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Abstract We introduce and study a geometric modification of the Douglas–
Rachford method called the Circumcentered–Douglas–Rachford method. This
method iterates by taking the intersection of bisectors of reflection steps for solv-
ing certain classes of feasibility problems. The convergence analysis is established
for best approximation problems involving two (affine) subspaces and both our the-
oretical and numerical results compare favorably to the original Douglas–Rachford
method. Under suitable conditions, it is shown that the linear rate of convergence of
the Circumcentered–Douglas–Rachford method is at least the cosine of the Friedrichs
angle between the (affine) subspaces, which is known to be the sharp rate for
the Douglas–Rachford method. We also present a preliminary discussion on the
Circumcentered–Douglas–Rachford method applied to the many set case and to
examples featuring non-affine convex sets.
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1 Introduction

Projection and reflection schemes are celebrated tools for finding a point in the
intersection of finitely many sets [15], a basic problem in the natural sciences and
engineering (see, e.g., [6] and [17]). Probably, the Douglas–Rachford method (DRM)
is one of the most famous and well-studied of these schemes (see, e.g., [4, 5, 8, 27,
30]). Also known as averaged alternating reflections method, it was introduced in
[22] and has recently gained much popularity, in part thanks to its good behavior in
non-convex settings (see, e.g., [1–3, 9, 11, 13, 24, 25, 28]).

This paper has a two-fold aim: (i) improving the original DRM by means of a
simple geometric modification, and (ii) meeting the demand of more satisfactory
schemes for the many set case.

Regarding (i), the proposed scheme is greedy by means of distance to the solution
set, that is, our iterate is the best possible point relying on successive reflections onto
two subspaces. In particular, we get an improvement towards the solution set with
respect to DRM iteration, which arises from the average of two successive reflec-
tions. Also, we get a convergence rate at least as good as DRM’s with a comparable
computational effort per iteration, however with numerical results fairly favorable.
The aim (ii) will be treated in the last section.

To consider the problem, let 〈·, ·〉 denote the scalar product in R
n, ‖ · ‖ is the

induced norm, that is, the euclidean vector or matrix norm, and PS denotes the
orthogonal projection onto a nonempty closed and convex set S ⊂ R

n. The reflec-
tion onto S is given by means of PS , namely, RS(x) = (2PS − Id)(x), where Id
stands for the identity operator. Note that PS(x) is simply the midpoint of the segment
[x, RS(x)].

Our results are established for the following fundamental feasibility problem.
Given two subspaces U , V of Rn and any point x ∈ R

n, we are interested in solving
the best approximation problem [20] of finding the closest point to x in U ∩ V , i.e.,

Find x̄ ∈ U ∩ V such that ‖x̄ − x‖ = min
w∈U∩V

‖w − x‖. (1)

For subspaces, there exists a nice characterization of the best approximation problem
above as x̄ = PU∩V (x) if, and only if, x − x̄ ∈ (U ∩ V )⊥, i.e.,

〈x − x̄, w〉 = 0 ∀ w ∈ U ∩ V.

The classical DRM iteration at a point x ∈ R
n yields a new iterate T (x) ∈ R

n

given by the midpoint between x and RV RU(x). That is, the Douglas–Rachford (DR)
operator T : Rn → R

n designed to solve (1) reads as follows

T = TU,V := Id+RV RU

2
.

It is known that, under suitable assumptions, DRM generates a sequence {T k(x)}k∈N
converging to the solution of the best approximation problem (1) (see [4]).
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Let us now introduce our scheme, called the Circumcentered–Douglas–Rachford
method (C–DRM): from a point x ∈ R

n, the next iterate is the circumcenter of the
triangle of vertexes x, y := RU(x) and z := RV RU(x), denoted by

CT (x) := circumcenter{x, y, z}. (2)

By circumcenter we mean that CT (x) is equidistant to x, y, and z and lies on the
affine space defined by these vertexes. For all x ∈ R

n, CT (x) exists, is unique and
elementary computable. Existence and uniqueness are obvious if the cardinality of
the set {x, y, z} is either 1 or 2. In fact, if it happens that x = y = z, we have
CT (x) = x ∈ U ∩ V already—the converse is also true, that is, if CT (x) = x,
then x = y = z. This means that the set of fixed points FixCT of the (nonlinear)
operator CT is equal to U ∩ V . If the cardinality {x, y, z} is 2 then CT (x) is the
midpoint between the two distinct points. If x, y, and z are distinct both existence and
uniqueness follow from elementary geometry. Thus, one would only have to worry
about having a situation in which x, y, and z are simultaneously distinct and collinear.
This cannot happen since reflections onto subspaces are norm preserving. More than
that, will further see that the distance of x, y, and z to U ∩ V is exactly the same.
Thus, the equidistance we are asking for in (2) turns out to be a necessary condition
for a solution of (1).

