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Abstract In this article, a full explicitly uncoupled variational multiscale (VMS)
stabilization finite element method for solving the Darcy-Brinkman equations in
double-diffusive convection is proposed. This method introduces three uncoupled
VMS treatments for the velocity, the temperature, and the concentration as the post-
processing steps at each time step, respectively. We only need first to solve three
full decoupled linear problems and then to solve three full decoupled postprocessing
problems. This method is easy to implement because the existing codes can be used.
The unconditional stability is proved and the a priori error estimates are derived. A
series of numerical experiments are also given to confirm the theoretical analysis and
to demonstrate the efficiency of the new method.

Keywords Double-diffusive convection - Darcy-Brinkman - Finite element
method - Variational multiscale method - Uncoupled and modular postprocessing
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1 Introduction

The nonlinear time-dependent Darcy-Brinkman equations can describe the double-
diffusion phenomena in a confined porous enclosure, and its dimensionless form is
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described as following [8, 13, 30, 33]: for a bounded and regular domain Q2 C R4
(d = 2 or 3), given final time ¢, findu :  x [0, 7] — R4, p:2x|[0,tr] - R,
T:Qx[0,t7] > R,and C : Q x [0, tf] — R satisfying

w —vAu+ - Vyu+ Da lu+Vp = (BrT + BcC)g in (0,17] x Q,
V-u=0 in(0,77] x Q,u=0 on (0, 75] x 9L,

T, —V-(yVT)+@-V)T =0 in (0, 7] x Q,

C— V- (DcVC)+ (u-V)C =0 in(0,17] x Q,

oT oC
T,C=0onI'y, — =0,— =0 onTIgp,
Jan on
u(0, x) = uo, T (0, x) = Ty, C(0, x) = Cp in €2, (D

where u represents the velocity, p the pressure, T the temperature, C the concen-
tration, n is the outward unit normal on €2, and I'r = 0Q \ I'p, where I'p is a
regular open subset of 92. Moreover, v is the kinematic viscosity, y is the thermal
diffusivity, Dc is the mass diffusivity, Da is the Darcy number, g is the gravitational
acceleration vector, St and B¢ is the thermal and solutal expansion coefficients,
respectively. The system (1) uses the Boussinesq approximation as governing equa-
tions. The other important dimensionless parameters are the thermal Grashof number

Grr = M , the solutal Grashof number Gr¢ = M , the buoyancy ratio

N = /;cﬁg’ the Prandtl number Pr = %, the Schmidt number Sc = D—, the Lewis
T Y c

number Le = %, the thermal Rayleigh number Ra = GryPrDa, and the Darcy

number Da = X, where H denotes the cavity height and K is the permeabil-
ity. In addition, AT and AC are the characteristics temperature and concentration
differences along the enclosure, respectively.

The Darcy-Brinkman system (1) can describe the double-diffusive convection phe-
nomena which arises from the combined heat and mass transfer in porous medium. It
is mainly motivated by its importance in industrial applications, such as electrochem-
istry, metallurgy and geophysical model, grain storage, and contaminant transport in
ground water; for more details, we can see [13, 25, 26, 30] and references therein.
Therefore, the Darcy-Brinkman system (1) is very valuable in our real life, and it is
of practical interest to study its numerical methods. One of the preferable methods
for solving Darcy-Brinkman system is the Galerkin finite element method. However,
it may exhibit global spurious oscillations [14, 24] and produce inaccurate and poor
numerical solutions if we solve Darcy-Brinkman system by the standard Galerkin
methods. One reason is the dominance of the convection term. To avoid this problem,
some stabilization methods came into being.

The VMS methods are popular methods for the numerical simulation of turbulent
flows, and they were first derived in [19]. The main idea of VMS methods is to define
large scales by a projection into appropriate function subspaces. For more details, see
[1, 15, 19-21]. Recently, some variants of VMS methods were proposed. For exam-
ple, in [7], a projection-based VMS stabilization finite element technique for solving
steady-state natural convection problem was presented. This projection-based stabi-
lization method was also extended for the non-isothermal free convection problems
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[23]. A subgrid stabilization method for incompressible magnetohydrodynamics was
proposed in [3]. However, there also exists some questions of these VMS stabilization
methods; one of these questions is how to introduce the VMS methods into existing
legacy codes. In [22, 27], the authors derived a variant of VMS stabilization method
for the Navier-Stokes equations; in this method, a separate, uncoupled, and modular
postprocessing step is added at each time step, and this lead to the legacy codes that
can be used. The theoretical analysis and numerical experiments have illustrated the
efficiency of this postprocessing algorithm. This postprocessing method was com-
bined with the characteristics time-stepping method for solving the Navier-Stokes
equations in [6] and was used to solve the incompressible non-isothermal flows
[2].

About the finite element numerical methods of the Darcy-Brinkman system (1),
only a few articles study it. For example, a semidiscrete projection-based VMS-
stabilized finite element method was proposed in [8, 33] that gave out a fully discrete
subgrid-stabilized finite element method, and in [9], the author presented a fully dis-
crete scheme with the linear extrapolation of convecting velocity terms. The main
contribution of this work is that we extend the VMS postprocessing method to the
Darcy-Brinkman system (1) and derive a full explicitly uncoupled VMS stabilization
finite element method for this system. In this method, three uncoupled (postprocess-
ing) VMS stabilization steps for the velocity, the temperature, and the concentration
are introduced at each time step, respectively. We only need first to solve three full
decoupled linear problems and then to solve three full decoupled postprocessing
problems. This method is easy to implement because we can use the existing codes.
The unconditional stability is proved, and the a priori error estimates for the velocity,
the temperature, the concentration, and the pressure are derived, respectively. Com-
paring with the projection-based VMS stabilization finite element method [8], our
method can save a large amount of computational cost and keep accuracy.

The article is organized as follows. In Section 2, we introduce some notations and
preliminary results which will be used throughout this article, and also give out the
numerical algorithm. The unconditional stability of the proposed method was proved
in Section 3. A rigorous error analysis for the presented algorithm was discussed in
Section 4. A series of numerical experiments are provided in Section 5 for verifying
the accuracy and efficiency of the numerical method. In the end, the conclusions are
given out.

2 Mathematical preliminaries

In this section, we aim to generalize some of the notations, definitions, and prelimi-
nary lemmas that will be frequently used in the analysis. Let @ C R¢(d = 2,3) be an
open, bounded, convex, polygonal, or polyhedral domain with Lipschitz-continuous
boundary 9€2. We denote the inner product on L2() or L2(Q)4x4 by (-, -), and the
norm in L%(£2) and the norm in L>(2) by || - || and || - ||co, respectively. The space
H¥ () is used to represent the Sobolev space Wé‘ (2) with norm || -||¢. In addition, the
vector spaces and vector functions will be indicated by boldface type letters, e.g., the
spaces Hk(Q), Wk’p(Q), and L? (Q2) represent the vector Sobolev spaces Hk (Q)d,
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wkp ()4, and LP ()9, respectively. For the given function ¢ (x, t) defined on the
entire time interval (0, ¢ ), we define the norms

tf l/m
[¢llook = sup ll¢C, 1)llk, and |I¢I|m,k=</0 ||¢(~J)||Z1dt) :

O<t<T

The following Sobolev spaces for the velocity, the pressure, the temperature, and
the concentration are introduced, respectively, by

X

H)(Q) = {ve H'(Q):v=00n3Q},
L3(Q) = {q e LX) : [ gdx = 0},
Q

W={SeH (Q):5=00nT7},
U ={DeH(Q):D=00nT7}.

