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Abstract For solving a class of complex symmetric linear systems, we introduce a
new single-step iteration method, which can be taken as a fixed-point iteration adding
the asymptotical error (FPAE). In order to accelerate the convergence, we further
develop the parameterized variant of the FPAE (PFPAE) iteration method. Each iter-
ation of the FPAE and the PFPAE methods requires the solution of only one linear
system with a real symmetric positive definite coefficient matrix. Under suitable con-
ditions, we derive the spectral radius of the FPAE and the PFPAE iteration matrices,
and discuss the quasi-optimal parameters which minimize the above spectral radius.
Numerical tests support the contention that the PFPAE iteration method has compara-
ble advantage over some other commonly used iteration methods, particularly when
the experimental optimal parameters are not used.
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1 Introduction and motivations

We consider to find the iterative solution of complex linear systems of the form

Ax := (W + iT )x = b, (1)

where W , T ∈ R
n×n are symmetric matrices and at least one of them, e.g., W is pos-

itive definite. Throughout the paper, the vector b ∈ C
n is given, x ∈ C

n is unknown
and i = √−1 is the imaginary unit. This kind of complex symmetric linear sys-
tems comes from many problems in scientific computing and applied engineering
branches, we refer to [1, 7, 8, 23, 24] and the references therein.

As we all know, a simple Hermitian and skew-Hermitian splitting (HSS) has been
commonly used so that we can solve the problem (1) iteratively, where the coefficient
matrix is rewritten as

A = H + S,

with

H = 1

2
(A + A∗) = W and S = 1

2
(A − A∗) = iT .

Here, A∗ denotes the conjugate transpose of the matrix A. Notice that the coefficient
matrix A is non-Hermitian, but positive definite.

When the matrix T is positive semi-definite, a number of iteration methods have
been developed to solve the system (1). Bai et al. [14] first proposed the HSS iteration
method by the scheme{

(αI + W)x(k+ 1
2 ) = (αI − iT )x(k) + b,

(αI + iT )x(k+1) = (αI − W)x(k+ 1
2 ) + b,

where α > 0 is a given constant and I is the identity matrix. For more information
about the HSS iteration method and its variants, we refer to [4, 5, 13, 15–17, 22].

Later, a modified HSS (MHSS) iteration method was introduced in [8]. To speed
up the convergence, Bai et al. [9, 10] proposed a preconditioned variant of the MHSS
(PMHSS) iteration method and applied it to solve distributed control problems. The
PMHSS iteration method is constructed by the scheme{

(αV + W)x(k+ 1
2 ) = (αV − iT )x(k) + b,

(αV + T )x(k+1) = (αV + iW)x(k+ 1
2 ) − ib,

where V ∈ R
n×n is a prescribed symmetric positive definite matrix. Furthermore,

a lopsided PMHSS iteration method was generalized by Li et al. [29] when the real
part of the coefficient matrix is dominant. A new HSS (NHSS) iteration method
was proposed by Pour and Goughery [30], and a parameterized variant of the NHSS
iteration method was developed in [35].

Recently, Li and Wu [27] presented a single-step HSS (SHSS) iteration method by
the scheme

(αI + W)x(k+1) = (αI − iT )x(k) + b.
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Later, a parameterized variant of the SHSS (PSHSS) method was constructed by
Zeng and Ma [36], which is confirmed to be powerful according to their numerical
experiments. The PSHSS iteration method is given by

(αI + ωW + T )x(k+1) = [αI − i(ωT − W)]x(k) + (ω − i)b,

where α, ω are given positive constants. In addition, a preconditioned variant of the
PSHSS iteration method was developed in [34].

Note that the HSS-like iteration methods for complex linear systems have been
extended in many literatures, and some of them have been used for solving other
systems of equations, see [2, 3, 6, 11, 12, 18–21, 28, 32, 33, 37–39] for more details.

On the other hand, let x = u + iv and b = p + iq with u, v, p, q ∈ R
n, then

problem (1) can be reduced to a 2-by-2 block real linear system[
W −T

T W

] [
u

v

]
=

[
p

q

]
, (2)

with u, v being unknown vectors. To solve this system, Salkuyeh et al. [31] proposed
a generalized successive overrelaxation (GSOR) iterative method. Hezari et al. [26]
developed a preconditioned variant of the GSOR (PGSOR) iterative method by the
scheme{

(ωW + T )u(k+1) = (1 − α)(ωW + T )u(k) + α(ωT − W)v(k) + α(ωp + q),

(ωW + T )v(k+1) = −α(ωT − W)u(k+1) + (1 − α)(ωW + T )v(k) + α(ωq − p),

with α, ω being given positive constants.
In this paper, we introduce a new single-step iteration method which can be taken

as a fixed-point iteration adding the asymptotical error (FPAE). In particular, if W ,
T ∈ R

n×n are symmetric positive semi-definite matrices with at least one of them
being positive definite, we may use the parameterized variant of the FPAE (PFPAE)
iteration method because of its higher efficiency.

