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Abstract We present a Ritz-Galerkin discretization on sparse grids using pre-
wavelets, which allows us to solve elliptic differential equations with variable
coefficients for dimensions d ≥ 2. The method applies multilinear finite elements.
We introduce an efficient algorithm for matrix vector multiplication using a Ritz-
Galerkin discretization and semi-orthogonality. This algorithm is based on standard
1-dimensional restrictions and prolongations, a simple prewavelet stencil, and the
classical operator-dependent stencil for multilinear finite elements. Numerical simu-
lation results are presented for a three-dimensional problem on a curvilinear bounded
domain and for a six-dimensional problem with variable coefficients. Simulation
results show a convergence of the discretization according to the approximation prop-
erties of the finite element space. The condition number of the stiffness matrix can
be bounded below 10 using a standard diagonal preconditioner.

Keywords Sparse grid · Prewavelets · Semi-orthogonality · Variable coefficients ·
Conjugate gradient method · Finite element method

1 Introduction

A finite element discretization of an elliptic symmetric partial differential equation
(PDE) calculates the best approximation with respect to the energy norm. Since a
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finite element method uses polynomials to construct a finite element space, the con-
vergence of such a method can be proven using Strang’s lemma or the Lax-Milgram
theorem.

However, difficulties arise in the application to problems of a high dimensionality.
Then, the computational amount increases by O(Nd), where N is the number of grid
points in one direction and d is the dimension of the space. This exponential growth
of the computational amount restricts the application of the finite element method to
dimensions d ≤ 3.

One approach to solve this problem is to use sparse grids (see [21]). With sparse
grids, one can construct a subspace of the classical finite element spaces on full grids.
The dimension of this subspace reduces to O(N(log N)d−1).

There exist several methods to solve partial differential equations on sparse grids.
Here, we restrict ourselves to elliptic PDEs and Ritz-Galerkin discretizations. Such
discretizations lead to optimal convergence in the energy norm and allow extensions
to adaptive grids, which are needed in case of singularities.

However, it is difficult to solve iteratively the system of linear equations resulting
from a Ritz-Galerkin discretization on sparse grids. An efficient algorithm for this
problem has the following properties:

– a memory complexity of O(N(log N)d−1),
– requires only O(N(log N)d−1) computations,
– a convergence rate of O(1).

This algorithm may be based on the unidirectional principle (see [2, 4] and [20])
for constant coefficients and cubical domains. An extension of this algorithm for ten-
sor product variable coefficients is presented in [11]. These algorithms evaluate the
matrix vector multiplication in O(N(log N)d−1) operations. However, these algo-
rithms cannot be applied to arbitrary variable coefficients. Furthermore, it is difficult
to obtain an iterative solver with convergence rate O(1). In order to obtain fast con-
vergence, one can apply a multigrid approach or prewavelets (see [14] and [10]). The
algorithms described in these publications are restricted to constant coefficients as
well.

One interesting application of sparse grids is the solution of the electronic
Schrödinger equation, since this is an elliptic PDE of a high dimensionality. In order
to obtain high accuracy, a wavelet-based sparse grid method was proposed in [9].
The resulting linear equation system was solved in O((N(log N)d−1)2) operations
instead of O((N(log N)d−1)), since the large support of the wavelet functions leads
to a complex structure of the stiffness matrix. It is evident that this high complexity
of the computational amount limits the application of the method described in [9].

So far, the Ritz-Galerkin discretization of elliptic equations on sparse grids has
had limited range of application since most partial differential equations in natural
science or engineering include variable coefficients.

The first Ritz-Galerkin discretization on sparse grid with variable coefficients is
presented in [16]. This discretization applies the semi-orthogonality property of stan-
dard hierarchical basis functions (see Section 2). A complete convergence theory is
given in [15] for the two-dimensional case. The discretization leads to a symmetric
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stiffness matrix in the case of a symmetric bilinear form. Nevertheless, an extension
to higher-dimensional problems is not possible for standard hierarchical basis func-
tions since hierarchical basis functions do not satisfy a semi-orthogonality property
for d ≥ 3.

Other discretizations of PDEs with variable coefficients are presented in [1] and
[8]. The discretization in [1] can be treated as a finite element discretization, while
the discretization in [8] is a finite difference discretization. For symmetric problems,
both discretizations lead to a non-symmetric linear equation system for symmetric
problems, which is an undesired property.

Additionally, a convergence proof is missing for both discretizations. Therefore,
convergence of these methods is not guaranteed in higher dimensions. Furthermore,
the discretization in [1] requires high-order interpolation operators, which increases
the computational load. However, simulation results presented in literature show an
optimal convergence for certain two-dimensional and three-dimensional problems.

In this paper, we present a new method to discretize elliptic partial differential
equations on sparse grids (see Section 2). This discretization uses prewavelets and
their semi-orthogonality property (see [16]). It is well known that prewavelets and
wavelets can be used to discretize partial differential equations (see [3, 13, 19], and
[17]). In the context of sparse grids, they can even lead to natural discretizations
of elliptic partial differential equations with variable coefficients. The elementary
convergence theory of such discretizations is presented for a Helmholtz problem in
[18]. In Section 6, we present an algorithm that efficiently evaluates the matrix vector
multiplication with the discretization matrix. The algorithm applies only standard
1-dimensional restriction and prolongation operators, a simple prewavelet stencil of
size 5, and the classical stencil operator for multilinear finite elements. This operator-
dependent stencil is a 9-point stencil for bilinear elements and a 27-point stencil
for trilinear elements. However, in the six-dimensional case, the size of this stencil
increases to 729 = 36. The difficulty of this algorithm is to apply all operators in the
correct sequential ordering.

In Section 8, simulation results are presented for the three-dimensional Poisson’s
problem on a curvilinear bounded domain and for a six-dimensional Helmholtz prob-
lem with a variable coefficient. The simulation result for Poisson’s problem implies
that sparse grids are not restricted to cubical domains. To our knowledge, the numeri-
cal result for the six-dimensional Helmholtz equation is the first simulation result for
a six-dimensional Ritz-Galerkin finite element discretization of a elliptic PDE with
variable coefficients.

This paper is restricted to non-adaptive grids. However, the algorithm presented in
this paper can certainly be extended to adaptive sparse grids using concepts and ideas
presented in [6, 16], and [12].

