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Abstract The problem of constrained optimization via the gradient-based discrete
adjoint steepest descent method is studied under the assumption that the constraint
equations are solved inexactly. Error propagation from the constraint equations to the
gradient is studied analytically, as is the convergence rate of the inexactly constrained
algorithm as it relates to the exact algorithm. A method is developed for adapting the
residual tolerance to which the constraint equations are solved. The adaptive toler-
ance method is applied to two simple test cases to demonstrate the potential gains in
computational efficiency.

Keywords Discrete adjoint · Optimization · Gradient · Steepest descent · Inexact ·
Constrained optimization · Computational fluid dynamics

1 Introduction

The discrete adjoint method, pioneered in the field of computational aerodynamics
by Pironneau [9] and Reuther and Jameson [11], has seen widespread use in the last
two decades for numerically finding optimal designs for engineering problems—for
example, the shape of an aircraft wing with minimum drag under given operating
conditions. This method is popular due to its reliability as well as numerical effi-
ciency. However, there remain two philosophies on how the discrete adjoint method
can be most efficiently applied. In the first approach, the adjoint and constraint equa-
tions are solved to a relaxed tolerance, reducing the computational effort of each
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optimization iteration [5, 6]. This is typically combined with a steepest descent gradi-
ent method. The second approach is to solve both the adjoint and constraint equations
accurately [3], allowing for the use of a more rapidly converging iterative procedure
such as the BFGS algorithm. Either approach can be effective and there is no clear
consensus on which is more efficient [2].

Despite the popularity of the method, to our knowledge, no formal studies have
been performed to investigate the relationship between the solver tolerances and
algorithm convergence. In our analysis, we model the error as being small and con-
trollable. The objective is to determine how to select the tolerances such that the
gradient retains sufficient accuracy but to avoid wasting computational effort in
over-solving. The current study is limited to the steepest descent algorithm.

2 Preliminaries

2.1 Fréchet differentiability

Definition 1 (cf. Ortega and Rheinboldt [8], Def. 3.1.5, p. 61) The mapping R :
R

n → R
m is Fréchet differentiable at x ∈ R

n if there exists a linear operator A ∈
R

n × R
m such that

lim
h→0

1

‖h‖ ‖R (x + h) − R (x) − Ah‖ = 0.

The linear operator A is the Jacobian matrix ofR, which we denote d
dxR (x).

2.2 Big-O notation

Definition 2 Let xk be a sequence which converges to x∗. Then, for positive-valued
continuous scalar mappings f : R → R and g : R → R, we denote

f (xk) = O (g (xk)) if lim sup
k→∞

f (xk)

g (xk)
< +∞.

Similarly,

f (xk) = O (g (xk) , h (xk)) if lim supk→∞
f (xk)
g(xk)

< +∞
and lim supk→∞

f (xk)
h(xk)

< +∞

2.3 Q-convergence

(cf. Nocedal and Wright [7], Ch. 2.2, pp. 28-29) A sequence
{
xj

}
j≥0 is said to con-

verge to its limit x∗ with Q-convergence rate p if there exist L ∈ R, L > 0 and
k ∈ Z, k ≥ 0 such that

∥∥xj+1 − x∗∥∥ < L
∥∥xj − x∗∥∥p (1)

for all j ≥ k.
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3 The discrete adjoint approach

Consider the optimization problem:

min
F

I (ws, F ) (2)

subject to the constraints

R (ws, F ) = 0, (3)

where ws ∈ R
n, F ∈ R

m, I : Rn ×R
m → R, (w, F ) �→ I (ws, F ),R : Rn ×R

m →
R

n, (w, F ) �→ R (ws, F ). The Lagrangian L : Rn × R
m → R, (w, F ) �→ L (w, F )

of the system is formed by introducing the Lagrangian multipliers ψ ∈ R
n:

L (ws, F ) = I (ws, F ) − ψT R (ws, F ) . (4)

One approach to deriving the discrete adjoint method is to consider the differential
element

