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Abstract In this article, based on a second-order backward difference method, a
completely discrete scheme is discussed for a Kelvin-Voigt viscoelastic fluid flow
model with nonzero forcing function, which is either independent of time or in
L∞(L2). After deriving some a priori bounds for the solution of a semidiscrete
Galerkin finite element scheme, a second-order backward difference method is
applied for temporal discretization. Then, a priori estimates in Dirichlet norm are
derived, which are valid uniformly in time using a combination of discrete Gronwall’s
lemma and Stolz-Cesaro’s classical result on sequences. Moreover, an existence
of a discrete global attractor for the discrete problem is established. Further, opti-
mal a priori error estimates are obtained, whose bounds may depend exponentially
in time. Under uniqueness condition, these estimates are shown to be uniform in
time. Finally, several numerical experiments are conducted to confirm our theoretical
findings.
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1 Introduction

In this paper, we consider a fully discrete method which is based on a second-order
backward difference scheme for the following Kelvin-Voigt viscoelastic fluid flow
model (see, [20, 21]):

∂u
∂t

− κ�ut − ν�u + u · ∇u + ∇p = f(x, t), x ∈ �, t > 0 (1.1)

with incompressibility condition

∇ · u = 0, x ∈ �, t > 0, (1.2)

and initial and boundary conditions

u(x, 0) = u0 in �, u = 0 on ∂�, t ≥ 0. (1.3)

Here, � be a bounded convex polygonal or polyhedron domain in IRd (d = 2 or 3)

with boundary ∂�, u = u(x, t) and p = p(x, t) denote the velocity vector and the
pressure, respectively, ν > 0 represents kinematic viscosity coefficient and κ is the
time of relaxation of deformations or the retardation in time parameter. For some
applications, we refer to [7–9] and references, therein.

Now, we present a quick review of some related literature on the Kelvin-Voigt
model. Based on the proof technique of Ladyzenskaya [19], Oskolkov [20, 21] has
proved an existence of a unique global “almost” classical solution for the initial and
boundary value problem (1.1)–(1.3) in finite time interval. Further, investigations on
existence and uniqueness results for all time t > 0 have been continued by him and
his collaborators under various conditions on the forcing function f, see [23] and [24].

For earlier results on numerical methods applied to Kelvin-Voigt viscoelastic fluid
flow problem, we refer to [3, 4, 22, 28] and [29]. Under the assumption that the solu-
tion is asymptotically stable as t → ∞, Oskolkov [22] has proved that the spectral
Galerkin approximation to the problem (1.1)–(1.3) is convergent in semitime axis
t ≥ 0. Later on, Pani et al. [27] have employed a variant of nonlinear semidiscrete
spectral Galerkin method and derived optimal error estimates. Recently, Bajpai et al.
[4] have analyzed both backward Euler scheme and backward difference scheme for
the completely discretization of the problem (1.1)–(1.2), when the forcing function
f = 0. Firstly, the authors have shown existence of solution for the discrete nonlin-
ear problem using a variant of Brouwer fixed point theorem and then, proved optimal
error estimates which reflect exponential decay property. Note that their error bounds
contain term like 1

κr , for r ≥ 2, which may blow up as κ �→ 0. For related articles
on Navier-Stokes equations, see [13] and on Oldroyd model, refer to [2, 11, 12, 14,
25–28, 31–34].

When the forcing function (f �= 0) with f ∈ L∞(L2), which is important in the
study of dynamical system, Pany et al. [28] have employed semidiscrete finite ele-
ment method for the problem (1.1)–(1.3) and have proved an existence of a global
attractor. New regularity results for the exact solution are established which are valid
uniformly in time as t �→ ∞ and also uniformly in κ as κ �→ 0. They have also
derived a priori optimal error estimates for the velocity in L∞(L2)-norm as well as
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velocity in L∞(H1)-norm and for the pressure term in L∞(L2)-norm. Under unique-
ness assumption, it is shown that error bounds are valid uniformly in time. It is,
further, established that quasi-optimal error estimates are valid for small κ . In con-
tinuation to the investigation in [28] on semidiscrete problem, Pany et al. [29] have
employed a backward Euler method along with its linearized version for the time dis-
cretization of the problem (1.1)–(1.2), which are first order in time schemes. A priori
bounds for the discrete solution, specially in the Dirichlet norm are shown using a
combination of discrete Gronwall’s lemma and Stolz-Cesaro theorem. It is, further,
derived that the discrete problem has a global discrete attractor and then, optimal
error estimates are established. Under uniqueness assumption, it is also proved that
error bounds are valid uniformly in time.

In this article, we continue our investigation further and a second-order backward
difference scheme for the time discretization is analyzed. A priori estimates in Dirich-
let norm for the fully discrete scheme are obtained, which are valid uniformly in time
using a combination of discrete Gronwall’s lemma and Stolz-Cesaro’s classical result
for sequences. Moreover, an existence of a discrete global attractor for the discrete
problem is established and a priori error estimates are derived. More precisely, the
following estimates are obtained for the fully discrete solution (Un, P n):

‖u(tn) − Un‖ ≤ C

(
h2

√
κ

+ k2

κ

)

and

‖(p(tn) − P n)‖ ≤ C

(
h√
κ

+ k2−γ

κ3/2

)
,

where the pair (Un, P n) is the fully discrete solution of the second-order backward
difference scheme and

γ =
{

0 if n ≥ 2;
1 if n = 1.

Since constants in these error bounds depend eCt , these results as in the Navier-
Stokes case are valid locally. But, under the uniqueness condition, it is further shown
that error estimates are valid uniformly in time. Finally, we obtain error estimates for
the fully discrete scheme.

This article is organized as follows. Section 2 deals with some assumptions and
discusses the weak formulation. Section 3 focuses on some a priori estimates for the
solution of the semidiscrete scheme, which are valid uniformly in time. In Section 4,
we discuss a second-order backward finite difference method and show that discrete
solution is bounded in Dirichlet norm. Moreover, we prove an existence of solution
for the discrete nonlinear system using a variant of Brouwer’s fixed point theorem
and also derive existence of a discrete global attractor. In Section 5, we establish
optimal error estimates for the velocity and the pressure term. Section 6 deals with
some numerical experiments, which confirm our theoretical findings.
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2 Preliminaries and weak formulation

We denote by bold face letters the R
d , (d = 2, 3)-valued function spaces such as

H1
0 =

(
H 1

0 (�)
)d

, L2 = (L2(�))d and Hm = (Hm(�))d,

where Hm(�) is the usual Sobolev space of order m with norm ‖ · ‖m. Here, H1
0 is

equipped with a norm

‖∇v‖ =
(

d∑
i=1

(∇vi, ∇vi)

)1/2

.

Let Hm/IR be the quotient space consisting of equivalence classes of elements of
Hm differing by constants, with norm ‖p‖Hm/IR = infc∈IR ‖p + c‖m.
Now, introduce the following vector valued function spaces :

J1 = {φ ∈ H1
0 : ∇ · φ = 0},

J = {φ ∈ L2 : ∇ · φ = 0 in �, φ · n|∂� = 0 holds weakly},
where n is the unit outward normal to the boundary ∂� and φ · n|∂� = 0 should be
understood in the sense of trace in H−1/2(∂�), see [18, 30]. For any Banach space X,
let Lp(0, T ; X) be the space of measurable X-valued functions φ on (0, T ) such that

∫ T

0
‖φ(t)‖p

X dt < ∞ if 1 ≤ p ≤ ∞,

and for p = ∞,
ess sup
0<t<T

‖φ(t)‖X < ∞.