This paper is structured as follows. In Section 2, the FPAE iteration method is
constructed and its convergence properties are analyzed, including the convergence
conditions, the spectral radius of the iterative matrix and the quasi-optimal parameter.
In Section 3, the PFPAE iteration method is developed and its convergence proper-
ties are considered. In Section 4, some numerical examples are presented to show the
computational efficiencies of the FPAE and the PFPAE iteration methods by com-
paring with several other iteration methods. Finally, a brief conclusion is made in
Section 5.

2 Convergence analysis of a new single-step iteration method

In this section, suppose that W is symmetric positive definite and T is symmetric,
then we introduce a new iteration method to solve the complex linear system (1). For
any symmetric positive definite matrix V and any α > 0, the fact that

V x = V x − α[(W + iT )x − b],
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inspires us to construct

V x(k+1) = V x(k) − α[(W + iT )x(k) − b],
which can be taken as a fixed-point iteration adding the asymptotical error (FPAE),
thus we have the following iteration method.

Algorithm 1 The FPAE Iteration Method

Given an initial guess x(0) ∈ C
n, for k = 0, 1, 2, . . . until the sequence of iterates

{x(k)} converges, compute x(k+1) by the scheme

V x(k+1) = [V − αW − iαT ]x(k) + αb. (3)

We can rewrite (3) as

x(k+1) = M(α, V )x(k) + N(α, V )b,

where

M(α, V ) = I − αV −1W − iαV −1T

= V − 1
2 [I − V − 1

2 WV − 1
2 − iαV − 1

2 T V − 1
2 ]V 1

2 , (4)

and N(α, V ) = αV −1. Let

F(α, V ) = 1

α
V, and G(α, V ) = 1

α
V − (W + iT ),

then we have

A = F(α, V ) − G(α, V ), and M(α, V ) = F(α, V )−1G(α, V ).

Thus, the splitting matrix F(α, V ) can be used as a preconditioner for the complex
matrix A ∈ C

n×n, which is referred as the FPAE preconditioner.
In order to study the convergence properties of the FPAE iteration method, we use

the following notations

λ̃V
min = min

λ̃j ∈sp(V
− 1
2 WV

− 1
2 )

{λ̃j }, σ̃ V
max = max

σ̃j ∈sp(V
− 1
2 T V

− 1
2 )

{|σ̃j |},

λ̃V
max = max

λ̃j ∈sp(V
− 1
2 WV

− 1
2 )

{λ̃j }, σ̃ V
min = min

σ̃j ∈sp(V
− 1
2 T V

− 1
2 )

{|σ̃j |}, (5)

where sp(X) is the spectral set of the matrix X.

Theorem 1 For the FPAE iteration method, the spectral radius

ρ(M(α, V )) ≤
√
max

{
(1 − αλ̃V

min)
2, (1 − αλ̃V

max)
2
}

+ α2(σ̃ V
max)

2 =: δV (α). (6)
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Moreover, if

0 < α < min

{
2λ̃V

min

(λ̃V
min)

2 + (σ̃ V
max)

2
,

2λ̃V
max

(λ̃V
max)

2 + (σ̃ V
max)

2

}
, (7)

then δV (α) < 1, i.e., the iteration converges.

Proof It is easy to obtain (6) in terms of (4) and the fact that

ρ(M(α, V )) = ρ(I − V − 1
2 WV − 1

2 − iαV − 1
2 T V − 1

2 ).

After simple discussions and direct calculations, we have

(δV (α))2 =
⎧⎨
⎩

(1 − αλ̃V
min)

2 + α2(σ̃ V
max)

2, 0 < α ≤ 2
λ̃V

max+λ̃V
min

,

(αλ̃V
max − 1)2 + α2(σ̃ V

max)
2, α > 2

λ̃V
max+λ̃V

min

.
(8)

Therefore, a concrete analysis of (8) makes it clear that we have δV (α) < 1 if

λ̃V
minλ̃

V
max ≤ (σ̃ V

max)
2 and 0 < α <

2λ̃V
min

(λ̃V
min)2+(σ̃ V

max)2
, or if λ̃V

minλ̃
V
max > (σ̃ V

max)
2 and

0 < α <
2λ̃V

max

(λ̃V
max)2+(σ̃ V

max)2
, while those conditions can be reduced to the inequality

(7).