δL (ws, F ) = δI (ws, F ) − ψT δR (ws, F ) . (5)

Expanding δI (ws, F ) and δR (ws, F ) and simplifying:

δL (ws, F ) = ∂

∂w
I (ws, F ) δws + ∂

∂F
I (ws, F ) δF

−ψT

(
∂

∂w
R (ws, F ) δws + ∂

∂F
R (ws, F ) δF

)

=
(

∂

∂w
I (ws, F ) − ψT

[
∂

∂w
R (ws, F )

])
δws

+
(

∂

∂F
I (ws, F ) − ψT

[
∂

∂F
R (ws, F )

])
δF.

Setting the Lagrangian multipliers such that

∂

∂w
I (ws, F ) − ψT

[
∂

∂w
R (ws, F )

]
= 0 (6)

eliminates the first term, resulting in

δL (ws, F ) = GδF, (7)

where

G (ws, F ) = ∂

∂F
I (ws, F ) − ψT

[
∂

∂F
R (ws, F )

]
, (8)

G ∈ R
m is the gradient and is interpreted as a row vector. A basic pseudo-code of the

algorithm is shown in Algorithm 1. Additional details and discussion are provided,
for example, by Jameson [5].
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while Not converged do
w ← Solve R (w, F ) = 0 for w;
I ← I (w, F );
∂

∂w
I ← ∂

∂w
I (w, F );

A ← ∂
∂w

R (w, F );

ψ ← [
AT

]−1 ∂
∂w

I;
∂

∂F
I ← ∂

∂F
I (w, F );

ψT ∂
∂F

R ← ψT ∂
∂F

R (w, F );
G ← ∂

∂F
I − ψT ∂

∂F
R;

F ← Gradient-based optimization update;
end

4 The inexactly constrained discrete adjoint approach

4.1 Relationship between the gradient and the constraint error

From (6) and (8), we see that

G (ws, F ) = ∂

∂F
I (ws, F )− ∂

∂w
I (ws, F )

[
∂

∂w
R (ws, F )

]−1
∂

∂F
R (ws, F ) , (9)

assuming that
[

∂
∂w

R (ws, F )
]−1

exists. Assuming that ∂
∂w

R (ws, F ) and its inverse
are smooth with respect to w, the gradient can be found from a nearby Taylor
expansion:

G (ws, F ) = G (ws + εw, F ) − ∂

∂w
G (ws + εw, F ) εw + O

(
‖εw‖2

)
. (10)

The quantity G (ws + εw, F ), henceforth denoted Ga , represents the “actual” gradi-
ent, evaluated based on the inexact solution to the constraint equations. The quantity
εw ∈ R

n is the error in the constraint equation variables. We also introduce εG ∈ R
m,

the resulting error in the gradient. These three quantities take the following formal
definitions:

εw ≡ w − ws, (11)

Ga ≡ G (w, F ) = G (ws + εw, F ) , (12)

εG ≡ Ga − G, (13)

where we have abbreviated G ≡ G (ws, F ), and will use such abbreviations for I and
R as well. Hence, (10) can be written as

G = Ga − ∂Ga

∂w
εw + O

(
‖εw‖2

)
, (14)

Algorithm 1 The exact discrete adjoint algorithm
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or, more compactly, as

εG = ∂Ga

∂w
εw + O

(
‖εw‖2

)
. (15)

4.2 Q-convergence rate

In this section, we establish that it is possible to achieve the same order of Q-
convergence with an inexactly constrained gradient algorithm as it is with the exact
algorithm for suitable choice of

∥∥εw,j

∥∥, where j is the iteration index. Gradient-based
optimization algorithms are typically of the form

Fj+1 = Fj − γjDjGj , (16)

where γj > 0, γ ∈ R is the step size, and Dj is a square matrix, commonly assumed
to be positive definite. In the case of the steepest descent algorithm,Dj is the identity
matrix. However, a higher convergence rate can often be achieved by setting Dj to
an approximation to the inverse Hessian matrix [1].

