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Abstract In this paper, we introduce the modified proximal point algorithm for com-
mon fixed points of asymptotically quasi-nonexpansive mappings in CAT(0) spaces
and also prove some convergence theorems of the proposed algorithm to a common
fixed point of asymptotically quasi-nonexpansive mappings and a minimizer of a
convex function. The main results in this paper improve and generalize the corre-
sponding results given by some authors. Moreover, we then give numerical examples
to illustrate and show efficiency of the proposed algorithm for supporting our main
results.
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1 Introduction

The proximal point method was initiated by Martinet [1] and henceforth developed
by Rockafellar [2]. These original constructions were meant to seek for points in the
preimage of zero under a certain (set-valued) map. It is known [2] in the context of
Hilbert space that under typical criteria, the proximal point method converges in the
weak topology to such solution. In particular, if the subdifferential of a proper convex
lower semi-continuous (for short, l.s.c.) function (of course, defined on a Hilbert
space, with probably infinite values) is taken into account, then such weak limits are
minimizers for that function. In this case, the proximal point method resolves into
solving the minimizer of Yosida-Moreau envelopes.

It is known [3] that a minimization problem can be written in the form of vari-
ational inequality with respect to the (sub)gradient of the corresponding objective
function. In general, variational inequalities have its own role outside optimization,
especially in nonlinear analysis.

Apart from nonlinear spaces like Riemannian (or Hadamard) manifolds, there are
still a varieties of structures that lies within a more general and more useful class of
CAT(0) spaces (also known as the non-positively curved spaces). Simple examples
of CAT(0) spaces that is not a Riemannian manifold are are spiders, booklets, metric
trees, Hilbert cubes, and Euclidean Bruhat-Tits buildings.

The proximal point method in Hadamard spaces, as was pioneered by Bačák [4],
was for minimization. His results exploit the developments of convex analysis in
Hadamard spaces, which became extensive during the past two decades. Note that the
method has been modified so that it converges in the metric by Cholamjiak [5] using
the Halpern procedure. However, the concept of subdifferential in a Hadamard space
was not available until [6], where it is also proved that a particular point minimizes
a proper convex l.s.c. function if and only if the corresponding subdifferential at that
point contains zero.

Recently, some proximal point algorithms (shortly, the PPA) for solving optimiza-
tion problems in classical linear spaces, such as Hilbert spaces and Banach spaces,
have been extended to the setting of manifolds [7–11].

A geodesic metric space (X, d) is a CAT(0) space if each geodesic triangle is at
least as ‘thin’ as its comparison triangle in R

2. A complete CAT(0) space is then
called a Hadamard space. Let C be a nonempty closed subset of a CAT(0) space X

and let T : C → C be a mapping. The set of fixed point of T is denote by F(T ), that
is, F(T ) = {x ∈ C : x = T x}. Recall that T is said to be:

(1) nonexpansive if d(T x, T y) ≤ d(x, y) for all x, y ∈ C;
(2) quasi-nonexpansive if d(T x, p) ≤ d(x, p) for all x ∈ C and p ∈ F(T );
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(3) asymptotically nonexpansive if there exists a sequence {νn} in [0, ∞) with
limn→∞ νn = 0 such that

d(T nx, T ny) ≤ (1 + νn)d(x, y)

for all x, y ∈ C and n ≥ 1;
(4) asymptotically quasi-nonexpansive if there exists a sequence {νn} in [0, ∞)

with limn→∞ νn = 0 and p ∈ F(T ) such that

d(T nx, p) ≤ (1 + νn)d(x, p)

for all x ∈ C and n ≥ 1;
(5) uniformly L-Lipschitz if there exists a constant L > 0 such that

d(T nx, T ny) ≤ Ld(x, y)

for all x, y ∈ C and n ≥ 1.

Nowadays, there have been many iterative methods constructed and proposed
to find approximating fixed points of nonlinear mappings. The Halpern iteration
process is defined as follows: x1 ∈ C and

xn+1 = αnu ⊕ (1 − αn)T xn (1.1)

for each n ∈ N, where {αn} is a real sequence in (0,1). The S-iteration process is
defined as follows: {

yn = (1 − αn)xn + αnT xn,

xn+1 = (1 − βn)T xn + βnTyn
(1.2)

for each n ∈ N, where {αn} and {βn} are real sequences in (0,1). The Noor iteration
process is defined as follows:⎧⎨

⎩
zn = (1 − αn)xn + αnT xn,

yn = (1 − βn)xn + βnT zn,

xn+1 = (1 − γn)xn + γnT yn

(1.3)

for each n ∈ N, where {αn}, {βn} and {γn} are real sequences in (0,1) that the process
(1.3) can reduce to be both the Ishikawa iteration process (see [12]) and the Mann
iteration process (see [13]). In 2011, Phuengrattana and Suantai [14] introduced
following the SP-iteration process as follows:⎧⎨