Corollary 1 For the FPAE iteration method, if

(λ̃V
min)

2 + 2(σ̃ V
max)

2 ≥ λ̃V
maxλ̃

V
min, (9)

then the optimal parameter αV∗ which minimizes the upper bound δV (α) of the
spectral radius ρ(M(α, V )) is given by

αV∗ = λ̃V
min

(λ̃V
min)

2 + (σ̃ V
max)

2
, (10)

and

δV (αV∗ ) = σ̃ V
max√

(λ̃V
min)

2 + (σ̃ V
max)

2
. (11)

Proof Since the two parts in the right-hand side of (8) are parabolas, then the upper
bound δV (α) of the spectral radius ρ(M(α, V )) achieves its minimum δV (αV∗ ) given
by

δV (αV∗ ) =

⎧⎪⎨
⎪⎩

σ̃ V
max√

(λ̃V
min)2+(σ̃ V

max)2
, αV∗ = λ̃V

min

(λ̃V
min)2+(σ̃ V

max)2
≤ 2

λ̃V
max+λ̃V

min

,

σ̃ V
max√

(λ̃V
max)2+(σ̃ V

max)2
, αV∗ = λ̃V

max

(λ̃V
max)2+(σ̃ V

max)2
> 2

λ̃V
max+λ̃V

min

.

However, the inequality λ̃V
max

(λ̃V
max)2+(σ̃ V

max)2
> 2

λ̃V
max+λ̃V

min

never holds true, since

λ̃V
max(λ̃

V
max + λ̃V

min) ≤ 2(λ̃V
max)

2. Hence, if the condition (9) is satisfied, we obtain
(10) and (11).
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Remark 1 According to Theorem 1, the FPAE iteration can be made convergent if
the parameter α is properly chosen. Moreover, under the condition (9), theoretically
the optimal symmetric positive definite matrix V∗ minimizing δV (αV∗ ) is given by

V∗ = argmin
V

⎧⎪⎨
⎪⎩

σ̃ V
max√

(λ̃V
min)

2 + (σ̃ V
max)

2

⎫⎪⎬
⎪⎭ = argmin

V

{
σ̃ V

max

λ̃V
min

}
,

since f (x) := x√
1+x2

is a strictly monotonic increasing function. While practically

we usually take the positive definite matrix W to substitute the matrix V .

In fact, when V = W , the FPAE iteration becomes

Wx(k+1) = [(1 − α)W − iαT ]x(k) + αb. (12)

We can rewrite (12) as

x(k+1) = M(α)x(k) + N(α)b,

where M(α) = (1 − α)I − iαW−1T and N(α) = αW−1. If we define

F(α) = 1

α
W, and G(α) = 1 − α

α
W − iT ,

then it holds that

A = F(α) − G(α), and M(α) = F(α)−1G(α).

Therefore, the splitting matrix F(α) can be taken as a preconditioner for the complex
matrix A ∈ C

n×n.
Since the spectral radius ρ(M(α)) = ρ((1− α)I − iαW−1T ), then we can easily

get the following result without proof.

Theorem 2 For the FPAE iteration method using V = W , the spectral radius
ρ(M(α)) is given by

δ(α) =
√

(1 − α)2 + α2ρ2(W−1T ). (13)

If 0 < α < 2
1+ρ2(W−1T )

, then δ(α) < 1 i.e., the iteration converges. More-

over, the optimal parameter α∗ minimizing the spectral radius δ(α) is given by
α∗ = 1

1+ρ2(W−1T )
∈ (0, 1) which leads to

δ(α∗) = ρ(W−1T )√
1 + ρ2(W−1T )

. (14)

Mention that under the conditions of Theorem 2, if ρ(W−1T ) ≤ 1, then it holds
that

ρ(M(α∗)) = δ(α∗) ≤ 1√
2
.
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Remark 2 According to Corollary 2.1 in [27] for the SHSS iteration method, the
minimal upper bound δα of the spectral radius ρ((αI + W)−1(αI − iT )) is given by

δα∗ = σmax√
λ2min + σ 2

max

=
σmax

λmin√
1 + ( σmax

λmin
)2

, (15)

where λmin is the smallest eigenvalue of matrix W and σmax is the largest singular-
value of matrix iT . From (14) and (15), using the fact that

ρ(W−1T ) ≤ ‖W−1T ‖2 ≤ ‖W−1‖2‖T ‖2 = σmax

λmin

,

we obtain
δ(α∗) ≤ δα∗ .

