
Numer Algor (2018) 78:957–981

ORIGINAL PAPER

PDE-W-methods for parabolic problems with mixed
derivatives

S. González-Pinto1 · E. Hairer2 ·
D. Hernández-Abreu1 · S. Pérez-Rodrı́guez1
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Abstract The present work considers the numerical solution of differential equa-
tions that are obtained by space discretization (method of lines) of parabolic evolution
equations. Main emphasis is put on the presence of mixed derivatives in the elliptic
operator. An extension of the alternating-direction-implicit (ADI) approach to this
situation is presented. Our stability analysis is based on a scalar test equation that is
relevant to the considered class of problems. The novel treatment of mixed derivatives
is implemented in third-order W-methods. Numerical experiments and comparisons
with standard methods show the efficiency of the new approach. An extension of our
treatment of mixed derivatives to 3D and higher dimensional problems is outlined at
the end of the article.
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1 Introduction

This work is concerned with time integrators applied to the space discretization
(method of lines) of parabolic partial differential equations with mixed derivatives.
We focus on W-methods, which avoid the solution of nonlinear equations and only
require an approximate solution of linear systems with matrix I − θτW , where I is
the identity, θ is a real parameter, τ the time step size, and W is an approximation to
the Jacobian matrix of the ordinary differential equation.

To reduce the work in the solution of the arising linear systems, the alternating-
direction-implicit (ADI) method has been proposed by Peaceman, Rachford, and
Douglas (see [14] and [2]). One only needs to solve a sequence of tridiagonal linear
systems (one for each space variable). An ADI method for parabolic problems with
mixed derivatives has been proposed in [1].

There are a few well-established time integrators for the numerical solution of
parabolic problems with mixed derivatives based on ADI techniques. An exten-
sion of the Douglas scheme, including stabilizing correction stages, is given in
[9]. It is called Hundsdorfer–Verwer (HV) scheme in [11]. With the aim of get-
ting more freedom in the scheme of [1] and thus improving its stability, in’t Hout
& Welfert [11] propose a modified Craig–Sneyd (MCS) scheme. Convergence has
been considered in [9, 10] for the HV scheme and in [12] for the MSC scheme.
These methods have been developed mainly in view of applications in financial
mathematics.

The methods HV and MCS are second order in space and second order in time.
Much effort has been made to extend the ADI approach to higher order (in space).
Based on the time integrator HV, space discretizations of order 4 (either using five
nodes or as a compact scheme) are given in [3] with an application to financial option
pricing in [4]. Based on either the MCS or the HV scheme, compact schemes of order
4 (in space) are derived in [7, 8]. All these extensions are fourth order in space and
second order in time.

The present work is mainly concerned with improving the accuracy of the time
integration by targeting an order in time that is higher than 2. This can be achieved by
considering W-methods ([17], see also [6, Section IV.7]) of classical order at least 3.
Extending the ADI approach to the solution of the linear system with matrix I −θτW

(where mixed derivatives are present in the elliptic operator), an efficient implemen-
tation is possible. In contrast to a von Neumann stability analysis, which requires
periodic boundary conditions, our stability analysis is based on a test problem with
Dirichlet boundary conditions.

1.1 Class of evolution equations

On a rectangular domain (x, y) ∈ [a, b]×[c, d] and for t ≥ 0, we consider the partial
differential equation

∂tu = A∂2
xxu + B ∂2

yyu + 2 C ∂2
xyu + g

(
t, x, y, u, ∂xu, ∂yu

)
(1.1)
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with suitable boundary conditions and an initial condition at t = 0. The
coefficients A, B, C may depend on space and time. We assume that pointwise

A > 0, B > 0, AB > C2, (1.2)

so that the leading part represents an elliptic operator. The stability analysis of
Section 3 below is carried out for the case of constant coefficients A, B, C, and for
vanishing function g.

We apply a space discretization (method of lines or MOL) using finite differences.
Let a = x0 < x1 < · · · < xnx+1 = b and c = y0 < y1 < · · · < yny+1 = d be
subdivisions inducing a grid on the rectangular domain [a, b]× [c, d], and denote by
Uij (t) an approximation to the solution u(t, xi, yj ) of (1.1) at the grid points. Using
differentiation matrices Dxx and Dyy for the second partial derivatives, and Dx , Dy

for the first partial derivatives, we obtain an ordinary differential equation

U̇ = A(I ⊗ Dxx)U + B(Dyy ⊗ I )U + 2 C(Dy ⊗ Dx)U

+ (
g
(
t, xi, yj , Uij , ((I ⊗ Dx)U)ij , ((Dy ⊗ I )U)ij

))nx,ny

i,j=1,1 + b(t)
(1.3)

for the vector U(t) = (
Uij (t)

)nx,ny

i,j=1,1 (in the case of Dirichlet boundary conditions).
The vector b(t) contains terms arising from non-homogeneous boundary conditions.
For the differential (1.3), we use the compact notation

U̇ = F(t, U). (1.4)

Since the differentiation matrices contain divisions by the small quantities �xi =
xi+1 − xi and �yj = yj+1 − yj , the differential (1.4) is stiff and suitable time
integrators (implicit or linearly implicit) are recommended.

For the study of convergence of the MOL approach, connecting the errors of the
space discretization with those of the time integrator, we refer to the standard litera-
ture on the numerical treatment of partial differential equations, e.g., the monograph
by Hundsdorfer & Verwer [10].

1.2 W-methods

In principle, all time integrators for stiff differential equations are suitable for the
numerical solution of (1.4). We focus our interest to W-methods, because they do
not require the solution of nonlinear systems, and they permit the use of non-exact
approximations for the Jacobian of the vector field. Augmenting (1.4) with ṫ = 1, we
get formally the autonomous differential equation

ẏ = f (y), f (y) =
(

1
F(t, U)

)
for y =

(
t

U

)
. (1.5)
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For its numerical integration, we consider s-stage W-methods (originally proposed
in [17], see also [6, Section IV.7]). Denoting by τ the time step size, and by yn, yn+1
the numerical approximations to y(t) at tn and tn+1 = tn + τ , it is defined by

(I − θτŴn)ki = τf
(
yn +

i−1∑

j=1

aij kj

)
+

i−1∑

j=1

�ij kj , i = 1, 2, . . . , s,

yn+1 = yn +
s∑

i=1

biki .

(1.6)

The coefficients of the method are collected in A = (aij )j<i , L = (�ij )j<i and
b = (bi)i , so that the W-method is characterized by (A, L, b, θ).

The matrix Ŵn is arbitrary, in principle, but it is expected to be a rough approx-
imation to f ′(yn). The construction of methods of order 3 and higher simplifies
considerably under the assumption

(
f ′(yn)Ŵn − Ŵnf

′(yn)
)
ẏ(tn) = O(τ ), (1.7)

which is satisfied if Ŵn = f ′(yn) + O(τ ).
In view of an application to discretized parabolic differential equations, W-

methods of order 3 and higher have been constructed in [5, 13, 15, 16].