Let P be the orthogonal projection of L2 onto J.
Throughout this article, we following assumptions are made:

(A1) For g ∈ L2, let the unique pair of solution {v ∈ J1, q ∈ L2/IR} to the steady
state Stokes problem, see [30],

−�v + ∇q = g,

∇ · v = 0 in �, v|∂� = 0

satisfying the following regularity result

‖v‖2 + ‖q‖H 1/IR ≤ C‖g‖. (2.1)

Setting the Stokes operator as

−�̃ = −P� : J1 ∩ H2 ⊂ J → J,

then the assumption (A1) gives rise to the estimates

‖v‖2 ≤ C‖�̃v‖ ∀v ∈ J1 ∩ H2. (2.2)

Note that, the following estimates holds

‖v‖2 ≤ λ−1
1 ‖∇v‖2 ∀v ∈ H1

0(�), and ‖∇v‖2 ≤ λ−1
1 ‖�̃v‖2 ∀v ∈ J1 ∩ H2, (2.3)
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where λ−1
1 is the best possible positive constant, depends on the domain � in

the Poincaré inequality.
(A2) There exists a positive constant M0 such that the initial velocity u0 and the

external force f satisfy

u0 ∈ H2 ∩ J1, f, ft ∈ L∞(0, ∞;L2) with

‖u0‖2 ≤ M0, sup
0<t<∞

(‖f‖, ‖ft‖−1, ‖ft t‖−1) ≤ M0.

Moreover, set a bilinear form a(·, ·) on H1
0×H1

0 as

a(v, φ) = (∇v, ∇φ) ∀v, φ ∈ H1
0, (2.4)

and the trilinear form b(·, ·, ·) on H1
0×H1

0 × H1
0 by

b(v,w,φ) = 1

2
(v · ∇w,φ) − 1

2
(v · ∇φ,w) ∀v,w,φ ∈ H1

0. (2.5)

Now, the weak formulation of problem (1.1)–(1.3) is to seek a pair of
functions (u(t), p(t)) ∈ H1

0 × Ł2/IR with u(0) = u0 such that for all t > 0

(ut , φ) + κ(∇ut , ∇φ) + ν(∇u, ∇φ) + (u · ∇u, φ)

+ (p, ∇ · φ) = (f,φ) ∀φ ∈ H1
0, (2.6)

(∇ · u, χ) = 0 ∀χ ∈ L2

Equivalently, find u(t) ∈ J1 such that for t > 0

(ut , φ) + κ a(ut , φ) + ν a(u, φ) + b(u, u, φ) = (f,φ) ∀φ ∈ J1, (2.7)

u(0) = u0.

Throughout this article, C denotes a generic positive constant, which is valid uni-
formly with respect to time t and with respect to the parameter κ, but may depend on
ν, M0, and λ1.

3 Finite element approximation

Let Hh and Lh, 0 < h < 1 be finite dimensional subspaces of H1
0 and L2, respec-

tively, where h > 0 is a spatial discretization parameter, satisfying the following
approximation properties:

(B1) For w ∈ J1 ∩ H2 and q ∈ H 1/IR, there are approximations ihw ∈ Jh and
jhq ∈ Lh such that

‖w − ihw‖ + h‖∇(w − ihw)‖ ≤ K0h
2‖w‖2, ‖q − jhq‖L2/IR ≤ K0h‖q‖H 1/IR.

Now, set the subspace Jh of Hh as

Jh = {vh ∈ Hh : (χh, ∇ · vh) = 0 ∀χh ∈ Lh}.
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The semidiscrete formulation of (2.6) is to seek uh(t) ∈ Hh and ph(t) ∈ Lh

such that uh(0) = u0h and for all t > 0

(uht , φh) + κ a(uht , φh) + ν a(uh, φh) + b(uh, uh, φh)

− (ph, ∇ · φh) = (f,φh) ∀φh ∈ Hh, (3.1)

(∇ · uh, χh) = 0 ∀χh ∈ Lh.

Equivalently, seek uh(t) ∈ Jh such that uh(0) = u0h and for t > 0

(uht , φh)+κ a(uht , φh)+ν a(uh, φh) = −b(uh, uh, φh) + (f,φh) ∀φh ∈ Jh. (3.2)

First, we compute uh(t) ∈ Jh, then, ph(t) ∈ Lh approximation to the
pressure p(t) can be computed out by solving the following system

(ph, ∇ · φh) = (uht , φh) + κ a(uht , φh) + ν a(uh, φh)

+b(uh, uh, φh) + (f,φh) ∀φh ∈ Hh. (3.3)

For solvability of the above systems (3.2) and (3.3), see [28]. Uniqueness
is obtained in the quotient space Lh/Nh with norm given by

‖qh‖L2/Nh
= inf

χh∈Nh

‖qh + χh‖,
where

Nh = {qh ∈ Lh : (qh, ∇ · φh) = 0 ∀φh ∈ Hh}.
Moreover, assume that the pair (Hh, Lh/Nh) satisfies the following uni-

form inf-sup condition:
(B2) For every qh ∈ Lh, there is a positive constant K1 and a nontrivial function

φh ∈ Hh, independent of h, such that

|(qh, ∇ · φh)| ≥ K1‖∇φh‖‖qh‖L2/Nh
.

As a consequence of (B1), the following properties of the L2 projection
Ph : L2 → Jh hold: For φ ∈ J1, we note that, see [10, 15],

‖φ − Phφ‖ + h‖∇Phφ‖ ≤ Ch‖∇φ‖, (3.4)

and for φ ∈ J1 ∩ H2,

‖φ − Phφ‖ + h‖∇(φ − Phφ)‖ ≤ Ch2‖�̃φ‖. (3.5)

Now, define the discrete operator �h : Hh → Hh via the bilinear form
a(·, ·) as

a(vh, φh) = (−�hvh, φh) ∀vh, φh ∈ Hh. (3.6)

Then, the discrete analog of the Stokes operator �̃ = P� is given as �̃h =
Ph�h.

Further, the trilinear form satisfies see page 360 of [16].

b(vh,wh,wh) = 0 ∀vh,wh ∈ Hh. (3.7)

Examples of subspaces Hh satisfying assumptions (B1) and (B2) can be
found in [5, 6] and [15].
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Below, we recall a couple of Lemmas on a priori estimates for the semidiscrete
solution uh of (3.2) whose prove can be found in [28, 29].

Lemma 3.1 With 0 ≤ α <
νλ1

4(1 + κλ1)
, and u0h = Phu0, suppose assumptions

(A1)–(A2) hold true. Then, there exists a positive constantC = C(ν, α, λ1, M0) such
that for all t > 0 the solution uh of (3.2) satisfies

‖uh(t)‖2 + ‖∇uh(t)‖2 + κ‖�̃huh(t)‖2

+2βe−2αt

∫ t

0
e2αs(‖∇uh(s)‖2 + ‖�̃huh(s)‖2) ds ≤ C(ν, α, λ1, M0) t > 0,

e−2αt

∫ t

0
e2αs(‖uht (s)‖2 + 2κ‖∇uht (s)‖2) ds + ν‖∇uh(t)‖2 ≤ C,

where β = (ν/2) − α(λ−1
1 + κ) ≥ ν/4 > 0.

Further,

‖uht (t)‖2 + κ‖∇uht (t)‖2 + νe−2αt

∫ t

0
e2αs‖∇uht (s)‖2ds ≤ C.

Lemma 3.2 Let 0 ≤ α <
νλ1

2(1 + κλ1)
and let assumptions (A1)–(A2) hold true.

Then, there is a positive constant C = C(ν, α, λ1, M0) such that for all t > 0,

‖uhtt (t)‖−1,h + κ‖∇uhtt‖ ≤ C√
κ

.

