
Numer Algor (2018) 78:739–757

ORIGINAL PAPER

l1-l2 regularization of split feasibility problems

Abdellatif Moudafi1,2 ·Aviv Gibali3

Received: 13 March 2017 / Accepted: 10 August 2017 / Published online: 18 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Numerous problems in signal processing and imaging, statistical learning
and data mining, or computer vision can be formulated as optimization problems
which consist in minimizing a sum of convex functions, not necessarily differen-
tiable, possibly composed with linear operators and that in turn can be transformed
to split feasibility problems (SFP); see for example Censor and Elfving (Numer.
Algorithms 8, 221–239 1994). Each function is typically either a data fidelity term
or a regularization term enforcing some properties on the solution; see for example
Chaux et al. (SIAM J. Imag. Sci. 2, 730–762 2009) and references therein. In this
paper, we are interested in split feasibility problems which can be seen as a general
form of Q-Lasso introduced in Alghamdi et al. (2013) that extended the well-known
Lasso of Tibshirani (J. R. Stat. Soc. Ser. B 58, 267–288 1996). Q is a closed con-
vex subset of a Euclidean m-space, for some integer m ≥ 1, that can be interpreted
as the set of errors within given tolerance level when linear measurements are taken
to recover a signal/image via the Lasso. Inspired by recent works by Lou and Yan
(2016), Xu (IEEE Trans. Neural Netw. Learn. Syst. 23, 1013–1027 2012), we are
interested in a nonconvex regularization of SFP and propose three split algorithms
for solving this general case. The first one is based on the DC (difference of convex)
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algorithm (DCA) introduced by Pham Dinh Tao, the second one is nothing else than
the celebrate forward-backward algorithm, and the third one uses a method intro-
duced by Mine and Fukushima. It is worth mentioning that the SFP model a number
of applied problems arising from signal/image processing and specially optimization
problems for intensity-modulated radiation therapy (IMRT) treatment planning; see
for example Censor et al. (Phys. Med. Biol. 51, 2353–2365, 2006).

Keywords Q-Lasso · Split feasibility · Soft-thresholding · Regularization · DCA
algorithm · Forward-backward iterations · Mine-Fukushima algorithm ·
Douglas-Rachford algorithm

Mathematics Subject Classification (2010) Primary 49J53, 65K10 · Secondary
49M37, 90C25

1 Introduction and preliminaries

Recent developments in science and technology have caused a revolution in data
processing, as large datasets are becoming increasingly available and important. To
meet the need in big data area, the field of compressive sensing (CS) [13] is rapidly
blooming. The process of CS consists of encoding and decoding. The process of
encoding involves taking a set of (linear) measurements, b = Ax, whereA is a matrix
of size m × n. If m < n, we say the signal x ∈ IRn can be compressed. The process
of decoding is to recover x from b with an additional assumption that x is sparse. It
can be expressed as an optimization problem,

min ‖x‖0 subject to Ax = b, (1.1)

with ‖ ·‖0 being the l0 norm, which counts the number of nonzero entries of x; that is

‖x‖0 = |{xi | xi �= 0}| (1.2)

where | · | denotes here the cardinality, i.e., the number of elements of a set. So
minimizing the l0 norm is equivalent to finding the sparsest solution. One of the
biggest obstacles in CS is solving the decoding problem above, as l0 minimization is
NP-hard. A popular approach is to replace l0 by the convex norm l1, which often gives
a satisfactory sparse solution. This l1 heuristic has been applied in many different
fields such as geology and geophysics, spectroscopy, and ultrasound imaging.

Recently, there has been an increase in applying nonconvex metrics as alternative
approaches to l1 . In particular, the nonconvex metric lp for p ∈ (0, 1) in [7] can
be regarded as a continuation strategy to approximate l0 as p → 0. The optimiza-
tion strategies include iterative reweighting [7] and half thresholding [24], and the
scale-invariant l1, formulated as the ratio of l1 and l2, was discussed in [14]. Other
nonconvex l1 variants include transformed l1, sorted l1, and capped l1. It is demon-
strated in a series of papers [15, 24] that difference of the l1 and l2 norms, denoted as
l1-l2 , outperforms l1 and lp in terms of promoting sparsity when sensing matrix A is
highly coherent. Based on this idea, we propose the same type of regularization for SFP
and propose three splitting algorithms: the first one is nothing but the DC (difference
of convex) algorithm (DCA) introduced by PhamDinh Tao; see for example [19]. The
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second one is nothing else than the celebrate forward-backward algorithm and the
third one uses a method introduced by Mine and Fukushima in [17] for minimizing
the sum of a convex function and a differentiable one.

First, remember that the lasso of Tibshirani [22] is the minimization problem

min
x∈IRn

1

2
‖Ax − b‖22 + γ ‖x‖1, (1.3)

where A is an m × n real matrix, b ∈ IRm, and γ > 0 is a tuning parameter. It is
equivalent to the basic pursuit (BP) of Chen et al. [10]

min
x∈IRn

‖x‖1 subject to Ax = b. (1.4)

However, due to errors of measurements, the constraint Ax = b is actually inexact.
It turns out that problem (1.4) is reformulated as

min
x∈IRn

‖x‖1 subject to ‖Ax − b‖p ≤ ε, (1.5)

where ε > 0 is the tolerance level of errors and p is often 1, 2, or ∞. It is noticed in
[1] that if we let Q := Bε(b), the closed ball in IRn with center b and radius ε, then
(1.5) is rewritten as

min
x∈IRn

‖x‖1 subject to Ax ∈ Q. (1.6)