2 Sparse grid discretization

Let d ≥ 2 be the dimension of space and � = [0, 1]d . Consider an elliptic differential
equation:
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Fig. 1 Example of a
two-dimensional sparse grid Dn

Problem Let f ∈ L2(�), A ∈ (L∞(�))d×d and κ ∈ L∞(�), κ ≥ 0 be given.
Furthermore, assume that A is symmetric and uniformly positive definite. This means
that there is a α > 0 such that vT A(x)v > αvT v for almost every x ∈ � and every
vector v ∈ R

d . Find u ∈ H 1
0 (�) such that∫

�

(∇u)T A(x)∇v + κ(x)uv dx =
∫

�

f vh dx ∀v ∈ H 1
0 (�). (1)

Our aim is to find an efficient sparse grid finite element discretization that can be
used even for large dimension d. A typical two-dimensional sparse grid is depicted
in Fig. 1 and a three-dimensional sparse grid in Fig. 11.

Finite elements on sparse grids are constructed by tensor products of one-
dimensional finite elements. Here, we apply piecewise linear elements in 1D. Let us
explain the construction of the sparse grid finite element space in more detail. To this
end, define the one-dimensional grid

�k = {2−t−1i | i ∈ It },
Ik = {i | i = 1, ..., 2t+1 − 1} for t ∈ N0, I−1 = ∅.

It is the index set of �t . Observe that �0 ⊂ �1 ⊂ �2 ⊂ ... . The complementary
index set is defined by

�t = It\ (2It−1) .

Fig. 2 One-dimensional nodal
basis functions

1.0
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Now, let Vt be the space of piecewise linear functions of mesh size 2−t−1 and vlin
t,i the

corresponding nodal basis function at point 2−t−1i ∈ �t (see Fig. 2).
Using these functions, we define prewavelets ϕt,i , i ∈ �t by (see Fig. 3)

ϕt,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9
10vlin

t,i − 3
5vlin

t,i+1 + 1
10vlin

t,i+2 if 1 = i

vlin
t,i − 3

5 (vlin
t,i+1 + vlin

t,i−1) + 1
10 (vlin

t,i+2 + vlin
t,i−2) if 3 ≤ i ≤ 2t − 3

9
10vlin

t,i − 3
5vlin

t,i−1 + 1
10vlin

t,i−2 if i = 2t − 1

,

for t ∈ N and ϕ0,1 = vlin
0,1. An important property of these functions is the L2-

orthogonality for prewavelets of different levels

∫ 1

0
ϕt,i ϕt ′,i′ dx = 0 if t �= t ′. (2)

Let us introduce the following abbreviations for a multi-index t = (t1, ..., td) ∈
N

d
0 :

|t|δ :=
δ∑

i=1

|ti |, for 1 ≤ δ ≤ d,

t ≤ t′ if ti ≤ t ′i ∀i = 1, ..., d,

max(t, t′) := (max(t1, t
′
1), ..., max(td , t ′d)), and

max(t) := max(t1, ..., td).

Using these abbreviations, the sets of tensor product indices are defined

It =
{
(i1, ..., id)

∣∣∣ is ∈ Its , s = 1, ..., d
}
,

�t =
{
(ξ1, ..., ξd)

∣∣∣ ξs ∈ �ts , s = 1, ..., d
}

Fig. 3 One-dimensional
prewavelet functions

1.0

0.1

-0.6
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and the tensor product functions

vlin
t,i (x) :=

d∏
s=1

vlin
ts ,is

(xs), i ∈ It,

ϕt,i(x) :=
d∏

s=1

ϕts ,is (xs), i ∈ �t,

where x = (x1, ..., xd). These constructions allow to define the tensor product vector
spaces (see Fig. 4)

V full
n,d := span

{
vlin
t,i

∣∣ max(t) ≤ n, i ∈ �t
}
,

Vt := span
{
vlin
t′,i
∣∣ t′ ≤ t, i ∈ �t′

}
,

Wt := span
{
ϕt,i

∣∣ i ∈ �t
}
,

V lin
Dn

:= span
{
vlin
t,i

∣∣ |t|d ≤ n, i ∈ �t
}
,

V
prew
Dn

:= span
{
ϕt,i

∣∣ |t|d ≤ n, i ∈ �t
}
.

Obviously, this results in Wt ⊂ Vt.
V full

n,d is the well-known standard space of multilinear finite element functions
which can be written as follows:

V full
n,d = span

{
vlin
(n,...,n),i

∣∣ i ∈ I(n,...,n)

}
.

The sparse grid spaces V lin
Dn

and V
prew
Dn

are equal (see [18]). However, the adaptive ver-
sions of these spaces are not equal. For reasons of simplicity, only the non-adaptive
case is considered. In the case of smooth functions, sparse and full grid have similar
approximation properties

min
v∈V full

n,d

‖u − v‖H 1 ≤ C2−n‖u‖H 2 and

min
v∈V

prew
Dn

‖u − v‖H 1 ≤ C n 2−n

∥∥∥∥∥
∂2du

∂x2
1 ...∂x2

d

∥∥∥∥∥
L2

,

Fig. 4 Example of spaces Wt = W1,1, V full
t = V full

2,1 , and V
prew
Dn

= V
prew
D3
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where C is a constant independent of n and u. However, the dimensions of the
corresponding spaces are completely different:

dim(V full
n,d ) = O(2nd) and dim(V

prew
Dn

) = O(nd−12n).

Therefore, the aim of this paper is to find an efficient Galerkin discretization of Prob-
lem (2) using the sparse grid space V

prew
Dn

. To this end, the following lemma and
corollary is an important observation:

Lemma 1 Let κ be constant and A = diag(α1, ..., αd) a constant diagonal matrix.
Then, for all indices t, t′ such that ts �= t ′s for at least two indexes s = 1, ..., d the
following equation holds:

∫
�

(∇ϕt,i)
T A∇ϕt′,i′ + κϕt,iϕt′,i′ dx = 0. (3)

Proof By tensor product construction of the functions ϕt,i and ϕt′,i′ , the integral of
(3) can be written as a product of one-dimensional integrals for each term in (3), since
the coefficients A and κ are constant. Here, the orthogonality property (2) implies
that the term containing κ is zero. Next, let us consider the term

αk

∫
�

∂ϕt,i

∂xk

∂ϕt′,i′

∂xk

dx = αk

∫ 1

0

∂ϕtk,ik

∂xk

∂ϕt ′k,i′k
∂xk

dxk

∏
s �=k

∫ 1

0
ϕts ,is ϕt ′s ,i′s dxs.

Since ts �= t ′s for at least two indexes s = 1, ..., d , there is an index s �= k such that
ts �= t ′s . Thus, (2) completes the proof.

Corollary 1 (Semi-orthogonality property) Let κ be constant and A =
diag(α1, ..., αd) a constant diagonal matrix. Then, for all indices t, t′, i ∈ �t, and
i′ ∈ �t′ such that

| max(t, t′)|d > n and |t|d ≤ n, |t′|d ≤ n, (4)

the following equation holds:
∫

�

(∇ϕt,i)
T A∇ϕt′,i′ + κϕt,iϕt′,i′ dx = 0.