1.3 Splitting of the Jacobian

To get reasonably high accuracy, fine grids have to be considered, so that the dimen-
sion of the semi-discretized differential (1.3) is very high. Therefore, the solution
of the linear system with matrix I − θτŴn is often the most costly part in the
implementation of method (1.6).

We consider the situation, where a splitting of the vector field and of its Jacobian
exists,

f (y) =
d∑

j=0

fj (y), f ′(y) =
d∑

j=0

f ′
j (y), (1.8)

such that the solution of the linear systems with matrices I − θτf ′
j (yn) can be done

much more efficiently than with the matrix I − θτf ′(yn). In this situation, it is
advantageous to approximate1

I − θτf ′(yn) ≈
d∏

j=0

(
I − θτf ′

j (yn)
)
. (1.9)

This is the essence of the ADI approach [2, 14], where each fj (y) contains the terms
in (1.3) that correspond to partial derivatives with respect to only one space vari-
able. The splitting could also be into a stiff and a non-stiff part. In this situation, the
Jacobian of the non-stiff part is often replaced by the zero matrix.

1The notation
∏d

j=0 Aj is understood to be a multiplication from right to left, i.e.,
∏d

j=0 Aj =
Ad . . . A1A0.
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In the context of W-methods, this approach is studied in [18] (see also
[10, Section IV.5]). The resulting methods are called AMF-W-methods (approxi-
mate matrix factorization W-methods). Such an AMF-W-method is called exact [15],
if the matrix I − θτŴn is equal to the right-hand side of (1.9). This implies that
Ŵn − f ′(yn) = O(τ ). It is called inexact, if one of the factors in (1.9) is replaced by
the identity matrix, so that Ŵn − f ′(yn) = O(τ ) is no longer fulfilled.

1.4 Outline of the rest of the paper

Section 2 explains how the presence of mixed derivatives in the elliptic operator can
be efficiently combined with the ADI approach for W-methods. The main idea is
presented for the autonomous differential (1.5). Mixed derivatives are included in
an explicit manner combined with a suitable damping. An algorithmic description is
given for the general non-autonomous problem (1.4). The resulting W-methods are
called PDE-W-methods.

Stability of these schemes is studied in Section 3. We introduce a new scalar
test equation, which takes into account the presence of mixed derivatives in the
differential equation.

Numerical experiments are presented in Section 4. We observe the numerically
achieved stiff order, and we propose a transformation of non-homogeneous Dirichlet
boundary conditions to homogeneous ones. This considerably improves the accuracy
of the results. We also compare our implementation of W-methods with the classical
methods MCS (modified Craig–Sneyd) and HV (Hundsdorfer–Verwer), see [11].

In a final section, we show how our techniques can be applied to 3D (or higher
dimensional) problems. Numerical experiments give the same good behavior as for
2D problems.

2 PDE-W-methods

PDE-W-methods are W-methods, where the arising linear system is solved in a way
that is adapted to the treatment of parabolic partial differential equations. We start by
explaining the ideas for the autonomous (1.5), and then we present the algorithmic
form for (1.4).

2.1 Solving the linear system by splitting

Motivated by the ADI of [2, 14] and by the AMF (approximate matrix factorization)
implementation of W-methods (see [15]), we assume that the Jacobian f ′(yn) can be
split as

f ′(yn) = f ′
0(yn) + f ′

1(yn) + f ′
2(yn). (2.1)

Here, f ′
1(yn) and f ′

2(yn) correspond to the discretization of the partial derivatives
with respect to the first and second space variables, whereas f ′

0(yn) corresponds to
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those of the mixed derivative (and further terms that may arise). The idea of the AMF
approach is to approximate the inverse of the left-hand matrix in (1.6) by

(
I − θτf ′(yn)

)−1 ≈
2∏

j=0

(
I − θτf ′

j (yn)
)−1

. (2.2)

Since the discretization of the partial derivatives in f ′
1(yn) and f ′

2(yn) are banded
matrices (tridiagonal for the standard second order discretization), the solution of
linear systems of the form

(
I − θτf ′

j (yn)
)
k = v, j = 1, 2

can be done very efficiently. This is less evident for j = 0 since the discretization
of the mixed derivatives in f ′

0(yn) is not a banded matrix (with small band-width).
Moreover, f ′

0(yn) has large positive and negative eigenvalues, so that an application

of
(
I−θτf ′

0(yn)
)−1 would imply a step size restriction as for explicit time integrators.

This is what we want to avoid. The idea is to approximate

(
I − θτf ′

0(yn)
)−1 ≈ I + θτf ′

0(yn)

2∏

j=1

(
I − θτf ′

j (yn)
)−1

. (2.3)

This means that we use
(
I − θτf ′

0(yn)
)−1 ≈ I + θτf ′

0(yn), but before applying
the operator f ′

0(yn) , we damp the large eigenvalues by applying successively
(
I −

θτf ′
1(yn)

)−1 and
(
I−θτf ′

2(yn)
)−1. Such a procedure is only justified in the situation,

where the eigenvalues of f ′
0(yn) are related to those of f ′

1(yn) and f ′
2(yn).

2.2 W-methods for non-autonomous differential equations

Splitting the vector yn into (tn, Un), the vector ki into (Mi, Ki), and denoting the
non-zero parts of Ŵn by wn and Wn, the ith stage of the W-method (1.6) becomes

((
1 0
0 I

)
− θτ

(
0 0

wn Wn

))(
Mi

Ki

)
(2.4)

= τ

(
1

F
(
tn + ∑i−1

j=1 aijMj , Un + ∑i−1
j=1 aijKj

)
)

+
i−1∑

j=1

�ij

(
Mj

Kj

)
,

where wn and Wn are arbitrary, but ideally they should be approximations to
∂tF (tn, Un) and ∂UF(tn, Un), respectively. The upper equation of this relation gives
Mi = ρiτ , where ρi is defined recursively by ρi = 1 + ∑i−1

j=1�ij ρj . The first

argument of F thus becomes tn + ciτ with ci = ∑i−1
j=1aijρj .

With the splitting

F(t, U) = F0(t, U) + F1(t, U) + F2(t, U), (2.5)
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induced by (2.1), we let an,j ≈ ∂tFj (tn, Un) and An,j ≈ ∂UFj (tn, Un). The matrix
to the left of (2.4) is then defined via the approach of Section 2.1 by

((
1 0
0 I

)
− θτ

(
0 0

wn Wn

))−1

=
2∏

j=0

((
1 0
0 I

)
− θτ

(
0 0

wn,j Wn,j

))−1

where wn,j = an,j and Wn,j = An,j for j = 1, 2, and
((

1 0
0 I

)
− θτ

(
0 0

wn,0 Wn,0

))−1

=
(

1 0
0 I

)
+ θτ

(
0 0

an,0 An,0

) 2∏

j=1

((
1 0
0 I

)
− θτ

(
0 0

an,j An,j

))−1

.