M

The space of divergence-free functions is
V={veX:(g,V-v)=0,Vg € M}.

Finally, the space H ~1(Q), the dual space of Hé (R2), is endowed with the negative
norm

|(f, v)]

veH] () Vol

Ifll-1 =

The weak formulation of (1) is given by: Find (u, p, T, C) € (X, M, W, V), such
that for any (v, ¢, S, D) € (X, O, W, V)

(uz, v) + v(Vu, Vv) + co(u, u, v) + Da~ ! (u, v)
—(p, V-v) = Br@gT,v) + Bc(gC, V),

(V-u,q)=0, (2a)
(T,,S) + y(VT,VS) +ci(u, T, S) = 0, (2b)
(C;, D) + De(VT, VD) + cx(u, C, D) = 0, (2¢)

where the three skew-symmetric trilinear forms are defined as
1 1
co(u,v,w) = E(u -Vv,w) — E(u -Vw,v),Vu,v,w e X,
1 1
c(m, T,8) = E(u -VT,S) — E(u VS, T),VvueX, T,SeW,
1 1
c(u, C,D) = E(u -VC, D) — E(u -VD,C),VueX,C,D e V.

Applying the Holder’s inequality, the interpolation theorems, the Sobolev embed-
dings, and the Poincaré’s inequality, we can get the following bounds (see [8, 29]).
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Lemma 1 There exists constants K which depend on Q2 such that the skew-symmetric
trilinear forms satisfy the following bounds, for any u,v,w € X, T,S € W and
C,Dev

co(u, v, w) < K| Vull[|Vv[[[|Vw],

ci(u, T,8) < K[IVul[[VT VS,

c2(u, C, D) < K|Vull[[VCIIIVD,
1 1

co(u, v, w) < K[u|[2[[Vu| 2 [[VV[[Vw],
1 1

ci(, T, 8) < Kul2[[Va| 2[[VT VS]],
1 1

c2(u, C, D) < K|jul| 2| Vu||2|VC|[[VDI.

Next, we introduce the finite element discretization of the problem (2). Set 7;, =
{Qp} and ty = {Q2py} are two uniformly regular triangulation of domain 2. Here,
h (resp.H) denotes the maximum diameter of the elements in 7;, (resp.ty) and such
thath < H.LetX;, C X, M, Cc M, W;, C W, and ¥}, € ¥ be conforming finite
element spaces. We also assume that the conforming velocity-pressure finite element

space (Xp, M) C (X, M) satisfies the discrete inf-sup condition (see [16]), i.e., there
exists a constant 8 > 0 independent of /& such that

, V.
inf sup YV gy 3)
an€Mi v, ex;, 1grllll Vvl

Examples of such conforming finite element spaces are the classical Taylor-Hood
element (Py, Pyr—1)(k > 2) (see [28]), the (P2, Py) element (see [10]), and the Scott-

C

Vogelius elements ( Py, P]?i_sl)(k > 2) on appropriate meshes (see [5]). The space of
the discrete divergence-free functions is defined as

Vi ={vh € Xy : (gn, V - vn) = 0,VYgn € My}.
Defining
PE T L2(Q) — Vi, P i LAQ) — M,
PE - L2(Q) > W, PE LX) > @
W - s Py, L7(S2) — Wy
by the L2-orthogonal projections into V;,, My, Wy, and Wy, respectively, they satisfy

(P‘fhzv —v,vy) =0,Vv, € Vp,
(Pl da —q.qn) = 0.VYay € My,
(PlS — S, Sp) = 0,¥S, € Wy,
(PED = D, Dy) = 0,VDy € Wy,
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It is well known that the projections PL PAeIZ PL2 and PL satisfy the following
approximation properties (see [4, 12, 29])
lu— PEull + AV — PEw < KiM uflip,Va € VUBS (@),
2
lp — Py, pll < KR¥lIplle. Vp € MU HY(Q),
IT — Pl Tl + RIV(T — P T < KTt VT € WU HA (9,
IC = Pf, ClI+RIV(C =P Ol < KW [Clliyr, VC € WU HM (@), (4)

Let At be the time step size, t, = nAt,n = 0,1,2,..., N, with ty := NAt.
For notational clarity, we denote by v" the function v evaluated at t = f,, where
t, = nAt. We also define the following additional norms:

1/m

N-1
. 1 . 1
Nullleok :== max (0" g, [[Ulllmk = E o™ 17 A
0<n<N-1

n=0
Moreover, we define the norms of the dual spaces of X;, and Vj, respectively, by

(W, Vi) W, vi)

Ivly
h VhEXh ”V ” Vh VhEVh ”vvh”

1ly =

Lemma 2 [11]. The norm Vil - and ||Vl are equivalent for any v € V.
h h

The error analysis uses a discrete Gronwall inequality, recalled from [18].

Lemma 3 (Discrete Gronwall’s Lemma). Let At, H and a,,, b, c,, d,, (for integers
n > 0) be nonnegative numbers such that

I -1 I
a1+Athn < AtZdnan+Athn+H,l >0,
n=0 n=0 n=0

then for all At > 0,
! -1 I
a; + Ath,, < exp (AtZd,,) (Ath,, + H) 1>0.
n=0 n=0 n=0

We also need assume further that the mesh is sufficiently regular such that the
inverse inequality holds [4]:

IVVall < Ch M Ivall, Vi € X

Furthermore, the Young’s and Poincare’s inequalities as follows will be used frequently

1 1
,—+—-—=1,p,q € (1,00),¢ >0,
P q
lvll < CpllVull,Yu € X (or Wor W), K, = K,(2).
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For stating our method, we need to introduce the coarse or large scale spaces Ly,
QOun, and Gy on the coarse mesh 7y for the deformation tensor, the temperature
gradient, and the concentration gradient, respectively, i.e. with

Ly C VX, C L= {l;j e LX)l =1},

On C VW, C 0 :={g; € LX)},
Gu CV®, CG:={g € L*(Q)7}. 5)

Remark 1 The choice of the coarse spaces Ly, Oy, and Gy is very important (see
[20] for a discussion of this). There are different choices of selecting Ly, Qp, and
G g, which lead to different VMS methods. Herein, we can choose Ly = VXy,
Oy =VWg,and Gy = V®y; this is to say that Ly, Oy, and Gy are the spaces
of polynomials of degree k — 1. Although the larger H provides for more efficient
projections into Ly, Qp, and G g and reduces storage, it also reduces the accuracy.
Thus, the choice of H must be balanced between efficiency and accuracy.

The relevant L? orthogonal projection operators for those coarse- or large-scale
finite element spaces are defined as
PliL— Ly, P2:0— Qu, PE:G — Gy,
and they satisfy
IR — PSRl < KH"|R|x,p =u,T,C; k=L, Q,G, ©6)

for all R € H*(Q).
The full explicitly uncoupled variational multiscale method for the problem (2) is
given out as follows.