The consequence of this corollary is that prewavelet basis functions with overlap-
ping support are orthogonal to each other (see Fig. 5). This orthogonality property is
the motivation behind the following discretization:

Discretization 1 (Semi-orthogonality) Let f ∈ L2(�) and κ ∈ L∞(�), κ ≥ 0 be
given. Then, let us define

a(u, v) :=
∫

�

(∇u)T A(x)∇v + κ(x)uv dx



936 Numer Algor (2018) 78:929–956

Fig. 5 Example of the support
of two basis functions that
satisfy | max(t, t′)|d > n and
|t|d ≤ n, |t′|d ≤ n

and

asemi-orthon : V
prew
Dn

× V
prew
Dn

→ R

asemi-orthon (ϕt,i, ϕt′,i′) :=
{

a(ϕt,i, ϕt′,i′) if | max(t, t′)|d ≤ n

0 if | max(t, t′)|d > n
.

Find u
prew
Dn

∈ V
prew
Dn

such that

asemi-orthon (u
prew
Dn

, vh) =
∫

�

f vh dx ∀vh ∈ V
prew
Dn

. (5)

In [18], we analyzed the convergence of this discretization for the Helmholtz prob-
lem with variable coefficients with respect to the H 1-norm. This paper shows how to
obtain an efficient algorithm for solving the corresponding linear equation.

3 Basic notation

The difficulty in explaining sparse grid algorithms is that the matrices in these algo-
rithms are applied to vectors with varying size. Thus, describing these matrices in
a mathematically correct form leads to a non-trivial notation. A second problem
appears in the case of adaptive grids. All sparse grid algorithms have a recursive
structure that use a tree data structure. Explaining such algorithms in a mathematical
and clear notation is difficult. Therefore, we restrict ourselves to non-adaptive sparse
grids and assume that a sparse grid is a union of semi-coarsened full grids.

Furthermore, we introduce a notation that is based on operators on vector spaces
and its dual space. Assume that the finite element solution ut ∈ Vt is searched for,
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such that

asemi-ortho
n (ut, vt) =

∫
�

f vt dx ∀vt ∈ Vt.

Then, ut is contained in the vector space Vt, but the mappings

v �→
∫

�

f v dx, v ∈ Vt

and

v �→ asemi-ortho
n (w, v), v ∈ Vt

are contained in the dual space V ′
t . To store an element in Vt or a functional in V ′

t as
a vector, assume that nt is the number of grid points on level t

nt = dim(Vt)

Moreover, assume that the data of a sparse grid algorithm is stored on various suitable
full grids. A corresponding global array is as follows:

Un := (Ut)|t|d≤n

Ut ∈ R
nt

The vector Ut is used to store data of different mathematical objects. One possibil-
ity is to describe a function in Vt by the vector Ut. Another possibility is to describe
a functional of V ′

t by Ut. The notation for a corresponding assignment operator is as
follows: (

Ut
set←− u

)
for u ∈ Vt

and (
Ut

set←− f
)

for f ∈ V ′
t

However, the assignment operator set←− depends on the basis, which is used to
represent u or f , respectively. Let us explain this with the following examples:

Example 1 Let u = ∑
i∈It ct,iv

lin
t,i ∈ Vt.

Then, (
Ut

set←− u
)

:⇔ Ut = (ct,i)i∈It .

Example 2 Let u = ∑
i∈�t

ct,iϕt,i ∈ Wt ⊂ Vt.
Then, (

Ut
set←− u

)
:⇔ Ut =

(
ct,i if i ∈ �t
0 else.

)
.

Example 3 Let

vt,i :=
(⊗

s∈S

ϕts ,is

)⊗⎛
⎝⊗

s �∈S

vlin
ts ,is

⎞
⎠



938 Numer Algor (2018) 78:929–956

be the basis function which is a prewavelet function in directions s ∈ S ⊂ {1, ..., d}
and a nodal basis function for all other directions. Now, let u = ∑

i ct,ivt,i. Then, Ut
stores the coefficients ct,i after evaluation of(

Ut
set←− u

)
.

Example 4 Let f ∈ V ′
t . Then, we write

(
Ut

set←− f
)

:⇔ Ut = (f (vlin
t,i ))i∈It .

Example 5 Let f ∈ W ′
t . Then, we write

(
Ut

set←− f
)

:⇔ Ut =(
f (ϕt,i) if i ∈ �t
0 else.

)
.

For describing our algorithms, we introduce a special operator B, which we will
call back construction operator. This operator reconstructs the mathematical object
u which was used to set values in a vector Ut. This implies the following property of
the back construction operator B:

(
Ut

set←− u
)

⇒ u = B (Ut) .

Therefore, if Ut was set by u in an assignment
(
Ut

set←− u
)

during execution of an

algorithm, then B reconstructs u in a later execution of this algorithm. This notation
avoids describing which basis was exactly used to define Ut.

4 Basic operators

The algorithms in this paper are mainly based on well-known one-dimensional
operators. Briefly recall these operators:

1. Prolongation

A prolongation in direction s can be described by

Wt
set←− I s

t
(
B
(
Wt−es

))
,

where B(Wt−es ) ∈ Vt−es is given and es is the unit vector in direction s. We want to
describe the operator I s

t in matrix format. To this end, let

(cco
i )i∈It−es

∈ R
|It−es |, B(Wt−es ) =

∑
i∈It−es

cco
i vt−es ,i,

(ci)i∈It ∈ R
|It|, B(Wt) =

∑
i∈It

civt,i,

where the basis function vt,i is a nodal basis function in direction s (see Example 3).
The prolongation in direction s acts on the above vectors as follows:

(ci)i∈It = M
prol
s (cco

i )i∈It−es
, M

prol
s = ⊗s−1

i=1 Id ⊗ Mprol ⊗ ⊗d
i=s+1Id, (6)
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where Id is the identity matrix and Mprol is the matrix

Mprol =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
2

1
2

1
. . .

1
1
2

1
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Obviously, the operator I s
t can be generalized to an operator Iα

t , which interpolates
in directions α, where α ∈ {0, 1}d .

2. Coarse grid interpolation (or coarse injection)

Let B(Wt) ∈ Vt. Then, the operator I s
t−es

used in

Wt−es

set←− I s
t−es

(B(Wt)) ,

is defined to be the operator, which interpolates B(Wt) on a coarse grid in direction
s. I s

t−es
(B(Wt)) applies nodal basis functions in direction s.