Note that C–DRM has indeed a two-dimensional search flavor: we will show that
CT (x) is the closest point to U ∩V belonging to aff{x, y, z}, the affine space defined
by x, y, and z, whose dimension is equal to 2, if x, y, and z, are distinct. This property,
together with the fact that the DR point T (x) ∈ aff{x, y, z}, is the key to proving a
better performance of C–DRM over DRM. An immediate consequence of this nice
interpretation is that C–DRMwill solve problems inR2 in at most two steps. Figure 1
serves as an intuition guide and illustrates our idea.

This paper is organized as follows. In Section 2, we derive the convergence analy-
sis proving that C–DRM has a rate of convergence for solving problem (1) at least as
good as DRM’s. Section 3 presents numerical experiments for subspaces along with
some non-affine examples in R

2. Final remarks as how one can adapt C–DRM for
the many set case and other comments on future work are presented in Section 4.

2 Convergence analysis of the Circumcentered–Douglas–Rachford
method

In this section, we present the theoretical advantages of using C–DRM over the
classical DRM iteration for solving (1).

In order to simplify the presentation we recall and fix some notation. For a point
x ∈ R

n, we denote for now on y := RU(x) and z := RV RU(x). Recall that, at the
point x ∈ R

n, we define the C–DRM iteration as

CT (x) := circumcenter{x, y, z}
and the DR iteration (at the same point) is given by

T (x) := Id+RV RU

2
(x) = x + z

2
.
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Fig. 1 Geometrical interpretation for circumcentering DRM

In the following, we present some elementary facts [20, Theorem 5.8] needed
throughout the text.

Proposition 1 Let S be a given subspace and x ∈ R
n arbitrary but fixed. Then, for

all s ∈ S we have:

(i) 〈x − PS(x), s〉 = 0;
(ii) ‖x − PS(x)‖2 = ‖x − s‖2 − ‖s − PS(x)‖2;
(iii) ‖x − s‖ = ‖RS(x) − s‖;
(iv) The projection and reflection mappings PS and RS are linear.

Our first lemma states that the projection of y and z onto U ∩ V coincide with
PU∩V (x) and that the distances of x, y, and z to U ∩ V are the same. In addition to
that, we have that the projection of the DR point T (x) onto U ∩ V is as well given
by PU∩V (x).

Lemma 1 Let x ∈ R
n. Then,

PU∩V (x) = PU∩V (y) = PU∩V (z)

and

dist(x, U ∩ V ) = dist(y, U ∩ V ) = dist(z, U ∩ V ).

Moreover, PU∩V (x) = PU∩V (T (x)) and

PU∩V (T k(x)) := PU∩V (T (· · · T (T
︸ ︷︷ ︸

k

(x)) · · · )).

Proof We consider a bar to denote the projection onto the subspace U ∩ V , i.e.,
x̄ := PU∩V (x), ȳ := PU∩V (y), z̄ := PU∩V (z), etc. By using Proposition 1(iii) for
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the reflection onto U , we get ‖x − w‖ = ‖y − w‖ for all w ∈ U ∩ V . In particular,
‖x − ȳ‖ = ‖y − ȳ‖ and ‖y − x̄‖ = ‖x − x̄‖ since x̄, ȳ ∈ U ∩ V . Therefore,

‖x − x̄‖ ≤ ‖x − ȳ‖ = ‖y − ȳ‖ ≤ ‖y − x̄‖ = ‖x − x̄‖,

which implies

‖x − x̄‖ = ‖x − ȳ‖ = ‖y − x̄‖ = ‖y − ȳ‖,

and, of course, dist(x, U ∩ V ) = dist(y, U ∩ V ) and PU∩V (x) = PU∩V (y) follow.
Now, the statements dist(y, U ∩ V ) = dist(z, U ∩ V ) and PU∩V (y) = PU∩V (z)

can be derived by repeating the same argument with y and z, where Proposition 1(iii)
is then considered for the reflection onto V . As the projection onto subspaces is linear
(Proposition 1(iv)) and T (x) := x+z

2 , we have

PU∩V (T (x)) = PU∩V

(

x + z

2

)

= PU∩V (x)

2
+ PU∩V (z)

2
= x̄

2
+ x̄

2
= x̄.

The rest of the proof follows inductively.
Indeed, we proved PU∩V (s) = PU∩V (T (s)) for all s ∈ R

n. Then, by setting
s := T k−1(x), we get

PU∩V (T k−1(x)) = PU∩V (T (T k−1(x))) = PU∩V (T k(x)),

proving the lemma.

We proceed by characterizing CT (x) as the projection of any point w ∈ U ∩ V

onto the affine subspace defined by x, y, and z denoted by aff{x, y, z}.