Moreover, there holds

e−2αt

∫ t

0
e2αs(‖uhtt (s)‖2−1,h + κ‖∇uhtt (s)‖2)ds ≤ C.

For our subsequent use, we also derive the following estimates.

Lemma 3.3 Let 0 ≤ α <
νλ1

2(1 + κλ1)
and let assumptions (A1)–(A2) hold true.

Then, there is a positive constant C = C(ν, α, λ1, M0) such that for all t > 0

‖uhttt (t)‖−1,h + κ‖∇uhttt‖ ≤ C

κ3/2

Further,

e−2αt

∫ t

0
e2αs(‖uhttt (s)‖2−1,h + κ‖∇uhttt (s)‖2)ds ≤ C

κ2

Proof Differentiate twice (3.2) with respect to time and obtain

(uhttt , φh) = −κa(uhttt , φh) − νa(uhtt , φh) − b(uhtt , uh, φh)

−b(uht , uht , φh)−b(uh, uhtt , φh)+(ft t , φh) ∀ φh ∈ Jh. (3.8)
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An application of the Ladyzhenskaya inequality yields

(uhttt , φh) ≤
(

κ‖∇uhttt‖ + ν‖∇uhtt‖ + C

(
‖∇uhtt‖‖∇uh‖ + ‖∇uht‖2

)

+‖ft t‖−1

)
‖∇φh‖. (3.9)

Note that, choose φ = uhttt in (3.8) drop the first term from the left-hand side, we
arrive at

κ‖∇uhttt‖2 ≤
(

ν‖∇uhtt‖+C(‖∇uhtt‖‖∇uh‖+‖∇uht‖2)+‖ft t‖−1

)
‖∇uhttt‖. (3.10)

An application of Lemmas 3.1 and 3.2 in (3.10) yields

κ‖∇uhttt‖ ≤ C

κ3/2
. (3.11)

Now, dividing by ‖∇φh‖ in (3.8) and taking supremum over φh ∈ Hh.

‖uhttt‖−1,h ≤
(

κ‖∇uhttt‖ + ‖∇uhtt‖ + C(‖∇uhtt‖‖∇uh‖ + ‖∇uht‖2) + ‖ft t‖−1

)
. (3.12)

Substitute (3.11) and estimates from Lemmas 3.1 and 3.2 in 3.8 to establish

‖uhttt‖−1,h ≤ C

κ3/2
. (3.13)

Squaring (3.11), multiply by e2αt and then, integrate from 0 to t . Again, multiply
the resulting inequality by e−2αt to obtain

e−2αt

∫ t

0
e2αsκ‖∇uhttt‖2 ds ≤ e−2αt

∫ t

0
e2αs

(
ν‖∇uhtt‖2 + C(‖∇uhtt‖2‖∇uh‖2

+‖∇uht‖2) + ‖ft t‖2−1

)
ds ≤ C

κ2 . (3.14)

Similarly, from (3.12) we find that

e−2αt

∫ t

0
e2αs‖uhttt‖2−1,h ds ≤ C

κ2
. (3.15)

This completes the rest of the proof.

We now recall the following error estimates of semidiscrete solutions of (3.2),
which are proved in [28].

Theorem 3.1 Let conditions (A1)–(A2) and (B1)–(B2) be satisfied and let the
discrete initial velocity u0h = Phu0. Then, there exists a positive constant

C(λ1, ν, α, M0) such that for all t > 0 and for 0 ≤ α <
νλ1

4
(
1 + λ1κ

) ,

‖(u − uh)(t)‖ + h
(
‖∇(u − uh)(t)‖ + ‖(p − ph)(t)‖

)
≤ C√

κ
h2eCt .
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Moreover, under the assumption of the uniqueness condition, that is,

N0

ν
‖f‖L∞(H−1) < 1 and N0 = sup

u,v,w∈H1
0(�)

b(u, v, w)

‖∇u‖‖∇v‖‖∇w‖ , (3.16)

the following uniform in time estimate holds

‖(u − uh(t))‖ + h‖(p − ph)(t)‖ ≤ C√
κ

h2.

4 Second-order backward difference scheme

In this section, a second-order backward difference scheme is analyzed.
Let φ be a smooth function defined on [0, T ], set φn = φ(tn) where tn = nk for

time step size k > 0 and ∂̄tφ
n = (φn − φn−1)/k. Define

D
(2)
t Un = 1

2k
(3Un − 4Un−1 + Un−2), (4.1)

Now the second-order backward difference scheme applied to (3.1) is to find
(Un, P n) ∈ (Hh, Lh) such that for all n ≥ 1(

D
(2)
t Un, φh

)
+ κa

(
D

(2)
t Un, φh

)
+ νa(Un, φh) + b(Un,Un, φh) (4.2)

− (P n, ∇ · φh) = (fn, φh) ∀φh ∈ Hh, n ≥ 2,

(∂̄tU1, φh) + κa(∂tU1, φh) + νa(U1, φh) + b(U1,U1, φh) (4.3)

− (P 1, ∇ · φh) = (f1, φh) ∀φh ∈ Hh,

(∇ · Un, χh) = 0 ∀χh ∈ Lh,

U0 = u0h.

Equivalently, seek {Un}n≥1 ⊂ Jh such that
(
D

(2)
t Un, φh

)
+ κa

(
D

(2)
t Un, φh

)
+ νa(Un, φh) (4.4)

+ b(Un,Un, φh) = (fn, φh) ∀n ≥ 2 ∀φh ∈ Jh,

(∂̄tU1, φh) + κa(∂tU1, φh) + νa(U1, φh)

+ b(U1,U1, φh) = (f1, φh) ∀φh ∈ Jh, (4.5)

U0 = u0h.

Let recall the following identity from [1, 4]:

(
ân, 3ân − 4ân−1+ân−2

)
= ‖ân‖2 − ‖ân−1‖2+(1 − e2αk)

(
‖ân‖2 + ‖ân−1‖2

)
(4.6)

+‖δ2ân−1‖2+‖2ân − eαkân−1‖2 − ‖2ân−1 − eαkân−2‖2,

where

δ2ân−1 = eαkân − 2ân−1 + eαkân−2.
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Before obtaining a priori estimates for the discrete problem (4.4), we recall the
following result for sequences.

Theorem 4.1 (Stolz-Cesaro Theorem). Let {φn}∞n=0 be a sequence of real numbers.
Further, let {ψn}∞n=0 be a strictly monotone and divergent sequence. If

lim
n−→∞

( φn − φn−1

ψn − ψn−1

)
= �,

then

lim
n−→∞

( φn

ψn

)
= �

holds.

A use of (4.6) yields the following result.