With Q a nonempty closed convex set of IRm and PQ the projection from IRm onto
Q and since that the constraint is equivalent to the condition Ax − PQ(Ax) = 0, this
leads to the following equivalent Lagrangian formulation

min
x∈IRn

1

2
‖(I − PQ)Ax‖22 + γ ‖x‖1, (1.7)

with γ > 0 a Lagrangian multiplier. A connection is also made in [1] with the so-
called split feasibility problem [5] which is stated as finding x verifying

x ∈ C, Ax ∈ Q, (1.8)

whereC andQ are closed convex subsets of IRn and IRm , respectively. An equivalent
minimization formulation of (1.8) is

min
x∈C

1

2
‖(I − PQ)Ax‖22. (1.9)

Its l1 regularization is given as

min
x∈C

1

2
‖(I − PQ)Ax‖22 + γ ‖x‖1, (1.10)

where γ > 0 is a regularization parameter.
This convex relaxation attracts considerable attention; see for example [1] and ref-

erences therein. In this paper, we study a nonconvex but Lipschitz continuous metric
l1-l2 for SFP. As illustrated in [15], the level curves of l1-l2 are closer to l0 than
those of l1, which motivated us to consider the nonconvex l1-l2 regularization for split
feasibility problem, namely

min
x∈C

1

2
‖(I − PQ)Ax‖22 + γ (‖x‖1 − ‖x‖2), (1.11)
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and propose three algorithms. The first uses the DCA which is a descent method
without line search introduced by Tao and An [19] for minimizing a function f which
is the difference of two lower semicontinuous proper convex functions g and h on
the space IRn . The second one is based on the gradient proximal method to solve the
problem (1.11) by full splitting, that is, at every iteration, the only operations involved
are evaluations of the gradient of the function 1

2‖(I − PQ)A(·)‖22, the proximal map-
ping of ‖ · ‖1 − ‖ · ‖2, A, or its transpose At . The third one is based on an algorithm
for minimizing the sum of a convex function and a differentiable one introduced by
Mine and Fukushima in [17].

In [1], properties and iterative methods for (1.7) are investigated. Remember also
that many authors devoted their works to the unconstrained minimization problem
minx∈H f1(x) + f2(x) with f1, f2 are two proper, convex lower semi continuous
functions defined on a Hilbert space H and f2 differentiable with a β-Lipschitz
continuous gradient for some β > 0 and an effective method to solve it is the forward-
backward algorithm which from an initial value x0 generates a sequence (xk) by the
following iteration

xk+1 = (1 − λk)xk + λkproxγkf1(xk − γk∇f2(xk)), (1.12)

where γk > 0 is the algorithm step size, 0 < λk < 1 is a relaxation parameter, and
proxγkf1 being the proximal mapping defined in (2.40).

It is well-known, see for instance [11], that if (γk) is bounded and (λk) is bounded
from below, then (xk) weakly converges to a solution of minx∈H f1(x) + f2(x)

provided that the set of solutions is nonempty.
In order to relax the assumption on the differentiability of f2, the Douglas-

Rachford algorithm was introduced. It generates a sequence (yk) as follows:

{
yk+1/2 = proxκf2yk;
yk+1 = yk + τk

(
proxκf1(2yk+1/2 − yk) − yk+1/2

) (1.13)

where κ > 0, (τk) is a sequence of positive reals. It is well-known that (yk) converges
weakly to y such that proxκf2y is a solution of the unconstrained minimization prob-
lem above provided that ∀k ∈ IN, τk ∈]0, 2[ and ∑∞

k=0 τk(2 − τk) = +∞ and the
set of solutions is nonempty.

In what follows, we are interested in (1.11) which is more challenging and we will
focus our attention on the algorithmic aspect.

Our paper is organized as follows. In Section 2, we first start with definitions
and notions which are needed for the presentation of our three proposed schemes,
the DCA algorithm, the forward-backward algorithm, and the third based on the
Mine-Fukushima algorithm. We also give full convergence theorem for the proposed
schemes. Later in Section 3, we present several numerical experiments which illus-
trates the performances of our schemes compared with the CQ and relaxed CQ
algorithms. We include random linear system of equations as well as an example
in sparse signal recovery. Finally, in Section 4, we provide further insights into
how to compute the proximal mapping of a sum of two functions by coupling the
Douglas-Rachford and the forward-backward algorithms.
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2 Computational approaches

2.1 DCA

First, remember that the subdifferential set (or just subdifferential) of a convex
function h is defined as

∂h(x) := {u ∈ IRn; h(y) ≥ h(x) + 〈u, y − x〉 ∀y ∈ IRn}. (2.1)

Each element of ∂h(x) is called subgradient. In case that the function h is continu-
ously differentiable then ∂h(x) = {∇h(x)}, this is the gradient of h. It is easily seen
that

∂
1

2
‖Ax − y‖2 = ∇ 1

2
‖Ax − y‖2 = At(Ax − y), (2.2)

and

(∂‖x‖1)i =
⎧⎨
⎩

sgn(xi) if xi �= 0;
any element of [−1, 1] if xi = 0. (2.3)

The characteristic function of a set C ⊆ IRn is defined as

iC(x) =
{

0 if x ∈ C;
+∞ otherwise

(2.4)

such function is convenient to enforce hard constraints on the solution. Moreover, the
normal cone of C at x ∈ C, denoted by NC (x), is defined

NC (x) := {d ∈ IRn | 〈d, y − x〉 ≤ 0, ∀y ∈ C}. (2.5)

A known relation between the above definition is that ∂iC = NC . Another useful
definition which will be useful in the sequel is the following. A sequence (xk) is
called asymptotically regular, if limn→∞ ‖xk+1 − xk‖ = 0.