An algorithmic presentation of the resulting method is given in the following
subsection.

2.3 Implementation of PDE-W-methods

We consider the differential (1.4) together with the splitting (2.1). With an,j =
∂tFj (tn, Un) and An,j = ∂UFj (tn, Un), for j = 0, 1, 2 (or approximations if the
derivatives are not available analytically), the algorithm for the computation of the
internal stages (2.4) of the W-method becomes

K
(−3)
i = τF

(
tn + ciτ, Un + ∑i−1

j=1aijKj

)
+ ∑i−1

j=1 �ijKj

(I − θτAn,1)K
(−2)
i = K

(−3)
i + θρiτ

2an,1

(I − θτAn,2)K
(−1)
i = K

(−2)
i + θρiτ

2an,2

K
(0)
i = K

(−3)
i + θτAn,0K

(−1)
i + θρiτ

2an,0

(I − θτAn,1)K
(1)
i = K

(0)
i + θρiτ

2an,1

(I − θτAn,2)K
(2)
i = K

(1)
i + θρiτ

2an,2

Ki = K
(2)
i

(2.6)

for i = 1, . . . , s. The numerical solution after one step is then given by

Un+1 = Un +
s∑

i=1

biKi.

Note that the above algorithm requires only the numerical solution of linear systems
with banded (typically tridiagonal) matrices. Since this implementation is adjusted
for the solution of evolution equations with dominant elliptic operator, we call the
algorithm PDE-W-method.

2.4 Order

For a differential (1.5) the W-method becomes a Rosenbrock method if Ŵn = f ′(yn).
Conditions on the coefficients θ, aij , �ij , bj that guarantee classical order p are well
understood. If Ŵn is not close to f ′(yn) for τ → 0, then many more order conditions
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have to be satisfied (see for example [6, Section IV.7]). An intermediate situation is
obtained under the assumption

Ŵn − f ′(yn) = O(τ ), τ → 0. (2.7)

Theorem 2.1 If the relation (2.1) is satisfied up to an error of size O(τ ), then the
PDE-W-method is equivalent to a W-method (1.6) satisfying the relation (2.7).

Proof The product of the factorization (2.2) can be considered as exact for a modified
vector wn and a modified matrix Wn which are O(τ ) close to the original ones.

This result implies that every W-method, which has order p under the assumption
(2.7), yields a PDE-W-method of the same order.

3 Stability

For W-methods the study of stability is a nontrivial task. The difficulty is mainly
due to the lack of commutativity of the matrices Ŵn and f ′(yn). Here, we propose a
scalar test equation that is relevant for a large class of partial differential equations
for which the dominant part is an elliptic operator with constant coefficients.

3.1 Motivation of a test equation

On a rectangular 2-dimensional domain let us consider the PDE

∂tu = A∂2
xxu + B ∂2

yyu + 2 C ∂2
xyu (3.1)

with homogeneous Dirichlet boundary conditions. We assume that the coefficients
A, B, C are constant and satisfy (1.2), so that the differential operator on the right-
hand side is elliptic. A standard second-order space discretization of (3.1) yields the
ordinary differential equation

U̇ = A(I ⊗ Dxx)U + B(Dyy ⊗ I )U + 2 C(Dy ⊗ Dx)U, (3.2)

where Dxx and Dyy are tridiagonal Toeplitz matrices (with possibly different dimen-
sion) having entries (1, −2, 1)/�x2 and (1, −2, 1)/�y2, and Dx , Dy are tridiagonal
Toeplitz matrices with entries (−1, 0, 1)/(2�x) and (−1, 0, 1)/(2�y), respectively.
Unfortunately, the matrices Dxx and Dx do not commute2, so that they cannot be
diagonalized simultaneously; however, the full Jacobian matrix of the linear system
(3.2) is a symmetric matrix. Moreover, the stability of the system (3.2) is guaranteed
by the following result.

Theorem 3.1 Under the assumption (1.2), the system (3.2) is asymptotically stable.

2For the case of periodic boundary conditions these matrices commute and a von Neumann stability
analysis is possible; see [11].
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Proof The idea is to approximate the matrices Dxx and Dyy by the squares D2
x and

D2
y , and to study the defect. A direct computation yields the relation

Dxx = D2
x − �x2

4
D2

xx − 1

2�x2
Diag (1, 0, . . . , 0, 1),

which implies that the logarithmic norm of the defect Dxx − D2
x is negative. For the

study of asymptotic stability of (3.2) we can therefore replace Dxx and Dyy by D2
x

and D2
y , respectively. All matrices of the resulting system can be diagonalized simul-

taneously. Let v be an eigenvector of Dx for the eigenvalue iλ̃, and w an eigenvector
of Dy for the eigenvalue iμ̃, then v ⊗ w is an eigenvector of the matrices D2

x ⊗ I ,
I ⊗D2

y and Dx ⊗Dy . Written in the basis of eigenvectors, which is orthonormal, the
system (3.2) is decoupled into scalar equations of the form

ν̇ = −Aλ̃2ν − Bμ̃2ν − 2Cλ̃μ̃ν.

Assumption (1.2) guarantees the asymptotic stability of this scalar differential
equation which, in turn, implies asymptotic stability of (3.2).

Motivated by the proof of the previous theorem, we consider the scalar test
equation

ν̇ = −λ2ν − μ2ν − 2cλμν. (3.3)

where we put λ = λ̃
√

A, μ = μ̃
√

B and c = C/
√

AB. Here, λ ∈ R , μ ∈ R , and
|c| < 1 by assumption (1.2).

3.2 PDE-stability

Applying a PDE-W-method (1.6) with step size τ to the test (3.3) and considering in
(2.6) the natural splitting for the Jacobian corresponding to the mixed derivative, and
to the derivatives with respect to x and y, respectively,

An,0 = −2cλμ, An,1 = −λ2, An,2 = −μ2, (3.4)

we get the recursion Un+1 = R(z0, z1, z2)Un, where R(z0, z1, z2) is a rational
function of the real variables,

z1 = −τλ2, z2 = −τμ2, z0 = −2τcλμ. (3.5)

It is given by
R(z0, z1, z2) = 1 + zbT (
 Is − L − zA)−11, (3.6)

where z = z0 + z1 + z2 and


−1 = (1 − θz2)
−1(1 − θz1)

−1
(

1 + θz0(1 − θz2)
−1(1 − θz1)

−1
)
, (3.7)

and it is called the stability function of the method.
It should be noticed that the exact solution of the test (3.3) is stable for all λ ∈ R

and μ ∈ R , provided that |c| < 1, because

z = z0 + z1 + z2 ≤ 0, z1 ≤ 0, z2 ≤ 0. (3.8)

This motivates the following definition.
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Definition 3.1 A numerical time integrator which, when applied to the test (3.3),
yields the recursion Un+1 = R(z0, z1, z2)Un with z0, z1, z2 given by (3.5), is called
PDE-stable if

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , μ ∈ R , |c| < 1.