3. Restriction of the right-hand side

A restriction of the right-hand side in direction s can be described by

Gt−es

set←−
(
v �→ B(Gt)(v), v ∈ Vt−es

)
,

where B(Gt) ∈ V ′
t is given. To describe the matrix form of this operator, let

(gi)i∈It ∈ R
|It|, gi = B(Gt)(v

lin
t,i ), i ∈ It,

(gco
i )i∈It−es

∈ R
|It−es |, gi = B(Gt−es )(v

lin
t−es ,i), i ∈ It−es .

The restriction in direction s acts on these vectors as follows:

(gco
i )i∈It−es

= M res
s (gi)i∈It , M res

s = ⊗s−1
i=1 Id ⊗ M res ⊗d

i=s+1 Id, (7)

where Id is the identity matrix and M res is the matrix

M res =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 1 1

2

. . .
1
2 1 1

2
1
2 1 1

2
. . .

1
2 1 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The next operators require the application of matrices including prewavelet
coefficients. These are as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
10

1
2

1
10

− 3
5 1 − 3

5

1
10

1
2 1

. . .

− 3
5

. . . 1
2

1
10

1
10

. . . 1 − 3
5

1
2

9
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Mnodal =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
10

1
10

− 3
5 − 3

5

1
10 1

. . .

− 3
5

. . . 1
10

1
10

. . . − 3
5

9
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

M contains prewavelet coefficients and coarse to fine interpolation coefficients
whereas Mnodal contains only prewavelet coefficients. Observe that M is a square
matrix and Mnodal a rectangular matrix.

4. Transformation to a prewavelet basis

Let s be a direction such that 1 ≤ s ≤ d. Furthermore, assume that Ut is given
such that B(Ut) ∈ Vt and

– Ut stores the coefficients of B(Ut) in nodal basis form in the direction s and
– Ut stores the coefficients of B(Ut) in prewavelet form or nodal basis form in the

directions d̃ �= s.

Now assume that the prewavelet coefficients are calculated in direction s with respect
to level ts of B(Ut) and the resulting vector is stored in Ht. The corresponding
assignment can be written as follows:

Ht
set←− Qs

t (B(Ut)). (9)

Here, Qs
t is the L2 projection operator onto the space

⊗s−1
i=1Vti ⊗ Wts ⊗ ⊗d

i=s+1Vti .

In matrix form, assignment (9) can be written as follows:

⊗s−1
i=1 Id ⊗ Mprew ⊗ ⊗d

i=s+1Id,

where Id are suitable identity matrices and Mprew is the matrix of the one-dimensional
case. To describe the matrix Mprew of the one-dimensional case, let

(ui)i∈It ∈ R
|It |, ui = B(Ut ) =

∑
i∈It

vt,i ,

(hi)i∈�t ∈ R
|�t |, hi = B(Ht ) =

∑
i∈�t

ϕt,i ,
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where t = ts . The matrix Mprew performs the following mapping:

(hi)i∈�t = Mprew(ui)i∈It .

Let Rprew be the following restriction operator which takes only the prewavelet
coefficients:

Rprew ((hi)i∈It

) := (hi)i∈�t .

Then, Mprew = RprewM−1.
This means that the assignment (9) has to be implemented by inverting the matrix

M in direction s and taking only the resulting prewavelet coefficients (see (8)).

5. Transformation to a nodal basis

Let B(Ht) ∈ Vt and assume that Ht stores the coefficients of B(Ht) in the pre-
wavelet format in the directions S ⊂ {1, ..., d} and in the nodal basis format for all
other directions. Then, writing It (B(Ht)) means that we decompose B(Ht) only by
nodal basis functions:

B(Ht) =
∑
i∈It

ct,iv
lin
t,i ∈ Vt.

This implies that after evaluating Qt
set←− Tt (B(Ht)), Qt stores the coefficients

ct,i. Obviously, the matrix of this complete transformation to a nodal basis includes
a tensor product of prewavelet coefficients in directions S (see matrix Mnodal in (8)).
Analogously, we define the operator T δ

t , which performs a transformation to a nodal
basis only in the direction δ.

5. Transformation of functionals to a prewavelet basis

Let B(Zt) ∈ V ′
t and assume that Zt represents B(Zt) with respect to nodal func-

tions (see Example 4). Then, Ft represents B(Zt) with respect to prewavelet functions
(see Example 5) after evaluation of

Ft
set←− (ϕ �→ B(Zt)(ϕ), ϕ ∈ Wt) .

Obviously, the matrix of this complete transformation of functionals to a prewavelet
basis is a tensor product of prewavelet coefficients in directions s = 1, ..., d (see
matrix Mnodal in (8)).

6. Discretization stencil

Let Ut be a vector on a semi-coarsened full subgrid such that B(Ut) ∈ Vt. Then,
an assignment involving the bilinear form of the operator is as follows:

Zt
set←−

(
v �→ a(B(Ut), v), v ∈ Vt

)
. (10)

The computation corresponding to this assignment requires a 9-point stencil in the
two-dimensional case and a 27-point stencil in the three-dimensional case.
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As an example, let us consider the two-dimensional case and the bilinear form
corresponding to Poisson’s equation:

a(u, v) =
∫

�

∇u∇v d(x, y).

Then, the discretization stencil for bilinear finite elements is as follows:

Shx,hy = hy

hx

1

6

⎡
⎣−1 2 −1

−4 8 −4
−1 2 −1

⎤
⎦+ hx

hy

1

6

⎡
⎣−1 −4 −1

2 8 2
−1 −4 −1

⎤
⎦ ,

where hx = 2t1, hy = 2t2 . Then, Zt in (10) is Ut applied to the stencil Shx,hy .

Remark In this paper, we assume that the 3d -stencils corresponding to the bilinear
form a are given for each depth t. This means that these stencils are the only descrip-
tion of a which is used in the subsequent algorithms of this paper. In particular,
Algorithm 3 does not need any tensor product construction of a. However, an accu-
rate computation of the 3d -stencils is a non-trivial task, since the meshsizes hi = 2ti

can be large. Therefore, the simulation results in Section 8 are restricted to cases,
where the stencils can be obtained by analytic computations. If an analytic integra-
tion of the local stiffness matrices is not possible, then one has to apply a piecewise
constant interpolation of the variable coefficients on the sparse grid in order to com-
pute the the 3d -stencils approximatively as in [5]. We will explain the corresponding
algorithm in a subsequent paper.

5 Calculation of prewavelet coefficients

Let (Ft)|t|d≤n be a function evaluated on the sparse grid of depth n such that Ft =(
f
(
xt,i
))

i∈It where xt,i is the grid point on level t with index i. Algorithm 1 calculates

the prewavelet decomposition with coefficients (Ct)|t|d≤n = (
ct,i
)
|t|d≤n,i∈It given by

f
(
xt,i
) =

∑
|t′|d≤n,i∈It

ct′,iϕt′,i
(
xt,i
)

(11)

for every sparse grid point xt,i ∈ Dn, where Dn is the sparse grid of depth n.
The calculation of the wavelet coefficients works recursively through all the

dimensions. For this purpose, the coefficients of the highest dimension are calculated
first, starting from the grid with maximum depth down to the coarsest grid. After this,
the algorithm continues with lower dimensions.