⎩
wn = (1 − αn)xn + αnT xn,

yn = (1 − βn)wn + βnT wn,

xn+1 = (1 − γn)yn + γnT yn

(1.4)

for each n ∈ N, where {αn}, {βn} and {γn} are real sequences in (0,1). Subsequently,
in 2016, Kitkuan and Padcharoen [15] studied and applied the process (1.4) in CAT(0)
spaces as follows: ⎧⎨

⎩
wn = (1 − αn)xn ⊕ αnT

nxn,

yn = (1 − βn)wn ⊕ βnT
nwn,

xn+1 = (1 − γn)yn ⊕ γnT
nyn

(1.5)



830 Numer Algor (2018) 78:827–845

for each n ∈ N, where {αn}, {βn} and {γn} are real sequences in (0,1). They
also proved some strong convergence theorems for generalized asymptotically
quasi-nonexpansive mappings in a such space under some conditions.

Let (X, d) be a geodesic space and f : X → (−∞, ∞] be a proper and convex
function. One of the major problems in optimization theory is to solve x ∈ X such
that

f (x) = min
y∈X

f (y).

We denote by arg miny∈X f (y) by the set of a minimizer of a convex function. A
powerful tool for solving this problem is the well-known PPA which was introduced
by Martinet [1] in 1970. In 1976, Rockafellar [2] studied, by the PPA, the conver-
gence to a solution of the convex minimization problem in the framework of a Hilbert
space. Also, he proved that the sequence {xn} converges weakly to a minimizer of a
convex function f such that

∑∞
n=1 λn = ∞.

In 2013, Bačák [4] introduced the PPA in a CAT(0) space (X, d) as follows: x1 ∈
X and

xn+1 = arg min
y∈X

[f (y) + 1

2λn

d2(y, xn)]

for each n ∈ N, where λn > 0 for all n ∈ N, and he showed that, if f has a minimizer
and

∑∞
n=1 λn = ∞, then the sequence {xn} �-converges to its minimizer (see also

[16]).
In 2015, Cholamjiak [5] modified the PPA by using the process (1.1) in CAT(0)

spaces (X, d) as follows:{
yn = arg miny∈X[f (y) + 1

2r
d2(y, xn)],

xn+1 = αnu ⊕ (1 − αn)yn

for each n ∈ N, where r > 0, limn→∞ αn = 0 and
∑∞

n=1 = ∞. He proved
the sequence {xn} converges to its minimizer. Moreover, he illustrated the numerical
example for supporting the main result.

In the same year, Cholamjiak et al. [17] introduced the following PPA with the
process (1.2) in CAT(0) spaces as follows:⎧⎨

⎩
zn = arg miny∈X[f (y) + 1

2λn
d2(y, xn)],

yn = (1 − βn)xn ⊕ βnT1zn,

xn+1 = (1 − αn)T1xn ⊕ αnT2yn

for each n ∈ N and established some strong convergence theorems of the proposed
algorithm to common fixed points of nonexpansive mappings and to minimizers of
a convex function in such spaces (see also [18]). Recently, Chang et al. [19] estab-
lished some strong convergence theorems of the PPA with process (1.2) to common
fixed point of asymptotically nonexpansive mappings and to minimizers of a convex
function in CAT(0) spaces.

Motivated and inspired by the above results, in this paper, we propose the modified
proximal point algorithm with the process (1.5) for three asymptotically quasi-
nonexpansive mappings in CAT(0) spaces and under suitable conditions, we also
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prove some convergence theorems of the proposed processes. Furthermore, we pro-
vide numerical examples to illustrate and show efficiency of the proposed algorithm
for supporting our main results.

2 Preliminaries

In this section, we will mention basic concepts, definitions, notations, and some
useful lemmas for use in the next sections.

Recall that a metric space (X, d) is called a CAT(0) space if it is geodesically
connected and every geodesic triangle in X is at least as “thin” as its comparison
triangle in the Euclidean plane.

A subset C of a CAT(0) space X is said to be convex if, for any x, y ∈ K , we have
[x, y] ⊂ C, where

[x, y] := {αx ⊕ (1 − α)y : 0 ≤ α ≤ 1}
is the unique geodesic joining x and y. For more details, see [20–25]. In this paper,
we can write (1 − t)x ⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(x, z) = td(x, y), d(y, z) = (1 − t)d(x, y)

where t ∈ [0, 1]. It is well known that a geodesic space (X, d) is a CAT(0) space if
and only if

d2((1 − t)x ⊕ ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t (1 − t)d2(x, y) (2.1)

for all x, y, z ∈ X and t ∈ [0, 1]. In particular, if x, y, and z are points in a CAT(0)
space (X, d) and t ∈ [0, 1], then we have

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z). (2.2)

Let {xn} be a bounded sequence in a CAT(0) space (X, d). For any x ∈ X, we put

r(x, {xn}) = lim sup
n→∞

d(x, xn).