Algorithm 1 (The full explicitly uncoupled VMS method) Let the time step size At
and final time ty are given, N = ty/At,n =0,1,---, N — 1, ug = ﬁh = P&fuo,
A 2 A 2 .
70 = 1) = PfTo, C) = C) = P§ Co, find ™', ppt!, 1% ity e
Xpn, My, Wy, W) via the following two steps:
Step 1:  Find (ﬁZH, pZ+], f"h”+], CA’ZH) e Xy, My, Wy, Wy,), such that for any
Vs Gns Sny D) € Xny Qny Wi, Wp)
g
| (VI V) + cotul, @7 )
+Da” @ V) — (pp LV W) = Br(@Ty i)+ B (8Ch. W),
(vt gy =0, (7a)

TAvn+1 _7n R R . . .
%,sh +y (VI V) +er(ul, TP, §) =0, (7b)
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én+1 _ n . . . . .
(”A—th, Dy | + De(VCIT VD) + co(ulf, €Y, Dy = 0.

(7¢)
Step2:  Find (™, 7/ Cpty e (X, Wi, W), such  that for  any
(V. qn, Sn» D) € Xy, On, Wi, Wp)

ﬁn—H _ un+1
(u, w) = MLV v + (Vi V) — ag (PEVU], PEVVY),

At
(V-uptt gn) =0, (8a)
TH—H _ Tn+1
(% sh) = (VI VS,) — aa(PEVT), PEVS)). (8b)
e+l _ ontl
(%, Dh) = a3(VCI, VD) — as(PEVCE, PEVDy). (8¢)

Remark 2 In Algorithm 1, the temperature equation and the concentration equation
are decoupled from the fluid equations, and the projection steps are also decoupled;
this leads to the scheme is decoupled into six sub-problems, and each sub-problem
is linear. However, it is still unconditionally stable with respect to the time step
size. Comparing the projection-based stabilization method [8], which is a nonlinear
scheme for the Darcy-Brinkman equations in double-diffusive convection, Algo-
rithm 1 is more effective and it can save a large amount of computational cost;
numerical experiments will illustrate it.

Remark 3 The eddy viscosity stabilization parameters «;(i = 1,2,3) are user-
defined constants; with the proper choosing of stabilized parameters, the optimal
error estimates can be obtained for the velocity, the temperature, and the concentra-
tion, respectively. What is more, the extra projection terms in Step 2 are defined on
the coarse-/large-scale spaces Ly, Oy, and Gy for the velocity, temperature, and
concentration. Thus, the stabilization terms in Step 2 act directly only on the small
scales.

3 Stability analysis

Now, we prove the unconditional stability of Algorithm 1 which ensure the existence
of the numerical solutions.

Theorem 1 Assume that ug € H (), Ty € H (), and Cy € H' (), then Algorithm
1 is unconditionally stable, andforall N > 1, it satisfies the following energy estimates

N-—1
TN + 2 At | VTN |12 + At Y I — PRVTT?
n=0
< Toll* + 2 ALV To |, ©)
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N—1
ICN I + a3 ALIVCY |2 + et Y |1 = PEVCHT
n=0
< IColI* + a3 AL VColl?, (10)
and
N—1
' 12 + oy AtV |2 + ey A Y (11— PEVR 2
n=0
2 2 2 2 2 2
< llugl? + a1 At Vug|® + 2Dap2||gll%t r (I Toll* + a2 ALV To||?)
+2Daptllgl s (I Toll* + a3 AtV Coll?). (11)

Proof Setting S, = 7" in (7b) and S, = 7" in (8b), we have
W2 + y AIVTP 2 = (1, T,
(12)

Making use of the Cauchy-Schwarz and Young’s inequalities on the right-hand side
of (12) along with the properties of orthogonal projection, we arrive at

1 . A 1
5||T,?+1||2 +y AL VT2 < EnT;nz, (13)
and
||T”+‘|| + 22 <||VT”+‘|| IVT %) PoVTI)?
< EIIT,:’“ II%. (14)
Thus,
||T"+‘|| y 22 <||VT”+‘|| — VTR + 22 A —p PRV
< —||T"|? 15
< 2|| 2. (15)

Taking sum of (15) fromn = 1to N — 1, we get the estimate (9), and the estimate
(10) can be obtained by using the analogous way. We next prove the estimate (11).
From (9) and (10), we know
N-1
ALY TP < tp (TR + e At VT ), (16)
n=0
and
N-1
ALY ICHE < tr(ICRIP + a3 AL VCRP). (17)
n=0
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Choosing v, = ﬁZH € Vj, in (7a) and making use of the Cauchy-Schwarz and

Young’s inequalities to arrived at
AtD
||u"+1 I+ vAr| Va2 + ||A"+1 I
< —||u,';||2 + Daﬂ%llgllioAtllT;?llz + DapBillgll%, Atl|CI%. (18)

Taking v, = uh ! € V,, in (8a) and using the properties of orthogonal projection to
derive

||u”+1 I +—<||Vu"“|| — IV} ) Phyvut?
1.
< Enuz*ln : (19)
By (18) and (19), we get
|| w2 120 A (1 va 22— v ) Phyvut?
< 5||u2||2 + DaﬂT||g||ooArnT,:“||2 + Daﬂ%ugnoomnc;:n : (20)

Summing (20) from n = 0 to N — 1 and combining (16) and (17), we get the estimate
(11) and complete the proof. O

Applying Theorem 1, we can get the bounds on @, and Ty and Cy, as follows.

Theorem 2 Under the assumptions of Theorem 1, the solution (W, Ty, Cp ) of
Algorithm 1 satisfies the following energy estimates

N-1
1TV 1% + 2y ar > IVIETHZ < 20 Tol* + ca AtV T |1, 1)
n=0
N-—1
ICN 17 +2Dcat Y~ IVERTHI? < 2|Coll* + a3 At [V Col1%, (22)
n=0
and
N-—1
16517 + 2vAr > Va2 + Da' At Z a2
n=0 n=0
<2 2 2 2 2 2 2
< 2llug|l* + 1 At || Vg ||* + 2DaB7llgl ot (1 Toll* + ca At]|VTo 1)
+2DaBzlIglZ.tr (I Coll* + a3 At VCol ). (23)

Proof Summing (13) fromn = 0to N — | and summing (14) fromn =0to N — 2
to arrive

N-1 N-1 N-1
DT 2y A Y TR < I (24)
— n=0 —
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and
N-2 N-2
ST+ At | VTV 2+ eaar Y (1 = PRV
n=0 n=0
N-=2
< AH|IVTIF+ Y N7 (25)
n=0

Applying the identity relation 3"~ 2 a"*! = Y"1 47 — 40 in (25) and using it in
(24), we have
N-—1 N-—1 N-—1
SN+ 2y A Y T < ITL P 4+ e At IVTLR 4+ YT % (26)
n=0 n=0 n=0

Thus, we get the estimate (21), and the estimates (22) and (23) can be obtained by
using the analogous way. Now, the proof is completed. O

4 Error analysis

In this section, we will give out the convergence results of Algorithm 1 for the veloc-
ity, the temperature, and the concentration in Theorem 3 and Corollary 1, and for the
pressure in Theorem 4.