Therefore, the FPAE method using V = W would be more efficient than the SHSS
method when the optimal parameters are used, respectively.

3 Convergence analysis of the parameterized variant of the FPAE
iteration method

In this section, we suppose W , T ∈ R
n×n are symmetric positive semi-definite matri-

ces with at least one of them being positive definite. Multiplying a parameter ω − i

by the two sides of the original linear system (1) leads to

(ω − i)Ax := [(ωW + T ) + i(ωT − W)]x = (ω − i)b. (16)

Let

Ã = (ω − i)A, W̃ = ωW + T , T̃ = ωT − W, b̃ = (ω − i)b. (17)

Then, (16) is rewritten as

Ãx := (W̃ + iT̃ )x = b̃.

By comparing it with the original linear system (1), we directly obtain the following
variant of the FPAE iteration method for V = W̃

W̃x(k+1) = [(1 − α)W̃ − iαT̃ ]x(k) + αb̃. (18)

Substituting (17) into (18), we get the following parameterized variant of the FPAE
(PFPAE) iteration method.

Algorithm 2 The PFPAE Iteration Method

Given an initial guess x(0) ∈ C
n, for k = 0, 1, 2, . . . until the sequence of iterates

{x(k)} converges, compute x(k+1) by the scheme

(ωW + T )x(k+1) = [(1 − α)(ωW + T ) − iα(ωT − W)]x(k) + α(ω − i)b, (19)

where α, ω are given positive constants.
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Next, we discuss the convergence properties of the PFPAE iteration method and
search for the optimal parameters. First, we rewrite the PFPAE iteration scheme (19)
as

x(k+1) = M(α, ω)x(k) + N(α, ω)(ω − i)b, k = 0, 1, 2, . . . ,

where

M(α, ω) = (1 − α)I − iα(ωW + T )−1(ωT − W), N(α, ω) = α(ωW + T )−1.

Let

F(α, ω) = 1

α
(ωW + T ), and G(α, ω) = 1 − α

α
(ωW + T ) − i(ωT − W),

then we obtain

(ω − i)A = F(α, ω) − G(α, ω), and M(α, ω) = F(α, ω)−1G(α, ω).

Thus, the splitting matrix F(α, ω) can be taken as a preconditioner for the complex
symmetric matrix (ω − i)A ∈ C

n×n, which is referred as the PFPAE preconditioner.
Since W̃ = ωW + T is a symmetric positive definite matrix, then according to

the convergence analysis about the FPAE iteration method given in Section 3, we
immediately obtain the following results.

Theorem 3 If W , T ∈ R
n×n are symmetric positive semi-definite matrices with at

least one of them being positive definite, then the spectral radius ρ(M(α, ω)) is given
by

δ(α, ω) =
√

(1 − α)2 + α2ρ2(W̃−1T̃ ). (20)

If 0 < α < 2
1+ρ2(W̃−1T̃ )

, then δ(α, ω) < 1 i.e. the iteration converges. In addition, the

optimal parameter α∗(ω) minimizing the spectral radius δ(α, ω) is given by α∗(ω) =
1

1+ρ2(W̃−1T̃ )
which leads to δ(α∗(ω), ω) = ρ(W̃−1T̃ )√

1+ρ2(W̃−1T̃ )
.

Remark 3 According to Theorem 3, by similar analysis as in Remark 2, for
comparing the PFPAE method and the PSHSS method [36], we have

δ(α∗(ω), ω) ≤ δ(α∗(ω),ω).

Therefore, the PFPAE method would be superior to the PSHSS method when the
optimal parameters α∗(ω) are used, respectively, for the same ω.

Note that when ρ(W̃−1T̃ ) ≤ 1, if we take the optimal parameter α∗(ω) for the
PFPAE method, then it holds that

ρ(M(α∗(ω), ω)) = δ(α∗(ω), ω) ≤ 1√
2
.