(1) The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X};
(2) The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is well known that, in a complete CAT(0) space, A({xn}) consists of exactly one

point (cf. [20]).

Definition 2.1 A sequence {xn} in a CAT(0) space X is said to be �-convergent to a
point x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un}
of {xn}. In this case, we write � − limn→∞ xn = x of {xn} and denote W�(xn) :=
∪{A({un})}, where the union is sum over all subsequences {un} of {xn}.
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Recall that a bounded sequence {xn} in X is said to be regular if r({un}) = r({xn})
for every subsequence {un} of {xn}. It is well known that every bounded sequence in
X has a �-convergent subsequence [26].

Lemma 2.2 [20] If {xn} is a bounded sequence in a complete CAT(0) space with
A({xn}) = {x}, {un} is a subsequence of {xn} with A({un}) = {u} and the sequence
{d(xn, u)} converges, then x = u.

Lemma 2.3 [27] Assume that a subset of a complete CAT(0) space (X, d) is closed,
convex and T : C → C be an asymptotically nonexpansive mapping. Let {xn} be
a bounded sequence in C such that � − lim xn = p and limn→∞ d(xn, T xn) = 0.
Then, Tp = p.

Recall that a function f : C → (−∞, ∞] is said to be convex if, for any a
geodesic [x, y] := {γx,y(α) : 0 ≤ α ≤ 1} := {αx ⊕ (1 − α)y : 0 ≤ α ≤ 1} joining
x, y ∈ C, the function f ◦ γ is convex, i.e.,

f (γx,y(α)) := f (αx ⊕ (1 − α)y) ≤ αf (x) + (1 − α)f (y).

Now, we give some examples of a convex function in CAT(0) space X as follows:

Example 2.1 For a nonempty, closed and convex subset C ⊂ X, the indicator
function δC : X → R defined by

δC(x) =
{

0, if x ∈ C,

+∞, otherwise,

be a proper, convex and lower semi-continuous function.

Example 2.2 The function f : X → [0, ∞) defined by f (y) = d(x, y) for all y ∈ X

is convex.

Example 2.3 The function f : X → [0, ∞) defined by f (y) = d2(x, y) for all
y ∈ X is convex.

For all λ > 0, define the Moreau-Yosida resolvent of f in a complete CAT(0)
space X as follows:

Jλ(x) = arg min
y∈X

[f (y) + 1

2λ
d2(y, x)] (2.3)

for all x ∈ X.
Let f : X → (−∞, ∞] be a proper, convex and lower semi-continuous function.

It was shown in [16] that the set F(Jλ) of the fixed point of the resolvent Jλ associated
with f coincides with the set arg min

y∈X

f (y) of minimizers of f . Also, for any λ > 0,

the resolvent Jλ of f is nonexpansive [28].
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Lemma 2.4 [29] Let (X, d) be a complete CAT(0) space and f : X → (−∞, ∞]
be proper, convex and lower semi-continuous function. Then, for all x, y ∈ X and
λ > 0, we have

1

2λ
d2(Jλx, y) − 1

2λ
d2(x, y) + 1

2λ
d2(x, Jλx) + f (Jλx) ≤ f (y).

Lemma 2.5 [30] Let (X, d) be a complete CAT(0) space and f : X → (−∞, ∞]
be proper convex and lower semi-continuous function. Then, the following identity
holds:

Jλx = Jμ

(λ − μ

λ
Jλx ⊕ μ

λ
x
)

for all x ∈ X and λ > μ > 0.

Lemma 2.6 [31] Let {μn} and {νn} are two sequences of non-negative real numbers
such that:

μn+1 ≤ (1 + νn)μn

for all n ∈ N. If
∑∞

n=1 νn < ∞, then limn→∞ μn exists.

3 Convergence theorems

3.1 Some �-convergence theorems

Now, we construct and prove the main results in this paper.

Theorem 3.1 Let (X, d) be a complete CAT(0) space and C be a nonempty
closed convex subset of X. Let f : X → (∞,∞] be a proper convex and
lower semi-continuous function and R, S, T : C → C are three asymptotically
quasi-nonexpansive mappings with F(R) ∩ F(S) ∩ F(T ) �= ∅ and

ω := F(R) ∩ F(S) ∩ F(T ) ∩ arg min
y∈C

f (y) �= ∅.

