0 = − 31
100 . Dashed: second-order approx.;

DashDotDot: third-order approx.; DashDot: fourth-order approx.; solid: fifth-order approx
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Table 1 The discrete square
residual Ēm(c0) in the case of
μ = 1

10 , β = 0, α = 1, g =
1
2 , wf = 2 by the optimal
convergence-control parameter
c0 = − 31

100

m, order of approx. Ēm(c0)

1 8.5935960940 × 10−3

5 4.5603847951 × 10−4

10 1.2306233210 × 10−5

15 8.3085442636 × 10−7

25 4.1182799933 × 10−8

35 6.5870508257 × 10−9

45 2.2182312610 × 10−9

provides a convenient way to guarantee the convergence of the series solution [17–
19].

3 Results and discussions

Being different from the research on limit cycle (A limit cycle is a closed trajectory in
phase space having the property that at least one other trajectory spirals into it either
as time approaches infinity or as time approaches negative infinity.) analytically,
and due to the specific natures of the analytic period-doubling and quasi-periodic
solutions, here,

δ =
∣∣∣∣1 − uA(t)

uN(t)

∣∣∣∣, at t = Tc (53)

is defined as the relative error between the approximation solution uA(t) obtained by
the HAM and the numerical result uN(t) based on the classical Runge-Kutta method
at t = Tc. The critical predictable time Tc can be interpreted as follows: in this paper,
If δ ≤ 5% with t ∈ [0, Tc], the approximation solution uA(t) obtained by the HAM
can be regarded as a reliable solution in this interval, and this thought comes from
the reference [20].

Without loss of generality, four sets of parameters are considered.
Case A: μ = 1

10 , β = 0, α = 1, g = 1
2 , wf = 2.

To illustrate the convergence of the HAM series solutions, take Case A for exam-
ple. As shown in Fig. 2, as the order of the approximation increases, the discrete

Table 2 The
homotopy-approximations of a

and ω in the case of
μ = 1

10 , β = 0, α = 1, g =
1
2 , wf = 2 by the corresponding
optimal convergence-control
parameter c0 = − 31

100

m, order of approx. a ω

1 1.820044340 1.0000000006

5 1.820550645 0.9995121219

10 1.820666931 0.9993961369

15 1.820668447 0.9993781088

25 1.820747199 0.9993750589

35 1.820791789 0.9993754377

45 1.820829612 0.9993763969
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Table 3 Some reliable analytical results with Tc = 5000 in the case of μ = 1
10 , β = 0, α = 1, g =

1
2 , wf = 2 by the corresponding optimal convergence-control parameter c0 = − 31

100

t uA(t) uN (t) δ

1 1.176972694 1.176925098 0.0003582

10 − 1.723625232 − 1.723718957 0.0001467

50 − 1.723625232 − 1.723718957 0.0000423

100 1.556751053 1.555898745 0.0012903

200 0.780312984 0.777208179 0.0039948

300 − 0.304700044 − 0.308961871 0.0137940

400 − 1.355048605 − 1.358525291 0.0025591

500 − 2.029290522 − 2.030462598 0.0005772

700 − 1.100541325 − 1.096100216 0.0040517

800 0.224965891 0.229240046 0.0186448

900 1.351923422 1.354484347 0.0018907

1000 1.931655204 1.932353798 0.0033908

1200 1.145321548 1.145841490 0.0004537

1500 − 1.554417652 − 1.551924094 0.0016067

1800 − 0.726270454 − 0.732364983 0.0083217

2000 1.634806032 1.631674517 0.0010515

2200 1.807411244 1.808431322 0.0005640

2500 − 1.328462313 − 1.330520749 0.0015470

2800 − 1.173006129 − 1.167041802 0.0051106

3000 0.876259451 0.883368669 0.0080450

3200 2.101633183 2.100801885 0.0003957

3500 − 0.864316410 − 0.868906641 0.0045902

3600 − 1.753032520 − 1.755097348 0.0011764

3800 − 1.543589168 − 1.542930153 0.0004271

3900 − 0.616869693 − 0.617278998 0.0006630

4000 0.399889370 0.398159951 0.0043435

4300 1.853640173 1.854826575 0.0006396

4500 0.070017086 0.072109241 0.0290136

4700 − 1.981375640 − 1.981419598 0.0000221

4800 − 2.086019161 − 2.085518820 0.0002399

4900 − 1.344164941 − 1.341266737 0.0021607

4950 − 0.754178584 − 0.749844658 0.0057797

4990 − 0.694699650 − 0.699539376 0.0069184

5000 − 0.126025672 − 0.120530688 0.0455899

squared residual Ēm(c0) decreases in the region Rc = {c0| − 9
25 ≤ c0 ≤ 0}. When

dE5(c0)
dc0

= 0, the optimal convergence-control parameter c0 is chosen as c0 = − 31
100 .