Lemma 2 Let x ∈ R
n and Wx := aff{x, y, z}. Then,

PWx (w) = CT (x),

for all w ∈ U ∩ V . In particular, PWx (PU∩V (x)) = CT (x).

Proof Let w ∈ U ∩ V be given and set p := PWx (w). Recall that CT (x) is defined
by being the only point in Wx equidistant to x, y, and z. So, to prove the lemma, we
just need to show that p is equidistant to x, y and z. By Proposition 1(ii), we have

‖x − p‖2 = ‖x − w‖2 − ‖w − p‖2,
‖y − p‖2 = ‖y − w‖2 − ‖w − p‖2,
‖z − p‖2 = ‖z − w‖2 − ‖w − p‖2.

Proposition 1(iii) and Lemma 1 provided ‖x −w‖ = ‖y −w‖ = ‖z−w‖. Hence, the
above equalities imply ‖x − p‖ = ‖y − p‖ = ‖z − p‖, which proves the result.

We have just seen that CT (x) is the closest point in Wx = aff{x, y, z} to U ∩ V .
In particular, the circumcenter CT (x) lies at least as close to U ∩ V as the DR point
T (x).
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The next result shows that compositions of CT (·) do not change the projection
onto U ∩ V , that is, for any x ∈ R

n and k ∈ N we have

PU∩V (Ck
T (x)) := PU∩V (CT (· · · CT (CT

︸ ︷︷ ︸

k

(x)) · · · )) = PU∩V (x).

This is a usual feature of algorithms designed to solve best approximation problems.

Lemma 3 Let x ∈ R
n and k ∈ N. Then,

PU∩V (Ck
T (x)) = PU∩V (CT (x)) = PU∩V (x).

Proof Note that by proving the second equality, the first follows easily by induc-
tion on k, likewise the one in the proof of Lemma 1. Therefore, let us prove that
PU∩V (CT (x)) = PU∩V (x). Consider again the abbreviation x̄ := PU∩V (x) and
x̄c := PU∩V (CT (x)). From Lemma 2, we have that PWx (x̄) = CT (x) and also
PWx (x̄c) = CT (x). Thus, by Pythagoras it follows that

‖x − x̄‖2 = ‖x − CT (x)‖2 + ‖x̄ − CT (x)‖2, (3)

‖x − x̄c‖2 = ‖x − CT (x)‖2 + ‖x̄c − CT (x)‖2. (4)

Now, using again Pythagoras, for the triangles with vertexes x, x̄, x̄c and CT (x), x̄c,
x̄, we get

‖x − x̄c‖2 = ‖x̄ − x̄c‖2 + ‖x − x̄‖2 (5)

and
‖CT (x) − x̄‖2 = ‖x̄ − x̄c‖2 + ‖CT (x) − x̄c‖2. (6)

Then, we obtain

‖x̄− x̄c‖2 = ‖x− x̄c‖2−‖x− x̄‖2 = ‖x̄c −CT (x)‖2−‖x̄−CT (x)‖2 = −‖x̄− x̄c‖2,
where the first equality follows from (5), the second from subtracting (3) and (4) and
the third follows from (6). Thus, ‖x̄ − x̄c‖ = 0, or equivalently, x̄ = x̄c.

Note that Lemma 3 is related to Fejér monotonicity (see [7, Proposition 5.9 (i)]).
We will now measure the improvement of CT (x) towards U ∩ V by means of x

and T (x).

Lemma 4 For each x ∈ R
n, we have

dist(CT (x), U ∩ V )2 = dist(T (x), U ∩ V )2 − ‖T (x) − CT (x)‖2. (7)

In particular,

dist(CT (x), U∩V )=‖CT (x)−PU∩V (x)‖≤‖T (x)−PU∩V (x)‖ = dist(T (x), U∩V ).

Proof Lemma 2 says in particular that PWx (PU∩V (x)) = CT (x), which is equivalent
to saying that 〈s − CT (x), PU∩V (x) − CT (x)〉 = 0 for all s on the affine subspace
Wx . Now, taking T (x) for the role of s and using Pythagoras, we get (7), since
PU∩V (CT (x)) = PU∩V (T (x)) = PU∩V (x) due to Lemmas 1 and 3. The rest of the
result is direct consequence of Lemmas 3 and 1.
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The linear rate of convergence we are going to derive for C–DRM is given by the
cosine of the Friedrichs angle between U and V , defined below.

Definition 1 The cosine of the Friedrichs angle θF between U and V is given by

cF (U, V ) := sup
{〈u, v〉 ∣

∣ u ∈ U ∩ (U ∩ V )⊥, v ∈ V ∩ (U ∩ V )⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1
}

.

If context permits, we use just cF instead of cF (U, V ).

Next, we state some fundamental properties of the Friedrichs angle.