Numerical experiments with various W-methods confirm that PDE-stable methods
yield stable numerical solutions also for the system (3.2). It is, of course, an interest-
ing question to study whether PDE-stability implies stability for the system (3.2) in
any dimension.

3.3 PDE-stability of 1-stage PDE-W-methods

The most simple W-method is given by, (see, e.g., [10, p. 398])
(
I − θτŴn

)
(yn+1 − yn) = τf (yn). (3.9)

It is of classical order 1, and for θ = 1/2 it is of order 2 if (2.7) is satisfied. The
stability function is

R(z0, z1, z2) = 1 + 
−1z (3.10)

with z = z0 + z1 + z2 and 
−1 from (3.7).
The stability function (3.10) is identical to that of the modified Craig–Sneyd

scheme for the special case μ = 0, σ = θ of the three-parameter family of methods
in [11, Formula (1.11)]. For the important case θ = 1/2, unconditional stability of
(3.10) is shown in the article [11]. The following theorem proves unconditional sta-
bility for all θ ≥ 1/2. The proof is based on the inequality (3.11) which will be an
essential ingredient for the stability investigation of W-methods with more than one
stage.

Theorem 3.2 Assume that z0, z1, z2 are given by (3.5). Then, the stability function
R(z0, z1, z2) of (3.10) satisfies

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , μ ∈ R , |c| < 1, τ > 0,

if and only if θ ≥ 1/2.

Proof It follows from |c| < 1 and (3.5) that

|z0| ≤ 2τ |λ||μ| ≤ τ(λ2 + μ2) = |z1| + |z2|,
so that z0 ≥ z1 + z2 and z = z0 + z1 + z2 ≤ 0. We thus have

1 + θz0

(1 − θz1)(1 − θz2)
≥ 1 + θ(z1 + z2)

(1 − θz1)(1 − θz2)
= 1 + θ2z1z2

(1 − θz1)(1 − θz2)
> 0,

so that 
 > 0. Together with an application of Lemma 3.1 below (by putting ai :=
−θzi , i = 0, 1, 2 and observing 1 + a0 + a1 + a2 = 1 − θz ≥ 1) this implies

0 <
1



≤ 1

1 − θz
. (3.11)
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Consequently, from (3.8) we have that R(z0, z1, z2) = 1 + z/
 ≤ 1 and also

−1 ≤ 1 + (1 − θ)z

1 − θz
= 1 + z

1 − θz
≤ R(z0, z1, z2).

The inequality to the left follows from θ ≥ 1/2.

Lemma 3.1 Assume that a0 ∈ R, a1 ≥ 0, a2 ≥ 0 satisfy 1 + a0 + a1 + a2 > 0. Then
we have

1

(1 + a1)(1 + a2)

(
1 − a0

(1 + a1)(1 + a2)

)
≤ 1

1 + a0 + a1 + a2
.

Proof A straight-forward computation gives

1

(1 + a1)(1 + a2)
− a0

(1 + a1)2(1 + a2)2
− 1

1 + a0 + a1 + a2

= − (a0 − a1a2
2 )2 + a1a2 + a2

1a2 + a1a
2
2 + 3

4a2
1a2

2

(1 + a1)2(1 + a2)2(1 + a0 + a1 + a2)
≤ 0

which proves the statement of the lemma.

3.4 PDE-stability of two-stage PDE-W-methods

There is a two-parameter family of two-stage W-methods of order ≥ 2, see [10,
p. 400]. It is straightforward to check that the stability function only depends on the
stability parameter θ and that it is given by

R(z0, z1, z2) = 1 + 2z



+ z(z − 2)

2
2
(3.12)

with z and 
 as in Section 3.2.

Theorem 3.3 Assume that z0, z1, z2 are given by (3.5). Then, the stability function
R(z0, z1, z2) of (3.12) satisfies

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , μ ∈ R , |c| < 1, τ > 0,

if and only if θ ≥ 1/4.

Proof By putting μ = 0 and considering the limit |λ| → ∞, we find that θ ≥ 1/4 is
a necessary condition for stability.

It follows from z = z0 + z1 + z2 ≤ 0 (see the proof of Theorem 3.2) that

R(z0, z1, z2) + 1 = 2 + 2z



+ z(z − 2)

2
2
= 2

(
1 + z

2


)2 − z


2
≥ 0,

so that R(z0, z1, z2) ≥ −1. From the inequalities (3.11), we get

R(z0, z1, z2) = 1 + z




(
2 + z − 2

2


)
≤ 1 + z




(
2 + z − 2

2(1 − θz)

)
≤ 1,
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because the expression in the bracket is positive for z ≤ 0 and θ ≥ 1/4. This
proves the statement of the theorem.

3.5 PDE-stability of 3-stage PDE-W-methods

The family of three-stage W-methods of order ≥ 3, under the special assumption
(1.7), were studied in [15, Theorem 1]. All these methods have the same stability
function (depending only on θ ), which is given by

R(z0, z1, z2) = 1 + 3z



+ 3z(z − 2)

2
2
+ z(z2 − 6z + 6)

6
3
(3.13)

with z and 
 as in Section 3.2. We also recall that there do not exist three-stage
W -methods that are of order 3 without any restriction on W [17].

Theorem 3.4 Assume that z0, z1, z2 are given by (3.5). Then, the stability function
R(z0, z1, z2) of (3.13) satisfies

|R(z0, z1, z2)| ≤ 1 for all λ ∈ R , μ ∈ R , |c| < 1, τ > 0,

if and only if θ ≥ 1/3.

Proof a) Assume first that |μ| → ∞. In this case z → −∞, but z/
 converges
to a limit which we denote by −α. We have

lim|μ|→∞ R(z0, z1, z2) = 1 − 3α + 3

2
α2 − 1

6
α3, α = 1

θ(1 + τθλ2)
.

The value α∗ = 3 is maximal such that the modulus of this limit is bounded by
1 for all α ∈ [0, α∗]. This proves the necessity of θ ≥ 1/3.

b) By abuse of notation we write R(z, 
) = R(z0, z1, z2), and we let

R(z, 
) − 1 = z

6
3
f (z, 
), f (z, 
) = 18
2 + 9
(z − 2) + 6 − 6z + z2,

so that also

f (z, 
) = 18
(

 + 1

4
(z − 2)

)2 + 1

8

(
12 − 12z − z2

)
.