Since the minimal spectral radius δ(α∗(ω), ω) = ρ(W̃−1T̃ )√
1+ρ2(W̃−1T̃ )

is strictly monotonic

increasing about ρ(W̃−1T̃ ), then the parameter ω should be chosen such that the
spectral radius ρ(W̃−1T̃ ) is as small as possible.
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Theorem 4 Under the conditions of Theorem 3, let μmin and μmax be the smallest
and largest eigenvalues of W−1T , respectively. Then for any given θ ∈ (0, 1], we can
make the spectral radius ρ(W̃−1T̃ ) < θ , if any of the following conditions holds:

(1) ω >
1−θμmin

θ+μmin
for μmin ≤ μmax ≤ θ ;

(2) 1−θμmin

θ+μmin
< ω <

θμmax+1
μmax−θ

for μmin < 1
θ
, μmax > θ and 1+μmaxμmin

μmax−μmin
> 1−θ2

2θ ;

(3) 0 < ω <
θμmax+1
μmax−θ

for μmax ≥ μmin ≥ 1
θ
.

Proof According to Lemma 2.2 in [26], the spectral radius ρ(W̃−1T̃ ) is defined by

ρ(W̃−1T̃ ) = max

{
1 − ωμmin

ω + μmin

,
ωμmax − 1

ω + μmax

}
, (21)

then ρ(W̃−1T̃ ) < θ is equivalent to{
1 − ωμmin < θ(ω + μmin),

ωμmax − 1 < θ(ω + μmax).

Solving this system of inequalities, we get{
ω >

1−θμmin

θ+μmin
,

0 < ω <
θμmax+1
μmax−θ

, or ω > 0 for μmax ≤ θ.

Since 1+μmaxμmin

μmax−μmin
> 1−θ2

2θ is equivalent to 1−θμmin

θ+μmin
<

θμmax+1
μmax−θ

, then we complete the
proof by simple discussions.

In particular, when θ = 1, we can make δ(α∗(ω), ω) < 1√
2
if any of the conditions

in Theorem 4 holds.

Remark 4 According to Lemma 2.3 in [26], when W is symmetric positive and T

is symmetric semi-definite, to make the minimal spectral radius δ(α∗(ω), ω) for the
PFPAE iteration method smaller than δ(α∗) for the FPAE iteration method, we should
choose the parameter ω such that the spectral radius ρ(W̃−1T̃ ) ≤ ρ(W−1T ) which
is equivalent to

ω > max

{
0,

1 − μminμmax

μmin + μmax

}
. (22)

On the other hand, according to Lemma 2.4 in [26], we can obtain the optimal
parameter ω∗ minimizing the spectral radius ρ(W̃−1T̃ ) which is given by

ω∗ =
1 − μminμmax +

√
(1 + μ2

min)(1 + μ2
max)

μmin + μmax

. (23)

In addition, from the proof of Corollary 2.2 in [26], we obtain

ρ(M(α∗(ω∗), ω∗)) = δ(α∗(ω∗), ω∗) <
1√
2
,

since the spectral radius ρ(W̃−1T̃ ) < 1 for ω∗.
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Therefore, if the parameter ω satisfies (22), then the PFPAE iteration method with
the optimal parameter α∗(ω) may be more efficient than the FPAE iteration method
with the optimal parameter α∗. Theorem 3 tells us that the PFPAE iteration method
converges for any ω > 0 if 0 < α < 2

1+ρ2(W̃−1T̃ )
. While Remark 4 implies that the

PFPAE iteration method converges for any 0 < α ≤ 1 if the optimal parameter ω∗ is
chosen.

4 Numerical results

In this section, we perform some numerical experiments to test the effectiveness of
the FPAE using V = W and the PFPAE iteration methods. Numerical comparisons
with the SHSS [27], the PSHSS [36], the PMHSS [9], and the PGSOR [26] itera-
tion methods are made to show the advantage of the FPAE and the PFPAE iteration
methods in terms of the number of iterations (denoted as IT) and the CPU times (in
seconds, denoted as CPU).

All experiments are carried out in MATLAB (version 8.1.0.604, R2013a) on a
personal computer with Intel(R) Core(TM) CPU 1.8 × 2Ghz and 4.00 GB of RAM.
The CPU time is recorded by the command “tic-toc.”

In our computations, all iteration schemes are started from the zero vector and
terminated if

‖b − Ax(k)‖2
‖b‖2 ≤ 10−6

where x(k) = u(k) + iv(k) is the current approximation.

Example 1 Consider the complex Helmholtz equation [24, 26, 29, 36]

−	u + σ1u + iσ2u = f,

with σ1, σ2 being real coefficient functions. Here, u satisfies Dirichlet boundary con-
ditions in the square D = [0, 1] × [0, 1]. By discretizing this equation with finite
differences on an m × m grid with mesh size h = 1/(m + 1), we obtain a complex
linear system

[(K + σ1I ) + iσ2I ]x = b,

where the matrix K ∈ R
n×n possesses the tensor-product form

K = I ⊗ Bm + Bm ⊗ I with Bm = 1

h2
tridiag(−1, 2, −1) ∈ R

m×m.