It is found that, as the order of the approximation increases, the discrete squared
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Fig. 3 The u − u̇ plane projection of the quasi-periodic solutions given by the reliable quasi-periodic
solutions with Tc = 1000 in the case of μ = 1

10 , β = 0, α = 1, g = 1
2 , wf = 2 by the corresponding

optimal convergence-control parameter c0 = − 31
100

residuals of all these homotopy-series decrease monotonously. All the HAM series
solutions are expanded to the 45th order with residual error less than 5 × 10−9, as
shown in Table 1. Table 2 shows that the amplitude a and the frequency ω converge
to the values 1.8208 and 0.999376, respectively, as the order of the approximation
m increases to 45. As shown in the left-hand chart of the Fig. 5, the analytic solu-
tions obtained in the case of μ = 1

10 , β = 0, α = 1, g = 1
2 , wf = 2 by mean of

c0 = − 31
100 are quasi-periodic. And as seen from the Table 3, the HAM series solu-

tions are proved effective even when t = 5000 by comparing with numerical results,
and this means that Tc is 5000 at least. Also, the u− u̇ plane projections of the quasi-
periodic solutions given by the 35th-order approximation in different time intervals
and the u − u̇ plane projections of the quasi-periodic solutions when Tc ∈ [0, 200]
with this set of parameters compared with the numerical results based on a fourth-
order Runge-Kutta method are plotted in Fig. 5. It is worth noting that the numerical
results obtained by the fourth-order Runge-Kutta method agree closely with the series
solution for Case A, as shown in Figs. 3 and 4 even when only Tc = 1000 and
Tc = 3000, respectively.

Case B: μ = 1
10 , β = 0, α = 1, g = 1

2 , wf = 19
10 .

Compared with Case A, in addition to the small change of the value of wf , the val-
ues of the other parameters remain unchanged. Similarly, the optimal convergence-
control parameter c0 is chosen as c0 = − 1

5 and all the HAM series solutions are
expanded to the 23th order with residual error less than 5 × 10−6. The amplitude
a and the frequency ω converge to the values 1.79121 and 0.999361, respectively,
as the order of the approximation m increases to 23. The u − u̇ plane projection of
the quasi-periodic solutions given by the 23th-order approximation in different time
intervals and comparison of the u− u̇ plane projection of the quasi-periodic solutions
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Fig. 4 The u − u̇ plane projection of the quasi-periodic solutions given by the reliable quasi-periodic
solutions with Tc = 3000 in the case of μ = 1

10 , β = 0, α = 1, g = 1
2 , wf = 2 by the corresponding

optimal convergence-control parameter c0 = − 31
100

with the numerical results when Tc ∈ [0, 100] in the case of μ = 1
10 , β = 0, α =

1, g = 1
2 , wf = 19

10 by mean of c0 = − 1
5 are shown in Fig. 6. However, it can be

easily found that the right-hand chart of Fig. 6 is more complex than the right-hand
chart of Fig. 5, although the difference of wf only is 0.1. It can be concluded from
the discussion that understanding of nonlinear oscillatory systems analytically is a
heavy-burden and long-way arduous task. Thereinto, Tc = 2000 is also obtained by
the (53) easily.
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Fig. 5 (Left): The u − u̇ plane projection of the quasi-periodic solutions given by the 35th-order approx-
imation in case of μ = 1

10 , β = 0, α = 1, g = 1
2 , wf = 2 by mean of c0 = − 31

100 in different
time intervals. Dotted: t ∈ [90, 100], DashDotDot: t ∈ [990, 1000], dashed: t ∈ [1990, 2000], solid:
t ∈ [2990, 3000]; (right): comparison of the u− u̇ plane projection of the quasi-periodic solutions with the
numerical results when Tc ∈ [0, 200], solid line: the 35th-order approximation by mean of c0 = − 31

100 ,
filled circle: numerical results
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Fig. 6 (Left): The u − u̇ plane projection of the quasi-periodic solutions given by the 23th-order approx-
imation in the case of μ = 1