From (3.11), we have that 
+ 1
4 (z−2) ≥ (1−θz)+ 1

4 (z−2) = 1
4 (2+(1−4θ)z) ≥ 0

for all z ≤ 0 and θ ≥ 1
3 . Since f (z, 1 − θz) is a monotonically increasing function

of θ ≥ 1/3 we have f (z, 
) ≥ f (z, 1 + z/3) for all z ≤ 0. It can be checked
that the polynomial f (z, 1 + z/3) is non-negative for z ≤ 0. Consequently, we have
f (z,
) ≥ 0 and therefore also R(z, 
) − 1 ≤ 0.

For the proof of R(z0, z1, z2) ≥ −1 we write

R(z, 
) + 1 = 1

6
3
g(z, 
)

with
g(z, 
) = 12
3 + 18z
2 + 
(9z2 − 18z) + z(6 − 6z + z2)

= 12
(

 + 1

2
z
)3 − 18z
 + z

(
6 − 6z − 1

2
z2

)
.



Numer Algor (2018) 78:957–981 969

For z ≤ 0, this function is monotonically increasing with 
. From (3.11) and
θ ≥ 1/3, we have 
 ≥ 1−θz ≥ 1−z/3, so that g(z, 
) ≥ g(z, 1−z/3). A straight-
forward computation shows that the polynomial g(z, 1 − z/3) is non-negative. This
completes the proof of the theorem.

4 Numerical experiments

We consider advection-diffusion-reaction partial differential equations, where mixed
derivatives of the solution are present. Our aim is to demonstrate numerically that a
stiff order larger than 2 can be achieved by the proposed time integrator.

4.1 Advection-diffusion equation with constant coefficients

We first consider a linear advection-diffusion equation with constant coefficients,

∂tu = A∂2
xxu + B ∂2

yyu + 2C ∂2
xyu + D∂xu + E∂yu + g(t, x, y) (4.1)

on the square (x, y) ∈ [0, 1] × [0, 1], where g(t, x, y) is selected in such a way that

u(t, x, y) = ue(t, x, y) := x(1 − x)y(1 − y)et + κ
((

x + 1
3

)2 + (
y + 1

4

)2
)

et

is the exact solution of (4.1). We impose the initial condition u(0, x, y) = ue(0, x, y)

and Dirichlet boundary conditions. If κ = 0 ,we have homogeneous boundary con-
ditions, but when κ = 1, we get non-homogeneous time-dependent Dirichlet
conditions. To obtain an elliptic operator, we always assume (1.2).

We apply the MOL approach, where Dx, Dy, Dxx, Dyy are the differentiation
matrices corresponding to the first- and second-order central differences in each
spatial direction (as in Section 3.1). The resulting semi-discretized system is

U̇ = A(I ⊗ Dxx)U + B(Dyy ⊗ I )U + 2 C(Dy ⊗ Dx)U

+ D(I ⊗ Dx)U + E(Dy ⊗ I )U + (
g(t, xi, yj )

)N,M

i,j=1,1 + b(t) (4.2)

where b(t) stores the terms due to non-homogeneous boundary conditions. As in
(1.4) we write this differential equation as U̇ = F(t, U), and we consider the splitting

F(t, U) = F0(t, U) + F1(t, U) + F2(t, U),

where F1(t, U) and F2(t, U) correspond to the terms originating from discretizations
with respect to x and y, respectively, and F0(t, U) collects the rest including mixed
derivatives.

We have deliberately chosen a problem, where the exact solution is a polynomial
of degree 2 in x and also in y. In this situation, the space discretization is without
error, and it is easier to study the error due to the time discretization.
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4.2 Time integrators

There exist time integrators (e.g., MCS and HV below) of orders up to 2 that allow
for a treatment of mixed derivatives in the elliptic operator. In addition to them we
consider two PDE-W-methods.

MCS is a modification of the Craig–Sneyd [1] scheme that is considered in [11,
Formula (1.3)]. Parameters are σ = θ = 1/3 and μ = 1/2 − θ .

Y0 = Un + τF (tn, Un)

Yj = Yj−1 + θτ
(
Fj (tn+1, Yj ) − Fj (tn, Un)

)
, j = 1, 2

Ŷ0 = Y0 + στ
(
F0(tn+1, Y2) − F0(tn, Un)

)

Ỹ0 = Ŷ0 + μτ
(
F(tn+1, Y2) − F(tn, Un)

)

Ỹj = Ỹj−1 + θτ
(
Fj (tn+1, Ỹj ) − Fj (tn, Un)

)
, j = 1, 2

Un+1 = Ỹ2. (4.3)

HV is an extension of the Douglas scheme [2] and termed Hundsdorfer–Verwer
scheme in [11, Formula (1.4)]. Parameters are μ = 1/2 and θ = 1/3.

Y0 = Un + τF (tn, Un)

Yj = Yj−1 + θτ
(
Fj (tn+1, Yj ) − Fj (tn, Un)

)
, j = 1, 2

Ỹ0 = Y0 + μτ
(
F(tn+1, Y2) − F(tn, Un)

)

Ỹj = Ỹj−1 + θτ
(
Fj (tn+1, Ỹj ) − Fj (tn+1, Y2)

)
, j = 1, 2

Un+1 = Ỹ2. (4.4)

WPDE2 is the two-stage PDE-W-method of Section 2.3 with coefficients taken
from the book by Hundsdorfer & Verwer [10, p. 155]

A =
(

0 0
2/3 0

)
, L =

(
0 0

−4/3 0

)
, b =

(
5/4
3/4

)
.

The stability parameter is θ = (3 + √
3)/6. This method has only two stages, but

it is of order 3 if (2.7) is fulfilled.
WPDE3 is the three-stage PDE-W-method with coefficients of the W3a

method [15]. The coefficients of A = (aij ), L = (�ij ), and b = (bi) are given by

A =
⎛

⎝
0 0 0
1 0 0

4−√
3

4
1
4 0

⎞

⎠ , L =
⎛

⎝
0 0 0

−3 + √
3 0 0

− 3
2 − 3+√

3
4 0

⎞

⎠ b =
⎛

⎜
⎝

10−√
3

6
4+√

3
6
2
3

⎞

⎟
⎠

and the stability parameter is chosen as θ = 0.435866 . . .. The method is of
classical order 3 under the assumption (1.7).
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4.3 Homogeneous Dirichlet boundary conditions

We apply the four time integrators of Section 4.2 to the space-discretized differential
(4.2). We fix the coefficients as A = B = 1, C = 0.5, D = 0.8, E = − 0.7, and
we assume homogeneous Dirichlet boundary conditions (κ = 0). The integration
interval is 0 ≤ t ≤ 1.