The calculation of the prewavelet coefficients on depth t in one dimension requires
one to solve a system of linear equations with 2t+1 +1 unknowns. The inverse matrix
M−1 can efficiently be computed using an LU decomposition since M is a five-
diagonal matrix (see (8)).
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Now, let us explain the basic idea of the algorithm for dimension 0 ≤ d̃ < d on
level t

d̃
. First, it calculates the prewavelet decomposition. Then, the local hierarchical

surplus is subtracted from all low-order levels t̃
d̃

< t
d̃
. In the case of sparse grids,

this requires the interpolation of the the hierarchical surplus for grids which have
no direct predecessor. To this end, the combination technique is applied to all direct
neighbors in directions with dimensions larger than d̃.

The same algorithm is used in reverse order to calculate a point-wise evaluation
Ft = (

f
(
xt,i
))

i∈It for a given set of prewavelet coefficients (Ct)|t|d≤n. Algorithm 2
starts on the coarsest level of the smallest dimension and accumulates the surpluses
over all dimensions.

Let us explain the structure of Algorithm 2 and the subsequent algorithms Algo-
rithm 1 and Algorithm 3. First observe, that we used the following notation for the
upper part of t:

Uδ(t) = (tδ+1, tδ+2, ..., td).

Then, Algorithms 1, 2, and 3 perform a recursive call for τ = m, ..., 0 and τ =
0, ..., m, respectively. In the recursive functions the dimension δ decreases from d to
0. Furthermore, the upper part of the depth vector t is fixed from δ + 1, · · · , d . A
recursive call increases this fixed part of t:

input of recursion: (

variable part∑δ
i=1 ti≤m︷ ︸︸ ︷

t1, t2, · · · , tδ,

fixed part
Uδ (t)=︷ ︸︸ ︷

tδ+1, · · · , td)

⇓
recursion call for τ : (t1, t2, · · · , tδ−1︸ ︷︷ ︸∑δ−1

i=1 ti≤m−τ

, τ, tδ+1, · · · , td︸ ︷︷ ︸
new fixed part

).

6 Matrix multiplication

Let

An =
(
asemi-ortho
n (ϕt,i, ϕt′,i′)

)
|t|d≤n,i∈�t

|t′|d≤n,i′∈�t′
. (12)

be the stiffness matrix of Discretization 1. The main difficulty is to construct an
algorithm that efficiently evaluates a matrix vector multiplication with matrix An.
To construct such an algorithm, the notation introduced in Section 3 is applied. The
recursive Algorithm 3 is obtained.

To explain the concept of this algorithm, we start with a one-dimensional obser-
vation. Assume that the following prewavelet decomposition is given as follows:

u =
n∑

t ′=1

wt ′ where wt ′ =
∑
i∈�t ′

ct ′,iϕt ′,i .
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Algorithm 1 Calculate prewavelet decomposition

Input: Let Un = (Ut)|t|d≤n be given in nodal format.
Call PREWAVELET ALGORITHM ( Un, d).
Output: Un in prewavelet format until dimension d.

Function PREWAVELET ALGORITHM ( Um := (Ut)|t|δ≤m,Uδ(t)=tu , δ) {
iterate for τ = m, ..., 0 {
1. Calculate prewavelet coefficients in direction δ:
for every t with tδ = τ and Uδ(t) = tu do:
Ut

set←− Qδ
t (B(Ut)) // transform to prewavelets in direction δ

Wt = Ut
2. Subtract interpolated prewavelets on coarse grid
iterate for t ′ = τ, ..., 1 {
2.1 for every t with tδ = t ′ and Uδ(t) = tu do:
Wt−eδ

set←− I δ
t−eδ

(B(Wt)) // coarse interpolation in direction δ

Ut−eδ
set←− B(Ut−eδ ) − (B(Wt−eδ ))

2.2 if δ > 1 then {
for every t with |t|δ = m and tδ = t ′ − 1 and Uδ(t) = tu do:
Wt

set←−
∑

(α1,...,αδ−1)∈{0,1}δ−1∧
α=(α1,...,αδ−1,0...,0)∧α �=(0,...,0)

(−1)|α|d+1It(B(Wt−α))

Ut
set←− B(Ut) − B(Wt) // subtract local hierarchical surplus

}
}
3. Recursion
if δ > 1 then {
Define mlow := m − τ . Define Ulow

mlow := (Ut)|t|δ−1≤mlow,tδ=τ,Uδ(t)=tu
If mlow > 0 call PREWAVELET ALGORITHM ( Ulow

mlow , δ − 1)
}

}
}
End of Algorithm.

Then, we can split the matrix vector multiplication in two parts:

a(u, vt ) =
∑
t ′>t

a(wt ′, vt ) + a(
∑
t ′≤t

wt ′, vt ).

Algorithm 3 calculates these two parts separately. We call these two parts restriction
part and prolongation part.

The restriction part
∑

t ′>t a(wt ′, vt ) is calculated in the function SPARSE GRID

MATRIX MULTIPLICATION with input parameter D = 1. The essential calculations
are performed as follows in Step 3.2 and Step 1. The recursive call of the algorithm
applies the discretization stencil on Ht (see Step 1) first and then performs several
restrictions (see Step 3.2).
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Algorithm 2 Calculate back prewavelet decomposition

Input: Let Un = (Ut)|t|d≤n be given in prewavelet format.
Call BACK PREWAVELET ALGORITHM ( Un, d).
Output: Un in nodal format until dimension d.

Function BACK PREWAVELET ALGORITHM ( Um := (Ut)|t|δ≤m,Uδ(t)=tu , δ) {
iterate for τ = 0, ..., m {
1. Recursion
if δ > 1 then {
Define mlow := m − τ . Define Ulow

mlow := (Ut)|t|δ−1≤mlow,tδ=τ,Uδ(t)=tu
If mlow > 0 call BACK PREWAVELET ALGORITHM ( Ulow

mlow , δ − 1)
}
2. Transform back in direction δ:
if τ > 0 then {
for every t with tδ = τ and Uδ(t) = tu do:
Wt

set←− T δ
t (B(Ut)) // transform to nodal in direction δ

Ut
set←− B(Wt) + I δ

t (B(Ut−eδ ))

}
3. Add interpolated prewavelets on coarse grid
iterate for t ′ = τ, ..., 1 {
3.1. for every t with tδ = t ′ and Uδ(t) = tu do:
Wt−eδ

set←− I δ
t−eδ

(B(Wt)) // coarse interpolation in direction δ

Ut−eδ
set←− B(Ut−eδ ) + (B(Wt−eδ ))

3.2. if δ > 1 then {
for every t with |t|δ = m and tδ = t ′ − 1 and Uδ(t) = tu do:
Wt

set←−
∑

(α1,...,αδ−1)∈{0,1}δ−1∧
α=(α1,...,αδ−1,0...,0)∧α �=(0,...,0)

(−1)|α|d+1It(B(Wt−α))

Ut
set←− B(Ut) + B(Wt) // add local hierarchical surplus

}
}

}
}
End of Algorithm.