For finding critical points of f := g − h, the DCA involves the construction of
two sequences (xk) and (yk) by the following rules{

yk ∈ ∂h(xk);
xk+1 = argminx∈IRn

(
g(x) − (h(xk) + 〈yk, x − xk〉)

)
.

(2.6)

Note that by the definition of subdifferential , we can write

h(xk+1) ≥ h(xk) + 〈yk, xk+1 − xk〉. (2.7)

Since xk+1 minimizes g(x) − (h(xk) + 〈yk, x − xk〉), we also have

g(xk+1) − (h(xk) + 〈yk, xk+1 − xk〉) ≤ g(xk) − h(xk). (2.8)

Combining the last inequalities, we obtain

f (xk) = g(xk) − h(xk) ≥ g(xk+1) − (h(xk) + 〈yk, xk+1 − xk〉) ≥ f (xk+1). (2.9)

Therefore, the DCA provides a monotonically decreasing sequence (f (xk)) which
converges provided that the objective function f is bounded below.

The objective function in (1.11) has the following DC decomposition

min
x∈IRn

(
1

2
‖(I − PQ)Ax‖22 + γ ‖x‖1 + iC(x)

)
− γ ‖x‖2. (2.10)
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Observe that ‖x‖2 is differentiable with gradient x/‖x‖2 for any x �= 0 and we also
have 0 ∈ ∂‖ · ‖2(0), which leads to the following iterates

xk+1=
{

argminx∈IRn
1
2‖(I − PQ)Ax‖22 + γ ‖x‖1 + iC(x) if xk = 0

argminx∈IRn
1
2‖(I − PQ)Ax‖22 + γ ‖x‖1 + iC(x) −

〈
x, γ

xk‖xk‖2
〉
if xk �= 0,

(2.11)
obtained by setting in the rules (2.6): g(x) = 1/2‖(I − PQ)Ax‖22 + γ ‖x‖1 + iC(x)

and h(x) = γ ‖x‖2. (2.11) is equivalent, using the definition of the characteristic
function, to

xk+1 =
{

argminx∈C
1
2‖(I − PQ)Ax‖22 + γ ‖x‖1 if xk = 0

argminx∈C
1
2‖(I − PQ)Ax‖22 + γ ‖x‖1 − 〈x, γ

xk‖xk‖2 〉 if xk �= 0.

(2.12)
Now, we define for all γ > 0, the following function

	(x) = 1

2
‖(I − PQ)Ax‖22 + γ (‖x‖1 − ‖x‖2) + iC(x). (2.13)

We are in a position to prove the following convergence properties of the iterative
step (2.11):

Proposition 2.1 Let (xk) be the sequence generated by Algorithm 2.11.

(i) For all γ > 0 we have that lim‖x‖2→+∞ 	(x) = +∞. 	 is therefore coercive
in the sense that its level sets are bounded, namely {x ∈ IRn; 	(x) ≤ 	(x0)} is
bounded for any x0 ∈ IRn.

(ii) The sequence (xk) is bounded.
(iii) If limk→+∞ ‖xk+1 − xk‖2 = 0, i.e., (xk) is asymptotically regular, then any

nonzero limit point x∗ of the sequence (xk) is a stationary point of (1.11),
namely

0 ∈ At(I − PQ)Ax∗ + γ

(
∂‖x∗‖1 − x∗

‖x∗‖2
)

+ NC(x∗). (2.14)

Proof Recall first that the support of x is defined by supp(x) = {1 ≤ i ≤ n; xi �= 0}
and that ‖x‖0 = |supp(x)| is the cardinality of supp(x). To prove (i)–(ii), remember
that for all x �= 0, we have ‖x‖1 −‖x‖2 ≥ 0 and that ‖x‖1 −‖x‖2 = 0 ⇔ ‖x‖0 = 1.
With this fact in hand, we can easily verify that 	 is coercive.

Now, a simple computation which uses the fact that ‖a‖2 − ‖b‖2 = ‖a − b‖2 +
2〈b, a − b〉, gives

	(xk) − 	(xk+1) = 1

2
‖Axk − Axk+1 − (

PQ(Axk) − PQ(Axk+1)
)‖2

+〈Axk − Axk+1 − (
PQ(Axk) − PQ(Axk+1)

)
, Axk+1

−PQ(Axk+1)〉
+γ (‖xk‖1 − ‖xk+1‖1 − ‖xk‖2 + ‖xk+1‖2). (2.15)
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The first-order optimality condition at xk+1 as the solution of the problem (2.11) and
the fact that ∂(‖ · ‖1 + iC)(x) = ∂‖x‖1 +NC(x) (since a norm is continuous) lead to.

At(I − PQ)Axk+1 + γ (wk+1 − yk) + pk+1 = 0,

with yk ∈ ∂‖xk‖2, wk+1 ∈ ∂‖xk+1‖1 and pk+1 ∈ NC(xk+1). This combined with
〈wk, xk+1〉 = ‖xk+1‖1 gives
〈A(xk − xk+1), (I − PQ)Axk+1〉 + γ (〈wk+1, xk〉 − ‖xk+1‖1 + 〈yk, xk+1 − xk〉)

−〈pk+1, xk+1 − xk〉 = 0. (2.16)