Proposition 2 Let U, V ⊂ R
n be subspaces, then:

(i) 0 ≤ cF (U, V ) = cF (V, U) = cF (U⊥, V ⊥) < 1.
(ii) cF = ‖PV PU − PU∩V ‖ = ‖PV ⊥PU⊥ − PU⊥∩V ⊥‖.

Proof (i) See [19, Theorems 13 and 16]; (ii): See [20, Lemma 9.5(7)].

The following result is an elementary fact in Linear Algebra and will be used in
sequel.

Proposition 3 Let a subspace S ⊂ R
n be given. If x, p ∈ R

n are such that their
midpoint

s := x + p

2
∈ S,

then dist(x, S) = dist(p, S).

Proof Let s := x+p
2 ∈ S, x̂ := PS(x) and p̂ := PS(p). Set p̃ := x̂ + 2(s − x̂) ∈ S

and note that p̃ is defined in such a way that the triangle with vertexes x, x̂, and s is
congruent to the triangle formed by p, p̃, and s. In particular, ‖p̃ − p‖ = ‖x − x̂‖.
Therefore,

‖p̂ − p‖ ≤ ‖p̃ − p‖ = ‖x − x̂‖. (8)
An analogous construction can be considered for the triangle with vertexes p, p̂, and
s and the one with vertexes x, x̃, and s, where x̃ := p̂ + 2(s − p̂) ∈ S, yielding
‖x̂ −x‖ ≤ ‖x̃ −x‖ = ‖p− p̂‖. This, combined with (8), proves the proposition.

The next lemma organizes and summarizes known properties of sequences gener-
ated by DRM, some of which will be important in the proof of our main theorem. It
is worth noting that items (i) and (vi) are novel to our knowledge.

Lemma 5 Let x ∈ R
n be given. Then, the following assertions for DRM hold:

(i) dist(T k(x), U +V ) = dist(x, U +V ) for all k ∈ N, where U +V = span(U ∪
V );

(ii) The set Fix T := {

x ∈ R
n

∣

∣ T (x) = x
}

is given by Fix T = (U ∩ V ) ⊕ (U⊥ ∩
V ⊥);
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(iii) The DRM sequence {T k(x)}k∈N converges to PFix T (x) and for all k ∈ N,

‖T k(x) − PFix T (x)‖ ≤ ck
F ‖x − PFix T (x)‖;

(iv) For all k ∈ N we have PU∩V (T k(x)) = PU∩V (x) and PFix T (T k(x)) =
PFix T (x);

(v) PU∩V (x) = PFix T (x) if, and only if, x ∈ U + V ;
(vi) The DRM sequence {T k(x)}k∈N converges to PU∩V (x) if, and only if,

x ∈ U + V ;
(vii) The shadow sequences

{PU(T k(x))}k∈N and {PV (T k(x))}k∈N

converge to PU∩V (x).

Proof For the sake of notation set S := U + V and remind that y := RU(x) and
z := RV (y). We have 1

2 (x+y) = PU(x) ∈ S and 1
2 (y+z) = PV (y) ∈ S. Employing

Proposition 3 yields dist(x, S) = dist(y, S) = dist(z, S). Also, 1
2 (T (x) + y) =

1
2

(

x+z
2 + y

) = 1
2 (PU(x) + PV (y)) ∈ S. Using again Proposition 3, we conclude

that dist(T (x), S) = dist(y, S). Hence, dist(T (x), S) = dist(x, S) for all x ∈ R
n. A

simple induction procedure gives us dist(T k(x), U + V ) = dist(x, U + V ) for all
k ∈ N, proving (i).

The proofs of items (ii), (iii), (iv), and (vii) are in [4].
It is straightforward to check that S⊥ = U⊥ ∩ V ⊥. Therefore, Fix T specialized

to S reduces to U ∩ V and (v) follows. (vi) is a combination of (ii) and (v).

We are now in the position to present our main convergence result, which states
that the best approximation problem (1) can be solved for any point x ∈ R

n with
usage of C–DRM.

Theorem 1 Let x ∈ R
n be given. Then, the three C–DRM sequences

{

Ck
T (PU(x))

}

k∈N ,
{

Ck
T (PV (x))

}

k∈N and
{

Ck
T (PU+V (x))

}

k∈N
converge linearly to PU∩V (x). Moreover, their rate of convergence is at least the
cosine of the Friedrichs angle cF ∈ [0, 1).