In order to establish the optimal asymptotic error estimates of Algorithm 1, we
need to assume that the true solution of problem (2) satisfies the following regularity
assumptions:

ue L¥0, T; H(Q)) N L*0, T; H1(Q))
NH' 0, T; H'(Q)) N H*(0, T; L*(Q)),
T,C e L®0, T; H3(Q)) N L*0, T; H*'(Q))
NH'0, T; H'(2)) N H*(0, T: L*(Q)),
p e L*0, T; HX(Q)). (27)

Defining the following error decompositions:
&= — i = @ — PE W) — (@ — PE W) = — ¢l
e =u"—ul =@"— Pvau”) — (u, — Péhzun) =1 — s
S=T" — T = (" = Pl T — (i) — Py T") =l — %,
e =T"-T'=(T"— PvLViT”) — (T - PvLViT") =7 — 7,
éb=C"=Cp=(C" = P§C" = (= P C =t — G,
G=C"—Cl =(C"—PEC")—(C] — PEC™y =t — ¢, (28)

2 2 2 . .
where P‘I;h s P{;,h, and Pfgh denote the L2 orthogonal projection onto Vj,, Wy, and Wy,
respectively.
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Theorem 3 Assume that (u, p, T, C) are described by (27), satisfying the weak form
(2), and (u"‘H Th""'l , CZ'H) are given by the Algorithm 1, then there exists a positive
constant K independent of the mesh width h and time step size At such that the
following error estimate hold

N-1
le I + e 17 + e 17 + > A&t —epl® + &' — it
n=0
N-1 N-—1
+Da” A Y IR+ ar Y (vIVE IR+ p v
n=0 n=0

+De|VEE I 4+ [V + el Vet I + s | Vel )

< K[h%* 4+ A% + (a1 + a2 + a3) (W% + A2 + H?F)). (29)

Proof Subtracting (7a)—(7c) from (2a)—(2c) at ¢t = t,,41 separately, it gives

T G O U
( h A[ ( h) A >+U(V(un+1 "l’l+1) VVh)

+Da” W — @ 9 + o T $) — coul, @ W)
_(pn+1 ph+1 V. Vh)
= Br(g(T" ' — T, ¥1) + Be(g(C"™ — CH, %)

un—H —u" R
| —wns), ¥ |, (30)

At
for any (Vi, qn) € Xy, Mp),

1 Fn+1
T+l — gt
At

T —T") . ) )
h)sSh +y(V(Tn+1 _Thn_H),VSh)

e @ T S — e qul, TP Sp)
Tn+1 _T" R

= — —Ti(1, ,Sn ], 31

( A 1 (tn+1) h) €)Y

for any §h e Wy, and
1 _ Antl
(C"+ — et

cn—Cch . R R
N ( 28 Dh) + De(V(C™T = C, VD)

+er" " D) — e, CY, Dy)
Cn+1 el
(&

—QWHLbO, (32)

for any ﬁh e Vv,
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Setting v, = ¢3”+1 € Vj; in (30). Due to the orthogonality of L? projection
operator PL , that It — 9 LVy, s0 < At =, g1y = 0, then we have

(||¢"+1|| —||¢”||2>+ ||<z>"+1 oL+ VIV 2+ Da~ Y gr )2

<Vn"+‘ Véith + Da‘l(n"“,aﬁ{}“) + o™ u"t git)
—co(, & Py — (p"T — gy, V- @I — Br(g(T" T — T, 1)
—Br(gn', o) + Br(gdt, o1 — Be(g(C™ T — €™My, 41

n+1 n
L W) ¢"+1>. (33)

—Be(gn $ + Beledp. 91 - (“T

Choosing v;, = L’f‘“ € Vj, in (8a), we have

ﬁn+l _ lln+l
(%, ;’“) = o (VUi VeIt — oy (PEVU], PEVAITY. (34)

Noting that

LHS(34)

An+1 _ ptl n+l _ n+1
u, u tu u, ]
At ’ u

— (¢n+1 ¢n+1 ¢Z+l)
= Eum;}“nz — lgr 2 — 1t — TP, (35)

and
RHSG4) = ay (VUi ™, vty — oy (PEVY), PEVIT)

—ay(PEval, (1 — PEyver T

= a1 (VU veIth — oy (PEVU], VeIt

— (X](V(un-H N +un+l —u"+u — PuLun

+PL n __ PLul‘l) V¢11+1)

= —a (Vi Vorth + oy | VeIt |12
+a (V' —u"), Veith + o (V" — PFu"), Vit
+o1 (VPERE, VIt — ay (VPEQ!, Vit (36)

Then, combining (33)—(36), we get the momentum error equation as follows:

- n+1)2 _ jang2 on+1 on+1 n+1
VAL )+2At(ll¢ —¢nl’ + 19 )

o IVOITHP + Da™ 11 + o [V |2
— \)(VT)"+1 V¢n+1)+Da 1(77”+1 (],SIH_I)—}—C()(I]"J'_I n+1 ¢n+l)
*Yu
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—co(u, & Iy — (p"T — gy, V- @I — Br(g(T" ! — T, 41T
—Brgnt, o) + Brgeh, i1 — Be(g(C™ T — M), gph)

R R n+l _ ..n R
Bt $ith + pelest. it — (% — (1), ¢;:“)
+o (Vi vty — o (V! —u), Vet — a (VPR veith
—a (V" — PFu"), Vo™ + o (VPE@!, Vi th. (37)

By using the same techniques, we can get the temperature error equation as

(||¢>”“||2 1% )+ <||<z>"+l [ [P A )
+y IV )2 + oeznw“ ||
_ y(vnn+1 ¢n+l) +C (un-H Tn-H ¢n+l) 1 (u]/p Tn+] ¢n+l)

Tn+1 _T" . | | |
- <T — Ty (tps1), $5F ) + o (Vi Veith

—ocz(V(T"+l Tn) v¢n+1) _az(v(Tn PQTn) V¢n+1)
~aa(VPLH}, VOt + ax (VPR @}, Vi, (38)

and the concentration error equation as

<||¢"+1|| A >+—(||¢"+1 GNP + 95T — 2t %)
+Dc||V¢>"+1 I + a3||V¢>"+‘ I
_Dc(vnn+] v¢n+1)+c2(un+l Cn-‘rl ¢Il+]) 62(uh,cn+l ¢n+])

Cn+1 _(n _— | |
- (T — Ci(tat1), 0 ) + az(Vnptt, verth

_aS(V(Cn+l Cn) V¢i1+1) a3(v(cn chn) V¢I’l+l)
—a3(VPENE, Vort) + as(VPE oL, Vort™h. (39)

Next, we estimate the terms on the right-hand side of the momentum error equation
(37) as follows. The first two terms can be bounded by using the Cauchy-Schwarz
and Young’s inequalities as follows:

vVt vty < 4||V¢3:1+1|| + Kv[| VT2, (40)

a” (it gt < ||¢"+1|| + K Daln 2. 1)
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Noticing that the following identity hold

n+l . n+ +1

w9 — coul, 0t 9)
N ~ 2 ~
= co@"™ — ", w" W) + o), w' W) — cog)), PL T W)

L? 1 ¢ L? Sl o Sl o
+eo(Pyu, it V) — co(Py u, @ W) — oy B Vi)

co(u

6
= > Ani(). (42)
i=1

Due to skew symmetry of the trilinear form, we know Ajs(¢+1) = 0and Apg(pit!) =
0. Using Lemma 1, the Sobolev embedding and the Young’s inequality to get

Ahl(q’;n-‘rl) < K“V(uﬂ-'rl _ un)””Vun—‘rl””Vq’Sn_;’_l”

u u

Vo2 K ntl 2 fret1 2
< ﬁllv% l —|—7||Vu I=Ar Vu,||~dt, (43)

In

A (@Y < KV IV T ver T

IA

A

v A K
ﬁnwz“nz + ;nVu"“n?nwznz, (44)