Combining (2.15) and (2.16), we can write

	(xk) − 	(xk+1) = 1

2
‖Axk − Axk+1 − (

PQ(Axk) − PQ(Axk+1)
)‖2

−γ
(〈wk+1, xk〉 − ‖xk+1‖1 + 〈yk, xk+1 − xk〉

)
+〈pk+1, xk+1 − xk〉
−〈Axk+1 − PQ(Axk+1), PQ(Axk) − PQ(Axk+1)〉
+γ (‖xk‖1 − ‖xk+1‖1 − ‖xk‖2 + ‖xk+1‖2)〉. (2.17)

The characterization of the orthogonal projection, namely

〈x − PQ(x), z − PQ(x)〉 ≤ 0 ∀z ∈ Q, (2.18)

assures that

〈(I − PQ)Axk+1, PQ(Axk) − PQ(Axk+1)〉 ≤ 0, (2.19)

and thus

	(xk)−	(xk+1) ≥ 1

2
‖(I −PQ)(Axk)(I −PQ)(Axk+1)‖2 + γ (‖xk‖1 − 〈wk+1, xk〉)

+γ (‖xk+1‖2 − ‖xk‖2 − 〈yk, xk+1 − xk〉) + 〈pk+1, xk+1 − xk〉.
On the other hand, since |wk+1,i | ≤ 1 for i = 1, ..., n, yk ∈ ∂‖xk‖2 and pk+1 ∈

NC(xk+1), we also have

‖xk‖1−〈wk+1, xk〉≥0 ‖xk+1‖2−‖xk‖2−〈yk, xk+1−xk〉≥0 and 〈pk+1, xk+1−xk〉≥0.
(2.20)

Consequently,

	(xk)−	(xk+1) ≥ 1

2
‖(I −PQ)(Axk)−(I −PQ)(Axk+1)‖2

+γ (‖xk+1‖2 − ‖xk‖2 − 〈yk, xk+1 − xk〉) ≥ 0. (2.21)

This ensures that the sequence (	(xk)) is monotonically decreasing, which in turn
ensures that the sequence (xk) ⊂ {x ∈ IRn, 	(x) ≤ 	(x0)} that is bounded since 	

is coercive.
(iii) If x1 = x0 = 0, we then stop the algorithm producing the solution x∗ = 0.

Otherwise, it follows from (2.21)

	(x0) − 	(x1) ≥ γ ‖x1‖2 > 0, (2.22)
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so xk �= 0 for all k ≥ 1. Since (	(xk)) is convergent, substituting yk = xk‖xk‖2 leads to

lim
k→+∞ ‖(I−PQ)(Axk)−(I−PQ)(Axk+1)‖2=0 and lim

k→+∞ ‖xk+1‖2−〈xk, xk+1〉
‖xk‖2 =0.

(2.23)
Now, let (xkν ) be a subsequence of (xk) converging to x∗ �= 0, so the optimality

condition at the kν the step of Algorithm (2.11) reads

−
(

At(I − PQ)Axkν − γ
xkν−1

‖xkν−1‖2
)

∈ γ ∂‖xkν ‖1 + NC(xkν ). (2.24)

Since limν→+∞ xkν = x∗, the operator At(I − PQ)A is Lipschitz continuous, the
sequence (xk) is assumed to be asymptotically regular, and x∗ is away from 0, we
have

lim
ν→+∞

(
At(I − PQ)Axkν − γ

xkν−1

‖xkν−1‖2
)

= lim
ν→+∞

(
At(I − PQ)Axkν − γ

xkν

‖xkν ‖2
+γ

(
xkν

‖xkν ‖2
− xkν−1

‖xkν−1‖2
))

= At(I − PQ)Ax∗ − γ
x∗

‖x∗‖2 , (2.25)

and by passing to the limit as ν → +∞ in (2.24) and by taking into account the fact
that ∂(‖ · ‖1 + iC) is a maximal monotone operator, which assures that its graph is
closed, we obtain at the limit

−
(

At(I − PQ)Ax∗ − γ
x∗

‖x∗‖2
)

∈ γ ∂‖x∗‖1 + NC(x∗), (2.26)

in other words, x∗ is a stationary point.

The asymptotical regularity assumption is satisfied in the particular case where Q

is a singleton considered in [23]. In what follows, we will prove that it is also the case
in the interesting setting of closed convex cones which usually arises, for example,
in statistical applications and also in image recovery where subspaces are often used.
Likewise, when the projection has the nice property to be homogeneous with respect
to the set Q, which is the case, for instance, for balls, rectangles,... when the points
to project are outside.

Proposition 2.2 The iteration sequence is asymptotically regular in the following
three cases:

i) Q = {b}.
ii) Q is a closed convex cone and when Q is a subspace.
iii) The projection is a non-negative homogeneous function with respect to the set

Q, namely

∀α > 0 ∀x ∈ IRn one has PαQ(x) = αPQ(x). (2.27)
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Proof i) Indeed, in this case, relation (2.21) reduces to

	(xk) − 	(xk+1) ≥ 1

2
‖Axk − Axk+1‖2

+γ (‖xk+1‖2−‖xk‖2 − 〈yk, xk+1−xk〉)≥0, (2.28)

which is exactly the relation that gives the asymptotical regularity in [23]. Following
the same lines of the proof of [23]-Proposition 3.1-(b), we obtain the desired result
which is similar to the end of the proof of iii) below.

ii) In this setting, the projection is a non-negative homogeneous function, i.e.,

∀α ≥ 0 ∀x ∈ IRn one has PQ(αx) = αPQ(x). (2.29)

At this stage, observe that this property holds true also for subspaces since the
projection is linear in this case and the proof will be the same. Now, remember
that I − PQ = PQ∗ , where Q∗ := {y ∈ IRn, 〈y, x〉 ≤ 0 ∀x ∈ Q} and set
ck = 〈xk,xk+1〉