Actually, K is the five-point centered difference matrix approximating the negative
Laplacian operator L = −	. In our tests, let the right-hand side vector b = (1+i)A1
with 1 being the vector of all entries equal to 1. In addition, we normalize the complex
linear system by multiplying both sides by h2.

Example 2 Consider a complex system of the form [8]

[(K − 
 2M) + i(CH + 
CV )]x = b,
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which arises from direct frequency domain analysis of an n-degree-of-freedom linear
system. Here K and M are the stiffness and the inertia matrices, CH and CV are the
hysteretic and the viscous damping matrices, respectively, and the parameter 
 is
called the driving circular frequency. See [23, 25] for more details.

Similar as [8, 26, 31], we are going to solve the linear system

[(
K − 
 2I

)
+ i

(
βK + 10
I

)]
x = b,

with 
 and β being given real constants. The matrix K ∈ R
n×n possesses the tensor-

product form

K = I ⊗ Bm + Bm ⊗ I with Bm = 1

h2
tridiag(−1, 2, −1) ∈ R

m×m.

Table 1 Numerical results of Example 1 for different iteration methods when (σ1, σ2) = (1, 10)

Method Grid

16 × 16 32 × 32 64 × 64 96 × 96 125 × 125

PMHSS α∗ 0.90 0.90 0.90 0.90 0.90

IT 38 40 40 40 40

CPU(s) 0.0403 0.1445 0.7326 2.3314 4.2471

PGSOR α∗ 0.985 0.985 0.985 0.985 0.985

ω∗ 4.5 5 6 6 6

IT 4 4 4 4 4

CPU(s) 0.0113 0.0332 0.1516 0.4032 0.7612

PSHSS α∗ 0.001 0.001 0.001 0.001 0.001

ω∗ 4.5 5 6 6 6

IT 9 9 8 8 8

CPU(s) 0.0118 0.0424 0.2481 0.9183 2.4764

SHSS α∗ 0.01 0.001 0.0005 0.0005 0.0005

IT 15 14 13 12 11

CPU(s) 0.0146 0.0496 0.3019 1.0541 2.5054

FPAE α∗ 0.90 0.80 0.80 0.80 0.80

IT 15 13 12 12 11

CPU(s) 0.0139 0.0422 0.2038 0.5192 0.9013

PFPAE α∗ 0.985 0.985 0.985 0.985 0.985

ω∗ 4.5 5 6 6 6

IT 9 9 8 8 8

CPU(s) 0.0114 0.0337 0.1545 0.4197 0.7668
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In our tests, the right-hand side vector b with its j-th entry bj is given by

bj = (1 + i)j

h2(j + 1)2
, j = 1, 2, . . . , n.

As before, we normalize the system by multiplying both sides by h2.

In Tables 1–4, we solve x(k+1) in the system Bx(k+1) = C(k) by computing
x(k+1) = B \ C(k) for the sparse matrices B and C(k) in each step of iteration for
all those considered methods. Tables 1 and 2 show the numerical results of several
iteration methods with respect to different problem sizes for Examples 1–2 by using
the experimental optimal parameters α∗ and ω∗, respectively. It is apparent that the
experimental optimal parameters of the considered methods are stable, except for the
SHSS method, which brings great convenience for us to find the optimal parameters
for large systems. We can conclude that the FPAE method has a little advantage over
the SHSS method from the point of view of iterations and CPU times by using the
experimental optimal parameters, and it is justified that the minimal value of spec-
tral radius ρ(M(α)) of the iteration matrix of the FPAE method is less than that of

Table 2 Numerical results of Example 2 for different iteration methods when (
, β) = (1, 1)