A 2 2 A
A3t < KlgpIlAIPY " o + |1 PF V" ) V|

) ~ K
< —IVEII2 + =" 30 1%, (45)
14 )
and
A 2 A
Apa(@pth) < KIVPE W IV Vet
) A K
< ﬁnwz“nz + 7||Vu"||2||w“||2. (46)

For the remaining terms, we have

(P" =g, V- @Y < VaIvertip"t — gl

IA

IA

v ~ K
ﬁnwz“uz + 7||p”+l —anll?, (47)

Br(g(T" ! — ™), it
< Brliglooll 7" — T 1g2 |

Da~!' o.io 2165112 2
< — ;1o 17 + K Daprligllso At T¢I dr, (48)
In
Brgn, ¢+ < Da~! i K DaB2lsl I |12 49
T(gnr. ¢, ) = — 4" 17 + KDaBrliglcoInz 11, (49)
nontly o Da~! i1 K DaB2llsll® llam 12 50
Prgdr. ¢, ) = — 14,17 + KDaprliglisller i, (50)
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Be(g(C" T — ™y, ¢ th

Da=' . |, 20002 1 2
< =1t +KDa,3c||g||ooAf/t AR (51)
ﬂc<gnz,¢3';+‘>< ||¢"+1|| + K Dapgllgl2 i1, (52)
ﬂc(g¢c,¢';+‘>< ||¢"+1|| + K Dapdllgl% ok, (53)

A

lln+1 —u" n+1 _ u”
(T = (tag1), ¢"+1) < KPHT —w (tr ) P

v N K Int1
< —|IVeItI2 + — At f l[u ||>dt.
14 v t

(54)

For the last five terms on the right-hand side of (37), we can estimate them by the
usual way as follows:

a (Vi v¢;+1>< ||V¢"+‘ 12+ Ko V0212,
tn+1

o (V! —ut, V¢::+1> < SLIVOLHIR + Kaar / IVu|?dr,
Iy

a (V" — Plu"), veithy < —

— 10
1
al(VPEn!, Vit < 0||V¢;+1||2+Ka1||w;n2,

LIVert 2 + Koy [V — PEum)|2,

1 — 7
ai(VPEY!, Vorthy < Enw:;‘*‘ 12 4+ Karh ™2 ¢! ||>. (55)

Combining estimates (40)—(55), and regrouping terms, the momentum error equation
(37) becomes

—<||¢>::+1|| — |l ||>+ <||¢>"+1 OrII* + 1gm T — o t1)2)
||V¢"“|| ||¢"+1|| + = ||V¢”“||

1 _
<K (;nu"“n% +aih 2) g1 + KDaﬂ%nguiond)W
+1<Daﬂé||g||?,o||¢é||2 + K[|V % + K Dallg 12

K
+;||p"+1 —anl* + —<||Vu”“|| VA2 + Va2Vt 2)

K n+
+—||Vu"+1||2At/
vV

In

22 2 2 et 2
+K DaBtlgl2 I I* + K Dapéligh’ Ins 12 + At/ [l [|=dt
tn

g1
IV, %dt + KDa,B%IIgllgoAt/ ARG
n
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2 2 tn+l 2 tn+1 2
+KDaﬂC||g||ooAt/ [1CA dt+Koz1At/ IVu||“dt
In tn
+Kar [V + Ka [V@" — PO + Ko || Vil (56)

Multiplying through by 2At¢ and taking the sum from n = 0 to N — 1 for (56), and
using the approximation properties (4) and (6), it gives

N-1 N-1
o0 12+ DGt = gull® + 19T — g 1D +var Y vyt
n=0 n=0
N—-1 N—-1
+Da” Aty GE +enar Y Vet
n=0 n=0
N-1 1 N-1
<KArY. (;|||u|||§o’2 + a1h2) 15 1% + K Dapzliglae At Y g7
n=0 n=0
N-1
+K Dapligliz At > 1oL + Kvh* juli3 .,
n=0

K K
2%+2 2 k 2 2% 2 2
+K Dah™ 2 |ulll3 ;4 + vh P2 g1 + Uh a5, 1 a3 q

+§|||u|||?,o,1At2|||u,|||%,1 + K DaBi g2, AT 1113,

+K DapiliglZh™ 2 ITII3 sy + K Dapllghd A 1ICH 13,

+K DaBlglz k> T2 ICH3 oy + %Aﬁnmnn&o

+Kor (WM ull13 g + AP A3 + H*[ll]3 ) (57)

By using the analogous way, we get the temperature and concentration error
inequalities as follows:

N—-1
o 17+ > Aldgt — ¢ 1% + 165+ — o511

n=0

N—-1 N-—1
Hy ALY VTP + apar Y VR
n=0 n=0
N—-1 N—-1
ALY TR o B 17 + k™A Y 931> + Ky R T 13 444
n=0 n=0

K
S_
14

K K
+7h2k|||1r|||io,1 Iullf3 sy + 7|||u|||§o,1/12"|||T|||§,k+l

K K
+7|||T|||?,0,1At2|||ut|||§,l + 7Ar2|||Tn|||§,0

+Ka (W NIT NG gy + APNTNG + HPNT N 40 (58)
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and
o 1% + Z(H«b”“ SeI? + 16 — o)
n=0
N—-1 N—1
+DcAt Y (IVEETIT +azAr Y (IVeE?
n=0 n=0
K N-—1 N-—1
< 50D NICHE I +ash™2Ar 3 NI9EI* + K DR I3 14
n=0 n=0
h2k|||cn|oo]|||u|||2k+1+ |||u|||oo]112"|||C|||2k+1

D
—C2At2u2 —At2C2
+ 5 NI A w13 + = AICu I o
+Kaz (W [CN5 gy + APNCHIS  + HFNCHIE s p)- (59)

Defining the constant

_ 1 2 o 1 2
d = max ;lllllllloo,2+a1h +;|||T|||oo,2

1 _ _
+ 52 MCII% 2 Dapiligls, + eah™, Dapiligls, +esh 2}.

Now, adding (57), (58), and (59), dropping out some nonnegative terms, and using
the discrete Gronwall Lemma, we arrive at

N—1
o 11>+ Iy 11> + o 17+ Yyt — o> + It — ot 1%
n=0
+D ‘At2|l¢”“ll +ArZ(v||V¢>"“|| +y Vet
n=0 n=0

+Dc Vo I +ar Ve P + aal Vo712 +a3||V¢"“||)

o r 2k 2 U2y 111112 2 1112 2
<exp(Ktygd) [Vh M3 441 + Dah™ =3 4 + ;h (el S, T2 g4

1 1
= Ml e, AU 13 1 + Daprlighso AT + A P11 .
+DaBelglZ APIIC 13 o + DaBiliglz k> T3 py

1
+DaBelglZ > A ICHE qr + ;|||T|||io,1Ar2|||u,|||%,l
1
= AP Null13.0 + o BN gy + ANy + B w3 40

2
t 1 1
+7|||Tn|||§,o + ;hz"IITlllio,l Iulll3 ey + ;|||u|||io,1h2k|||r|||%,k+1
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Ay NT NS gy + 2 BFINTIE gy + AT + HZNTIE g
Ar? 1
+Dh* NICHZ 1 + - |||cn|||20 + —hz"ncm2 A3
2 2k 2 2 2 2
+E|||u|||oo,1h HCHT 4 +En|cu|oo,lm Iull13,
+az (W) [CNI3 gy + ALPNICHIS + H2k|||cn|%,k+]>} : (60)