‖xk‖2 and εk = xk+1 − ckxk . It suffices then to prove that limk→+∞ εk = 0
and limk→+∞ ck = 1. A simple computation shows that

‖εk‖22 = ‖xk+1‖22 − 〈xk, xk+1〉2
‖xk‖2 → 0 as k → +∞, (2.30)

by virtue of the second limit in (2.23). On the other hand, using the first limit in
(2.23), we can write

0 = lim
k→+∞ ‖PQ∗(Axk) − PQ∗(Axk+1)‖ = lim

k→+∞ ‖PQ∗(Axk) − PQ∗(A(ckxk + εk))‖
= lim

k→+∞ ‖PQ∗(Axk) − PQ∗(A(ckxk))‖
= lim

k→+∞ ‖PQ∗(Axk) − PQ∗(ckA(xk))‖
= lim

k→+∞ |ck − 1|‖PQ∗(Axk)‖, (2.31)

where we used the homogeneity of the projection and the fact that ck > 0. The latter
follows from the fact that xk+1 is a minimizer in Algorithm 2.11. More precisely, we
can write

1

2
‖PQ∗(Axk+1)‖22 + γ ‖xk+1‖1 − 〈xk+1, γ

xk

‖xk‖2 〉 ≤ 1

2
‖PQ∗(A(0))‖22

+γ ‖0‖1 − 〈0, γ xk

‖xk‖2 〉 = 0. (2.32)

From which, we obtain that ck > 0. Now, if limk→+∞(ck − 1) �= 0, then there exists
a subsequence (xkν ) such that limν→+∞ PQ∗(Axkν ) = 0. So, we have

lim
ν→+∞ 	(xkν ) ≥ lim

ν→+∞
1

2
‖PQ∗(Axkν )‖2 = 0 = 	(x0), (2.33)

which contradicts the fact that

	(xkν ) ≤ 	(x1) < 	(x0) ∀kν ≥ 1. (2.34)

Consequently, limk→+∞ ck = 1 and thus limk→+∞ ‖xk+1 − xk‖ = 0 which
completes the proof.
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iii) To begin with, a simple calculation shows that PαQ(x) = αPQ( 1
α
x); see for

example [6, Lemma 2.1] with U = I and A = 0. Hence, we have PQ(ck(Axk)) =
ckP 1

ck
Q

(Axk) and thus

PQ(ck(Axk)) = ckP 1
ck

Q
(Axk) = ck

1

ck

PQ(Axk) = PQ(Axk), (2.35)

by virtue of the homogeneous property of the projection and the fact that ck > 0.
With this and the first limit in (2.23) in hand, we can successively write

lim
k→+∞ ‖(I − PQ)(Axk) − (I − PQ)(Axk+1)‖ = lim

k→+∞ ‖(I − PQ)(Axk)

−(I − PQ)(A(ckxk + εk))‖
= lim

k→+∞ ‖(I − PQ)(Axk)

−(I − PQ)(A(ckxk))‖
= lim

k→+∞ ‖(I − PQ)(Axk)

−(I − PQ)(ckA(xk))‖
= lim

k→+∞ |ck − 1|‖Axk‖ = 0. (2.36)

Now, if limk→+∞(ck − 1) �= 0, then there exists a subsequence (xkν ) of (xk) such
that limν→+∞ Axkν = 0. So, we have

lim
ν→+∞ 	(xkν ) ≥ lim

ν→+∞
1

2
‖(I − PQ)(Axkν )‖2 = 1

2
‖PQ(0)‖2 = 	(x0), (2.37)

which contradicts the fact that

	(xkν ) ≤ 	(x1) < 	(x0) ∀kν ≥ 1. (2.38)

Consequently, limk→+∞ ck = 1 and again the sequence (xk) is asymptotically
regular.

Remark 2.1 Each DCA iteration requires solving a l1-regularized split feasibility
subproblem of the form

min
x∈C

(
1

2
‖(I − PQ)Ax‖22 + 〈x, v〉 + γ ‖x‖1

)
, (2.39)

where v ∈ IRn is a constant vector. This problem can be done by the two split prox-
imal algorithms (coupling the forward-backward and Douglas-Rachford algorithms)
proposed in [18, 23] and also by the alternating direction method of multipliers
(ADMM) following the analysis developed in [22] for the special case where Q is a
singleton. The details will be given in the Appendix.
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2.2 Forward-backward splitting algorithm

To begin with, recall that the proximal mapping (or the Moreau envelope) of a proper,
convex, and lower semicontinuous function ϕ of parameter λ > 0 is defined by

proxλϕ(x) := arg min
v∈IRn

{
ϕ(v) + 1

2λ
‖v − x‖2

}
, x ∈ IRn, (2.40)

and that it has closed-form expression in some important cases. For example, if ϕ =
‖ · ‖1, then for x ∈ IRn

proxλ‖·‖1(x) = (proxλ|·|(x1), proxλ|·|(xn)), (2.41)

where proxλ|·|(xk) = sgn(xk)maxk=1,2,···n{|xk| − λ, 0}.
If ϕ = iC , we have

proxγϕ(x) = ProjC(x) := argmin
z∈C

‖x − z‖. (2.42)

For sake of simplicity and clarity, we set in what follows C = IRn. Observe that
when γ > 0, the minimization problem (1.11) can be written as

min
x∈IRn

1

2γ
‖(I − PQ)Ax‖22 + ‖x‖1 − ‖x‖2. (2.43)

It is worth mentioning that when C �= IRn, this requires to compute the proxi-
mal operator of a sum, namely proxiC+γk(‖·‖1−‖·‖2) which may be performed with
Douglas-Rachford iterations in the spirit of the analysis developed in [9] and [18].