Both γj and Dj can vary with iteration index j and can thus be interpreted as a
sequence. The analysis in this paper is limited to the case where Dj and γj are inde-
pendent of εw as doing otherwise would require consideration of specific algorithms
which is left as future work.

Theorem 1 Assume that I and R are smooth in the Fréchet sense with respect to
both w and F and assume that the sequence generated by

Fj+1 = Fj − γjDjGj , (17)

where Gj ≡ G
(
ws,j , Fj

)
, converges to a local minimizer F ∗. Furthermore, assume

that there exists some fixed L > 0 and p ≥ 1 such that
∥∥Fj+1 − F ∗∥∥ < L

∥∥Fj − F ∗∥∥p (18)

for all j ≥ k for all Fk in some ball Br (F ∗) of radius r > 0 centred at F ∗. Then
there exists a sequence δj and fixed L′ > 0 such that the algorithm

Fj+1 = Fj − γjDjGa,j , (19)

where Ga,j ≡ Ga

(
wj , Fj

)
, converges according to

∥∥Fj+1 − F ∗∥∥ < L′ ∥∥Fj − F ∗∥∥p (20)

for all 0 <
∥∥εw,j

∥∥ < δj . Furthermore, for any fixed ε > 0, there exists a sequence
δj such that L′ < L + ε.

Proof
Without loss of generality, consider some Fj ∈ Br (F ∗) to which an iterative step of
either the exact or inexact gradient algorithm could be applied. The inexact update is
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given by

Fj+1 = Fj − γjDjGa,j

Fj+1 − F ∗ = Fj − F ∗ − γjDjGj − γjDj

∂

∂w
Ga,j εw,j + γjDjO

(∥∥εw,j

∥∥2
)

,

∥∥Fj+1 − F ∗∥∥ ≤ ∥∥Fj − F ∗ − γjDjGj

∥∥ + γj

∥∥∥∥Dj

∂

∂w
Ga,j εw,j

∥∥∥∥

+γj

∥∥∥DjO
(∥∥εw,j

∥∥2
)∥∥∥ (21)

where we have subtracted F ∗ from both sides and used (14). Since Ga is Fréchet
differentiable, then for every ε1,j > 0 there exists δ1,j > 0 such that

∥∥∥∥
∂

∂w
Ga,j εw,j

∥∥∥∥ ≤ ∥∥Gj − Ga,j

∥∥ + ε1,j (22)

for all
∥∥εw,j

∥∥ < δ1,j . Since Fréchet differentiability also implies Lipschitz con-
tinuity [8], it also follows that for every ε2,j > 0 there exists δ2,j > 0 such
that ∥∥Gj − Ga,j

∥∥ ≤ ε2,j (23)

for all
∥∥εw,j

∥∥ < δ2,j . Furthermore, let the sequence ε3,j be an upper bound on

the O
(∥∥εw,j

∥∥2
)
terms. Note that it is possible to construct a sequence δ3,j such

that the O
(∥∥εw,j

∥∥2
)
terms are bounded above by any sequence ε3,j > 0 for all

∥∥εw,j

∥∥ < δ3,j . These three inequalities lead to the following chain of inequalities:
∥∥∥∥Dj

∂

∂w
Ga,j εw,j

∥∥∥∥+
∥∥∥DjO

(∥∥εw,j

∥∥2
)∥∥∥≤∥∥Dj

∥∥
∥∥∥∥

∂

∂w
Ga,j εw,j

∥∥∥∥+
∥∥Dj

∥∥O
(∥∥εw,j

∥∥2
)

≤∥∥Dj

∥∥ ∥∥Gj −Ga,j

∥∥+∥∥Dj

∥∥ ε1,j +∥∥Dj

∥∥ ε3,j

≤∥∥Dj

∥∥ (
ε2,j +ε1,j +ε3,j

)
. (24)

Using (24) and (18) with (21) gives
∥∥Fj+1 − F ∗∥∥ ≤ L

∥∥Fj − F ∗∥∥p + γj

∥∥Dj

∥∥ (
ε1,j + ε2,j + ε3,j

)
, (25)

where, in addition to (22), we have invoked the convergence rate of the exact
algorithm as given by (18).