Let {νn} be a non-negative real sequence with
∑∞

n=1 νn < ∞, {αn}, {βn}, {γn} be
sequences in [0, 1] with 0 < a ≤ αn, γn, δn ≤ c < 1 for all n ∈ N and for some
a, c are positive constants in (0, 1) and {λn} be a sequence with λn ≥ λ > 0 for all
n ∈ N and for some λ. Let {xn} be the sequence generated in the following manner:⎧⎪⎪⎨

⎪⎪⎩

zn = arg miny∈X[f (y) + 1
2λn

d2(y, xn)],
wn = (1 − αn)zn ⊕ αnR

nzn,

yn = (1 − βn)wn ⊕ βnS
nwn,

xn+1 = (1 − γn)yn ⊕ γnT
nyn

(3.1)

for each n ∈ N. Then, the following statements hold:

(1) limn→∞ d(xn, p̃) exists for all p̃ ∈ ω;
(2) limn→∞ d(xn, zn) = 0;
(3) limn→∞ d(xn, Rxn) = limn→∞ d(xn, Sxn) = limn→∞ d(xn, T xn) = 0.
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Proof Let p̃ ∈ ω. Then, p̃ = Rp̃ = Sp̃ = T p̃ and f (p̃) ≤ f (y) for any y ∈ C.
Hence, we have

f (p̃) + 1

2λn

d2(p̃, p̃) ≤ f (y) + 1

2λn

d2(y, p̃)

for each y ∈ C and so p̃ = Jλnp̃ for each n ∈ N.
(1) Now, we show that limn→∞ d(xn, p̃) exists. Indeed, zn = Jλnxn and Jλn is

nonexpansive [28]. Hence, we have

d(zn, p̃) = d(Jλnxn, Jλnp̃) ≤ d(xn, p̃). (3.2)

Also, by (3.1), (3.2) and (2.2), we have

d(wn, p̃) = d((1 − αn)zn ⊕ αnR
nzn, p̃)

≤ (1 − αn)d(zn, p̃) + αnd(Rnzn, p̃)

≤ (1 − αn)d(zn, p̃) + αn(1 + νn)d(zn, p̃)

≤ (1 + αnνn)d(zn, p̃)

≤ (1 + αnνn)d(xn, p̃) (3.3)

and

d(yn, p̃) = d((1 − βn)wn ⊕ βnS
nwn, p̃)

≤ (1 − βn)d(wn, p̃) + βnd(Snwn, p̃)

≤ (1 − βn)d(wn, p̃) + βn(1 + νn)d(wn, p̃)

= (1 + βnνn)d(wn, p̃)

≤ (1 + βnνn)(1 + αnνn)d(zn, p̃)

≤ (1 + αnνn + βnνn + αnβnν
2
n)d(xn, p̃). (3.4)

Similarly, by (3.3) and (3.4), we have

d(xn+1, p̃) = d((1 − γn)yn ⊕ γnT
nyn, p̃)

≤ (1 − γn)d(yn, p̃) + γnd(T nyn, p̃)

≤ (1 − γn)d(yn, p̃) + γn(1 + νn)d(yn, p̃)

≤ (1 + γnνn)d(yn, p̃)

≤ (1 + αnνn + βnνn + αnβnν
2
n + γnνn

+ αnγnν
2
n + βnγnν

2
n + αnβnγnν

3
n)d(xn, p̃)

= (1 + (αn + βn + αnβnνn + γn

+ αnγnνn + βnγnνn + αnβnγnν
2
n)νn)d(xn, p̃) (3.5)

Since
∑∞

n=1 νn < ∞, by Lemma 2.6, it follows that limn→∞ d(xn, p̃) exists and so
we assume that

lim
n→∞ d(xn, p̃) = c ≥ 0. (3.6)

Therefore, {xn} is bounded and so the sequences {zn}, {wn}, {yn}, {Rnxn}, {Snxn}
and {T nzn} are bounded.
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(2) Next, we show that limn→∞ d(xn, zn) = 0. Indeed, by Lemma 2.4, we have

1

2λn

{d2(zn, p̃) − d2(xn, p̃) + d2(xn, zn)} ≤ f (p̃) − f (zn).