A closed-form solution of prox‖x‖1−‖x‖2 was proposed in [15]; in particular, we
have the following lemma.

Lemma 2.3 Given y ∈ IRn, λ > 0 and setting r(x) = ‖ · ‖1 − ‖ · ‖2, we have
(i) When λ < ‖y‖∞, then

proxλr(y) = λ + ‖proxλ‖·‖1y‖2
‖proxλ‖·‖1y‖2 proxλ‖·‖1y. (2.44)

(ii) When λ = ‖y‖∞, then x∗ ∈ proxλr(y) if and only if it satisfies x∗
i = 0 if

|yi | < λ, ‖x∗‖2 = λ and x∗
i yi ≥ 0 for all i.

(iii) When λ > ‖y‖∞, then x∗ ∈ proxλr(y) if and only if it is a 1-spare vector
satisfying x∗

i = 0 if |yi | < ‖y‖∞, ‖x∗‖2 = ‖y‖∞ and x∗
i yi ≥ 0 for all i.

By setting l(x) = 1
2γ ‖(I − PQ)Ax‖22, the forward-backward splitting algorithm

can be expressed as follows:

xk+1 ∈ proxλr(xk − λ∇l(xk)). (2.45)

Since the two assumptions of [15, Theorem 3] are satisfied, namely the coerciveness
of the objective function and differentiability of the function l with Lipschitz-
continuity of its gradient, a direct application of this theorem leads to the following
convergence result:



750 Numer Algor (2018) 78:739–757

Proposition 2.4 If λ <
γ

‖A‖2 , then the objective values are decreasing and there

exists a subsequence of (xk) that converges to a stationary point. Furthermore, any
limit point of (xk) is a stationary point.

2.3 Mine-Fukushima algorithm

At this stage, we would like to mention that in the case where C is strictly convex
and that we can generate from an initial point x0 a sequence xk such that xk �= 0 for
all k ∈ IN , then the algorithm introduced by Mine-Fukushima in [17] is applicable.
Indeed, problem (1.11) can be written as

min
x∈IRn

(φ(x) := f (x) + g(x)), (2.46)

with f (x) = 1
2‖(I − PQ)Ax‖22 − γ ‖x‖2 and g(x) = γ ‖x‖1 + iC(x). Observe

that in this case, we have for x �= 0, that ∇f (x) = At(I − PQ)Ax − γ x
‖x‖2 and

∂g(x) = ∂‖x‖1 + NC(x).
So [17, Algorithm 2.1] take the following from

Algorithm (Mine-Fukushima):

Step 1. Let x0 be any initial point. Set k = 0, and go to step 2.
Step 2. If −∇f (xk) ∈ ∂g(xk), stop. Otherwise, go to step 3.
Step 3. Find a minimum x̃k of

min
x∈C

(〈
x, At (I − PQ)Axk − γ

xk

‖xk‖2
〉
+ γ ‖x‖1

)
, (2.47)

and go to step 4.
Step 4. Find

xk+1 = λkx̃k + (1 − λk)xk, (2.48)

such that λk ≥ 0 and

φ(xk+1) ≤ φ(λx̃k + (1 − λ)xk) for all λ ≥ 0. (2.49)

Set k = k + 1, and go to step 2.

Observe that solving (2.47) in step 3 is equivalent to finding x̃k such that −∇f (xk) ∈
∂g(x̃k).

Since φ is coercive in our case, a direct application of [17, Theorem 3.] yields the
following result.

Proposition 2.5 The sequence (xk) generated by the Mine-Fukushima Algorithm
contains a subsequence which converges to a critical point x∗ of (2.46), namely

− At(I − PQ)Ax∗ − γ
x∗

‖x∗‖2 ∈ ∂‖x∗‖1 + NC(x∗). (2.50)
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Remark 2.2 Theassumption of strict convexity on the convex set C can be removed by
applying the following process: for some μ > 0 consider the following decomposition

of the objective function φ: φ = f̃ + g̃ with f̃ (x) = f (x) − μ
‖x‖22
2 and g by

g̃(x) = g(x) + μ
‖x‖22
2 . Relation (2.47) becomes

min
x∈C

(〈
x, At (I − PQ)Axk + μxk − γ

xk

‖xk‖2
〉
+ γ ‖x‖1 + μ

‖x‖22
2

)
. (2.51)

3 Numerical experiments

In this section, we present two numerical examples demonstrating the performances
of our proposed schemes. In both experiments, we wish to solve the linear system
of equations: Ax = b with A ∈ IR120×512. In the first example, we generate 50
random problems from a normal distribution with mean zero and variance one. For
the second experiment, we choose a problem in the field of compressed sensing,
which consists of recovering a sparse signal x ∈ IR512 with 50 nonzero elements
from 120 measurements. In this case, we also include noise, that is, we wish to solve
Ax = b + ε, where ε is the noise with bounded variance 10−4.

For the comparison of our proposed schemes, we decided also to include Byrne
CQ algorithm [2, 3] and Qu and Xiu [20]-modified CQ algorithm. Byrne CQ algo-
rithm is designed to solve Ax = b, and hence, we choose C = IRn+ and Q = {b}.
The CQ iterative step reads as follows:

xk+1 = PC(xk − γ̂ At (I − PQ)Axk) (3.1)

and for the specific choice of C and Q, it translates to

xk+1 = (
xk − γ̂ At (Axk − b)

)
+ (3.2)

and it is denoted in our plots (Figs. 1 and 2) as CQ.
Qu and Xiu [20]-modified CQ algorithm (see also Tang et al. [21]) uses subgra-

dient (elements of the subdifferential set) projection onto super-sets C ⊆ Ck and
Q ⊆ Qk instead of the orthogonal projections onto C and Q . The algorithm also
makes use of adaptive step size αk instead of fixed γ̂ as in the CQ algorithm. The
algorithm is as follows.