Lemma 4.1 With 0 ≤ α <
νλ1

2(1 + λ1κ)
, choose k0 so that for 0 < k ≤ k0

(
νkλ1

κλ1 + 1
+ 1

)
> e2αk. (4.7)

Then, the discrete solution UN , N ≥ 1 of (4.4) satisfies

(‖UN‖2 + κ‖∇UN‖2) + β2e
−2αtN k

N∑
n=1

e2αtn‖∇Un‖2

≤ C(α, ν, λ1)e
−2αtN (‖U0‖2 + κ‖∇U0‖2) + e2αk

λν
‖f‖2

L∞(H−1)
(4.8)

where, 2β2 =
(

2νe−2αk − 2
( 1−e−2αk

k

)(
κ + 1

λ1

))
> 2νe−2αk > 0. Moreover, the

following estimate holds:

lim sup
N−→∞

‖∇UN‖2 ≤ 1

ν2
‖f‖2

L∞(H−1)
. (4.9)

Proof Choose φh = Un in (4.4) and multiply by e2αtn . Then, an application of (4.6)
shows

1

4
∂̄t (‖Ûn‖2 + κ‖∇Û

n‖2) + ν‖∇Û
n‖2 +

(
1 − e2αk

4k

)(
‖Ûn‖2 + κ‖∇Û

n‖2
)

+
(

1 − e2αk

4k

)(
‖Ûn−1‖2 + κ‖∇Û

n−1‖2
)

+ 1

4k

(
‖δ2Û

n−1‖2 + κ‖δ2∇Û
n−1‖2

)

+1

4
∂̄t

(
‖2Û

n − eαkÛ
n−1‖2 + κ ‖2∇Û

n − eαk∇Û
n−1‖2

)

= (f̂
n
, Û

n
). (4.10)
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The right-hand side of (4.10) can be estimated as

1

2
ν‖∇Û

n‖2 + 1

2νλ1
‖f̂n‖2

L∞(H−1)

As the fifth term on the left-hand side of (4.10) is positive, we can drop this term.
Now, multiply the resulting on by 4ke−2αk and sum up from n = 2 to N . Then, a use
of (2.3) yields

‖ÛN‖2 + κ‖∇Û
N‖2 + k

(
2νe−2αk − 2

(
1 − e−2αk

k

)(
κ + 1

λ1

)) N∑
n=2

‖∇Û
n‖2

+‖2e−αkÛ
N − Û

N−1‖2 + κ‖2e−αk∇Û
N − ∇Û

N−1‖2 ≤ (‖Û1‖2 + κ‖∇Û
1‖2)

+
(
‖2e−αkÛ

1 − U0‖2 + κ‖2e−αk∇Û
1 − ∇U0‖2

)

+ 1

νλ1
‖f‖2

L∞(H−1)
e−2αkk

N∑
n=2

e2αtn . (4.11)

For n = 1, that is, (4.5), we easily obtain as in the estimates of backward Euler
scheme ( Lemma 4.1 of [29])

e−2αk

(
‖U1‖2 + κ‖∇U1‖2

)
≤ C e−2αk (‖U0‖2 + κ‖∇U0‖2)

+ 1

νλ1
‖f‖2

L∞(H−1)
(4.12)

A use of the Cauchy-Schwarz’s inequality with the Young’s inequality and (4.12)
yields a bound for the second term on the right-hand side of (4.11) as

‖2e−αkÛ
1 − U0‖2 + κ‖2e−αk∇Û

1 − ∇U0‖2 ≤ C(‖U0‖2 + κ‖∇U0‖2)

+e2αk

νλ1
‖f‖2

L∞(H−1)
. (4.13)

Using (4.12) and (4.13) in (4.11), we arrive after multiplying the resulting on by
e−2αtn at

‖UN‖2 + κ‖∇UN‖2 + β2ke−2αtN

N∑
n=2

‖∇Û
n‖2 ≤ Ce−2αtN (‖U0‖2 + κ‖∇U0‖2)

+e2αk

νλ1
‖f‖2

L∞(H−1)
, (4.14)

and this completes the first part of the proof.
For the remaining part, drop first two terms from (4.14) and then, to apply Stolz-

Cesaro Theorem, (see [29]) to the resulting inequality, we observe that

φN = 2νe−2αkk

N∑
n=1

‖∇Û
n‖2 and ψN = e2αtN .
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Note that the sequence {ψn} is monotonically strictly increasing with ψN −→ ∞
and N −→ ∞. Hence, an appeal to Stolz-Cesaro Theorem yields

2ν

(1 − e−2αk)
e−2αkk lim sup

N−→∞
‖∇UN‖2 ≤ k

1

ν(1 − e−2αk)
‖f‖2

L∞(H−1)
.

This concludes the rest of the proof.

As in [4], we now appeal to a variant of Brouwer’s fixed point theorem to prove
existence of solution to the discrete problem (4.4)

Theorem 4.2 (Brouwer’s fixed point theorem) [18]. Let H be a finite dimensional
Hilbert space with inner product (·, ·) and ‖ · ‖. Let G : H → H be a continuous
function. If there exists a positive real number R such that (G(z), z) > 0 ∀z with
‖z‖ = R, then there exists z∗ ∈ H such that ‖z‖ ≤ R and G(z∗) = 0.

Theorem 4.3 Given a sequence of discrete solution {Uj }n−1
j=0, there exists a unique

discrete solution Un of (4.4) for n ≥ 1.

Proof Assuming that Um, m = 0, 1, . . . n − 1 are known, we need to show the exis-
tence of Un to the problem (4.4). Now, define a function G : Jh → Jh for a fixed n

by

(G(w),φh)=3(w, φh)+3κ(∇w, ∇φh)+kν(∇w,∇φh)+2k b(w,w,φh) (4.15)

−4(Un−1, φh)−4κ(∇Un−1, ∇φh)+(Un−2, φh)+κ(∇Un−2, ∇φh)−2k(fn, φh).

Set a norm on Jh as

‖|w‖| = (‖w‖2 + κ‖∇w‖2)
1
2 . (4.16)

It is easy to show that G is continuous. Now, after choosing φh = w in (4.15),
we use (3.7), (4.16), the Cauchy-Schwarz’s inequality and the Young’s inequality to
obtain

(G(w),w) ≥
(

3‖|w‖| − 4‖|Un−1‖| + |‖Un−2‖| − 2k‖fn‖
)

‖|w‖|.
Choose R such a way that for ‖|w‖| = R,(

3R − 4‖|Un−1‖| + |‖Un−2‖| − 2k‖fn‖) > 0 and hence,

(G(w),w) > 0.

An appeal to Theorem 4.2 concludes an existence of the discrete solution {Un}n≥1
of (4.4).

The part of uniqueness is quite similar to the proof of uniqueness problem in [4],
so we skip the proof and this completes the rest of the proof.

Remark 1 From the Theorem 4.4, we note that for a given Un−1 ∈ Jh, there exists
a unique discrete solution Un ∈ Jh. Thus, it defines a map Sn

h : Jh → Jh such that
Sn

h(Un−1) = Un, which is continuous and globally defined.
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Theorem 4.4 As a consequence of (4.14), there exists a bounded absorbing set

Bρ2(0) :
{
(‖UN‖2 + κ‖∇UN‖2) ≤ ρ2

2

}
,

where ρ0 is given by

ρ2
2 = 2e2αk

νλ1
‖f‖L∞(L2).

Moreover, the discrete problem (4.4) has a global attractor.

Proof To prove the first part of the Theorem 4.4, now, we claim that if

(
‖U0‖2 +

κ‖∇U0‖2
)1/2

∈ Bρ1(0), there exists tn∗ = n∗k depending on

(
‖U0‖2 +

κ‖∇U0‖2
)1/2

such that for tN ≥ tn∗ , the discrete solution UN satisfies

(
‖UN‖2 + κ‖∇UN‖2

)1/2

∈ Bρ2(0).

To prove we observe from the estimate (4.14) that

‖UN‖2 + κ‖∇UN‖2 ≤ e−2αtN (‖U0‖2 + κ‖∇U0‖2) + ρ2
0

2
. (4.17)

To complete the first part of the proof, it is enough to claim that

e−2αtN (‖U0‖2 + κ‖∇U0‖2) ≤ ρ2
0

2
. (4.18)

A use of the fact that 2(a2 + b2) ≥ (a + b)2 yields

1

ρ2
‖U0‖ + κ‖∇U0‖ ≤ eαtN .