Method Grid

16 × 16 32 × 32 64 × 64 96 × 96 125 × 125

PMHSS α∗ 1.1 1.1 1.1 1.1 1.1

IT 21 21 20 20 20

CPU(s) 0.0238 0.0802 0.4158 1.2707 2.3372

PGSOR α∗ 0.99 0.99 0.99 0.99 0.99

ω∗ 0.85 0.85 0.85 0.85 0.85

IT 3 3 3 3 3

CPU(s) 0.0122 0.0291 0.1440 0.3479 0.6192

PSHSS α∗ 0.0001 0.0001 0.0001 0.0001 0.0001

ω∗ 0.85 0.85 0.85 0.85 0.85

IT 7 7 6 6 6

CPU(s) 0.0126 0.0413 0.2205 0.9263 2.2216

SHSS α∗ 0.58 0.32 0.168 0.115 0.090

IT 145 250 457 660 842

CPU(s) 0.0674 0.4227 4.0014 18.6412 42.6365

FPAE α∗ 0.28 0.28 0.28 0.28 0.28

IT 76 72 67 65 63

CPU(s) 0.0401 0.1361 0.6557 1.9775 3.5391

PFPAE α∗ 0.99 0.99 0.99 0.99 0.99

ω∗ 0.85 0.85 0.85 0.85 0.85

IT 7 7 6 6 6

CPU(s) 0.0125 0.0312 0.1457 0.3512 0.6258
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Fig. 1 The spectral radius ρ(M(α)) of the iteration matrices of SHSS (y1) and FPAE (y2) methods for
Example 1 when (σ1, σ2) = (1, 10) and Example 2 when (
, β) = (1, 1)

the SHSS method by Fig. 1. Similarly, the PFPAE iteration method is a little more
efficient than the PSHSS iteration method by using the experimental optimal param-
eters from the point of view of CPU times, and the minimal value of spectral radius
ρ(M(α, ω)) of the iteration matrix of the PFPAE method is less than that of the
PSHSS method from Fig. 2. Moreover, the PFPAE method is much more efficient
than the FPAE method since ρ(W̃−1T̃ ) ≤ ρ(W−1T ) which is verified by Fig. 3.

In order to make further comparisons among the PSHSS, the PGSOR and the
PFPAE iteration methods, we also perform numerical tests for these three meth-
ods without using the experimental optimal parameters in Tables 3 and 4, where we
always take the non-optimal parameter α = 0.5 for the sake of fairness, because the
distances between 0.5 and the experimental optimal parameters α∗ are almost the
same for all these three iteration methods. We can see that the convergence speed of
the PFPAE iteration method is mildly affected by changes of the parameters, and the
PFPAE method is the most efficient from the point of view of CPU times.

Moreover, according to the results of Tables 1 and 2, the computational efficiency
of the PFPAE iteration method is very close to that of the PGSOR iteration method
from the point of view of CPU times when the experimental optimal parameters are
used. Thus we make further comparison by computations with the preconditioned
GMRES methods and the numerical results are given in Tables 5 and 6, from which
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Fig. 2 The spectral radius ρ(M(α, ω)) of the iteration matrices of PSHSS (y1) and PFPAE (y2) methods
for Example 1 when (σ1, σ2) = (1, 10) and Example 2 when (
, β) = (1, 1)
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Fig. 3 Comparison of the spectral radius y1 = ρ(W−1T ) and y2 = ρ(W̃−1T̃ ) for Example 1 when
(σ1, σ2, ω) = (1, 10, 6) and Example 2 when (
, β, ω) = (1, 1, 0.85)
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Table 3 Numerical results of Example 1 for different iteration methods without using the experimental
optimal parameters when (σ1, σ2) = (1, 10)

Method Grid

16 × 16 32 × 32 64 × 64 96 × 96 125 × 125

PSHSS IT 15 34 101 204 326

(α, ω) = (0.5, 10) CPU(s) 0.0138 0.0786 1.0241 6.2993 16.9201

PGSOR IT 20 20 20 20 20

(α, ω) = (0.5, 10) CPU(s) 0.0250 0.08549 0.4072 1.2148 2.2329

PFPAE IT 21 21 21 21 21

(α, ω) = (0.5, 10) CPU(s) 0.0175 0.0534 0.2702 0.7924 1.3486

PSHSS IT 48 148 508 1056 1702

(α, ω) = (0.5, 1.5) CPU(s) 0.0284 0.2594 4.3530 29.2957 80.8415

PGSOR IT 21 20 20 20 20

(α, ω) = (0.5, 1.5) CPU(s) 0.0254 0.0811 0.4066 1.1989 2.1006

PFPAE IT 27 27 28 28 28

(α, ω) = (0.5, 1.5) CPU(s) 0.0194 0.0645 0.3365 0.9602 1.6897

we can conclude that the PFPAE method is superior to the PGSOR method from the
point of view of iterations and CPU times.

In a word, the numerical results confirm that the PFPAE iteration method is very
useful whether the experimental optimal parameters are used or not.