Algorithm (modified CQ):

Step 1. Given constants l, μ ∈ (0, 1) and choose x0∈ IRn. Set k = 0, and go to step 2.
Step 2. Given the current iterate xk , let

xk = PCk
(xk − αkA

t (I − PQ)Axk) (3.3)

where αkl
mk and mk is the smallest non-negative integer m such that

‖At(I − PQ)Axk − At(I − PQ)Axk‖ ≤ μ
‖xk − xk‖

αk

. (3.4)
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Fig. 1 Testing our proposed algorithms for 50 random problems Ax = b, where A ∈ IR120×512

And the next iterate is calculated via

xk+1 = PCk
(xk − αkA

t (I − PQ)Axk). (3.5)

Set k = k + 1, and go to step 2.

While for the CQ algorithm, we wish to solve Ax = b, for the modified CQ algo-
rithm, we wish to the consider Ax = b with l1 regularization; this is known as the
LASSO problem [22] (strongly related to the Basis Pursuit denoising problem [8])

min
x∈C

1

2
‖Ax − b‖22 subject to ‖x‖1 ≤ t (3.6)

where t > 0 is a given constant. So in this case, we choose C = {x | ‖x‖1 ≤ t} and
Q={b}. We define the convex function c(x) = ‖x‖1 − t and denote the level set Ck by

Ck = {x | c(xk) + 〈ξk, x − xk〉 ≤ 0}, (3.7)

where ξk ∈ ∂c(xk) is an element (subgradient) from the subdifferential of c at xk .
The orthogonal projection onto Ck can be calculated by the following,

PCk
(y) =

{
y, if c(xk) + 〈ξk, y − xk〉 ≤ 0,
y − c(xk)+〈ξk,y−xk〉

‖ξk‖2 ξk, otherwise. (3.8)
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Fig. 2 Testing our proposed algorithms for recovering a 50-sparse signal x ∈ IR512 from 120
measurements

Following the definition of the subdifferential set ∂c(xk) (2.3), we choose subgradient
ξk ∈ ∂c(xk) as

(ξk)i =
⎧⎨
⎩
1, (xk)i > 0,
0, (xk)i �= 0,
−1, (xk)i < 0.

(3.9)

This algorithm, Algorithm 3, is denoted in our plots (Figs. 1 and 2) as Mod CQ
(l1-con.).

Our schemes, DC (difference of convex) algorithm (DCA)-iterative step (2.11), the
forward-backward (FB) algorithm-iterative step (2.45), and the Mine and Fukushima
algorithm-Algorithm 2.3 are denoted in our plots (Figs. 1 and 2) as DCA (l1-l2),
FB and Mine and Fukushima, respectively. The stopping criterion for all schemes is
either 1000 iterations or until ‖xk+1 − xk‖ < 10−5 is reached. In the experiments,
we choose arbitrary the regularization parameter γ to be 0.6. We noticed that this
choice produces good results, and this also affects the sensitivity of the solution. All
computations were performed using MATLAB R2015a on an Intel Core i5-4200U
2.3GHz running 64-bit Windows.

Next, the two numerical illustrations are presented. In Figs. 1 and 2, we present
the performances of our schemes as well as the CQ and the modified CQ algorithms
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for random data and sparse signal recovering, respectively. As explained above, the
algorithms are designed to solve Ax = b with and without different types of regu-
larizations. In Fig. 1, we present the results for the 50 random generated problems;
in each plot, the different colors represent the quintiles with respect to each of the 50
problems and the red graph is the experiment median. It can be seen that most meth-
ods differ in their “warmup” stages, that is, in the first number of iterations, and all
converge “quite fast,” just within a few iterations. We see that the “warmup” stage
in the DCA is the most significant and visible; we suspect that this is probably due
to the need to solve subproblems during each iteration. This would probably play an
essential role as a computational aspect for large-scale problems. In Fig. 2, we test
the five scheme performances for recovering a 50-sparse signal x ∈ IR512 from 120
measurements. Here, when only the resulting recovered signal is presented, it can be
seen that the DCA, FB, and Mine and Fukushima algorithms recover the exact signal
while both the CQ and the modified CQ algorithms contain errors, and as expected,
the modified CQ algorithm generates a slightly better signal, probably due to the l1
-regularization. We would like to emphasize that the main goal of this work is to
introduce and survey some approaches for solving Ax = b with different variants
of regularizations; we dont wish to further investigate and analyze the computational
performances of the proposed schemes and hence wish to leave our above explana-
tions as compact as possible. An interesting direction for future study is indeed a
computational comparison between different types of regularizations. We believe that
deep insights in this case can be derived, only when large problems are considered;
since then, the subproblems solved per each iteration in the related algorithms might
play an essential role with respect to the computational efforts and convergence rate,
and moreover, this could emphasize and suggest the applicability and advantages of
the different methods and in particular the usage of one regularization over another.

4 Concluding remarks

In this paper, we investigate split feasibility problems under a nonconvex Lipschitz
continuous metric instead of conventional methods such as l1 or l1− l2 minimization,
for example in [1]. We present and analyze the convergence to a stationary point of
an iterative minimization method based on DCA (difference of convex algorithm);
see for example [19]. Furthermore, relying on a proximal operator for l1 − l2 as well
as on an algorithm proposed by Mine and Fukushima for minimizing the sum of a
convex function and a differentiable one, two additional algorithms are presented and
their convergence properties are discussed.