The prolongation part a(
∑

t ′≤t wt ′, vt ) is calculated in the function SPARSE GRID

MATRIX MULTIPLICATION with input parameter D = 0. Here the essential calcula-
tions are done in Step 2.2 and Step 1. First Ht is prolongated on finer grids (see Step
2.2) and then the discretization stencil is applied (see Step 1).

The d-dimensional case is a combination of these two cases in all dimensional
directions. In each direction 1 ≤ δ ≤ d, we either can perform a restriction or
prolongation. All directions corresponding to restrictions are denoted by

R ⊂ {1, ..., d}.
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Algorithm 3 Sparse grid matrix multiplication

Input: Let Un = (Ut)|t|d≤n be given in prewavelet format.
Ft

set←− (ϕt �→ 0, ϕt ∈ Wt) ∀t // set to zero
for every R ⊂ {1, 2, ..., d} do { // 2d cases
Reorder the directions 1, ..., d such that R = {1, 2, ..., D}, 0 ≤ D ≤ d.
Hn := (Ht)|t|d≤n = Un

Call SPARSE GRID MATRIX MULTIPLICATION ( Hn, d, D).
}
Output: Fn in complete prewavelet format.
Function SPARSE GRID MATRIX MULTIPLICATION ( Hm := (Ht)|t|δ≤m,Uδ (t)=tu , δ , D)
if (δ == 0) { // 1. Deepest point of recursion
if (D == 0) do Zt

set←−
(
v �→ a(B(Ht), v), v ∈ Vt

)
// application of 3d -stencil of A

else Zt
set←− B(Gt) // cases that include restrictions

Nt
set←−

(
ϕ �→ B(Zt)(ϕ), ϕ ∈ Wt

)
// transformation to prewavelets

Ft
set←− B(Ft) + B(Nt) // add up results of 2d cases

} else if δ > D { // 2. Interpolate from coarser grids
2.1. Recursive call on coarsest grid.
Define Hlow

m := (Ht)|t|δ−1≤m,tδ=0,Uδ(t)=tu
call SPARSE GRID MATRIX MULTIPLICATION ( Hlow

m , δ − 1, D)
iterate for τ = 1, ..., m {
2.2. Prolongate in direction δ

for every t with tδ = τ and Uδ(t) = tu do
Ht

set←− I δ
t (B(Ht)) + I δ

t (B(Ht−eδ ))

2.3. Recursive call on finer grids.
Define mlow := m − τ . Define Hlow

mlow := (Ht)|t|δ−1≤m,tδ=τ,Uδ(t)=tu
if mlow > 0 call SPARSE GRID MATRIX MULTIPLICATION ( Hlow

mlow , δ − 1, D)
}

} else if δ ≤ D { // 3. Restrict fine prewavelet functions
3.1. Recursive call on finest grid.
Gt

set←− (vt �→ 0, vt ∈ Vt) ∀t, tδ = m,Uδ(t) = tu // set to zero

Define Hlow
0 := (Ht)|t|δ−1=0,tδ=m,Uδ(t)=tu

call SPARSE GRID MATRIX MULTIPLICATION ( Hlow
0 , δ − 1, D)

iterate for τ = m − 1, ..., 0 {
3.2. Restrict right hand side.
for every t with tδ = τ + 1 and Uδ(t) = tu do:
Qt

set←− Tt(B(Ht)) // transformation to nodal basis
Zt

set←−
(
v �→ a(B(Qt), v), v ∈ Vt

)
// application of 3d -stencil of A

Nt
set←− B(Gt) + B(Zt) // add up functionals

Gt−eδ
set←−

(
v �→ B(Nt)(v), v ∈ Vt−eδ

)
// restriction

Define mlow := m − τ . Define Hlow
mlow := (Ht)|t|δ−1≤mlow,tδ=τ,Uδ(t)=tu

if mlow > 0 call SPARSE GRID MATRIX MULTIPLICATION ( Hlow
mlow , δ − 1, D)

} }
End of Algorithm.
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(a) (b) (c) (d) (e)

Fig. 6 Matrix vector multiplication on sparse grids in the two-dimensional case. a–d Calculation of part
P = {1, 2}, P = {1}, P = {2}, P = ∅. e Summation of the result of the four parts

Now, the recursive structure of Algorithm 3 can be explained. Assume that u is given
in the following form:

u =
∑

|t′|d≤n

wt′ , where wt′ =
∑
i∈�t

ϕt,ict,i.

This form corresponds to a decomposition of u in its prewavelets. Then, a short
calculation shows the following:

a(u, ϕt,i) =
∑

R⊂{1,2,...,d}

∑
s∈R

∑
t ′s>ts

a

⎛
⎝∑

s �∈R

∑
t ′s≤ts

wt′, ϕt,i

⎞
⎠ . (13)

In the two-dimensional case, this sum leads to four parts:

a(u, ϕ(t1,t2),(i1,i2)) =
∑

t ′1>t1, t ′2>t2

a
(
w(t ′1,t ′2), ϕ(t1,t2),(i1,i2)

)

+
∑
t ′1>t1

a

⎛
⎝∑

t ′2≤t2

w(t ′1,t ′2), ϕ(t1,t2),(i1,i2)

⎞
⎠+

∑
t ′2>t2

a

⎛
⎝∑

t ′1≤t1

w(t ′1,t ′2), ϕ(t1,t2),(i1,i2)

⎞
⎠

+ a

⎛
⎝ ∑

t ′1≤t1, t ′2≤t2

w(t ′1,t ′2), ϕ(t1,t2),(i1,i2)

⎞
⎠ .

Figure 6 depicts the calculation of these four parts.
The d-dimensional case (13) consists of 2d cases. Each is calculated by calling the

function SPARSE GRID MATRIX MULTIPLICATION with input parameter d and D.
Here, D is the number of restriction directions. In order to simplify the notation, the
restriction directions are reordered such that

R = {1, . . . , D}.
However, this is only a notational trick. An actual implementation of the algorithm
should not perform such a reordering.