That means, there is t�n = n�k ≥ 1
α

log(
‖U0‖+κ‖∇U0‖

ρ2
) such that the above holds

for ρ1 >
ρ2
2 and tN ≥ tn� Bρ1(0) ⊂ Bρ2(0). For ρ1 <

ρ2
2 , the result trivially holds for

any tn ≥ 0. Therefore, Bρ2(0) is an absorbing ball. Now, Sn possess a global attractor,
say An,k, by mimicking the proof of existence of an attractor in the continuous case,
see Titi et al. [17]. This concludes the rest of the proof.

Lemma 4.2 With 0 ≤ α <
νλ1

2(1 + λ1κ)
, choose k0 so that for 0 < k ≤ k0 the esti-

mate (4.7) is satisfied. Then, there is a positive constant K depending on M0, ν, α, λ1
such that the discrete solution UN , N ≥ 1 of (4.4) satisfies

(‖∇UN‖2+κ‖�̃hUN‖2)+2β2e
−2αtN k

N∑
n=1

e2αtn‖�̃hUn‖2 ≤K(M0, ν, α, λ1) (4.19)

where, 2β2 =
(

2νe−2αk − 2
( 1−e−2αk

k

)(
κ + 1

λ1

))
> 2νe−2αk > 0.
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Proof Put φh = �̃hUn in (4.4) and multiply by e2αtn . Then, an application of (4.6)
shows

1

4
∂̄t (‖∇Û

n‖2+κ‖�̃hÛ
n‖2)+ν‖�̃hÛ

n‖2+
(

1 − e2αk

4k

)(
‖∇Û

n‖2 + κ‖�̃hÛ
n‖2

)

+
(

1 − e2αk

4k

)(
‖∇Û

n−1‖2+κ‖�̃hÛ
n−1‖2

)
+ 1

4k

(
‖δ2∇Û

n−1‖2+κ‖δ2�̃hÛ
n−1‖2

)

+1

4
∂̄t

(
‖(2∇Û

n − eαk∇Û
n−1

)‖2+κ ‖2�̃hÛ
n − eαk�̃hÛ

n−1‖2
)

= −e−αtnb(Û
n
, Û

n
, �̃hÛ

n
)+(f̂

n
, �̃hÛ

n
) = I1+I2. (4.20)

For I1, use of the generalized Holder’s inequality that

|I1| ≤ Ce−αtn‖Ûn‖L4‖∇Û
n‖L4‖�̃hÛ

n‖ (4.21)

Recall the following Ladyzhenskaya’s inequality for (d = 2, 3) to our subsequent
use:

For d = 2,

‖Ûn‖L4 ≤ C‖Ûn‖ 1
2 ‖∇Û

n‖ 1
2 and ‖∇Û

n‖L4 ≤ C‖∇Û
n‖ 1

2 ‖�̃hÛ
n‖ 1

2 . (4.22)

In (4.21), an application of the Young’s inequality with p = 4, q = 4/3, εp = 2ν
9

shows

|I1| ≤ Ce−αtn‖Ûn‖ 1
2 ‖∇Û

n‖‖�̃hÛ
n‖ 3

2 ≤ C

(
1

ν

)3

e2αtn‖Un‖2‖∇Un‖4 + ν

6
‖�̃Û

n‖2. (4.23)

For d = 3,

‖Ûn‖L4 ≤ C‖Ûn‖ 1
4 ‖∇Û

n‖ 3
4 and ‖∇Û

n‖L4 ≤ C‖∇Û
n‖ 1

4 ‖�̃hÛ
n‖ 3

4 . (4.24)

In (4.21), a use of the Young’s inequality with p = 8/7, q = 8, εp = 4ν
21 yields

|I1| ≤ Ce−αtn‖Ûn‖ 1
4 ‖∇Û

n‖‖�̃hÛ
n‖ 7

4 ≤ C

(
1

ν

)7

e2αtn‖Un‖2‖∇Un‖8 + ν

6
‖�̃Û

n‖2. (4.25)

For I2, an application of the Cauchy-Schwarz inequality with Young’s inequality
leads to

|I2| = (f̂
n
, �̃hÛ

n
) ≤ ‖f̂n‖ ‖�̃hÛ

n‖ ≤ 3

2ν
‖f̂n‖ + ν

3
‖�̃hÛ

n‖. (4.26)

Note that,
N∑

n=2

(‖∇Û
n−1‖2 + κ‖�̃hÛ

n−1‖2) = (‖∇Û
1‖2 + κ‖�̃hÛ1‖2)

+
N∑

n=2

(‖∇Û
n‖2 + κ‖�̃hÛ

n‖2)

−(‖∇Û
N‖2 + κ‖�̃hÛ

N‖2). (4.27)
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For d = 2, drop the fifth term on the left-hand side of (4.20) as it is positive.
Multiply the resulting on by 4ke−2αk and sum up from n = 2 to N . Then, a use of
(2.3), (4.23), (4.26) and (4.27) yields

‖∇Û
N‖2 + κ‖�̃hÛ

N‖2 + k

(
2νe−2αk − 2

(
1 − e−2αk

k

) (
κ + 1

λ1

))
N∑

n=2

‖�̃hÛ
n‖2 (4.28)

+‖2e−αk∇Û
N − ∇Û

N−1‖2 + κ‖2e−αk�̃hÛ
N − �̃hÛ

N−1‖2 ≤ (‖∇Û
1‖2 + κ‖�̃hÛ

1‖2)

+‖2e−αk∇Û
1 − ∇U0‖2 + κ‖2e−αk�̃hÛ

1 − �̃hU0‖2) + C(ν)‖f‖2
L∞(H−1)

e−2αkk

N∑
n=2

e2αtn .

+C(ν)e−2αkk

N∑
n=2

‖Un‖2‖‖∇Un‖2∇Û
n‖2. (4.29)

From a priori estimates of backward Euler scheme (Lemma 4.2 of [29]), we find
that

‖∇̂U1‖2 + κ‖�̃hÛ
1‖2 ≤ C(M0, ν, α, λ1). (4.30)

An application of the Cauchy-Schwarz’s inequality with the Young’s inequality
and (4.30) yields a bound for the second term on the right-hand side of (4.28) as
follows:

‖2e−αk∇Û
1 − ∇U0‖2 + κ‖2e−αk�̃hÛ

1 − �̃hU0‖2 ≤ C(M0, ν, α, λ1). (4.31)

Using (4.30) and (4.31) in (4.28), we arrive at

‖∇Û
N‖2 + κ‖�̃hÛ

N‖2 + 2β2k

N∑
n=2

‖�̃hÛ
n‖2

≤ C(‖∇U0‖2 + κ‖�̃hU0‖2) + e2αk

νλ1
‖f‖2

L∞(H−1)
e2αtn

+C(ν)e−2αkk

N∑
n=2

‖Un‖2‖‖∇Un‖2∇Û
n‖2. (4.32)

An Application of Gronwall’s lemma leads to

‖∇Û
N‖2 + κ‖�̃hÛ

N‖2 + 2β2k

N∑
n=2

‖�̃hÛ
n‖2

≤ C(‖∇U0‖2 + κ‖�̃hU0‖2) + e2αk

νλ1
‖f‖2

L∞(H−1)
e2αtn

×exp

(
Cke−2αk

N∑
n=2

‖Un‖2‖‖∇Un‖2
)

. (4.33)
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Apply assumption (A2) in (4.33) to arrive at

‖∇Û
N‖2 + κ‖�̃hÛ

N‖2 + 2β2k

N∑
n=2

‖�̃hÛ
n‖2

≤ C(ν, α, M0)exp

(
Cke−2αk

N∑
n=2

‖Un‖2‖‖∇Un‖2
)

. (4.34)