Since each iteration of the DCA requires to solve an inner l1 -regularized split
feasibility subproblem, we present some algorithms designed for that purpose in the
Appendix. Observe that the DCA presented here can be extended to split fixed-point
problems governed by firmly quasi-nonexpansive mappings. We would also like to
emphasize that much attention has been paid not only to the sparsity of solutions
but also to the structure of this sparsity, which may be relevant in some problems
and which provides another avenue for inserting prior knowledge into the problem.
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We would like to mention that an interesting regularizer is the OSCAR one which
has the following form:

rOSCAR(x) = γ1‖x‖1 + γ2
∑
i<j

max{|xi |, |xj |}. (4.1)

Due to l1 term and the pairwise l∞ penalty, the components are encouraged to stan-
dard spare and pairwise similar magnitude, have been extensively applied in various
feature grouping tasks, and outperform other models. We refer to the interesting paper
[25] where the OSCAR regularizer is used via its proximity mapping, a work that
deserves to be more developed.
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Appendix A

Each DCA iteration requires solving a l1 -regularized split feasibility subproblem of
the form

min
x∈C

1

2
‖(I − PQ)Ax‖22 + 〈x, v〉 + γ ‖x‖1, (A.1)

where v ∈ IRn is a constant vector. This problem can be done, for example, by the two
split proximal algorithms (coupling the forward-backward and Douglas-Rachford
algorithms).

A.1 Insertion of a forward-backward step in the Douglas-Rachford algorithm

To apply the Douglas-Rachford algorithm when g1 = γ ‖ · ‖1 and g2 =
1
2‖(I − PQ)A(·)‖22 + 〈·, v〉 + iC , we need to determine their proximal map-
pings. The main difficulty lies in the computation of the second one, namely
prox

κ 1
2 ‖(I−PQ)A(·)‖22+〈·,v〉+iC

. As in [9], we can use a forward-backward algorithm to

achieve this goal.
The resulting algorithm is as follows:

Algorithm:

Step 1. Set γ ∈]0, 2κ−1‖A‖−1], λ ∈]0, 1] and κ ∈]0, +∞[.
Choose (τk)k∈IN satisfying ∀k ∈ IN, τk ∈]0, 2[ and ∑∞

k=0 τk(2 − τk) =
+∞

Step 2. Set k = 0, y0 = y−1/2 ∈ C

Step 3. Set xk,0 = yk−1/2
Step 4. For i = 0, . . . , Nk − 1
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a) Choose γk,n ∈ [γ , 2κ−1‖A‖−1[ and λk,i ∈ [λ, 1].;
b) Compute

xk,i+1 = xk,i + λk,i

(
PC(

xk,i − γk,i (κ(At (I − PQ)Axk,i + vi) − yk)

1 + γk,i

) − xk,i

)
.

(A.2)

Step 5. Set yk+1/2 = xk,Nk

Step 6. Set yk+1 = yk + τk(proxκ‖·‖1(2yk+1/2 − yk) − yk+1/2).
Step 7. Increment k ← k + 1 and go to step 3.

By a judicious choose of Nk , the convergence of the sequence (yk) to y such that

prox
κ( 12 ‖(I−PQ)A(·)‖22+〈·,v〉)+iC

(y) (A.3)

solves problem (A.1) follows directly by applying [9, Proposition 4.1].

A.2 Insertion of a Douglas-Rachford step in the forward-backward algorithm

We consider f1 = κ‖·‖1+iC et f2 = 1
2‖(I−PQ)A(·)‖22+〈·, v〉. Since f2 has a ‖A‖2-

Lipschitz gradient, we can apply the forward-backward algorithm. This requires
however to compute proxiC+γk‖·‖ which can be performed with Douglas-Rachford
iterations. The resulting algorithm is

Algorithm:

Step 1. Choose γk and λk satisfying assumptions 0 < infk γk ≤ supk γk < 2/‖A‖2,
0 < λ ≤ λk ≤ 1.

Set τ ∈]0, 2].
Step 2. Set k = 0, x0 ∈ C

Step 3. Set x′
k = xk − γk(A

t (I − PQ)Axn + v).
Step 4. Set yk,0 = 2proxγk‖·‖1x′

k − x′
k .

Step 5. For i = 0, . . . , Mk − 1.

a) Compute

yk,i+1/2 = PC

(
yk,i + x′

k

2

)
(A.4)

b) Choose τk,i ∈ [τ , 2].
c) Compute yk,i+1 = yk,i + τk,i(proxγk‖·‖1(2yn,i+1/2 − yk,i)− yn,i+1/2).
d) If yk,i+1 = yk,i , then goto step 6.

Step 6. Set xk+1 = xk + λk(yk,i+1/2 − xk).
Step 7. Increment k ← k + 1 and go to step 3.

A direct application of [9, Proposition 4.2] ensures the existence of positive integers
(Mk) such that if ∀k ≥ 0 Mk ≥ Mk , then the sequence (xk) weakly convergences to
a solution of problem (A.1).
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Remark A.1 Other split proximal algorithms may be designed by combining the
fixed-point idea to compute the composite of a convex function with a linear operator
introduced in [16] and the analysis developed for computing the proximal mapping
of the sum of two convex functions developed in [9] and [18]. Primal-dual algorithms
considered in [12] can also be used. Note that there are often several ways to assign
the functions of (A.1) to the terms used in the generic problem.
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