Observe that the recursive structure of Algorithm 3 leads to the following
sequential calculations:

1. Prolongation in directions D + 1, . . . , d . This is depicted in Fig. 7.
2. Application of discretization stencil on level t in Step 1 or Step 3.2.
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Fig. 7 Prolongation step. a
Two-dimensional case. b
Three-dimensional case

(a) 2D (b) 3D

3. Restriction in direction 1, . . . , D, if D ≥ 1

Now, two important questions are as follows:

Does Algorithm 3 correctly perform a matrix vector multiplication?
How is semi-orthogonality involved in this algorithm?

To answer these two questions, we restrict ourselves to the two-dimensional case
and the computation of the part

∑
t ′1>t1

a

⎛
⎝∑

t ′2≤t2

w(t ′1,t ′2), ϕ(t1,t2),(i1,i2)

⎞
⎠ .

This means that D = 1 and d = 2. Clearly, the algorithm would be correct if we
prolongated all of the data to a full grid, applied the discretization stencil, and then
applied restrictions. Such a prolongation restriction scheme is depicted in Fig. 8a. Yet,
this would lead to a computational inefficient algorithm since it requires the full grid
to perform calculations. Instead, all computations are omitted which are not needed
due to the semi-orthogonality property. To explain this in more detail, consider two
overlapping basis functions as in Fig. 8d. Computations along the algorithmic path
depicted in Fig. 8c are needed to take into account the corresponding value in the
stiffness matrix asemi-ortho

n (ϕt,i, ϕt′,i′). However, by using semi-orthogonality prop-
erty, the result of these computations is zero. Therefore, this algorithmic path can
be omitted. This shows that the remaining algorithmic paths depicted in Fig. 8b are
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(a) (b) (c)

supp

supp

(d)

Fig. 8 Prolongation-restriction in 2D on a sparse grid ignores the overlapping of t and t′. Calculation
would require a path over the full grid but can be ignored due to semi-orthogonality

enough for obtaining a correct computation. This proves that Algorithm 3 correctly
performs the matrix vector multiplication using semi-orthogonality.

Performance
Finally, the computational costs of the algorithms Algorithm 1–Algorithm 3 are ana-
lyzed. Let Op(δ, m) be the computational amount of one recursive call. By Fig. 9,
this computational amount satisfies the following recursive formula:

Op(δ, m) =
m∑

τ=0

Op(δ − 1, m − τ) + O(2m−τ (m − τ)δ−2 · 2n−(m−τ))

=
m∑

τ=0

Op(δ − 1, m − τ) + O(2n(m − τ)δ−2).

The factor 2m−τ (m − τ)δ−2 follows from the fact that for each τ , operations on a
sparse grid of dimension δ − 1 and depth (m − τ) are performed in each recursive
call. Furthermore, the factor 2n−(m−τ) arises from the number of operations on a full
grid of dimension d − (δ − 1). This full grid has depth (tδ, · · · , td), where

∑d
i=δ ti =

n − (m − τ) (see Fig. 9) .
Now, a proof by induction shows that

Op(δ, m) = O(2nmδ−1).

This implies that Algorithms 1–3 have the optimal complexity

O(2nnd−1).
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variable part fixed part

variable part fixed part

variable part fixed part

Fig. 9 Change of the depth vector t during a recursive call

Observe, that this estimate does not show how the computational amount increases
with respect to the dimension d.

7 The complete iterative solver

Discretization 1 leads to the linear equation system

AnU = MF, (14)

where An is the stiffness matrix (12), M the mass matrix, F the right-hand side
in prewavelet format, and U the solution vector in prewavelet format. By using the
orthogonality property (2), M is reduced to a diagonal matrix.

For solving (14), the conjugate gradient method with a simple diagonal Jacobi
precoditioner is applied. The condition number of An, including this simple precon-
ditioner, is O(1). This follows from the multilevel theory in [13] and the following
equivalence of norms:

‖u‖2
H 1

∼=
∑

|t|d≤n,i∈�t

∣∣ct,i∣∣2 a(ϕt,i, ϕt,i),

where u = ∑
|t|d≤n,i∈�t

ct,iϕt,i
Algorithm 1 is used to calculate the right-hand side vector F for a given right-hand

side vector (f (p))p∈Dn
. The conjugate gradient algorithm requires the application

of the stiffness matrix multiplication Algorithm 3. The resulting vector U applied to
Algorithm 2 leads to an approximation of the finite element solution u

prew
Dn

∈ V
prew
Dn

of Discretization 1. The total algorithm is depicted in Fig. 10.
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Fig. 10 Preconditioned CG-solver using prewavelet decomposition

8 Numerical results

To show the efficiency of the discretization in this paper, two numerical results are
presented. The first example shows that sparse grids can be used to discretize ellip-
tic partial differential equations on curvilinear bounded domains in 3D. The second
example is a six-dimensional Helmholtz problem with a variable coefficient. To our
knowledge, this is the first Ritz-Galerkin finite element discretization of an elliptic
PDE with variable coefficients in a higher-dimensional space.

In this paper, the discretization stencils were obtained by analytic calculations.

8.1 Poisson’s equation

We want to show that sparse grids can be applied to discretize partial differential
equations on curvilinear bounded domains. To this end, consider Poisson’s equation

− �u = f in � ⊂ R
3 (15)

u = g on ∂�.

In order to discretize this problem on a curvilinear bounded domain, one has to subdi-
vide the domain � into several blocks, such that each of these blocks can smoothly be
transformed to a unit cube. By these transformations to a unit cube, one obtains par-
tial differential equations with variable coefficients on the unit cube. The basic idea
of this concept is explained in [5, 7] for two-dimensional domains. To show that this
concept can be extended to a three-dimensional domain, it is applied to the curvilinear
bounded domain depicted in Fig. 11b. Simulation results are compared with simula-
tions obtained on a simple cubical domain [0, 1]3 (see Fig. 11a). The right-hand side
f and inhomogeneous Dirichlet boundary condition g are chosen such that

u = sin (xπ) sin (yπ) sin (zπ)

is the exact solution of (15). The curvilinear bounded domain is obtained by the
transformation of the x-coordinate and y-coordinate accordingly:

x̃ = 1

2
cos

(
π

2

(
x + 1

2

))
(y + 1)

ỹ = 1

2
sin

(
π

2

(
x + 1

2

))
(y + 1) (16)
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(a) unit cube (b) curved edges

Fig. 11 Sparse grid with depth n=7 on three-dimensional unit cube (a) and domain with curved edges (b)

Now, let u be the exact solution of Poisson’s problem (15) and u
prew
Dn

the finite
element discretization (5) on the sparse grid Dn of depth n. Furthermore, let en,∞ =
‖u − u

prew
Dn

‖∞ be the error in the maximum norm and en,2 = ‖u − u
prew
Dn

‖2 the
error in the L2-norm. Tables 1, 2, 3, 4, and Fig. 12 show that the discretization with
semi-orthogonality and prewavelets leads to an optimal convergence according the
approximation properties of sparse grids. These approximation properties of sparse
grids are described in detail in [4]. In particular, the convergence of the discretization
error is of order O (h) with respect to the H1-norm (see Table 4).