Hence, for any fixed ε, choosing δ1,j = δ2,j = δ3,j = δj such that

ε1,j + ε2,j + ε3,j <
ε

∥∥Dj

∥∥ γj

∥∥Fj − F ∗∥∥p (26)

for
∥∥εw,j

∥∥ < δj will ensure that the convergence rate (20) is achieved with L′ <

L + ε.

Thus, we see that it is possible to maintain the convergence rate of the theoretical
algorithm with the inexactly constrained algorithm and that the convergence-related
constant L is even recovered in the limit of δj , the upper bound on

∥∥εw,j

∥∥, tending
to zero.
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It is apparent from the proof of Theorem 1 that it will be necessary to adapt δj

based on at least one of γj ,
∥∥Fj − F ∗∥∥, or

∥∥Gj − Ga,j

∥∥. We now show that the key
lies in maintaining the relative gradient error below a certain threshold.

Theorem 2 Assume that the sequence generated by

Fj+1 = Fj − γjDjGj , (27)

where Gj ≡ G
(
ws,j , Fj

)
, converges to a local minimizer F ∗ in the sense that there

exists some fixed L > 0 and p ≥ 1 such that
∥∥Fj+1 − F ∗∥∥ < L

∥∥Fj − F ∗∥∥p (28)

for all j ≥ k for all Fk in some ball Br (F ∗) of radius r > 0 centred at F ∗. Then
there exists some fixed C > 0 such that the algorithm

Fj+1 = Fj − γjDjGa,j , (29)

where Ga,j ≡ Ga

(
wj , Fj

)
, converges according to
∥∥Fj+1 − F ∗∥∥ < L′ ∥∥Fj − F ∗∥∥p (30)

so long as ∥∥Dj εG,j

∥∥ < C
∥∥DjGj

∥∥p
. (31)

Furthermore, for any fixed ε > 0, there exists C > 0 such that L′ < L+ε. Moreover,
such a C satisfies

C ≤ ε
(
Lrp−1 + 1

)p . (32)

Proof As before, consider some Fj ∈ Br (F ∗) to which an iterative step of either the
exact or inexact gradient algorithm could be applied. The inexact update is given by

Fj+1 = Fj − γjDjGa,j

Fj+1 − F ∗ = Fj − F ∗ − γjDjGj − γjDj εG,
∥∥Fj+1 − F ∗∥∥ ≤ ∥∥Fj − F ∗ − γjDjGj

∥∥ + ∥∥γjDj εG,j

∥∥ . (33)

Invoking (28) and (31):
∥∥Fj+1 − F ∗∥∥ ≤ L

∥∥Fj − F ∗∥∥p + C
∥∥γjDjGj

∥∥p
. (34)

To proceed, we use (27) and (28) to develop the following inequality:
∥∥γjDjGj

∥∥ = ∥∥Fj+1 − Fj

∥∥

= ∥∥Fj+1 − F ∗ − Fj + F ∗∥∥

≤ ∥∥Fj+1 − F ∗∥∥ + ∥∥Fj − F ∗∥∥

≤ L
∥∥Fj − F ∗∥∥p + ∥∥Fj − F ∗∥∥

= ∥∥Fj − F ∗∥∥
(
L

∥∥Fj − F ∗∥∥p−1 + 1
)

≤ ∥∥Fj − F ∗∥∥
(
Lrp−1 + 1

)
. (35)
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Using (35) with (34):
∥∥Fj+1 − F ∗∥∥ ≤ L

∥∥Fj − F ∗∥∥p + C
(
Lrp−1 + 1

)p ∥∥Fj − F ∗∥∥p

=
[
L + C

(
Lrp−1 + 1

)p] ∥∥Fj − F ∗∥∥p
. (36)

For any ε > 0, choosing C according to the inequality (32) completes the proof.