Since f (p̃) ≤ f (zn) for each n ∈ N, it follows that

d2(xn, zn) ≤ d2(xn, p̃) − d2(zn, p̃). (3.7)

Furthermore, from (3.5), we have

d(xn+1, p̃) ≤ (1 + γnνn)d(yn, p̃) (3.8)

and
lim inf
n→∞ d(yn, p̃) ≥ c. (3.9)

On the other hand, it follows from (3.4) that

lim sup
n→∞

d(yn, p̃) ≤ c (3.10)

and so
lim

n→∞ d(yn, p̃) = c. (3.11)

Similarly, from (3.4), it follows that

d(yn, p̃) ≤ (1 + βnνn)d(wn, p̃), (3.12)

which yields
lim inf
n→∞ d(wn, p̃) ≥ c. (3.13)

Also, by (3.3), we have

lim sup
n→∞

d(wn, p̃) ≤ c. (3.14)

Hence, by (3.13) and (3.14), we obtain

lim
n→∞ d(wn, p̃) = c. (3.15)

Since
d(wn, p̃) ≤ (1 + βnνn)d(zn, p̃), (3.16)

which yields
lim inf
n→∞ d(zn, p̃) ≥ c. (3.17)

Also, by (3.3), we have
lim sup
n→∞

d(zn, p̃) ≤ c (3.18)

and so
lim

n→∞ d(zn, p̃) = c. (3.19)

This shows that
lim

n→∞ d(xn, zn) = 0 (3.20)

and so we prove (2).
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(3) Now, we show that limn→∞ d(xn, Rxn) = limn→∞ d(xn, Sxn) = limn→∞
d(xn, T xn) = 0. Observe that

d2(wn, p̃) = d2((1 − αn)zn ⊕ αnR
nzn, p̃)

≤ (1 − αn)d
2(zn, p̃) + αnd

2(Rnzn, p̃) − αn(1 − αn)d
2(zn, R

nzn)

≤ (1 − αn)d
2(zn, p̃) + αn(1 + νn)d

2(zn, p̃) − αn(1 − αn)d
2(zn, R

nzn)

= (1 + αnνn)d
2(zn, p̃) − αn(1 − αn)d

2(zn, R
nzn),

which implies that

d2(zn, R
nzn) ≤ 1

αn(1 − αn)

[
(d2(zn, p̃) − d2(wn, p̃)) + αnνnd

2(zn, p̃)
]

≤ 1

a(1 − c)

[
(d2(zn, p̃) − d2(wn, p̃)) + αnνnd

2(zn, p̃)
]

→ 0 (3.21)

as n → ∞. Using the triangle inequality, by (3.20) and (3.21), we have

d(Rnxn, xn) ≤ d(Rnxn, R
nzn) + d(Rnzn, zn) + d(zn, xn)

≤ Ld(xn, zn) + d(Rnzn, zn) + d(zn, xn)

→ 0 (3.22)

as n → ∞. Thus, we have

d(wn, xn) = d((1 − αn)zn ⊕ αnR
nzn, xn)

≤ (1 − αn)d(xnzn) + αnd(Rnzn, xn)

≤ (1 − αn)d(xn, zn) + αn{d(Rnzn, zn) + d(zn, xn)}
→ 0 (3.23)

as n → ∞. Similarly, it follows that

d2(yn, p̃) = d2((1 − βn)wn ⊕ βnS
nwn, p̃)

≤ (1 − βn)d
2(wn, p̃) + βnd

2(Snwn, p̃) − βn(1 − βn)d
2(wn, S

nwn)

≤ (1 − βn)d
2(wn, p̃) + βn(1 + νn)d

2(wn, p) − βn(1 − βn)d
2(wn, S

nwn)

= (1 + βnνn)d
2(wn, p̃) − βn(1 − βn)d

2(wn, S
nwn),

which implies that

d2(wn, S
nwn) ≤ 1

βn(1 − βn)
{(d2(wn, p̃) − d2(yn, p̃)) − βnνnd

2(wn, p̃)}

≤ 1

a(1 − c)
{(d2(wn, p̃) − d2(yn, p̃)) − βnνnd

2(wn, p̃)}
→ 0 (3.24)

as n → ∞. Again, by the triangle inequality, (3.23) and (3.24), we have

d(Snxn, xn) ≤ d(Snxn, S
nwn) + d(Snwn, wn) + d(wn, xn)

≤ d(xn, wn) + d(Snwn, wn) + d(wn, xn)

→ 0 (3.25)
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as n → ∞, which implies that

d(yn, xn) = d((1 − βn)wn ⊕ βnS
nwn, xn)

≤ (1 − βn)d(wn, xn) + βn{d(Snwn, wn) + d(wn, xn)}
→ 0 (3.26)

as n → ∞. Similarly, observe that

d2(xn+1, p̃) = d2((1 − γn)yn ⊕ γnT
nyn, p̃)

≤ (1 − γn)d
2(yn, p̃) + γnd

2(T nyn, p̃) − γn(1 − γn)d
2(yn, T

nyn)