Using the regularity assumption (27) and absorbing constants into K, we get

N-1

e 12 + 2 17 + o 112+ DAl — ol + g™ — g1

n=0
N-—1 N-—1
+Da~' At Z 1B + At Z (VIVEIR + v IV

+Dc||V¢>"“|| +enl| Ve +oez||V¢"“|| + a3 V1)
< K[h** + At + (a1 + a2 + az) (B + A> + HP)). 61)

Applying the triangle inequality, we obtain the error estimate (29) and complete the
proof. O

Corollary 1 Under the assumptions of Theorem 3, set the eddy viscosity stabilization

2k—2
parameters o; = (’)(hz), i =1,2,3, and the coarse mesh width H = O(h 2 ), then
there exists a positive constant K such that

N-—1
N2 2 2 an+1 2 1 12
lef 17+ e I + e I + E (e —epl” + e — e %)
n=0

a~' At Z et % + Ar Z (vIVErFt 2 + yi Vet P

+Dc||VA"+1 ||2 +en ||VeZ“||2 + Vet I + as | Vest|?)

< K(h* + Ar?). (62)
Remark 4 From Corollary 1, we see that Algorithm 1 can yield the accuracy of
O(At +h?) by using (P2, Py, Pa, P») finite element pair to approximate the velocity,

pressure, temperature, and concentration. And we find H = O(\/ﬁ) is the maximum
such H.

Theorem 4 Under the same assumptions of Corollary 1, we obtain the estimate for
the pressure

llp — palllao < K(h* 4+ Ar). (63)
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Proof From (30), we have for any v;, € V), that

en+1 en | |
(”T Vh)+v(Ve"+ V) + Da”' @1, Vh)+ZAhl(Vh)
i=1

—(p" T = Ap, VW)
= Br(g(T" ™ — T™), %) + Br(ger, Vi) + Bc(@C"T — C™), %)
n+l _ un
At - ul (tn+1)7 V/’l) 3 (64)

which together with the Cauchy-Schwarz and Poincaré inequalities yields

6
VAn+l an+1 Arills
(n I+ &+ Z I Anilly:
+HIp" T = Al T =T+ e - |

n+1 n
—u (tn+1ll> . (65)

A u
+Bc(ged, Vi) + (

an+1 non
1 —ey, Uh)
At [Vl

n n
Flerl+llecl+lI—%;

Taking the supremum over v, € V;, and applying Lemma 2, we obtain

An+1 An+1 An+1
|| & —eilly < K (uv I+ D I Awily

HIp" = Al T = T 4 e - |

un+1 _
+llerl + lleg !l + |l A - llt(ln+1||) . (66)
t
Splitting p"*! — p” = (" —a) +  — p"+1) where A, € M}, using (30)

and the inf-sup condition (3), we have

+1 -
Blas — pit) < sup AP VW)
= IVl

A\ EXh

( lentt — "||/+||Vé"+1||+||e"+1||

6
+ D Wil + 1P = 2l 1T = T+ e
i=1
n+l _ ..n

u
Cn+1 —_c" n
+Il I+ llecll + II—%7

- ut(tn+l)||>

| /\

(nw”“n+||e”+1||+Z||Ah,||X + 1P =l
i=1
HIT" = T + (el 4+ C"H — )
n+1 n

n
Flecl +II—%;

- Uz(ln+1)||> . (67)
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Using the Holder inequality and the Sobolev inequalities, we get

Int1

. . Lo
An1(Va) = KII/ Vudt||[[IVVh ] = KAL2 |V,
!

n

Ana(¥) < KRE W et IV TV < KRE [V,
Anz(n) < Kllgp IV,
Ana(Vp) < KR¥[ V],
Ans(¥) < KIIVSI IV (68)
Noticing that by the inverse inequality and (61), we know
IVOL| < cih ™ (A1 + h*) < ¢,
where ¢* is a constant. Thus,
Ans(Fn) < KIVOIIIVEIH VIR < KV VIR (69)
From the estimates (68) and (69), we have
6 1
> il = K (A3 1600+ 1veE ). (70)
i=1

Combining (70) into (67) and applying the triangle inequality yields

R R 1
Ip"* = ppt <k (Hw;*l I+ 18+ A2 + 1" + (1)

HIVEET 4+ p" T = Al T — T+ el

| un+1 ]
+IC"F = CMI + el + |l A7 —ut(tn+1)||>-
(71)
With the above estimate, we have
N—1
At Z ”pn-‘rl _ pz+l”2
n=0
N-1 N-1
<K <At DOUVETE 4+ Ar > T + A+ h?
n=0 n=0
N-1 N—1
+ALY NGl + Aar Y VG + R pI . + ACIITIS
n=0 n=0
N—1 N—-1
FAL D P+ ALY e+ At2|||un|||§,0) : (72)
n=0 n=0
Now, we obtain estimate (63) by Corollary 1 and (61). O
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5 Numerical experiments

In this section, we present some numerical examples to test the convergence rate and
stability of the full explicitly uncoupled VMS stabilization method. Here, we choose
a (P, P1, P>, P,) finite element pair to approximate the velocity, the pressure, the
temperature, and the concentration, respectively. All the numerics were implemented
by using the public domain finite element software package Freefem++ (see [17]).
All computations are carried out in the domain 2 = [0, 1] x [0, 1] and the domain 2
is subdivided into triangles.

The numerical tests are divided into two parts. We first test a problem with
known analytical solution to verify the predicted convergence rates of the presented
method. And next, we simulate the porous cavity problem and compare the numer-
ical results with some benchmark dates. In all cases, the proposed method performs
very effective.

5.1 Convergence rate verification

In the first test, we set the parameters v = 1.0, Da = 1.0, y = 1.0, Dc = 1.0,
Bt = 1.0, and Bc = 1.0. We add functions on the right-hand side of the problem (1).
The boundary values of (u, p, T, C) are given so that problem (1) has the following
analytical solution

up = 10x*(x — D%y(y — D2y — 1) cos(t),
uy = —10x(x — 1) (2x — 1)y (y — 1) cos(t),
p=102x — )2y — 1) cos(?),
T=u;+uy,C=u; —up,

where u = (u1, up). It is easy to know that the analytical solution of the velocity is
divergence-free. The initial condition is the interpolant of the true solution at ¢ = 0.
Set the eddy viscosity parameters «; = hi=1, 2, 3, the coarse mesh width H =
O(\/E). We compute with the final time 7y = 1 and the time step size At = h?, and
the mesh width £ is set for a refinement, each of / gets cut in a half. The convergence
rates are calculated from the errors at two successive values of 4 in the usual manner
by postulating that E£(h) = Ch" and solving the formula

Rate — log(E(hi)/E(hi+1))
ate =
log (hi/hiy1)

where E (h;) and E(h;41) are the errors corresponding to the mesh size h; and h; 11,
respectively.