Proof Obviously, u, v, s ∈ U +V , with u := PU(x), v := PV (x) and s := PU+V (x).
Let us first prove that ū = v̄ = x̄ := PU∩V (x), where ū := PU∩V (u), v̄ := PU∩V (v)

and s̄ := PU∩V (s). The definition of ū, x̄ allow us to employ Pythagoras and
conclude that

‖u − x‖2 + ‖u − x̄‖2 = ‖x − x̄‖2 ≤ ‖x − ū‖2 = ‖u − x‖2 + ‖u − ū‖2,
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which provides ‖u − x̄‖ = ‖u − ū‖. Thus ū = x̄. We get v̄ = s̄ = x̄ analogously,
and by item (v) of Lemma 5 we further have ū = PFix T (u) = v̄ = PFix T (v) = s̄ =
PFix T (s) = x̄. Hence, it holds that

‖CT (u) − x̄‖ = ‖CT (u) − ū‖ ≤ ‖T (u) − ū‖ = ‖T (u) − PFix T (u)‖
≤ cF ‖u − PFix T (u)‖ = cF ‖u − x̄‖,

where the first inequality is by Lemma 4 and the second one by item (iii) of Lemma 5.
Recall that Lemma 4 stated that PU∩V (Ck

T (PU(x))) = PU∩V (PU(x)) for all k ∈ N.
So, PU∩V (Ck

T (u)) = PU∩V (u) = x̄ for all k ∈ N. Consider now the induction
hypothesis ‖Ck−1

T (u)− x̄‖ ≤ ck−1
F ‖u− x̄‖ for some k − 1 — the case k − 1 = 1 was

seen above — and note that

‖Ck
T (u) − x̄‖ = ‖CT (Ck−1

T (u)) − PU∩V (Ck−1
T (u))‖

≤ ‖T (Ck−1
T (u)) − PU∩V (Ck−1

T (u))‖
≤ cF ‖Ck−1

T (u) − PU∩V (Ck−1
T (u))‖

= cF ‖Ck−1
T (u) − x̄‖ ≤ cF ck−1

F ‖u − x̄‖ = ck
F ‖u − x̄‖,

where the first inequality is due to Lemma 4. The second inequality above follows
from Lemma 5 (iii) and (v), since u ∈ U + V , and the third is by the induction
hypothesis. This proves the theorem for the sequence {Ck

T (PU(x))}. The proof lines
for the convergence of the sequences {Ck

T (PV (x))} and {Ck
T (PU+V (x))} with the

linear rate cF are analogous.

An immediate consequence is stated below.

Corollary 1 Let x ∈ U + V be given. Then, the C–DRM sequence {Ck
T (x)}k∈N

converges linearly to PU∩V (x). Moreover, the rate of convergence is at least the
cosine of the Friedrichs angle cF ∈ [0, 1).

Although we believe that Theorem 1 holds for {Ck
T (x)} itself, it is worth mention-

ing that considering the initial feasibility step PU(x) or PV (x) is totally reasonable,
since we are assuming that the projection/reflection operators PU , PV , RU , and RV

are available. In addition to that, these feasibility steps keep the whole C–DRM
sequence in U + V , which can be very desirable. In this sense, let us look at two dis-
tinct lines U, V ⊂ R

3 intersecting at the origin and assume that their Friedrichs angle
is not ninety degrees, i.e., cF ∈ (0, 1). C–DRM finds the origin after one or two steps
when starting in U + V , since U + V is the plane containing the two lines. If the
initial point is not in U + V and no feasibility step is taken, C–DRM may generate
an infinite sequence. Therefore, running C–DRM in U + V , a potentially smaller set
than R

n, sounds attractive from the numerical point of view.
The feasibility procedure employed in Theorem 1 provides convergence to best

approximation solutions for the DRM without the need of considering shadow
sequences. This is formally presented in the following.
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Corollary 2 Let x ∈ R
n be given. Then, the three DRM sequences

{T k(PU(x))}k∈N, {T k(PV (x))}k∈N and {T k(PU+V (x))}k∈N
converge linearly to PU∩V (x). Moreover, their rate of convergence is given by the
cosine of the Friedrichs angle cF ∈ [0, 1).

Proof This result follows from the fact that PU∩V (PU(x)) = PU∩V (PV (x)) =
PU∩V (PU+V (x)) = PU∩V (x), established within the proof of Theorem 1, combined
with Lemma 5 (vi).

It is known that cF is the sharp rate for DRM [4]. This is not clear for C–DRM
though and left as an open question in this work. One way of addressing this issue
would be looking at the magnitude of improvement of C–DRM over DRM given by
(7) in Lemma 4.

We finish this section by showing that Theorem 1 and Corollaries 1 and 2 are
applicable to affine subspaces with nonempty intersection, where the concept of the
cosine of the Friedrichs angle is suitably extended.

Corollary 3 Let A and B be affine subspaces of Rn with nonempty intersection
and p ∈ A ∩ B arbitrary but fixed. Then, Theorem 1and Corollaries 1 and 2 hold
for A and B, with the rate cF being the cosine of the Friedrichs angle between the
subspaces UA := A − {p} and VB := B − {p}.