It is now a simple matter to extend the result to εw.

Theorem 3 Assume that the sequence generated by

Fj+1 = Fj − γjDjGj , (37)

where Gj ≡ G
(
ws,j , Fj

)
, converges to a local minimizer F ∗ in the sense that there

exists some fixed L > 0 and p ≥ 1 such that
∥∥Fj+1 − F ∗∥∥ < L

∥∥Fj − F ∗∥∥p (38)

for all j ≥ k for all Fk in some ball Br (F ∗) of radius r > 0 centred at F ∗. Assume
furthermore that ∂

∂w
Ga is bounded on Br (F ∗) such that

∥∥∥∥
∂

∂w
Ga

∥∥∥∥ < C′
εw

. (39)

Then there exists some fixed Cεw > 0 such that the algorithm

Fj+1 = Fj − γjDjGa,j , (40)

where Ga,j ≡ Ga

(
wj , Fj

)
, converges according to
∥∥Fj+1 − F ∗∥∥ < L′ ∥∥Fj − F ∗∥∥p (41)

so long as ∥∥εw,j

∥∥ < Cεw

∥∥Gj

∥∥p
. (42)

Proof From (15),
∥∥εG

∥∥ ≤
∥∥∥∥
∂Ga

∂w
εw

∥∥∥∥ + O
(
‖εw‖2

)
. (43)

Consider C′′
εw

such that the O
(‖εw‖2) terms above are bounded by C′′

εw
‖εw‖ on

Br (F ∗). Then
∥∥εG

∥∥ ≤
∥∥∥∥
∂Ga

∂w

∥∥∥∥ ‖εw‖ + C′′
εw

‖εw‖ . (44)

Considering inequality (39), we get
∥∥εG

∥∥ ≤ C′
εw

‖εw‖ + C′′
εw

‖εw‖ . (45)

Thus, choosing ‖εw‖ such that

‖εw‖ < Cεw
‖Ga‖p , (46)
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where

Cεw = C

C′
εw

+ C′′
εw

, (47)

ensures that
∥∥εG

∥∥ < C ‖Ga‖p, and Q-order p convergence follows from Theorem 2
with the same value of C.

4.3 Adaptive constraint tolerance algorithm for the steepest descent method

Based on Theorem 3, we can obtain the design order of convergence by adapting
‖εw‖ based on ‖εw‖ < ‖εw‖tar for sufficiently small constant Cεw , with

‖εw‖tar = Cεw
‖Ga‖p , (48)

with Cεw treated as a user parameter. However, selection of Cεw is not intuitive and is
most likely case-dependent, especially considering that εw and G can be in different
units. This makes it impossible for the user to know how to select Cεw for a given test
case.

To overcome this deficiency, the constant Cεw is replaced by

C → η

Sk

, (49)

where η ∈ R is a user-defined constant parameter and

Sk = max
0≤k≤j

‖Ga (wk, Fk) − Ga (wk−1, Fk−1)‖
‖�wk−1‖ (50)

is a sort of “unit conversion” from G to w. Though C is no longer a constant, it is
clearly upper bounded by η/S0, and hence, Theorem 3 still ensures convergence for
small enough η.

To rationalize the inclusion of the Sk term, we consider (47). The parameter C′′
εw

is
a bound on the second-order terms in the Taylor expansion of the gradient and cannot
easily be estimated. C′

εw
however must satisfy

C′
εw

> max
F∈Br (F ∗)

∥∥∥∥
∂Ga

∂w

∥∥∥∥ = max
F∈Br (F ∗)

max
v

∥∥∥ ∂Ga

∂w
v

∥∥∥

‖v‖ . (51)

Normally, the matrix ∂
∂w

Ga cannot easily be formed nor its norm estimated. Under
such circumstances, we use a reference value