≤ (1 − γn)d
2(yn, p̃) + γn(1 + νn)d

2(yn, p̃) − γn(1 − γn)d
2(yn, T

nyn)

and so

d2(yn, T
nyn) ≤ 1

γn(1 − γn)
{(d2(yn, p̃) − d2(xn+1, p̃)) − γnνnd

2(yn, p̃)}

≤ 1

a(1 − c)
{(d2(yn, p̃) − d2(xn+1, p̃)) − γnνnd

2(yn, p̃)}
→ 0 (3.27)

as n → ∞, which implies that

d(T nxn, xn) ≤ d(T nxn, T
nyn) + d(T nyn, yn) + d(yn, xn)

≤ Ld(xn, yn) + d(T nyn, yn) + d(yn, xn)

→ 0 (3.28)

as n → ∞. It follows that

d(xn+1, xn) = d((1 − γn)yn ⊕ γnT
nyn, xn)

≤ (1 − γn)d(yn, xn) + γnd(T nynxn)

≤ (1 − γn)d(yn, xn) + γn{d(T nyn, yn) + d(yn, xn)}
→ 0 (3.29)

as n → ∞, we have

d(xn, Rxn) ≤ d(xn, xn+1) + d(xn+1, R
n+1xn+1)

+ d(Rn+1xn+1, R
n+1xn) + d(Rn+1xn, Rxn)

≤ d(xn, xn+1) + d(xn+1, R
n+1xn+1) + Ld(xn+1, xn) + Ld(Rnxn, xn)

→ 0 (3.30)

as n → ∞. Similarly, we can conclude that

lim
n→∞ d(xn, Sxn) = lim

n→∞ d(xn, T xn) = 0

Therefore, we prove (3). This completes the proof.

Theorem 3.2 Under the hypothesis of Theorem 3.1, the sequence {xn} defined by
(3.1) �-converges to a common element of ω.
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Proof In fact, it follows from (3.20) and Lemma 2.5 that

d(Jλxn, xn) ≤ d(Jλxn, zn) + d(zn, xn)

= d(Jλxn, Jλnxn) + d(zn, xn)

= d
(
Jλxn, Jλ

(λn − λ

λn

Jλnxn ⊕ λ

λn

xn

))
+ d(zn, xn)

≤ d
(
xn,

(
1 − λ

λn

)
Jλnxn ⊕ λ

λn

xn

)
+ d(zn, xn)

≤
(

1 − λ

λn

)
d(xn, Jλnxn) + λ

λn

d(xn, xn) + d(zn, xn)

=
(

1 − λ

λn

)
d(xn, zn) + d(zn, xn)

→ 0

as n → ∞. By Theorem 3.1 (1), it follows that limn→∞ d(xn, p̃) exists for all p̃ ∈ ω

and, by Theorem 3.1 (3), we have limn→∞ d(xn, Rxn) = limn→∞ d(xn, Sxn) =
limn→∞ d(xn, T xn) = 0.

Next, we prove that

W�(xn) :=
⋃

{un}⊂{xn}
A({un}) ⊂ ω.

Let u ∈ W�(xn). Then, there exists a subsequence {un} of {xn} such that
A({un}) = {u}. By Definition 2.1, there exists a subsequence {vn} of {un} such that
� − limn→∞ vn = v for some v ∈ C. By Lemma 2.3, v ∈ ω. So, u = v by
Lemma 2.2. This shows that W�(xn) ⊂ ω.

Finally, we will prove that the sequence {xn} �-converges to a point in ω. To this
end, it suffices to prove that W�(xn) consists of exactly one point. Let {un} be a
subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ W�(xn) ⊂
ω and {d(xn, u)} converges, by Lemma 2.2, we have x = u. Thus, W�(xn) = {x}.
This completes the proof.

We know that every real Hilbert space H is a complete CAT(0) space. The
following result can be obtained from Theorem 3.1.

Corollary 3.3 Let C be a nonempty closed and convex subset of real Hilbert spaces
H . Suppose that R, S, T , {kn}, f , {αn}, {βn}, {γn}, {λn}, λ and ω satisfy all the
hypothesis in Theorem 3.1. If {xn} is the sequence generated in the following manner:⎧⎪⎪⎨

⎪⎪⎩

zn = arg miny∈X[f (y) + 1
2λn

‖y − xn‖2],
wn = (1 − αn)zn + αnR

nzn,

yn = (1 − βn)wn + βnS
nwn,

xn+1 = (1 − γn)yn + γnT
nyn

for each n ∈ N, then the sequence {xn} converges weakly to a common element in ω.
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3.2 Some strong convergence theorems

In this subsection, under mild conditions, we construct and prove strong convergence
theorems.

