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Abstract Speckle noise contamination is a common issue in ultrasound imaging sys-
tem. Due to the edge-preserving feature, total variation (TV) regularization-based
techniques have been extensively utilized for speckle noise removal. However, TV
regularization sometimes causes staircase artifacts as it favors solutions that are
piecewise constant. In this paper, we propose a new model to overcome this defi-
ciency. In this model, the regularization term is represented by a combination of total
variation and high-order total variation, while the data fidelity term is depicted by
a generalized Kullback-Leibler divergence. The proposed model can be efficiently
solved by alternating direction method with multipliers (ADMM). Compared with
some state-of-the-art methods, the proposed method achieves higher quality in terms
of the peak signal to noise ratio (PSNR) and the structural similarity index (SSIM).
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Numerical experiments demonstrate that our method can remove speckle noise effi-
ciently while suppress staircase effects on both synthetic images and real ultrasound
images.

Keywords Speckle noise · Total variation · High-order total variation · Alternating
direction method with multipliers · Generalized Kullback-Leibler divergence ·
Ultrasound images

1 Introduction

Ultrasonography is a widely used diagnostic technique, due to its noninvasive nature,
low cost, safety, portability, and capability of forming real-time imaging [1, 14].
Unfortunately, ultrasound images show a granular appearance called speckle, which
degrades visual evaluations. Hence, it becomes difficult for human to distinguish nor-
mal and pathological tissue in diagnostic examinations [23]. Ultrasonic speckle is an
interference effect caused by the scattering of the ultrasonic beam from microscopic
tissue inhomogeneities [33]. It tends to obfuscate some important image features and
reduce the image contrast. Therefore, speckle noise removal is an important task in
medical ultrasound imaging processing [10, 38]. Mathematically, the speckle noise
can be modeled by the following multiplicative form:

f = un, (1)

where the degraded image f , the original image u and the speckle noise n are func-
tions from � to R+ with � ∈ R

2 [48]. Because of its multiplicative nature and its
distribution is generally not Gaussian, it is difficult to remove multiplicative noise
[46].

Many approaches have been proposed to suppress speckle noise, such as local
statistics [26, 31], anisotropic diffusion approaches [25, 54], nonlocal filtering
approaches [8, 9, 41], and variational approaches [19, 20, 22, 56]. Variational
approaches have drawn great attention for speckle noise removal. The variational
model consists of a data fidelity term and a regularization term. Total variation (TV)
has been widely used as a regularizer in processing of speckle noise due to its ability
to preserve sharp discontinuities in restored images [28, 45, 47]. In the following, we
briefly review some TV-based methods.

To the best of our knowledge, the first TV regularizer-based method which devoted
to remove multiplicative noise is proposed by Rudin, Lions, and Osher (RLO model)
[43]. The RLO model is given by

min
u∈BV (�)

∫
�

|Du| s.t.
∫

�

udx =
∫

�

u0dx,
1

|�|
∫

�

(
f

u
− 1)2dx = σ 2, (2)

where � ⊂ R
2 denotes an open bounded set, BV (�) denotes the space of func-

tions with bounded variation on �,
∫
�

|Du| is the total variation of u, |�| denotes the
area of �, and σ is the standard deviation of the noise. This approach is very effec-
tive to remove multiplicative noise that follows Gaussian distribution. However, Tur,
Chin and Goodman found that the speckle noise can be approximated by Rayleigh
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distribution when the scatter density was more than 10 [49]. Due to the signal pro-
cessing stages inside the scanner (logarithmic compression, interpolation), Loupas,
Mcdicken, and Allan show that the speckle noise is not in a multiplicative form in
ultrasound imaging [32, 33]. They indicate that the mean is proportional to the vari-
ance. Therefore, the displayed ultrasonic images can be modeled as the following
form:

f = u + √
un, (3)

where f is the observed image, u is the original image and n is a zero-mean Gaussian
noise with the variance σ 2 [24]. This model fits better than multiplicative model (1)
for ultrasound images. Based on model (3), some approaches have been proposed
to remove the speckle noise. In [22], the authors propose the following variational
model:

min
u∈BV (�)

∫
�

|Du| + λ

∫
�

(f − u)2

u
dx, (4)

which is solved by a gradient projection method. They prove the existence and
uniqueness of the minimizer. It should be noted that the performance of this method
depends on the accuracy of the estimated noise variance. In [19], the authors pro-
pose a convex variational model which combines the Kullback-Leibler divergence
data fidelity term and total variation regularization term to remove speckle noise. By
denoting z = log u, the model is given by

min
z∈BV (�)

∫
�

|Dz| + λ

∫
�

(
f e−z/2 log

f

ez
− f e−z/2 + ez/2)dx, (5)

which is solved by split Bregman iteration method. This method can preserve sharp
edges and suppress speckle noise efficiently.