The numerical results of the full explicitly uncoupled VMS stabilization method
are shown in Table 1. We can see that our method can get a quadratic convergence rate
for the computed velocity, temperature and concentration in the H'! semi-norm, and
for the pressure in the L? norm, which verify the theoretical results. Moreover, it is
easy to see that a cubic convergence rate both for the computed velocity, temperature,
and concentration in the L? norm is obtained, which indicates that our error estimate
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Table 1 Rates of convergence by using the full explicitly uncoupled VMS stabilization method with
At=h’H=vht;=1

+ llu—usllleo Rate llu —uplll2,; Rate lp — palll2o Rate T — Thlllso.0 Rate
4 0.00196604 0.0417718 0.135942 0.00121879
9 0.000137481 3.28055 0.00865071 1.9417 0.0271136 1.98808 8.79903e-005 3.2412

16 2.37527e-005 3.05161 0.00278116 1.97227 0.00859392  1.99696 1.5097e-005  3.06367
25 6.2204e-006  3.00225 0.00114564 1.98729 0.0035232 1.99801 3.95201e-006 3.00316
36 2.11693e-006 2.95595 0.000553877  1.99312 0.00171005  1.98234 1.33699e-006 2.97223

i NT=Tilly Rate  |IIC = Chlllsco Rate  [|IC = Chlll21 Rate  CPU(s)
4 0.0256881 0.00260801 0.0523946 1.981
9 0.00518953  1.97228 0.000173836  3.33966 0.0110446 1.91985 58.179

16 0.00166319  1.97772 2.99983e-005 3.05367 0.00356199  1.96679 555.05
25 0.000684794 1.98834 7.83021e-006 3.00961 0.00146801  1.98618 14224
36 0.000330942 1.99421 2.62618e-006 2.99597 0.000709628 1.99352 16833.2

in the L2 norm is suboptimal. We also give out the numerical results of the projection-
based VMS stabilization method [8] in Table 2. Comparing Tables 1 and 2, we can
come to the conclusion that the full explicitly uncoupled VMS stabilization method
can save 95.35, 94.42,94.43, 73.48, and 83.42% CPU time when the mesh size h =

111 1 1 : :
7> 9 16> 35+ 36> respectively, and keep its accuracy.

5.2 The porous cavity problem
A classical rectangular computational domain with an aspect ratio of A = H/L is

used. We test the case A = 1. The domain with its boundary conditions is illustrated
in Fig. 1. We impose no-slip boundary conditions for the velocity. The horizontal

Table 2 Rates of convergence by using the projection-based VMS stabilization method [8] with Az = A2,

H=+ht=1

+ llu—usllleo Rate llu —uplll2,; Rate llp = prlll2,0 Rate T — Thlllso.0 Rate

4 0.00170756 0.0400734 0.136364 0.000985761

9 0.00013549  3.12471 0.00862154  1.89468 0.0271169 1.99175 8.52964e-005 3.01787

16 2.36796e-005 3.03161 0.00278039 1.96688 0.00859399  1.99716 1.50139e-005 3.01923
25 6.25149e-006 2.98417 0.00114557 1.98680 0.00352188  1.99887 3.93906e-006 2.99814
36 2.1039e-006  2.98651 0.00056014 1.96210 0.0017000 1.99625 1.3295e-006  2.97862

i NT=Tilly Rate  |IIC = Chllloco Rate  [|IC = Cylll21 Rate  CPU(s)
4 0.0233561 0.00221606 0.0503984 42.558
9 0.00514868  1.86467 0.000172489  3.14842 0.0110167 1.87507 1041.8

16 0.00166211 1.9651 2.99614e-005 3.04229 0.00356128  1.96274 10949.3
25 0.000684763 1.9870 7.82165e-006 3.00931 0.00146799  1.98577 53628.1
36 0.00033335  1.97421 2.6249e-006  2.99426 0.00070866  1.99724 101490.6
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u=0 adiabatic and impermeable

A
u=0 u=0
H|T=T, Porous medium T=T,
c=C, c=C,
g
Y

u=0 adiabatic and impermeable

< >
L

Fig. 1 The schematic diagram of the computational domain with its boundary conditions

walls are adiabatic and impermeable, and they are endowed with 97 /dn = 0 and
dC/on = 0. The temperature and concentration are kept at Ty, Co for right and
T1, C1 for left vertical walls with Tp < T1 and Cy < Cj, respectively. We take
To=Co=—land T} =C; = 1.

The dimensionless Nusselt and Sherwood numbers can reflect the heat and mass
transfer properties along the vertical walls and thus are important in engineering
applications. In our study, the average Nusselt number and the average Sherwood
number are defined as

1 1
oT aC
Nu = / <—> dy, Su = / <—) dy.
0 ax x=0 0 8x =0

Table 3 Comparison of the

average Nusselt and Sherwood Ra 100 200 400 1000 2000
numbers for ' = 0, Le = 10 at
A = 1 with different thermal Nu Present 3.25 5.16 7.94 14.05 20.11
Rayleigh numbers (8] 315 502 783 1401 20.00
[13] 3.11 4.96 7.77 13.47 19.90
[30] 3.27 5.61 9.69 - -
Sh Present 14.06 21.13 29.07 47.81 70.28
[8] 13.54 20.11 27.96 48.01 71.25
[13] 13.25 19.86 28.41 48.32 69.29
[30] 15.61 23.23 30.73 - -
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We perform our computations for different thermal Rayleigh number Ra and
implement the proposed method with the mesh width 4 = 21—4. The values of the aver-
age Nusselt and Sherwood numbers at A = 1 for different thermal Rayleigh number
Ra in Darcy regimes are given in Table 3, we also summarize these results along
with the results obtained by Cibik and Kaya [8], Goyeau et al. [13], and Trevisan and
Bejan [30]. It show that the results are consistent with the benchmark solutions in the
bibliography [8, 13, 30].

We next test the case of N/ = 0 with Bc = 0, which is a purely thermal natural
convection in a porous cavity. In Fig. 2, we draw the isotherm and isoconcentration
lines and the streamline for Da = 1073, Pr = 10, and Le = 10, A = 1 at Ra=100,
400, and 1000, respectively. It may be seen from the results that these graphics are
perfectly agreement with the ones in the investigations of [8, 13, 30] for Darcy regime
even with coarser grids.
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Fig. 2 TIsotherm lines, isoconcentration lines, and streamline for Da = 103, N=0,Le=10,A =1at
Ra=100, 400, and 1000 from left to right
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(C) Streamlines

Fig. 3 TIsotherm lines, isoconcentration lines and streamline for Da = 1073, Ra =400, Le = 10, A =1
at N' = 5, 10, 15 from left to right

35 T T T T T T 35

Nusselt Number
Nusselt Number

Fig. 4 The Nusselt number as a function of N with vary Darcy numbers solved by the present method
(left) and the GFEM (right)
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Fig. 5 The vertical velocity, temperature and concentration profiles in the horizontal midplane for Da =
1073, Ra = 100, Le = 100, A = 1 solved by the present method (leff) and the GFEM (right)

We also test the case of N # 0, which is identified as mass driven flow by [30] in
the flow configuration. Figure 3 presents the isotherm and isoconcentration lines and
the streamlines for Da = 1073, Pr = 10, Ra=400, and Le = 10, A = 1 at N'=5,
10, and 15, respectively. We can see that there are only minor changes in the isotherm
with the increase of the buoyancy ratio A/, while the contour lines of the isoconcen-
tration gradually transform into horizontal. From the streamline patterns, we can see
that the circular vortex at the cavity begin to break up into two vortices tending to be
close to the left and right walls. These graphics show that the concentration diffusion
becomes increasingly dominant with the increase of the buoyancy ratio A/. Finally,
in order to see the effect of the stabilization, we show the Nusselt number as a func-
tion of N with vary Darcy numbers solved by the present method and the Galerkin
finite element method (GFEM) in Fig. 4. Also, we draw the horizontal midplane for
the vertical velocity, temperature, and concentration profiles in Fig. 5. Those are in
good agreement with the previous studies in [8, 13, 30].