C′
εw

∼ max
0≤k≤j

∥∥∥ ∂Ga,k

∂w
�wk−1

∥∥∥

‖�wk−1‖ , (52)

where �wk−1 ≡ wk − wk−1. Using this vector, the Fréchet approximation to this
matrix-vector product

∂Ga,k

∂w
�wk−1 ≈ Ga (wk, Fk) − Ga (wk−1, Fk) (53)
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involves quantities which are known or calculable.
The final step is to replace Ga (wk−1, Fk) with Ga (wk−1, Fk−1) in the above

expression, since the former is expensive to compute whereas the latter is already
available. This is reasonable for many cases of interest since in many cases, the direct
dependence of the cost functional on F is very weak. For example, considering the
problem of finding the drag-minimizing wing shape of an aircraft, the drag coeffi-
cient is expected to be far more sensitive to the changes in the flow field variables w

resulting from changes to the shape than it is directly sensitive to the shape change.
Hence, the following expression might be used for the target constraint error:

‖εw‖tar,j+1 = η

∥∥Ga

(
wj , Fj

)∥∥p ∥∥�wj−1
∥∥

∥∥Ga

(
wj , Fj

) − Ga

(
wj−1, Fj−1

)∥∥ . (54)

Considering (47) and (31), η might be on the order of the relative gradient error.
The inexactly constrained discrete adjoint algorithm with adaptive tolerance as

described in this section is shown as Algorithm 2.

S ← 0;

while Not converged do
wprev ← w;
w ← Solve R (w, F ) = 0
inexactly such that ‖w − ws‖ < ‖εw‖tar, approximately;

I ← I (w, F );
∂

∂w
I ← ∂

∂w
I (w, F );

A ← ∂
∂w

R (w, F );

ψ ← [
AT

]−1 ∂
∂w

I;
∂

∂F
I ← ∂

∂F
I (w, F );

ψT ∂
∂F

R ← ψT ∂
∂F

R (w, F );
G ← ∂

∂F
I − ψT ∂

∂F
R;

if i > 1 then

S ← max
(
S,

‖G−Gprev‖
‖w−wprev‖

)
;

‖εw‖tar ← η‖G‖p

S
;

end
F ← Gradient-based optimization update;

Gprev ← G;
end

Algorithm 2 The inexactly constrained discrete adjoint algorithm with constraint
tolerance adaptation based on (19). The boxes indicate additions to the original
algorithm
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4.4 Constraint error estimation based on the residual

The error εw can be estimated from the residual. Consider, at the kth iteration of an
iterative root-finding solver for the constraint equations, the Taylor series relating
R (wk, F ) toR (w∗, F ), which is given by

R (wk, F ) = R
(
w∗, F

) − ∂

∂w
R (wk, F ) εw,k + O

(∥∥εw,k

∥∥2
)

. (55)

Since R (w∗, F ) = 0, and ignoring higher order terms, we get an approximation to
the error

εw,k ≈ −
[

∂

∂w
R (wk, F )

]−1

R (wk, F ) , (56)

which is simply a Newton update. If an inexact linear solver is used such that the
Newton update is given by

∥∥∥∥
∂

∂w
R

[
wk − wk−1

] − R
∥∥∥∥ = ω ‖R‖ , (57)

where ω ∈ R, 0 < ω < 1 is a (user-specified) tolerance, then
∥∥εw,k−1

∥∥ can be
estimated as

∥∥εw,k−1
∥∥ ≈ ‖�wk−1‖

1 − ω
(58)

and
∥∥εw,k

∥∥ can be extrapolated as

∥∥εw,k

∥∥ ≈ ‖Rk‖
‖Rk−1‖

∥∥εw,k−1
∥∥ ≈ ‖Rk‖ ‖�wk−1‖

‖Rk−1‖ (1 − ω)
. (59)

5 Results

5.1 Nonlinear heat transfer

The first test case is essentially a steady one-dimensional heat transfer problem,
though we do not bother to make the problem physically realistic. The spatial domain
is x ∈ [0, 1] divided into equal intervals with length �x. The discrete form of the
governing equations at internal node i is

α

�x2 (wi−1 − 2wi + wi+1) + h (wi − w∞) + k
(
w4

i − w4∞
)

= 0, (60)

where α, h, k, and w∞ are constants. The variables w in this case may be interpreted
as temperature and the terms in the above equation may be interpreted as conduction,
external convection, and radiation, respectively. Dirichlet boundary conditions are
applied at the endpoints.