Let C be a nonempty closed convex subset of a CAT(0) space (X, d). A family
{P,Q,R, S} of mappings is said to satisfy the condition (ω) if there exists a non-
decreasing function f : [0, ∞) → [0, ∞) with f (0) = 0 and f (r) > 0 for all
r ∈ (0, ∞) such that

d(x, Px) ≥ f (d(x, F ))

or
d(x, Qx) ≥ f (d(x, F ))

or
d(x, Rx) ≥ f (d(x, F ))

or
d(x, Sx) ≥ f (d(x, F ))

for all x ∈ X, where F = F(P ) ∩ F(Q) ∩ F(R) ∩ F(S).

Theorem 3.4 Under the hypothesis of Theorem 3.1, suppose that the family
{R, S, T , Jλ} satisfy the condition (ω). Then, the sequence {xn} defined by (3.1)
strongly converges to a common element of ω.

Proof From Theorem 3.1 (1), we have limn→∞ d(xn, p̃) exists for all p̃ ∈ ω. Also,
it follows that limn→∞ d(xn, ω) exists. On the other hand, by the condition (ω), we
have

lim
n→∞ f (d(xn, ω)) ≥ lim

n→∞ d(xn, Rxn) = 0

or
lim

n→∞ f (d(xn, ω)) ≥ lim
n→∞ d(xn, T xn) = 0

or
lim

n→∞ f (d(xn, ω)) ≥ lim
n→∞ d(xn, Sxn) = 0

or
lim

n→∞ f (d(xn, ω)) ≥ lim
n→∞ d(xn, Jλxn) = 0.

Thus, we have limn→∞ f (d(xn, ω)) = 0. By using the property of f , we have
limn→∞ d(xn, ω) = 0. Thus, following the proof of Theorem 3.3 of [32], we can
show that {xn} is a Cauchy sequence in X and so {xn} converges to a point p∗ in X

and hence d(p∗, ω) = 0. Since ω is closed, we have p∗ ∈ ω. This completes the
proof.

A mapping T : C → C is said to be semi-compact if any sequence {xn} in C

satisfying d(xn, T xn) → 0 as n → ∞ has a convergent subsequence.

Theorem 3.5 Under the hypothesis of Theorem 3.1, suppose that R or S or T or
Jλ is semi-compact. Then the sequence {xn} defined by (3.1) strongly converges to a
common element of ω.
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Proof Suppose that R is semi-compact. By Theorem 3.1 (3), we have limn→∞
d(xn, Rxn) = 0. Thus, there exists a subsequence {xnk

} of {xn} such that xnk
→

p∗ ∈ X. Since

lim
n→∞ d(xn, Sxn) = lim

n→∞ d(xn, T xn) = lim
n→∞ d(xn, Jλxn) = 0,

we have d(p∗, Sp∗) = d(p∗, Tp∗) = 0 and d(p∗, Jλp
∗) = 0, which show that

p∗ ∈ ω. For other mappings, we also prove the strong convergence of {xn} to a
common element of ω. This completes the proof.

Remark 3.6 Our main results extends the results of Bačák [4], Chang et al. [19] and
Cholamjiak et al. [17] in the framework of CAT(0) spaces. Moreover, our results gen-
eralize the results of Cholamjiak et al. [17] from two nonexpansive mappings to three
asymptotically quasi-nonexpansive mappings involving the convex and lower semi-
continuous function in such a framework. In fact, we present the modified proximal
point algorithm with the process (1.5) for solving the convex minimization problem
as well as the common fixed points problem.

4 Numerical results

In this section, we provide numerical examples to illustrate reckoning the conver-
gence of modified proximal point algorithm with SP -type iteration (3.1) for three
asymptotically quasi-nonexpansive mappings by numerical experiment results for
supporting main results.

Example 4.1 Let X = R be a Euclidean metric space and C = [1, 10]. Let R, S, T :
R → R be mappings defined by

Rx = x + 3

2
, Sx = 3

√
18 + x2, T x =

√
x2 − 6x + 18.

For all x ∈ C, let f : X → (−∞, ∞] defined by

f (x) = ‖x‖1 + 1

2
‖x‖2

2 − 4x + 5.

It is easy to check that R, S, T are continuous uniformly L-Lipschitzian and
asymptotically quasi-nonexpansive mappings with F(R) = F(S) = F(T ) = {3}
and f is proper convex and lower semi-continuous function.