6 Conclusions

In this article, we propose a full explicitly decoupled VMS stabilization method
for solving the Darcy-Brinkman equations in double-diffusive convection. In this
method, three uncoupled VMS treatments for the velocity, the temperature, and the
concentration are introduced as the postprocessing steps at each time step, respec-
tively. It is easy to implement because we can use the existing code. Comparing
with the projection-based VMS stabilization finite element method [8], our method
can save a large amount of computational cost. Stability and convergence analysis
are provided; numerical tests are given to verify the effectiveness of the method.
The full discretization decoupled scheme [32] or the implicit-explicit stabilization

method [31] will be consider for the Darcy-Brinkman equations in double-diffusive
convection in the future.

@ Springer



596 Numer Algor (2018) 78:569-597

Acknowledgements This work was supported by the Natural Science Foundation of China (NSFC) under
grants 11371287 and 61663043 and the Natural Science Basic Research Plan in Shaanxi Province of China
under grant 2016JM5077.

References

1. Ahmed, N., Rebollo, T.C., John, V., Rubino, S.: A review of variational multiscale methods for the
simulation of turbulent incompressible flows. Arch. Comput. Method. Eng. 24, 115-164 (2017)

2. Belenli, M.A,, Kaya, S., Rebholz, L.G.: An explicitly decoupled variational multiscale method for
incompressible, non-isothermal flows. Comput. Methods Appl. Math. 15, 1-20 (2015)

3. Belenli, M.A,, Kaya, S., Rebholz, L.G., Wilson, N.E.: A subgrid stabilization finite element method
for incompressible magnetohydrodynamics. Int. J. Comput. Math. 90, 1506-1523 (2013)

4. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, New York
(1994)

5. Case, M.A., Ervin, V.J., Linke, A., Rebholz, L.G.: A connection between Scott-Vogelius and grad-div
stabilized Taylor-Hood FE approximations of the Navier-Stokes equations. SIAM J. Numer. Anal. 49,
1461-1481 (2011)

6. Chen, G., Feng, M.: Explicitly uncoupled variational multiscale for characteristic finite element meth-
ods based on the unsteady Navier-Stokes equations with high Reynolds number. Appl. Math. Model.
39, 42024212 (2015)

7. Cibik, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural
convection problem. J. Math. Anal. Appl. 381, 469-484 (2011)

8. Cibik, A., Kaya, S.: Finite element analysis of a projection-based stabilization method for the Darcy-
Brinkman equations in double-diffusive convection. Appl. Numer. Math. 64, 35-49 (2013)

9. Cibik, A.B.: Numerical Analysis of a Projection-Based Stabilization Method for the Natural Convec-
tion Problems. Ph.D. thesis, Middle East Technical University (2011)

10. Fortin, M.: Calcul numérique des écoulements de fluides de bingham et des fluides newtoniens
incompressibles par la méthode des éléments finis. Ph.D. thesis (1972)

11. Galvin, K.J.: New subgrid artificial viscosity Galerkin methods for the Navier-Stokes equations.
Comput. Methods Appl. Mech. Eng. 200, 242-250 (2011)

12. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algo-
rithms. Springer, New York (2012)

13. Goyeau, B., Songbe, J.P., Gobin, D.: Numerical study of double-diffusive natural convection in a
porous cavity using the Darcy-Brinkman formulation. Int. J. Heat Mass Trans. 39, 1363-1378 (1996)

14. Gresho, PM., Lee, R.L., Chan, S.T., Sani, R.L.: Solution of the time-dependent incompressible
Navier-Stokes and Boussinesq equations using the Galerkin finite element method. In: Approximation
Methods for Navier-Stokes Problems, pp. 203—-222. Springer, Berlin (1980)

15. Guermond, J.L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady
flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195, 5857-5876 (2006)

16. Gunzburger, M.: Finite Element Methods for Incompressible Viscous Flows: a Guide to Theory,
Practice and Algorithms. Academic, Boston (1989)

17. Hecht, F.: New development in Freefem++-. J. Numer. Math. 20, 251-266 (2012)

18. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes
problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353—
384 (1990)

19. Hughes, T.J., Mazzei, L., Jansen, K.E.: Large eddy simulation and the variational multiscale method.
Comput. Vis. Sci. 3, 47-59 (2000)

20. John, V., Kaya, S.: A finite element variational multiscale method for the Navier-Stokes equations.
SIAM J. Sci. Comput. 26, 1485-1503 (2005)

21. Kaya, S., Riviere, B.: A two-grid stabilization method for solving the steady-state Navier-Stokes
equations. Numer. Methods Partial Differ. Equ. 22, 728-743 (2006)

22. Layton, W., Rohe, L., Tran, H.: Explicitly uncoupled VMS stabilization of fluid flow. Comput.
Methods Appl. Mech. Eng. 200, 3183-3199 (2011)

@ Springer



Numer Algor (2018) 78:569-597 597

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

Loewe, J., Lube, G.: A projection-based variational multiscale method for large-eddy simulation
with application to non-isothermal free convection problems. Math. Models Methods Appl. Sci. 22,
1150011 (2012)

Melhem, H.G.: Finite Element Approximation to Heat Transfer Through Combined Solid and Fluid
Media. PhD thesis, University of Pittsburgh (1987)

Mojtabi, A., Charrier-Mojtabi, M.C.: Double-diffusive convection in porous media. In: Vafai, K. (ed.)
Handbook of Porous Media, pp. 559-603. Marcel Dekker, New York (2000)

Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)

Shan, L., Layton, W.J., Zheng, H.: Numerical analysis of modular VMS methods with nonlinear eddy
viscosity for the Navier-Stokes equations. Int. J. Numer. Anal. Model. 10, 943-5971 (2013)

Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element
technique. Comput. Fluids 1, 73-100 (1973)

Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam
(1984)

Trevisan, O.V., Bejan, A.: Natural convection with combined heat and mass transfer buoyancy effects
in a porous medium. Int. J. Heat Mass Transf. 28, 1597-1611 (1985)

Yang, Y.B., Jiang, Y.L.: Numerical analysis and computation of a type of IMEX method for the time-
dependent natural convection problem. Comput. Methods Appl. Math. 16, 321-344 (2016)

Yang, Y.B., Jiang, Y.L.: Analysis of two decoupled time-stepping finite element methods for incom-
pressible fluids with microstructure. Preprint, to appear in Int. J. Comput. Math. https://doi.org/10.
1080/00207160.2017.1294688

Zhang, Y., Wang, Z., Tang, Q.: Fully discrete subgrid stabilized finite element method for the Darcy-
Drinkman equations in double-diffusion convection. In: 2015 International Conference on Advanced
Mechatronic Systems (ICAMechS), pp. 413-417. IEEE (2015)

@ Springer


https://doi.org/10.1080/00207160.2017.1294688
https://doi.org/10.1080/00207160.2017.1294688

	An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection
	Abstract
	Introduction*-.3pt
	Mathematical preliminaries
	Stability analysis
	Error analysis
	Numerical experiments
	Convergence rate verification
	The porous cavity problem

	Conclusions
	Acknowledgements
	References