For our first numerical experiment, we put �xi = 1/(nx+1) and �yi = 1/(ny+1)

with nx = ny = 64, so that the dimension of the ordinary differential equation is
nxny = 4096. We apply the four time integrators with constant time step τ = 2−r ,
for r = 2, 3, . . . , 16 with the methods MCS and HV, and for r = 2, 3, . . . , 14 with
the two W-methods. In Fig. 1, we plot the �2-error for all methods. The left picture
shows the error as a function of the cpu time, and the right picture as a function of
the number of calls to a subroutine that solves a tridiagonal linear system. It is equal
to four times the number of time steps for the methods MCS and HV, eight times the
number of time steps for the two-stage method WPDE2, and twelve times the num-
ber of time steps for the three-stage method WPDE3. Both pictures are qualitatively
identical, which shows that the number of calls to the linear system solver is a reliable
measure for the work.

In the figures, we have included thin broken lines of slopes 2 (upper) and 3 (lower).
They permit us to guess the numerical convergence order. One sees that the methods
MCS and HV show a stiff convergence order that is close to 2. The PDE-W-methods,
WPDE2 and WPDE3, show a nearly identical �2-error. Their convergence order is
close to 3.

In our second experiment, we study the performance of the methods for finer space
discretizations. We repeat the previous experiment, but we choose nx = ny = 128
and also nx = ny = 256. The result is shown in Fig. 2. This time we plot the
�2-errors only as a function of the number of calls to a linear system solver. The
pictures for all different choices of the spatial discretization parameter are nearly
identical. The only difference is in the cpu time. Since the cpu time is dominated
by the time for solving the arising linear systems, and these systems are all tridi-
agonal, the cpu time depends linearly on the dimension of the ordinary differential
equation.

Fig. 1 Comparison of four time integrators applied to the (4.2) with parameters A = B = 1, C = 0.5,
D = 0.8, E = −0.7, and κ = 0
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Fig. 2 Comparison of four time integrators with data as in Fig. 1, but for finer space discretizations,
nx = ny = 128 (left) and nx = ny = 256 (right)

4.4 Non-homogeneous Dirichlet boundary conditions

It turns out that the PDE-W-methods lose accuracy when they are applied to problems
with time-dependent and non-homogeneous Dirichlet boundary conditions (see the
method WPDE3 in Fig. 3). To avoid this drawback, we apply the usual trick and
transform the problem to an equivalent one having homogeneous Dirichlet boundary
conditions.

WPDE3H is identical to WPDE3, but applied to an equivalent problem with
homogeneous Dirichlet boundary conditions.

Let us explain the transformation to homogeneous boundary conditions. We use
the four cardinal directions to denote the boundary functions: we denote by uS(t, x)

and uN(t, x) (south and nord) the functions on the bottom and upper sides of the
square, and by uW(t, y) and uE(t, y) (west and east) those on the left and right sides.
The expressions on the four corners are denoted by uSW (t), uSE(t), uNE(t), and
uNW(t). We let

ũ(t, x, y) = xyuNE(t)+x(1−y)uSE(t)+ (1−x)yuNW(t)+ (1−x)(1−y)uSW (t)

Fig. 3 Comparison of time integrators applied to the (4.2) with parameters as in Fig. 1, but with time-
dependent non-homogeneous boundary conditions (κ = 1)
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be the bilinear interpolation at the four corners, and we define

û(t, x, y) = (1−x)uW (t, y)+xuE(t, y)+ (1−y)uS(t, x)+yuN(t, x)− ũ(t, x, y).

The change of variables w(t, x, y) = u(t, x, y) − û(t, x, y) then transforms the
(4.1) into a similar one, where only the function g(t, x, y) is changed. To perform
this transformation, we assume that the first and second derivatives of the bound-
ary functions are analytically available. Discretizing the resulting PDE as above, we
get an ordinary differential equation, similar to (4.2), for the transformed variables
Wij (t) = Uij (t) − û(t, xi, yj ). Applying a PDE-W-method to this differential equa-
tion yields approximations to Wij (tn), which in turn gives the desired approximations
to Uij (tn).

Figure 3 shows the numerical results for the problem of Section 4.1 with parame-
ter κ = 1. We compare the PDE-W-method with the methods MCS and HV, which
do not require the transformation to homogeneous boundary conditions. The pic-
tures as a function of the cpu-time (left) and as a function of the required calls to a
linear system solver (right) show that the overhead for the above transformation is
nearly negligible. Evidently, the good behaviour of Section 4.3 is recovered with the
implementation of WPDE3H.

4.5 Diffusion with nonlinear reaction

We consider a diffusion-reaction equation on the square (x, y) ∈ [0, 1] × [0, 1],
∂tu = A∂2

xxu + B ∂2
yyu + 2 C(x, y) ∂2

xyu + u2(1 − u) + et , (4.5)

where A = B = 1, and C(x, y) = 0.5
(
1 + (x − 0.5)(y − 0.5)

)
is a space-

dependent diffusion coefficient. The reaction term is the same as in the experiment
of [9], and the term et is included to avoid the stationary solution u = 0. We assume
homogeneous Dirichlet boundary conditions and the initial function u0(x, y) =
4x(1 − x)y(1 − y) for t = 0, which is consistent with the boundary conditions.

We consider the space discretization as in Section 4.3 with nx = ny = n, and
we apply the methods WPDE2 and WPDE3 of Section 4.2 with the splitting as in
Section 4.1, where the reaction term is included in F0(t, U).3 Figure 4 shows the �2-
error (i.e., the difference between the numerical solution and the exact solution of the
space-discretized ordinary differential equation) as a function of n2 times the number
of calls to the linear systems solver (which is approximately proportional to the cpu
time of the integration). The reference solution of the ordinary differential equation
is obtained numerically by an integration with very small time steps. Both integrators
are applied with constant time steps τ = 2−r , r = 2, . . . , 11. We observe from Fig. 4
that the convergence order is uniform from very large to very small time step sizes,
and it is slightly larger than 2. This convergence order is specific for the example (an
order close to 3 has been observed in the previous experiments for a linear problem).
A study of the convergence order is an interesting question, but it goes beyond the
scope of the present article.

3For a stiff reaction it is recommended to use an additional term in the splitting.
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Fig. 4 Error at the endpoint of integration of the methods WPDE3 (solid lines) and WPDE2 (broken
lines). The thin broken line indicates a slope 2

5 Extension to higher dimensions

PDE-W-methods, as introduced in Section 2, can be extended with some care to
any number m of spatial variables to cope with the time integration of parabolic
problems

∂tu =
m∑

i,j=1

αij ∂2
xixj

u + g(t, x1, . . . , xm, u, ∂x1u, . . . , ∂xmu), (5.1)

where A = (αij )
m
i,j=1 is symmetric positive definite, so that the second-order differ-

ential operator on the right-hand side is elliptic. In the present work, we restrict our
considerations to a rectangular domain [0, 1]× . . .×[0, 1] and to Dirichlet boundary
conditions.