Proof Since p ∈ A ∩ B, the translations A − {p} and B − {p} provide nonempty
subspaces UA and VB . Now, the elementary translation properties of reflections
RUA

(x) + p = RA(x + p) and RVB
(x) + p = RB(x + p) give us the translation

formulas for the correspondent Douglas-Rachford and circumcentering operators:

TA,B(x + p) := TUA,VB
(x) + p

and
CTA,B

(x + p) := CTUA,VB
(x) + p,

for all x ∈ R
n. This suffices to prove the corollary when setting U := UA and

V := VB in Theorem 1 and Corollaries 1 and 2, because the above formulas imply
that T k

A,B(x+p) = T k
UA,VB

(x)+p and Ck
TA,B

(x+p) = Ck
TUA,VB

(x)+p, for all k ∈ N.

Simple manipulations let us conclude that cF = cF (UA, VB), with UA and VB as
above, does not depend on the particular choice of the point p inA∩B. Therefore, cF

can be referred to as the cosine of the Friedrichs angle between the affine subspaces
A and B with no ambiguity.

We finish this section remarking that the computation of circumcenters is possi-
ble in arbitrary inner product spaces—see (9). However, projecting/reflecting onto
subspaces depends on their closedness. Now, in Hilbert spaces, it is well known that
having cF strictly smaller than 1 is equivalent to askingU +V to be closed [19, Theo-
rem 13]. This is an assumption that maintains the linear convergence in Hilbert spaces
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for several projection/reflection methods and that would also enable us to extend our
main results concerning C–DRM to an infinite dimensional setting.

The following section is on numerical experiments and begins by showing
how one can compute CT (x) by means of elementary and cheap Linear Algebra
operations.

3 Numerical experiments

In this section, we make use of numerical experiments to show, as a proof of concept,
that the good theoretical proprieties of CT (x) are also working in practical problems.

First, for a given point x ∈ R
n, we establish a procedure to find CT (x). We then

discuss the stopping criteria used in our experiments and show the performance of C–
DRM compared to DRM applied to problem (1). We also apply C–DRM and DRM
to non-affine samples, which are not treated theoretically in the previous section. The
experiments with these problems indicate as well a good behavior of C–DRM over
DRM. All experiments were performed using julia [12] programming language
and the pictures were generated using PGFPlots [23].

3.1 How to compute the circumcenter in R
n

In order to compute CT (x), recall that y := RU(x) and z := RV (y) = RV RU(x). We
have already mentioned that CT (x) = x if, and only if, the cardinality of aff{x, y, z}
is 1. If this cardinality is 2, CT (x) is the midpoint between the two distinct points.

Therefore, we will focus on the computation of CT (x) for the case where x, y

and z are distinct. According to Lemma 2, CT (x) is still well defined, and it can be
seen as the circumcenter of the triangle Δxyz formed by the points x, y, and z, as
illustrated in Fig. 2. Also, T (x) lies in aff{x, y, z}.

Fig. 2 Circumcenter on the affine subspace aff{x, y, z}
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Let x be the anchor point of our framework and define sU := y − x and sV :
= z − x, the vectors pointing from x to y and from x to z, respectively. Note that
aff{x, y, z} = x + span{sU , sV }, and since CT (x) ∈ aff{x, y, z}, the dimension of the
ambient space, namely n, is irrelevant to the geometry. The problem is intrinsically a
two-dimensional one, regardless of what n is.

We want to find the vector s ∈ aff{x, y, z}, whose projection onto each vector sU
and sV has its endpoint at the midpoint of the line segment from x to y and x to z,
that is,

Pspan{sU }(s) = 1

2
sU and Pspan{sV }(s) = 1

2
sV .

This requirement yields
{ 〈sU , s〉 = 1

2‖sU‖2,
〈sV , s〉 = 1

2‖sV ‖2.
By writing s = αsU +βsV , we get the 2×2 linear system with unique solution (α, β)

{

α‖sU‖2 + β 〈sU , sV 〉 = 1
2‖sU‖2,

α 〈sU , sV 〉 + β‖sV ‖2 = 1
2‖sV ‖2. (9)

Hence,
CT (x) = x + αsU + βsV .

Note that (9) enables us to calculate CT (x) in arbitrary inner product spaces.

3.2 The case of two subspaces

In our experiments, we randomly generate 100 instances with subspaces U and V in
R
200 such that U ∩V �= {0}. Each instance is run for 20 initial random points. Based

on Theorem 1 and Corollary 2, we monitor the C–DRM sequence {Ck
T (PV (x))} and

the DRM sequence {T k(PV (x))}. Note that the DRM sequence will always converge
to U ∩ V , since PV (x) ∈ U + V . For the C–DRM sequence, such hypothesis does
not seem to be necessary, however for the sake of fairness, we choose to monitor
this sequence in the same way. We incorporate the method of alternating projec-
tions (MAP) (see, e.g., [18]) in our experiments as well. MAP generates a sequence
{(PV PU)k(x)} that lies automatically in U + V for all k ≥ 1.