10 , β = 0, α = 1, g = 1
2 , wf = 19

10 by mean of c0 = − 1
5 in different time

intervals. DashDot: t ∈ [0, 10], Dotted: t ∈ [90, 100], Solid: t ∈ [990, 1000], Dashed: t ∈ [1990, 2000];
(Right): Comparison of the u − u̇ plane projection of the quasi-periodic solutions with the numerical
results when Tc ∈ [0, 100], Solid line: the 23th-order approximation by mean of c0 = − 1

5 , Filled circle:
Numerical resultsx

Case C: μ = 1
10 , β = 1, α = 1, g = 1

1000 , wf = 2.
Compared with Case A and Case B, the previous two cases are the forced Van

der Pol oscillators (β = 0). However, Case C is used to describe the forced Van der
Pol-Duffing oscillator (β �= 0). Because of the small value of g = 1

1000 , the forced
oscillation is equivalent to free oscillation approximatively. Similarly, the optimal
convergence-control parameter c0 is chosen as c0 = − 1

5 and all the HAM series
solutions are expanded to the 10th order with residual error less than 1 × 10−6.
The amplitude a and the frequency ω converge to the values 1.93455 and 1.92862,
respectively, as the order of the approximation m increases to 10. The u − u̇ plane
projection of the limit cycles given by the 10th-order approximation in different time
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Fig. 7 (Left): The u−u̇ plane projection of the limit cycles given by the 10th-order approximation in case
of μ = 1

10 , β = 1, α = 1, g = 1
1000 , wf = 2 by mean of c0 = − 1

5 in different time intervals. DashDot:
t ∈ [0, 10], Dotted: t ∈ [90, 100], Solid: t ∈ [990, 1000], Dashed: t ∈ [1990, 2000]; (Right): Comparison
of the u − u̇ plane projection of the limit cycle with the numerical results when Tc ∈ [0, 200], Solid line:
the 10th-order approximation by mean of c0 = − 1

5 , Filled circle: Numerical results
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Fig. 8 (Left): Comparison of the u(t) given by the 8th-order approximation in the case of μ = 1
10 , β =

0, α = 4, g = 1
2 , wf = 3 with the numerical results when Tc ∈ [80, 100], solid line: the 8th-order

approximation by mean of c0 = − 1
10 , filled circle: numerical results; (right): Comparison of the u − u̇

plane projection of the period-doubling solutions with the numerical results when Tc ∈ [0, 100], solid line:
the 8th-order approximation by mean of c0 = − 1

10 , filled circle: numerical results

intervals and comparison of the u − u̇ plane projection of the limit cycle with the
numerical results when Tc ∈ [0, 200] in the case of μ = 1

10 , β = 1, α = 1, g =
1

1000 , wf = 2 by mean of c0 = − 1
5 are shown in Fig. 7. Obviously, the HAM series

solutions obtained are limit cycles, as shown in the left-hand chart of Fig. 7. Also,
Tc = 2000 can be obtained by the (53) easily.

Case D: μ = 1
10 , β = 0, α = 4, g = 1

2 , wf = 3.
Same with Case A and Case B, this case also is the forced Van der Pol oscillators

(β = 0). Similarly, the optimal convergence-control parameter c0 is chosen as c0 =
− 1

10 and all the HAM series solutions are expanded to the 8th order with residual
error less than 5×10−4. The amplitude a and the frequency ω converge to the values
1.8952 and 1.99969, respectively, as the order of the approximation m increases to
8. Comparison of the u(t) given by the 8th-order approximation with the numerical
results when Tc ∈ [80, 100] and comparison of the u − u̇ plane projection of the
period-doubling solutions in the case of μ = 1

10 , β = 0, α = 4, g = 1
2 , wf = 3

by mean of c0 = − 1
10 with the numerical results when Tc ∈ [0, 100] are plotted in

Fig. 8. Obviously, the HAM series solutions obtained are period-doubling, as shown
in the right-hand chart of Fig. 8. Also, Tc = 100 can be obtained by the (53) easily.

4 Conclusions

An approximate analytic method that combines the homotopy analysis method
(HAM) with the multi-scale method is proposed to study the limit cycles, period-
doubling, and quasi-periodic solutions of the forced Van der Pol oscillator and the
forced Van der Pol-Duffing oscillator. The accuracy and efficiency of the proposed
method have been demonstrated by the numerical results. This approach has gen-
eral meanings and thus can be used to solve many same types of highly nonlinear
oscillating systems in science and engineering.
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