5.1 Space discretization

Standard central second-order discretization for the first- and second-order partial
derivatives leads to the ODE system

U̇ = MU + G(t, U) + b(t). (5.2)

Here, U(t) ∈ R
nx1 ·...·nxm , M is a symmetric matrix given by

M :=
m∑

i=1

αii(I ⊗ . . . ⊗ Dxixi
⊗ . . . ⊗ I )

+ 2
∑

1≤i<j≤m

αij (I ⊗ . . . ⊗ Dxj
⊗ . . . ⊗ Dxi

⊗ . . . ⊗ I ),

(5.3)

where Dxixi
and Dxi

are in the (m − i + 1)th position of the tensor product, and
Dxj

is in the (m − j + 1)th position. The function G(t, U) corresponds to the spa-
tial discretization of g(t, x1, . . . , xm, u, ∂x1u, . . . , ∂xmu), and the vector b(t) contains
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the terms arising from Dirichlet boundary conditions. The differentiation matri-
ces Dxixi

and Dxi
are assumed to be tridiagonal with entries (1, −2, 1)/�x2

i and
(−1, 0, 1)/�xi , respectively, and �xi = 1/(nxi

+ 1).
Neglecting the expression g(. . .) in (5.1), we are concerned with a purely parabolic

differential equation. Assuming homogeneous Dirichlet boundary conditions its
dicretization is

U̇ = MU (5.4)
with M given by (5.3). The stability of (5.4) can be studied as in Theorem 3.1.

Theorem 5.1 If the coefficient matrix A = (αij )
m
i,j=1 in (5.1) is positive definite,

then the system (5.4) is asymptotically stable.

Proof The matrix M can be decomposed as M = M0 + ∑m
i=1 Mi with

Mi = αii(I ⊗ . . . ⊗ (
Dxixi

− D2
xi

) ⊗ . . . ⊗ I ), i = 1, . . . , m,

M0 =
m∑

i,j=1

αij (I ⊗ . . . ⊗ Dxj
⊗ . . . ⊗ Dxi

⊗ . . . ⊗ I ).

As in the proof of Theorem 3.1, the logarithmic norm of the defect Dxixi
− D2

xi
is

negative for i = 1, . . . , m. If we let vi be an eigenvector of Dxi
with eigenvalue iλi ,

then vm ⊗ . . . ⊗ v1 is an eigenvector of M0 corresponding to the eigenvalue
m∑

i,j=1

αij (−λiλj ) = −(λm, . . . , λ1)A(λm, . . . , λ1)
T < 0.

This proves the asymptotic stability of the system (5.4).

5.2 Numerical algorithm

As in Section 2, we write the differential (5.2) as U̇ = F(t, U) with F(t, U) =
MU + G(t, U) + b(t). We split vector field F(t, U) as

F(t, U) = F0(t, U) + F1(t, U) + . . . + Fm(t, U), (5.5)

where Fj (t, U) (for j = 1, . . . , m) correspond to the discretization of the partial
derivatives with respect to each space variable, whereas F0(t, U) corresponds to what
remains including the mixed derivatives. We let an,j = ∂tFj (tn, Un) and An,j =
∂UFj (tn, Un). The PDE-W-methods of Section (2.3) allow for a straight-forward
extension to the m−dimensional PDE problem (5.1) as follows:

K
−(m+1)
i = τF (tn + ciτ, Un +

i−1∑

j=1

aijKj ) +
i−1∑

j=1

�ijKj

(I − θτAn,l)K
l−(m+1)
i = K

l−(m+2)
i + θρiτ

2an,l, l = 1, . . . , m,

K
(0)
i = K

−(m+1)
i + θτAn,0K

(−1)
i + θρiτ

2an,0

(I − θτAn,l)K
(l)
i = K

(l−1)
i + θρiτ

2an,l, l = 1, . . . , m,

Ki = K
(m)
i (5.6)
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for i = 1, . . . , s, and with advancing solution after one step given by

Un+1 = Un +
s∑

i=1

biKi.

5.3 Stability of PDE-W-methods

The stability analysis of Section 5.1 suggests to consider the scalar equation u̇ =
− ∑m

i,j=1 αijλiλj u for the study of the stability of PDE-W-methods. Substituting√
aiiλi → λi this equation becomes

ν̇ = −
m∑

i=1

λ2
i ν − 2

∑

1≤i<j≤m

ci,j λiλj ν, (5.7)

with ci,j = αij /
√

αii · αjj for 1 ≤ i, j ≤ m. Note that with A = (αij )
m
i,j=1 also the

matrix C = (ci,j )
m
i,j=1 is positive definite.

Applying a PDE-W-method to (5.7) with An,i = −λ2
i for i = 1, . . . , m, and

An,0 = −2
∑

i<j ci,j λiλj yields a recursion Un+1 = R(z0, z1, . . . , zm)Un, where
R(z0, z1, . . . , zm) is a rational function of the real variables

zi = −τλ2
i , i = 1, . . . , m, z0 = −2τ

∑

1≤i<j≤m

ci,j λiλj . (5.8)

It is given by (3.6), where z = z0 + z1 + . . . + zm, and


 :=
m∏

j=1

(1 − θzj )
(

1 + θz0

m∏

j=1

(1 − θzj )
−1

)−1
. (5.9)

According to Definition 3.1 we have PDE-stability if

|R(z0, z1, . . . , zm)| ≤ 1

for all λi ∈ R and for all symmetric matrices (ci,j )
m
i,j=1 (with ci,i = 1 for all i) that

are positive definite. An essential ingredient of such a stability analysis is upper and
lower bounds for the AMF factor.

Theorem 5.2 Let λi ∈ R and assume that C = (ci,j )
m
i,j=1 (with ci,i = 1) is positive

definite. With zi of (5.8) and z = z0 + z1 + . . . + zm the AMF factor 
 (with θ ≥ 0)
given by (5.9) satisfies

1



≤ 1

1 − θz
. (5.10)

Proof This inequality follows from Lemma 5.1 below by putting ai = −θzi for
0 ≤ i ≤ m.

Lemma 5.1 Assume that a0 ∈ R, ai ≥ 0, 1 ≤ i ≤ m (m ≥ 1), satisfy 1 + a0 +∑m
i=1 ai > 0. Then

1
∏m

i=1(1 + ai)

(
1 − a0∏m

i=1(1 + ai)

)
≤ 1

1 + a0 + ∑m
i=1 ai

.
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Proof Let Pm := ∏m
i=1(1 + ai) ≥ 1 and Sm := ∑m

i=1 ai ≥ 0. A direct computation
shows that

1

Pm

(
1 − a0

Pm

)
− 1

1 + a0 + Sm

=
−

(
a0 + 1

2 (1 + Sm − Pm)
)2 + 1

4 (1 + Sm + Pm)2 − P 2
m

P 2
m(1 + a0 + Sm)

.