Multiplying (4.34) by e−2αtn , use (4.8) along with (4.9) to obtain

‖∇UN‖2 + κ‖�̃hUN‖2 + 2νe−2αke−2αtnk

N∑
n=2

‖�̃hÛ
n‖2 ≤ C(ν, α, M0). (4.35)

This concludes the proof for d = 2.
Now, for d = 3 substitute (4.23) and (4.26)in (4.20) and under the similar lines of

proof for d = 2, we obtain

‖∇Û
N‖2 + κ‖�̃hÛ

N‖2 + 2β2k

N∑
n=2

‖�̃hÛ
n‖2

≤ C(‖∇U0‖2 + κ‖�̃hU0‖2) + e2αk

νλ1
‖f‖2

L∞(H−1)
e2αtn

+C(ν) k e−2αke2αtn

N∑
n=2

‖Un‖2‖‖∇Un‖8. (4.36)

Multiplying (4.36) by e−2αtn to obtain

‖∇UN‖2 + κ‖�̃hUN‖2 + 2e−2αtnβ2k

N∑
n=2

‖�̃hÛ
n‖2 ≤ e−2αtnC(‖∇U0‖2 + κ‖�̃hU0‖2)

+ e2αk

νλ1
‖f‖2

L∞(H−1)
+ C(ν)e−2αk

N∑
n=2

‖Un‖2‖‖∇Un‖8

≤ C1(M0, α, λ, ν) + C2(M0, α, ν)k

N∑
n=2

‖∇Un‖8. (4.37)

Now, under smallness assumption on both initial data and forcing function the
boundedness of ‖∇UN‖ is proved for all tN > 0. This completes the rest of the
proof.

5 Error analysis for second-order backward difference method

This section deals with error analysis of our second-order difference scheme (4.4)–
(4.5).

Set, for a fixed n, en = Un − uh(tn) = Un − un
h. Now, we derive the following

error estimates for second-order backward difference method.
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Theorem 5.1 Let 0 ≤ α <
νλ1

4(1 + κλ1)
and k0 ≥ 0 such that for 0 < k ≤ k0,

νkλ1

1 + κλ1
+ 1 > e2αk.

Then, there exist a positive constant C = C(ν, α, λ1, M0) such that

‖en‖2 + κ‖∇en‖2 + ke−2αtn

n∑
i=2

e2αti ‖∇ei‖2 ≤ C

κ
k4eCtN , (5.1)

and for n = 2, · · · , N ,

‖D2
t e

n‖2 + κ‖D2
t ∇en‖2 ≤ C

κ3/2
k4eCtn . (5.2)

Proof Rewrite (3.2) at t = tn and substract it from (4.4) to obtain(
D

(2)
t en, φh

)
+ κa

(
D

(2)
t en, φh

)
+ νa(en, φh) (5.3)

; = En
1 (uh)(φh) + �n

h(φh),

where,

En
1 (uh)(φh) =

(
un

ht − D
(2)
t un

h, φh

)
+ κa

(
un

ht − D
(2)
t un

h, φh

)
(5.4)

and

�h(φh) = b
(
un

h, u
n
h, φh

) − b(Un,Un, φh) (5.5)

= −b
(
un

h, e
n, φh

) − b(en,Un, φh).

= −b
(
un

h, e
n, φh

) + b(en, en, φh) − b(en, un
h, φh).

Further,

|�h(φh)| = |b (
un

h, e
n, φh

) + b(en,Un, φh)|
≤ C(λ1)

(
‖∇un

h‖ + ‖∇Un‖
)

‖∇en‖‖∇φh‖. (5.6)

With the help of Lemmas 3.2 and 4.2, we find that

|�h(φh)| ≤ C(ν, α, λ1, M0)‖∇en‖ ‖∇φh‖. (5.7)

Multiplying (5.3) by 4keαtn and choose φh = ên. A use of identity (4.6) yields

k∂̄t (‖ên‖2 + κ‖∇ ên‖2) + ‖δ2ên−1‖2 + κ‖δ2∇ ên−1‖2 + 4kν‖∇ ên‖2

+ (1 − e2αk)(‖ên‖2 + κ‖∇ ên‖2) + (1 − e2αk)(‖ên−1‖2 + κ‖∇ ên−1‖2)

+ k ∂̄t

(
‖2ên − eαk ên−1‖2 + κ‖2∇ ên − eαk∇ ên−1‖2

)
= 4k eαtnEn

1 (uh)(ên
)

+ 4k eαtn�h(ên
). (5.8)
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Summing (5.8) over n = 2 to N and multiplying by e−2αk , we arrive at

‖êN‖2+κ‖∇ êN‖2+e−2αk
N∑

n=2

(‖δ2ên−1‖2+κ‖δ2∇ ên−1‖2)+‖2e−αk êN −êN−1‖2

+κ‖2e−αk∇ êN − ∇ êN−1‖2+k

(
4νe−2αk−2

(
1−e−2αk

k

) (
κ+ 1

λ1

))
N∑

n=2

‖∇ ên‖2

≤ ‖ê1‖2 + κ‖∇ ê1‖2 + ‖2e−αk ê1 − e0‖2 + κ‖2e−αk∇ ê1 − ∇e0‖2

+4e−2αkk

N∑
n=2

eαtnEn
1 (uh)(φh) + 4ke−2αk

N∑
n=2

eαtn�h(ên
)

≤ C(‖ê1‖2+κ‖∇ ê1‖2)+4e−2αkk

N∑
n=2

eαtnEn
1 (uh)(ên

)+4ke−2αk
N∑

n=2

eαtn�h(ên
). (5.9)

To estimate the second term of the right-hand side of (5.9), we find that

4e−2αkk

N∑
n=2

eαtnEn
1 (uh)(φh) = 4e−2αkk

N∑
n=2

eαtn
(
un

ht − D2
t U

n, ên
)

(5.10)

+4e−2αkκk

N∑
n=2

eαtna
(
un

ht − D2
t U

n, ên
)

= I1 + I2(say).

Now, a use of the Cauchy-Schwarz’s inequality, (2.3) and the Young’s inequality,
we bound |I1| as

|I1| ≤ 4e−2αkk

( N∑
n=2

‖eαtn (un
ht − D2

t U
n)‖2−1

)1/2( N∑
n=2

‖∇ ên‖2
)1/2

≤ C(ε, λ1)ke−2αk
N∑

n=2

‖eαtn
(
un

ht − D2
t U

n
)

‖2−1 + εke−2αk
N∑

n=2

‖∇ ên‖2. (5.11)

A Use of ‖eαtn
(
un

ht − D2
t U

n
) ‖2−1 ≤ k3

2

∫ tn
tn−2

e2αtn‖uhttt (t)‖2−1 dt ([1]) and
Lemma 3.2, we obtain

k

N∑
n=2

‖eαtn
(
un

ht − D2
t U

n
)

‖2−1 ≤ k4

2

N∑
n=2

∫ tn

tn−2

e2αtn‖uhttt (t)‖2−1dt

= k4

2
e4αk

N∑
n=2

∫ tn

tn−2

e2αtn−2‖uhttt (t)‖2−1dt

≤ k4

2
e4αk

N∑
n=2

∫ tn

tn−2

e2αt‖uhttt (t)‖2−1dt

≤ k4e4αk

∫ tN

0
e2αt‖uhttt (t)‖2−1dt

≤ C(ν, α, λ1, M0)

κ2
k4e2α(n+2)k. (5.12)
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Using (5.12) in (5.11), yields

|I1| ≤ C(ν, α, λ1, M0, ε)

κ2
k4e2αtn + εke−2αk

N∑
n=2

‖∇ ên‖2. (5.13)

Similarly, as for bound of |I1| and using (5.13), we find that

|I2| ≤ C(ν, α, λ1, M0, ε)

κ2
k4e2αtn + εke−2αk

N∑
n=2

‖∇ ên‖2. (5.14)

A use of anti-symmetric property for the second term of the right-hand side of
(5.9) shows

eαtn |�h(ê
n
)| ≤ e−αtn |b(ên

, ∇ûn
h), ê

n|
≤ C ‖∇ûn

h‖‖ên‖‖∇ ên‖. (5.15)

A use of (5.15) yields

|4ke−2αk
N∑

n=2

eαtn�h(ê
n
)| ≤ C(ε)

N∑
n=2

ke−2αke−2αtn‖∇ûn
h‖2‖ên‖2 (5.16)

+εke−2αk
N∑

n=2

‖∇ ên‖2.