Table 4 Numerical results of Example 2 for different iteration methods without using the experimental
optimal parameters when (
, β) = (1, 1)

Method Grid

16 × 16 32 × 32 64 × 64 96 × 96 125 × 125

PSHSS IT 40 68 204 421 684

(α, ω) = (0.5, 5) CPU(s) 0.0282 0.1349 1.8872 12.1528 34.6258

PGSOR IT 20 20 20 20 20

(α, ω) = (0.5, 5) CPU(s) 0.0242 0.0799 0.4143 1.1855 2.0733

PFPAE IT 40 38 35 34 33

(α, ω) = (0.5, 5) CPU(s) 0.0246 0.0793 0.3879 1.1441 1.9622

PSHSS IT 66 212 752 1603 2631

(α, ω) = (0.5, 0.1) CPU(s) 0.0461 0.3598 6.7128 44.2157 132.2548

PGSOR IT 20 20 20 20 20

(α, ω) = (0.5, 0.1) CPU(s) 0.0247 0.0792 0.4154 1.1863 2.0445

PFPAE IT 31 32 32 32 32

(α, ω) = (0.5, 0.1) CPU(s) 0.0206 0.0706 0.3738 1.0801 1.9297
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Table 5 Numerical results of Example 1 by computing with the preconditioned GMRES methods when
(σ1, σ2) = (10, 1)

Method Grid

16 × 16 32 × 32 48 × 48 64 × 64 75 × 75

PGSOR α∗ 0.99 0.99 0.99 0.99 0.99

ω∗ 6 6 6 6 6

IT 3 3 3 3 3

CPU(s) 0.0829 0.2125 0.5479 1.2218 2.1841

PFPAE α∗ 0.99 0.99 0.99 0.99 0.99

ω∗ 6 6 6 6 6

IT 3 3 3 3 3

CPU(s) 0.0608 0.0729 0.1228 0.2249 0.3756

PGSOR IT 10 10 10 10 10

(α, ω) = (0.1, 0.1) CPU(s) 0.1106 0.3595 0.9290 2.0596 3.3027

PFPAE IT 4 5 5 5 5

(α, ω) = (0.1, 0.1) CPU(s) 0.0629 0.0761 0.1274 0.2390 0.3966

PGSOR IT 5 5 5 5 5

(α, ω) = (0.1, 10) CPU(s) 0.0870 0.2345 0.6005 1.3602 2.3272

PFPAE IT 3 3 3 3 3

(α, ω) = (0.1, 10) CPU(s) 0.0608 0.0731 0.1232 0.2254 0.3767

Table 6 Numerical results of Example 2 by computing with the preconditioned GMRES methods when
(
, β) = (0.5, 2)

Method Grid

16 × 16 32 × 32 48 × 48 64 × 64 75 × 75

PGSOR α∗ 0.99 0.99 0.99 0.99 0.99

ω∗ 0.5 0.5 0.5 0.5 0.5

IT 3 3 3 3 3

CPU(s) 0.0698 0.1558 0.3940 0.9352 1.6579

PFPAE α∗ 0.99 0.99 0.99 0.99 0.99

ω∗ 0.5 0.5 0.5 0.5 0.5

IT 3 3 3 3 3

CPU(s) 0.0616 0.0737 0.1241 0.2273 0.3781

PGSOR IT 6 6 6 6 6

(α, ω) = (0.1, 0.1) CPU(s) 0.0868 0.2764 0.7135 1.6107 2.6469

PFPAE IT 3 3 3 3 3

(α, ω) = (0.1, 0.1) CPU(s) 0.0621 0.0748 0.1259 0.2311 0.3817

PGSOR IT 8 8 8 8 8

(α, ω) = (0.1, 10) CPU(s) 0.1004 0.3167 0.8243 1.8235 3.1785

PFPAE IT 4 4 4 4 4

(α, ω) = (0.1, 10) CPU(s) 0.0629 0.0755 0.1270 0.2335 0.3856
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5 Conclusions

In this work, we propose a new single-step iteration method, which can be taken as
a fixed-point iteration adding the asymptotical error (FPAE), and then develop an
efficient parameterized FPAE (PFPAE) iteration method for solving complex sym-
metric linear systems. Theoretical analysis confirms that, under suitable conditions
on the parameters, the iterative sequences converge to the unique solution of the
linear system for any initial guess. Furthermore, the quasi-optimal values of the iter-
ation parameters for the FPAE and the PFPAE iteration methods are also derived by
detailed discussions. Numerical results show that the FPAE iteration method is a lit-
tle superior to the SHSS iteration method. In addition, the PFPAE iteration method
outperforms several commonly used iteration methods from the point of view of iter-
ations and CPU times. In particular, the PFPAE iteration method is the most efficient
by comparing with the PSHSS and the PGSOR iteration methods in the case that the
experimental optimal parameters are not used.
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