Let {sk} be any of the three sequences that we monitor. We considered two
tolerances

ε1 := 10−3 and ε2 := 10−6,

and employed two stopping criteria:

– the true error, given by ‖sk − x̄‖ < εi; and
– the gap distance, given by ‖PU(sk) − PV (sk)‖ < εi, for i = 1, 2.

We performed tests with two tolerances in order to challenge C–DRM by asking
for more precision. Also, one can view the true error as the best way to assure one
is sufficiently close to U ∩ V , and in our case x̄ := PU∩V (x) is easily available.
However, this is not the case in applications, thus, we also utilized the gap distance,
which we consider a reasonable measure of infeasibility.
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In order to represent the results of our numerical experiments, we used the Per-
formance Profiles [21], a analytic tool that allows one to compare several different
algorithms on a set of problems with respect to a performance measure or cost, which
in our case is the number of iterations, providing the visualization and interpreta-
tion of the results of benchmark experiments. The rationale of choosing number of
iterations as performance measure here is that in each of the sequences that are moni-
tored, the majority of the computational cost involved is equivalent—two orthogonal
projections onto the subspaces U and V per iteration have to be computed for each
method. The graphics were generated using perprof-py [29].

The numerical experiments shown in Fig. 3 confirm the theoretical results
obtained in this paper, since C–DRM has a much better performance than DRM. For
ε2 = 10−6, C–DRM solves all instances and choices of initial points in less iterations
than DRM, regardless the stopping criteria (See Fig. 3b and d). For ε1 = 10−3, using
the true error criteria, according to Fig. 3a, a tiny part of the instances were solved

Fig. 3 Experiments with two subspaces
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faster by DRM; however, this behavior was not reproduced with the gap distance cri-
teria (see Fig. 3d). MAP has c2F as asymptotic linear rate (see [26]) and it was beaten
by C–DRM in all our instances. This gives rise to the interesting question of whether
the rate c2F can be theoretically achieved by C–DRM.

Figure 4 represents experiments in which the Friederichs angle between the two
subspaces is smaller than 10−2 and the true error criterion is used. In this case, MAP
and DRM are known to converge slowly. C–DRM, however, handled the small values
of the Friederichs angle substantially better.

3.3 Some non-affine examples

Next, we present two simple classes of examples revealing the potential of the pro-
posed modification when it is applied to the convex and the non-convex case. Here,
we are using the gap distance with ε2 = 10−6.

Example 1 (Two balls in R
2) We present three figures that depict numerical exper-

iments showing the behavior of C–DRM over DRM concerning the problem of
finding a point in the intersection of two convex balls in R

2.
Note that Lemma 4 shows that CT (x) is closer to U ∩ V than T (x) for problem

(1). Unfortunately, this is not true in general for convex sets. Figure 5a, illustrates
this for two balls. Here, x0 is the starting point, x̄ = PU∩V (x0) is the only point in
the intersection, x1

C
:= CT (x0) and x1

DR
:= T (x0). Note however, that this does not

mean that C–DRM will not work for the general case. Even though x1
DR is closer to

x̄ than x1
C is, C–DRM performed way less iterations (37) than DRM (971) to find the

solution.
Below we present two examples, in Fig. 5b, c, where the two balls intersection

is still compact but has infinitely many points. Depending on the starting point, we
achieve different results, regarding the number of iterations that both C–DRM and
DRM take to converge. Moreover, Fig. 5b shows that the accumulation point of the

Fig. 4 Experiments with two subspaces having a small Friederichs angle
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Fig. 5 Experiments with two balls in R
2

sequences generated by C–DRM and DRM are not necessarily the same, with com-
parable iteration complexity though. In Fig. 5c, DRM converged after six iterations
while C–DRM took seven iterations.

We performed extensive experiments featuring two convex balls in R
n with start-

ing points being chosen randomly, and the results were very similar to the ones
presented in the pictures above. These positive experiments show that it might be
possible to use C–DRM to find a point in the intersection of non-affine convex sets.
This should be sought in the future. Note however, that C–DRM need not be defined
in the general convex setting. This may be the case when an iterate happens to reach
the line passing through the centers of the balls in our examples. Therefore, a hybrid
strategy is necessary in order to have C–DRM generating an infinite sequence.

Example 2 (A ball and a line and a circle and a line in R2)

Our examples show that C–DRM is likely to converge in less iterations than DRM.
Also, as important as algorithmic complexity, is convergence to a solution itself.

In this regard, we underline that our pictures clearly display that C–DRM con-
verges faster than DRM to a solution of problem (1). Moreover, DRM fails to find
the unique common point of the ball and the line (only converging in the matter of
shadow sequences) and to find the best approximation point in Fig. 6a, b, respectively.