For n = 1, we now observe that

1

2
∂̄t

(‖ê1‖2+κ‖∇ ê1‖2)+
(
νe−αk−

(
1 − e−αk

k

)(
κ+ 1

λ1

))
‖∇ ê1‖2 (5.17)

= e−αk(eαk(E1(uh)(ê
1
)), ê1

)+e−αkeαk�h(ê
1
).

Multiply (5.17) by 2k,and the, with a help of the Young’s inequality, the Cauchy-
Schwarz’s inequality and (2.3) with the estimates (5.15) (for n = 1 and ε = ν), we
arrive at

‖ê1‖2 + κ‖∇ ê1‖2 + 2k

(
νe−αk −

(
1 − e−αk

k

) (
κ + 1

λ1

))
‖∇ ê1‖2 (5.18)

≤ 2ke−αk(eαk(E1(uh)(ê
1
)), ê1

) + 2ke−αkeαk�h(ê
1
)

≤ Ck2e−2αk
(‖eαk(E1(uh)(ê

1
))‖2) + 1

2
(‖ê1‖2 + κ‖∇ ê1‖2) + νke−αk‖∇ ê1‖2

+C(ν)ke−αke−2αk‖∇û1
h‖2‖ê1‖2,

and hence, we similarly obtain

‖ê1‖2+ κ‖∇ ê1‖2+k

(
νe−αk−2

(
1 − e−αk

k

)(
κ + 1

λ1

))
‖∇ ê1‖2 (5.19)

≤ C(ν, α, λ1, M0)
k4

κ2
e2αtn + C(ν)ke−αke−2αk‖∇û1

h‖2‖ê1‖2.
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A use of (5.13), (5.14) and (5.16) with ε = 2ν
3 , (5.19), eo = 0 and results from

Lemma 4.1 in (5.9), yields

‖êN‖2+κ‖∇ êN‖2+e−2αk

N∑
n=2

(‖δ2ên−1‖2+κ‖δ2∇ ên−1‖2)+‖2e−αk êN − êN−1‖2

+κ‖2e−αk∇ êN −∇ êN−1‖2+2k

(
νe−2αk−

(
1 − e−2αk

k

)(
κ + 1

λ1

)) N∑
n=2

‖∇ ên‖2

≤ C(ν, α, λ1, M0)
k4

κ2
e2αtn + C(ν)

N∑
n=2

ke−2αke−2αtn‖∇ûn
h‖2‖ên‖2

+C(ν)ke−αke−2αk‖∇û1
h‖2‖ê1‖2

≤ C(ν, α, λ1, M0)
k4

κ2
e2αtn + C(ν)

N−1∑
n=0

ke−αke−2αtn‖∇ûn
h‖2‖ên‖2

+C(ν)ke−2αke−2αtN ‖∇ûN
h ‖2‖êN‖2

≤ C(ν, α, λ1, M0)
k4

κ2
e2αtn + C(ν)

N−1∑
n=0

ke−αke−2αtn‖∇ûn
h‖2‖ên‖2

+Cke−2αk(‖êN‖2 + κ‖∇ êN‖2). (5.20)

Now, select k0, so that (4.7) is satisfied and (1 − Cke−2αk) > 0 for 0 < k ≤ k0.
Then, an application of the discrete Gronwall’s Lemma yields

‖êN‖2+κ‖∇ êN‖2+k

N∑
n=2

‖∇ ên‖2 ≤ C(ν,α,λ1,M0)

κ2 k4 exp

(
k

N−1∑
n=0

‖∇ûn
h‖2

)
. (5.21)

With the help of Lemma 4.1, we bound

k

N−1∑
n=0

‖∇ûn
h‖2 ≤ CtN, (5.22)

and hence, using (5.22) in (5.21), we now arrive at

‖êN‖2+κ‖∇ êN‖2 + k

N∑
n=2

‖∇ ên‖2 ≤ C(ν, α, λ1, M0)

κ2
k4eCtN . (5.23)

This concludes the proof of (5.1) for n ≥ 2.
For n = 1, we similarly obtain

‖e1‖2 + κ‖∇e1‖2 + k‖∇e1‖2 ≤ C(ν, α, λ1, M0)

κ2
k4e2αk. (5.24)
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To complete the rest of the proof, we now, substitute φh = D
(2)
t en in (5.3) to arrive

at

‖D(2)
t en‖2 + κ‖∇D

(2)
t en‖2 = −νa

(
en, D

(2)
t en

)
(5.25)

+
((

un
ht − D

(2)
t Un

)
, D

(2)
t en

)
+κa

((
un

ht − D
(2)
t Un

)
, D

(2)
t en

)
+�h

(
D

(2)
t en

)
.

Using (5.7), we obtain

|�h

(
D

(2)
t en

)
| ≤ C(ν, α, λ1, M0)‖∇en‖‖D(2)

t ∇en‖. (5.26)

A use of the Cauchy-Schwarz’s inequality with the Young’s inequality (2.3) and
(5.26) in (5.25), yields

‖D(2)
t en‖2+κ‖∇D

(2)
t en‖2 ≤C(ν, α, λ1, M0)

(
‖∇en‖2+κ2‖∇

(
un

ht −D
(2)
t Un

)
‖2−1

)
. (5.27)

We apply (5.12) and Lemma 3.3 to estimate the second term on the right-hand side
of (5.27) as

κ2‖eαtn∇
(
un

ht −D
(2)
t Un

)
‖2−1 ≤ k3

2

∫ tn
tn−2

e2αtnκ2‖∇uhttt (t)‖2dt

≤ C(ν,α,λ1,M0)

κ3 k3 e2αtn
∫ tn
tn−2

dt

≤ C(ν,α,λ1,M0)

κ3 k4e2αtn , (5.28)

where k∗ ∈ (0, k). In view of (5.1) and (5.28), (5.27) implies (5.2). This completes
the rest of the proof.

Theorem 5.2 A use of the uniqueness condition , that is,

N0

ν2
‖f‖L∞(H−1) < 1 and N0 = sup

u,v,w∈H1
0(�)

b(u, v, w)

‖∇u‖‖∇v‖‖∇w‖

the following estimate holds true for all n ∈ [N0, ∞)

‖en‖2 + κ‖∇en‖2 ≤ C

κ
k4.