Moreover, the condition number of the stiffness matrix using a simple diagonal
preconditioner stays far below 10 for n = 2, ..., 9 (see Table 5). Therefore, only a
few cg-iterations are needed to obtain a small algebraic error.

8.2 Helmholtz equation with variable coefficients in PDE of a high
dimensionality

Consider the six-dimensional Helmholtz problem

− �u + cu = f in � := [0, 1]6

u = 0 on ∂� (17)

Table 1 Discretization error for variable coefficient c(x, y, z) = 1/(1 + x2) + 1/(1 + y2) + 1/(1 + y2)

n DOF en,∞ en,∞
en−1,∞ en,2

en,2
en−1,2

en,H 1
e
n,H1

e
n−1,H1

4 111 3.04−2 2.27−3 6.79−2

5 351 1.03−2 2.95 7.65−4 2.96 3.80−2 1.78

6 1023 3.24−3 3.17 2.47−4 3.10 2.00−2 1.9

7 2815 9.74−4 3.32 7.69−5 3.21 1.02−2 1.96

8 7423 2.96−4 3.29 2.33−5 3.30 5.15−3 1.98

9 18,943 8.83−5 3.35 6.92−6 3.37 2.59−3 1.99

10 47,103 2.61−5 3.38 2.02−6 3.43 1.29−3 2.0
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Table 2 L∞-norm of discretization error

Unit cube Curved domain

n DOF en,∞ en,∞
en−1,∞ en,∞ en,∞

en−1,∞

2 7 1.41−1 3.94−2

3 31 7.84−2 1.80 2.23−2 1.77

4 111 3.08−2 2.54 1.04−2 2.14

5 351 1.04−2 2.96 4.02−3 2.59

6 1023 3.27−3 3.19 1.34−3 3.00

7 2815 9.83−4 3.33 4.23−4 3.17

8 7423 2.98−4 3.29 1.28−4 3.30

9 18,943 8.87−5 3.37 3.77−5 3.40

10 47,103 2.62−5 3.38 1.08−5 3.48

Table 3 L2-norm of discretization error

Unit cube Curved domain

n DOF en,2
en,2

en−1,2
en,2

en,2
en−1,2

2 7 1.75−2 7.58−3

3 31 6.66−3 2.63 2.99−3 2.53

4 111 2.33−3 2.86 1.02−3 2.92

5 351 7.78−4 3.00 3.61−4 2.83

6 1023 2.50−4 3.12 1.29−4 2.81

7 2815 7.75−5 3.22 4.36−5 2.95

8 7423 2.35−5 3.30 1.45−5 3.02

9 18,943 6.95−6 3.37 4.59−6 3.15

10 47,103 2.02−6 3.43 1.42−6 3.23

Table 4 H1-norm of discretization error

Unit cube Curved domain

n DOF en,H 1
e
n,H1

e
n−1,H1

en,H 1
e
n,H1

e
n−1,H1

2 7 1.36−1 6.43−2

3 31 1.07−1 1.27 3.44−2 1.87

4 111 6.81−2 1.57 2.54−2 1.35

5 351 3.81−2 1.79 1.60−2 1.59

6 1023 2.00−2 1.90 9.23−3 1.73

7 2815 1.02−2 1.96 4.87−3 1.89

8 7423 5.16−3 1.98 2.51−3 1.94

9 18,943 2.59−3 1.99 1.27−3 1.97

10 47,103 1.29−3 2.00 6.41−4 1.99
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Fig. 12 Convergence of the error norm measured by L2 (a) and L∞ (b)

Table 5 Condition number of prewavelet discretization and diagonal preconditioning

Unit cube Curved domain

n DOF κ (A) κ
(
CT AC

)
κ (A) κ

(
CT AC

)

2 7 2.96 1.62 7.70 1.63

3 31 8.48 2.87 33.07 2.59

4 111 18.92 3.39 156.75 2.85

6 1023 150.08 4.01 454.82 3.14

7 2815 411.77 4.59 673.84 3.42

8 7423 670.33 5.11 836.71 3.61

9 18,943 780.90 5.47 880.15 3.79

Table 6 Error convergence for a six-dimensional Helmholtz problem

Constant coefficient Variable coefficient

n DOF en,∞ en,∞
en−1,∞ en,∞ en,∞

en−1,∞

2 13 0.40427 0.404078

3 97 0.28396 1.42 0.283793 1,42

4 545 0.10686 2.65 0.107563 2.64

5 2561 0.04028 2.65 0.040271 2.67

6 10,625 0.01533 2.63 0.015336 2.63

7 40,193 0.00566 2.71 0.005662 2.71

8 141,569 0.002129 2.66 0.002129 2.66

9 471,041 0.000788 2.70 0.000788 2.70

10 1,496,065 0.000279 2.82 0.000279 2.82
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Table 7 Error convergence for a six-dimensional Helmholtz problem

Constant coefficient Variable coefficient

n DOF en,2
en,2

en−1,2
en,2

en,2
en−1,2

2 13 0.006371 0.017708

3 97 0.004383 1.45 0.013738 1.29

4 545 0.002518 1.74 0.005889 2.33

5 2561 0.001265 1.99 0.002259 2.61

6 10,625 0.000576 2.20 0.000878 2.57

7 40,193 0.000243 2.37 0.000347 2.53

8 141,569 0.000097 2.50 0.000137 2.54

9 471,041 0.000037 2.62 0.000053 2.60

10 1,496,065 0.000014 2.72 0.000020 2.66

with variable coefficient

c (x, y, z, u, v, w) :=(
1 − x2

) (
1 − y2

) (
1 − z2

) (
1 − u2

) (
1 − v2

) (
1 − w2

)
. (18)

The right-hand side f is chosen such that

u = sin (xπ) sin (yπ) sin (zπ) sin (uπ) sin (vπ) sin (wπ)

is a solution of (17).
Table 6 shows the discretization error for constant coefficients (c = 1) as well as

for the variable coefficient (18) using the maximum norm and Table 7 for the L2-
norm. The convergence rate for the problem with constant coefficients is similar to
the reported convergence behavior in [21]. In addition, the solution of the discretiza-
tion with semi-orthogonality and prewavelet convergences in the case of variable
coefficients is as fast as in the case of constant coefficients. This shows that the
discretization with semi-orthogonality does not introduce any remarkable additional
errors.
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