Let αn = 4n−3
8n

, βn = 6n−1
10n

, γn = 12n−7
15n

and also we put x1 = 10 is the initial
value, using the soft thresholding operator [33] and the proximity operator [34]. Then,
we obtain numerical results in Table 1 with the values error (see Fig. 1).
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Table 1 Numerical results of Example 4.1

Number of iterates xn f (xn) ‖xn − xn−1‖2

1 10.0000000000 25.0000000000 –

2 4.59492461474 1.77189226335 5.40507538526

3 3.12672761382 0.50802994405 1.46819700092

4 3.00665392713 0.50002213737 0.12007368669

5 3.00027813747 0.50000003868 0.00637578966

6 3.00001008672 0.50000000005 2.6805075e−04

7 3.00000033239 0.50000000000 9.7543334e−06

8 3.00000001023 0.50000000000 3.2216186e−07

9 3.00000000030 0.50000000000 9.9293258e−09

10 3.00000000001 0.50000000000 2.9060310e−10

11 3.00000000000 0.50000000000 8.1703533e−12

12 3.00000000000 0.50000000000 2.2248869e−13

13 3.00000000000 0.50000000000 5.7731597e−15

14 3.00000000000 0.50000000000 0.00000000000

15 3.00000000000 0.50000000000 0.00000000000

From Table 1 and Fig. 2, we see that the sequence {xn} converges to 3 which is a
common fixed point of three asymptotically quasi-nonexpansive mappings and also
a minimizer of a function f . That is a solution of constrained convex minimization
problems as follows:

min
x∈C⊆R

‖x‖1 + 1

2
‖x‖2

2 − 4x + 5.

Fig. 1 The values of ‖xn − xn−1‖2 plotting in Table 1
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Fig. 2 The values of {xn} plotting in Table 1

Example 4.2 Let X = R
2 be a Euclidean metric space and C = {x|x = (x 1̂, x 2̂) ∈

R
2 : 1 ≤ x 1̂, x 2̂ ≤ 100}. Let R, S, T : R2 → R

2 be mappings defined by

Rx =
(

5 + x 1̂

6
,

4 + 3x 2̂

2

)
,

Table 2 Numerical results of Example 4.2

Number of iterates xn = (x 1̂, x 2̂) f (xn) ‖xn − xn−1‖2

1 (50.0000000000, 100.0000000000) 6008.0000000000 –

2 (11.1524232136, 21.19083961382) 241.18001109574 87.8636328805

3 (2.14191795123, 4.977335166394) 10.584250650198 18.5490412569

4 (1.07590173580, 2.262240265625) 5.53726551520641 2.91687005054

5 (1.00417100495, 2.017159422807) 5.50015592153666 0.25536232546

6 (1.00020889593, 2.000956075306) 5.50000047885875 0.01668073074

7 (1.00000984348, 2.000047980177) 5.50000000119950 9.2965512e−04

8 (1.00000044408, 2.000002244761) 5.50000000000262 4.6691296e−05

9 (1.00000001939, 2.000000100056) 5.50000000000001 2.1863483e−06

10 (1.00000000083, 2.000000004307) 5.50000000000000 9.7531631e−08

11 (1.00000000003, 2.000000000181) 5.50000000000000 4.2018489e−09

12 (1.00000000000, 2.000000000007) 5.50000000000000 1.7636027e−10

13 (1.00000000000, 2.000000000000) 5.50000000000000 7.2531323e−12

14 (1.00000000000, 2.000000000000) 5.50000000000000 2.9334437e−13

15 (1.00000000000, 2.000000000000) 5.50000000000000 1.1757886e−14

16 (1.00000000000, 2.000000000000) 5.50000000000000 4.4408921e−16

17 (1.00000000000, 2.000000000000) 5.50000000000000 0.00000000000

18 (1.00000000000, 2.000000000000) 5.50000000000000 0.00000000000
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Fig. 3 The values of ‖xn − xn−1‖2 plotting in Table 2

Sx =
(√

1 − x 1̂ + (x 1̂)2,
3
√

6 + x 2̂

)
,

T x =
⎛
⎝ 3

√
1 + x 1̂

2
,

√
4 − 2x 2̂ + (x 2̂)2

⎞
⎠ .

For all x ∈ C, let f : X → (−∞, ∞] defined by

f (x) = ‖x‖1 + 1

2
‖x‖2

2 + (−2, −3)x + 8.

Fig. 4 The values of {xn} = (x 1̂, x 2̂) plotting in Table 2
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It is easy to check that R, S, T are continuous uniformly L-Lipschitzian and
asymptotically quasi-nonexpansive mappings with F(R) = F(S) = F(T ) = (1, 2)

and f is proper convex and lower semi-continuous function.
Let αn = 160n+47

400n
, βn = 390n+131

1000n
, γn = 490n−323

600n
and also we put (50, 100) is

the initial point. Then, we obtain numerical results in Table 2 with values of error
(see Fig. 3).

From Table 2 and Fig. 4, we see that the sequence {xn} converges to a point (1,2)
which is a common fixed point of three asymptotically quasi-nonexpansive map-
pings and also a minimizer of a function f . That is a solution of constrained convex
minimization problems as follows:

min
x∈C⊆R2

‖x‖1 + 1

2
‖x‖2

2 + (−2, −3)x + 8.
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