Proof The outline of this proof is bit similar to Theorem 5.3 (see, [29]). Note that,
apply Taylor’s series expansion of uh(t) at tn in the interval (tn−1, tn) and then use
the Cauchy-Schwarz inequality to obtain

‖∇
(
un

h − un−1
h

)
‖2 ≤ k

∫ tn

tn−1

‖∇uht (s)‖2 ds. (5.29)
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Now, a use of (5.29) in (5.20) yields

‖êN‖2 + κ‖∇ êN‖2 + 2k

(
νe−2αk −

(
1 − e−2αk

k

)(
κ + 1

λ1

)) N∑
n=2

‖∇ ên‖2

≤ C(ν, α, λ1, M0)

κ
k4e2αtn + C(ν, λ)ke−αk

N−1∑
n=0

N

ν2
‖f‖L∞(H−1)‖ên‖2

+Cke−2αk(‖êN‖2 + κ‖∇ êN‖2). (5.30)

Rewrite (5.30) as:

‖êN‖2 + κ‖∇ êN‖2 + 2k

(
νe−2αk−

(
1 − e−2αk

k

)(
κ + 1

λ1

)
−e−αk N

ν2
‖f‖L∞(H−1)‖

)

×
N∑

n=2

‖∇ ên‖2 ≤ C(ν, α, λ1, M0)

κ
k4e2αtn . (5.31)

Using uniqueness condition, it is easy to show that the coefficient of third term
of the (5.31) becomes positive. Multiply e−2αtn in (5.31) to complete the rest of the
proof.

Now, we only need to prove the error estimates for the pressure P n. Define ρn =
P n − ph(tn) and consider (3.1) at t = tn and subtract it from (4.2) to obtain

(ρn, ∇ · φh) =
(
D2

t e
n, φh

)
+ κa

(
D2

t e
n, φh

)
+ νa(en, φh)

− En
1 (uh)(φH ) − �h(φh).

An application of (2.3) with the Cauchy-Schwarz’s inequality and (5.7) shows

(ρn, ∇ · φh)≤C(κ, ν, λ1)

(
‖D2

t e
n‖+κ‖D2

t ∇en‖+ν‖∇en‖+‖∇(un
ht −Un)‖

)
‖∇φh‖. (5.32)

From (5.28) and the Theorem 5.1 in (5.32), we now arrive at

‖ρn‖ ≤ 1

κ3/2
C(ν, α, λ1, M0)k

2. (5.33)

Altogether, a use of Theorems 3.1, 5.1, 5.2, (5.24) and (5.33) would conclude the
proof of our main theorem below.

Theorem 5.3 Under the assumption of Theorems 3.1 and 5.1, the following holds
true:

‖u(tn) − Un‖ ≤ C

(
h2

κ1/2
+ k2

κ

)
(5.34)

and

‖(p(tn) − P n)‖ ≤ C

(
h√
κ

+ k2−γ

κ3/2

)
,
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where

γ =
{

0 if n ≥ 2;
1 if n = 1.

Remark 2 The error estimates in Theorems 3.1 and 5.3 are not optimal with respect
to κ as shown in the numerical experiments in Section 6. However, with higher regu-
larity results, that is, u0 ∈ H 3 ∩ H 1

0 with some compatibility, it is possible to derive
error estimates which are independent of κ . Since one of our objectives in this paper
is to prove error bounds with minimal assumption A2, we refrain from pursuing it
further with higher regularity assumption.

6 Numerical experiments

In this section, we focus on several numerical experiments with varying κ, using
(P2-P0) mixed finite element space (see, [6]) for spatial discretization . Below, we
implement a second-order backward difference method for time discretization and
compute the order of convergence, which would confirm our theoretical findings in
Section 5.

Now, consider the following finite dimensional approximating spaces Hh and Lh

as:

Hh =
{
v ∈

(
H 1

0 (�)
)2 ∩ (

C(�̄)
)2 : v|K ∈ (P2(K))2, K ∈ Th

}
,

Lh = {q ∈ L2(�) : q|K ∈ P0(K), K ∈ Th},

where Th denotes the regular triangulation of the domain �̄. Then, apply the second-
order backward difference approximation to (3.1) is as follows: given Un−2 and
Un−1, find the pair (Un, P n) satisfying:

(3Un, vh)+(κ + 2ν�t) a(Un, vh) + 2�t c(Un,Un, vh) (6.1)

+2�t b(vh, P
n) = 4(Un−1, vh) + 4 κa(Un−1, vh) − (Un−2, vh)

−κ a(Un−2, vh) + �t (f(tn), vh) ∀vh ∈ Vh,

b(Un, wh) = 0 ∀wh ∈ Wh.

Table 1 Errors and convergence rates for backward difference scheme with k = O(h)

h ‖u(tn) − Un‖L2 Rate ‖u(tn) − Un‖H1 Rate ‖p(tn) − P n‖ Rate

1/2 0.0112643 0.078272 0.161085

1/4 0.0038994 1.530408 0.045709 0.776018 0.076906 1.066641

1/8 0.0012055 1.693566 0.025378 0.848892 0.037627 1.031309

1/16 0.0003351 1.846867 0.013375 0.923988 0.018442 1.028795
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Table 2 Numerical convergence rates for velocity in L2-norm with variation in κ for Example 1

S No. h ‖u(tn) − Un‖L2 ‖u(tn) − Un‖L2 ‖u(tn) − Un‖L2

κ = 0.01 κ = 0.0001 κ = 0.00000001

1 1/4 1.5304088 1.5038179 1.5034958

2 1/8 1.6935666 1.6919373 1.6919256

3 1/16 1.8468671 1.8464987 1.8464952

3 1/32 1.91154251 1.9106039 1.9105942

Using basis functions, we approximate the velocity and pressure as

Un =
ng∑

j=1

(
unx

j

uny
j

)
φu

j (x), P n =
ne∑

j=1

pn
j φ

p
j (x), (6.2)

where φu
j (x) and φ

p
j (x) form bases for Hh and Lh with cardinality ng and ne, respec-

tively. Here, unx
j and uny

j represent the x and y component of the approximate velocity
field, respectively, at time t = tn. Using (6.2), the basis functions for Hh and Lh

in (6.1), we obtain a system of nonlinear algebraic equations, which is solved using
Newton’s method.

Example 1 Choose the forcing function f in such a way that the exact solution
(u, p) = ((u1, u2), p) is

u1 = .01e−t2
x2(x − 1)2(y3 − 2y2 + y), u2 =−0.01e−t2

y2(y−1)2(x3−2x2 + x),

p = −3.84e−t2
xy2.

We choose κ = 0.01, ν = 1, with � = (0, 1) × (0, 1) and time t = [0, 1]. Here,
�̄ is subdivided into triangles with mesh size h.

The theoretical analysis provides a convergence rate of O(h2) in L2-norm, for
the velocity convergence rate of O(h) in H1-norm and for the pressure term, the
velocity convergence rate of O(h) in L2-norm. Table 1 presents numerical errors and
computed convergence rates obtained on successively refined meshes for backward

Table 3 Numerical convergence rates for velocity in H1-norm with variation in κ for Example 1

S No. h ‖u(tn) − Un‖H1 ‖u(tn) − Un‖H1 ‖u(tn) − Un‖H1

κ = 0.01 κ = 0.0001 κ = 0.00000001

1 1/4 0.7760188 0.7484161 0.7480840

2 1/8 0.8488925 0.8473675 0.8473556

3 1/16 0.9239889 0.9236156 0.9236121

3 1/32 0.9630824 0.9630052 0.9630045
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Table 4 Numerical convergence rates for pressure in L2-norm with variation in κ for Example 1

S No. h ‖p(tn) − P n‖ ‖p(tn) − P n‖ ‖p(tn) − P n‖
κ = 0.01 κ = 0.0001 κ = 0.00000001

1 1/4 1.0666418 1.0641700 1.0641470

2 1/8 1.0313096 1.0314830 1.0314819

3 1/16 1.0287957 1.0288386 1.0288391

3 1/32 1.0169415 1.0169587 1.0169589

difference scheme, respectively. These computational results agree with optimal con-
vergence rates obtained in Theorem 5.3, respectively. Further, when κ → 0 the order
of convergence for velocity and pressure terms are given through Tables 2, 3 and 4
which again confirm our theoretical results given in Theorem 5.3.
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