To prove the non-positivity of this expression, we notice that

1

4
(1 + Sm + Pm)2 − P 2

m = 1

4

(
1 + Sm + 3Pm

)(
1 + Sm − Pm

)
.

The first factor is positive, and the second one is ≤ 0, because

Pm = (1 + a1) · . . . · (1 + am) = 1 + a1 + . . . + am + a1a2 + . . . ≥ 1 + Sm.

This proves the inequality of the lemma.

The stability analysis of PDE-W-methods (Section 3) also needs the positivity of

, which we formulate as an assumption.

Assumption P The matrix C = (ci,j )
m
i,j=1 (with ci,i = 1) satisfies

m∏

j=1

(1 + λ2
j ) −

∑

i �=j

ci,j λiλj > 0 for all λi ∈ R . (5.11)

With the substitution λi → √
θτλi , this inequality becomes equivalent to the

positivity of the factor 
 of (5.9). It would be desirable to have a result that states the
validity of Assumption P for all positive definite matrices C. This is true in dimension
m = 3 (Theorem 5.3), but it is not true in general for m ≥ 4 (Remark 5.1 below).

Theorem 5.3 Let C = (ci,j )
3
i,j=1 be positive definite, with ci,i = 1 for all i. Then,

(5.11) holds.

Proof Since |ci,j | <
√

ci,i · cj,j = 1 (1 ≤ i, j ≤ 3), it holds for all λj ∈ R that
∏3

j=1(1 + λ2
j ) − ∑

i �=j ci,j λiλj ≥ 1 + ∑3
j=1λ

2
j + ∑

i<jλ
2
i λ

2
j − ∑

i �=j |λi ||λj |
≥ −2 + ∑3

j=1λ
2
j + ∑

i<j (|λi ||λj | − 1)2.

Now, consider f (x, y, z) = −2+ (x2 +y2 +z2)+ (xy −1)2 + (xz−1)2 + (yz−1)2

for x, y, z ≥ 0. It is not difficult to check that the critical points of f (x, y, z) fulfil
x = y = z. In fact, the minimum value of f is f ( 1√

2
, 1√

2
, 1√

2
) = 1

4 > 0. This

completes the proof.

Remark 5.1 The previous result for dimension m = 3 does not extend to higher
dimension. Here, we state a sufficient condition and a necessary one.
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Sufficient condition. If the matrix C is such that 2I − C is positive semi-definite,
then Assumption P is fulfilled. Expanding the product in (5.11) and neglecting
some positive terms shows that Assumption P holds, if

λ2
1 + . . . + λ2

m −
∑

i �=j

ci,j λiλj ≥ 0. (5.12)

Because of ci,i = 1 this is equivalent to 2I − C ≥ 0.
Necessary condition. Assumption P does not hold for general positive definite

matrices C = (ci,j )
m
i,j=1, with ci,i = 1 (1 ≤ i ≤ m) whenever m ≥ 4. To see this,

it is enough to take in (5.11) λj = λ ≥ 0 (1 ≤ j ≤ m) and consider

f (λ) = (1 + λ2)m − Kλ2, K =
∑

i �=j

ci,j .

If K ≥ m, the function f (λ) attains its minimum at λ∗ ≥ 0, where

(λ∗)2 = −1 +
(K
m

)1/(m−1)

.

For this value, one has f (λ∗) > 0 if and only if

K =
∑

i �=j

ci,j < m
( m

m − 1

)m−1
.

This is a necessary condition for Assumption P.

We are now in the position to formulate PDE-stability of W-methods also in
dimension m ≥ 3 under Assumption P.

Theorem 5.4 Consider parabolic problems (5.1) in any number m of spatial dimen-
sions (mixed derivatives are allowed), i.e. having a positive definite matrixA. Under
Assumption P, the PDE-W-methods of 1, 2, and 3 stages with stability functions given
by (3.10), (3.12) and (3.13) are PDE-stable for θ ≥ 1/2, θ ≥ 1/4 and θ ≥ 1/3,
respectively.

Proof By taking into account the Assumption P and the bound (5.10), the proof fol-
lows the same steps as the proofs of Theorem 3.2 for s = 1 stage, of Theorem 3.3 for
the case of s = 2 stages, and of Theorem 3.4 for s = 3.

5.4 Numerical experiment

Extending the example of Section 4.1, we consider the partial differential equation

∂tu =
3∑

i,j=1

αi,j ∂2
xixj

u +
3∑

i=1

αi ∂xi
u + g(t, x, y, z)

on the cube (x, y, z) ∈ [0, 1] × [0, 1] × [0, 1], where g(t, x, y, z) is chosen such that

u(t, x, y, z) = x(1 − x)y(1 − y)z(1 − z)et
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Fig. 5 Comparison of four time integrators applied to the problem of Section 5.4 with coefficients of
(5.13)

is the solution of the differential equation. We arbitrarily fix the coefficients as

α1,1 = α2,2 = α3,3 = 1, α1,2 = 0.5, α1,3 = 0.25, α2,3 = −0.5,

α1 = 0.8, α2 = −0.7, α3 = 0.6
(5.13)

guaranteeing that the second-order operator is elliptic. We assume homogeneous
Dirichlet boundary conditions.

To this problem, we apply PDE-W-methods with the implementation of
Section 5.2. For a comparison with standard methods, we also apply the MCS method
(with parameters as in Section 4.2) and the HV method (again with μ = 1/2 and
θ = 1/3). We discretize the cube in such a way that we have in every direction 64
grid points in the interior of [0, 1]. Figure 5 shows the �2-error as a function of the
cpu time (left picture) and as a function of the number of calls to the subroutine that
solves a linear tridiagonal system (right picture), which equals six times the number
of steps for the MCS and HV methods and for each stage of the PDE-W-methods.
The results are very similar to those of Fig. 1.

6 Conclusions

This article considers parabolic partial differential equations, where mixed deriva-
tives are present in the elliptic operator of the problem. Dirichlet boundary conditions
are considered and the MOL (method of lines) approach is used for the space dis-
cretization. The resulting ordinary differential equation is numerically integrated with
methods that allow for an efficient application of the AMF (approximate matrix fac-
torization) technique to solve the arising linear systems. An important class of such
integrators are W-methods, which are linearly implicit time integrators that only
require an approximation to the Jacobian of the vector field.

In the present work, a new treatment of discretized mixed derivatives in the AMF
technique is proposed. These mixed derivatives are treated in an explicit manner;
however, due to the application of suitable damping matrices time step size restric-
tions are avoided. For a stability analysis, a new scalar test equation is considered.
PDE-stability (i.e., unconditional stability with respect to the test equation) is studied
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for s-stage W-methods with s ≤ 3. Numerical experiments indicate that the proposed
test equation is relevant for the system obtained by the MOL approach.

An interesting question for further research is to study whether PDE-stability of a
PDE-W-method is sufficient for the stability of the method, when it is applied to the
MOL discretization in any dimension.
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