The optimization problem is posed as an “inverse-design” problem. The physi-
cal system described above is solved for a given k = k0 and the solution w∗ is
recorded at several grid points. Denote S as the set of indices at which the solution is
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recorded. The objective of the optimization problem is then to recover this value of k

by attempting to match the solution profile. Explicitly, the objective function is

I =
∑

i∈S

(
wi − w∗

i

)2 (61)

and the constraints are the discrete equations representing the physical system. The
constraint equations are solved directly using Newton’s method. The linear system
was solved using a direct method but included a relaxation ω = 0.6 on the update.
This relaxation factor is applied in order to relax the convergence of the nonlinear
solver so that the final error does not over-shoot the target error too much for the
sake of the analysis. The constraint equation error at each iteration is estimated based
on (59).

The parameters for the test case are wleft = 5, wright = 6, α = 0.1, h = 1,
k = 0.01, w∞ = 2, with �x = 0.01 and nine equi-spaced points at which the tem-
perature is recorded for the inverse design problem. The inverse design problem is
solved using the steepest descent method with step size γ = 0.0001. Algorithm 2 is
used and convergence rate p = 1 is assumed. The optimization problem is consid-
ered converged when ‖G‖ drops 5 orders of magnitude. Setting k to 0, the inverse
design problem is solved in 48 iterations of the optimization algorithm. The solution
is displayed in Fig. 1.

We begin by investigating the relationship between the quantity ‖G − Ga‖ / ‖G‖
and the user parameter η. The correlation is obtained by calculating the gradient
twice at each optimization iteration: once with an accurate solution to the constraint
equation and again using the adapted error tolerance. The update is performed using
the accurate gradient so that the study is consistent for each value of η investigated.
The data are shown in Fig. 2, from which we see that the relative gradient error
remains fairly constant throughout convergence and that it is consistently less than
η. Hence, if η is interpreted as the target relative gradient error, then (54) produces a
conservative value of ‖εw‖tar in this case.

Figure 3 shows the correlation between the residual to which the constraint equa-
tions are solved and the gradient. Despite solving the constraint equations to an
increasingly tighter tolerance, the relative error in the gradient remains consistent,
emphasizing the importance of the adaptive tolerance if deep convergence is desired.
This is further emphasized in Fig. 4, where we see that using an adaptive tolerance of
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Fig. 1 Solution to the inverse design problem; target values are circled
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Fig. 2 Relative error in the gradient for the heat transfer case—the value of η for each corresponding
colour is indicated with a dashed line

η = 10−2 leads to essentially the same convergence rate as a fixed constraint equa-
tion residual tolerance of τ = 10−12 and allows for deep convergence, whereas less
conservative values of τ result in stagnation of the cost functional I. From Fig. 5, we
see the apparent efficiency benefit of using the adaptive tolerance.

5.2 Inviscid compressible flow through a nozzle

The second test case is quasi-one-dimensional inviscid compressible air flow through
a converging/diverging nozzle. The nozzle shape S (x) is given by

S (x) =
{
1 + k1

(
1 − x

5

)2 0 ≤ x ≤ 5

1 + k2
(
1 − x

5

)2 5 < x ≤ 10,
(62)

with k1 = 1.5 and k2 = 0.5. The air is considered to be a perfect gas with ideal gas
constant R = 287N · m · kg−1 · K−1, heat capacity ratio γ = 1.4, total temperature
T0 = 300 K, and total inlet pressure p01 = 100 kPa. The critical area is S∗ = 0.8.
The critical area is used to calculate the Mach number at the inlet in this case and can
also be used to calculate the Mach number for all x analytically. Both problems are
described by Pulliam and Zingg [10], who in turn reference Hirsch [4]. More details
of the problem can be found in either textbook, including the analytical solution.