Figure 6c represents a slightly non-convex example with a circle and a line, which
was considered for DRM in [11]. In this experiment, both C–DRM and DRM con-
verge and the latter was slower. This reveals an interesting and promising property
of C–DRM, as well as DRM, when it is applied to non-convex problems. To end this
discussion, it is worth mentioning that we performed extensive numerical tests for
particular instances of non-convex problem in R

n and the results are very positive.
This is a humble attempt in targeting the problem of finding a point in the intersec-
tion of an affine subspace with the s-space vectors defined by the generalized �0-ball
(see problem (6) of [25]).
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Fig. 6 Experiments with a ball and a line in R
2

4 Conclusions and future work

We have introduced and derived a convergence analysis for the Circumcentered–
Douglas–Rachford method (C–DRM) for best approximation problems featuring two
(affine) subspaces U, V ⊂ R

n. For any initial point, linear convergence to the best
solution was shown and the rate of convergence of C–DRM was proven to be at least
as good as DRM’s. DRM is known to converge with the sharp rate cF ∈ [0, 1),
the cosine of the Friedrichs angle between U and V (see, e.g., [4]). A question, left
as open in this paper, is whether cF is a sharp rate for C–DRM. In this regard, our
numerical experiments show that circumcentering “speeds up” convergence of DRM
for two subspaces as well as for most of our simple non-affine examples.

In view of future work, we end the paper with a brief discussion on the many set
case and on how one can “circumcenter” other classical projection/reflection type
methods.

The many set case Another relevant advantage of the circumcentering scheme C–
DRM is that it can be extended to the following many set case.

Assume that {Ui}mi=1 ⊂ R
n is a family of finitely many affine subspaces with

nonempty intersection ∩m
i=1Ui and that we are interested in projecting onto ∩m

i=1Ui

using knowledge provided by reflections onto each Ui .
For an arbitrary initial point x ∈ R

n, we could consider a generalized C–DRM
iteration by taking the circumcenter CT (x) of

{x, RU1(x), RU2RU1(x), . . . , RUm · · · RU2RU1(x)},
i.e., CT (x) is in aff{x, RU1(x), RU2RU1(x), . . . , RUm · · · RU2RU1(x)} and
dist(CT (x), x) = dist(CT (x), RU1(x)) = · · · = dist(CT (x), RUm · · · RU2RU1(x)).

The fact that CT (x) is well defined and that it is precisely given by the projection of
any point in ∩m

i=1Ui onto

Wx := aff{x, RU1(x), RU2RU1(x), . . . , RUm · · · RU2RU1(x)}
can be derived similarly as in Lemma 2. We understand though, that the convergence
analysis of C–DRM for the many set case might be substantially more challenging,
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since we no longer can rely on the theory of DRM. Also, one should note that now, for
large m, the computation of CT (x) may not be negligible. This computation consists
of finding the intersection of m bisectors in Wx . Therefore, linear system (9) is now
m × m, and the calculation of CT (x) requires its resolution.

If, for a given problem, the computation of CT (x) mentioned above is simply
too demanding, one could, e.g., consider pairwise circumcenters or even other ways
of circumcentering. The important thing here is that we can enforce several strate-
gies to help overcome the unsatisfactory extension of the classical Douglas–Rachford
method for the many set case. It is known that for an example inR2 with three distinct
lines intersecting at the original (see [1, Example 2.1]), the natural extension of the
Douglas–Rachford method may fail to find a solution. On the other hand, any reason-
able circumcentering scheme will solve this particular problem in at most two steps
for any initial point. Circumcentering schemes may also be embedded in methods
for the many set case, e.g., CADRA [10] and the Cyclic–Douglas–Rachford method
[14].

Circumcentering other reflection/projection type methods For the case of U

and V being affine subspaces, the reflected Cimmino method [16] considers a cur-
rent point x ∈ R

n and takes the next iterate as the mean 1
2 (RU(x) + RV (x)).

Circumcentering the Cimmino method is possible by setting the next iterate as
circumcenter{x, RU(x), RV (x)}. Something similar can be done for the Method of
Alternating Projections (MAP) (see, e.g., [18]). From a point x ∈ R

n, MAP moves
to PV PU(x). In order to circumcenter MAP, one could take the circumcenter of
x, RU(x) and RV PU(x). The coherence of this approach lies on the fact that the
mid points of the segments [x, RU(x)] and [PU(x), RV PU(x)] are PU(x) ∈ U and
PV PU(x) ∈ V , respectively. Note that both the Circumcentered–Cimmino–Method
and the Circumcentered–MAP solve problems with affine subspaces U, V ⊂ R

2

in at most two steps. This happens because circumcentering can be seen as a
2-dimensional hyperplane search for the two set case.

Finally, we consider that investigating C–DRM for general convex feasibility
problems [6] may be fruitful.

Acknowledgements We thank the anonymous referees for their valuable suggestions.
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