A finite-difference discretization is again used in this case with 101 cells and
Dirichlet boundary conditions (density and velocity are fixed at the inlet, energy is
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Fig. 3 Correlation of the constraint residual and gradient for the heat transfer case
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Fig. 4 Optimization algorithm convergence for the heat transfer case for several fixed τ cases and an
adaptive τ case with fixed η (the τ = 10−8 and τ = 10−12 cases are not visible as they overlap with the
η = 10−2 case)
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Fig. 5 Optimization algorithm performance for the heat transfer case for several fixed τ cases and an
adaptive τ case with fixed η

fixed at the outlet). The optimization problem is again an inverse design problem
where the goal this time is to recover the correct values of k1 and k2 and the objec-
tive function is based on the velocity recorded at nine equi-spaced points. If S is the
set of indices corresponding to these points and u∗

i , i ∈ S are the velocities at these
points then the objective function is given by

I =
∑

i∈S

(
ui − u∗

i

)2
. (63)

For the results presented, we have used k1 = 1.4 and k2 = 0.45 as the starting guesses
for k1 and k2. Newton’s method is applied directly to the linear system, though we
relax the linear solution by the factor ω = 0.1. The step size used in the steepest
descent algorithm is γ = 1. This time we have sought either a 15 order of magni-
tude drop in ‖G‖ from its initial value or ‖I‖ < 10−15 as termination criteria. The
optimizer converges in 60 iterations under these conditions.

The same studies are performed as with the heat transfer case. The correlation
between the relative gradient error ‖G − Gtrue‖ / ‖Gtrue‖ and η is shown in Fig. 6 for
several values of η. As with the heat transfer case, we see that the relative gradient
error remains relatively consistent throughout convergence and that it is less than the
user-supplied value of η, indicating that (54) has again produced a conservative value
of ‖εw‖tar. Figure 7 shows that the constraint error and gradient are again clearly
correlated for this case. Preservation of the convergence rate when using the adaptive
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Fig. 6 Relative error in the gradient for the convection case—the value of η for each corresponding colour
is indicated with a dashed line
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Fig. 7 Correlation of the constraint residual and gradient for the convection case
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Fig. 8 Optimization algorithm convergence for the convection case for several fixed τ cases and an adaptive
τ case with fixed η (the τ =10−8 and τ =10−12 cases are not visible as they overlap with the η=10−1 case)
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Fig. 9 Optimization algorithm performance for the convection case for several fixed τ cases and an
adaptive τ case with fixed η
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constraint tolerance is demonstrated in Fig. 8 and the efficiency gained by using the
adaptive tolerance is demonstrated in Fig. 9.

6 Conclusions

Convergence properties of the inexactly constrained gradient-based discrete adjoint
steepest descent optimization algorithm were studied. A relationship was derived
between the error in the solution to the constraint equations and the resulting error
in the gradient and it was established analytically that it is possible to maintain the
Q-convergence rate of an exact gradient-based algorithm by adapting the constraint
equation error based on the norm of the gradient and the convergence rate.

A suitable formula for adapting the constraint equation error was presented and
validated for inverse design problems on a discretized one-dimensional heat transfer
system as well as a one-dimensional compressible air flow system. It was found that
the inexactly constrained algorithm could retain the convergence properties compared
to tightly solving the constraint equations. The value of the adaptation method was
demonstrated through timing comparisons as we were able to achieve much greater
algorithm efficiency when adapting the constraint equation tolerance than when using
a fixed tolerance.

Future investigation will be directed toward the effect of error resulting from
inexactly solving the adjoint system, analysis of more sophisticated gradient-based
algorithms, and application to more difficult computational problems.
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