Since TV regularizer transforms smooth regions into piecewise constant ones, it
often produces staircase artifacts. These artifacts fail to satisfy the visual evaluation
and they may develop false edges which do not exist in the true image. Several high-
order methods are proposed to reduce the artifacts for additive noise [3, 5, 27, 29, 34,
44, 53]. In [5], the authors consider a high-order method through an inf-convolution
of a first order functional and a second-order functional. The authors in [29] propose
a noise removal method which combines a TV filter with a fourth-order partial differ-
ential equations filter. These methods alleviate the staircase effects of TV denoising
methods while preserving discontinuous as well as TV denoising methods. Motivated
by the advantage of high-order total variation for the additive noise removal, we pro-
pose a convex model consisting of the Kullback-Leiber divergence as the data fidelity
term, the total variation regularization, and high-order total variation regularization
terms. As the proposed model is a convex problem, there are many efficient methods
to solve it, such as split Bregman method, primal-dual method, Douglas-Rachford
spltting method, and alternating direction method with multipliers (ADMM). In this
work, ADMM is developed to solve the proposed model.

The remainder of this paper is organized as follows. In Section 2, we propose
our model for despeckling in ultrasound imaging. In Section 3, we develop an effi-
cient ADMM scheme to solve the proposed model. Numerical results are reported to
show the effectiveness of the proposed method in Section 4. Finally, some concluding
remarks are given in Section 5.
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2 The proposed speckle noise removal model

In this section, we start with a brief review of the generalized Kullback-Leibler
divergence and high-order total variation [4, 29, 40]. In probability theory and
information theory, Kullback-Leibler divergence is a discrepancy measure of the dif-
ference between two probability distribution, which has been widely used in image
processing [2, 19, 36, 42, 47].

Definition 2.1 Let S = R
N+ , the Kullback-Leibler divergence (also called as

I -divergence) of f ∈ S from u ∈ S is defined by

I (f ||u) =
N∑

i=1

(
fi log

fi

ui

− fi + ui

)
. (6)

Definition 2.2 Let � ⊂ R
n be an open subset with Lipschitz boundary. Define

BV (�) as a subspace of functions u ∈ L1(�) such that the following quantity
∫

�

|Du| := sup

{∫
�

udiv(ϕ)dx|ϕ ∈ C1
c (�, Rn), |ϕ| ≤ 1

}
(7)

is finite. BV (�) is a Banach space with the norm ‖u‖BV (�) = ∫
�

|Du| +
‖u‖L1(�)[37].

Definition 2.3 Let � ⊂ R
n be an open subset with Lipschitz boundary. Define

BV 2(�) as a subspace of functions u ∈ L1(�) such that the following quantity

∫
�

|D2u| := sup

⎧⎨
⎩

∫
�

n∑
i,j=1

u∂j ∂iϕ
ij dx|ϕ ∈ C2

c (�, Rn×n), |ϕ| ≤ 1

⎫⎬
⎭ (8)

is finite, where |ϕ(x)| =
√∑n

i=1
∑n

j=1(ϕ
ij )2. BV 2(�) is a Banach space with the

norm ‖u‖BV 2(�) = ∫
�

|D2u| + ‖u‖L1(�).

As described in the literature [29], we introduce the weighted BV 2 space denoted
by β − BV 2(�). A function u belongs to β − BV 2(�) if u ∈ L1(�) and satisfies

∫
�

β|D2u| := sup

⎧⎨
⎩

∫
�

n∑
i,j=1

u∂j ∂iϕ
ij dx|ϕ ∈ C2

c (�, Rn×n), |ϕ| ≤ β

⎫⎬
⎭ < ∞,

where β is a nonnegative function.
In the following, we design our speckle removal model for ultrasound images.

From (3), we get

f√
u

= √
u + n. (9)
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By using the definition of Kullback-Leibler divergence, we obtain the following
data fidelity term:

I
( f√

u
||√u

) =
∫

�

( f√
u
log

f

u
− f√

u
+ √

u
)
dx, (10)

which measures the discrepancy between the observed image and the original image.
Motivated by the advantage of high-order TV, we combine TV and high-order TV as
regularization term and get the following model:

min
u

λ

∫
�

( f√
u
log

f

u
− f√

u
+ √

u
)
dx +

∫
�

α|Du| +
∫

�

β|D2u|, (11)

where α and β are weighted functions. The objective function of (11) is not convex
for all u. The computed solutions of (11) by some optimization methods may not be
globally optimal. To address this issue, we adopt the strategy proposed in [20] by
taking z = log u as u and z contain an edge at the same location. We can view z as an
image in the logarithm domain. By applying TV and high-order TV to z, we arrive at
our speckle removal model for ultrasound images:

min
z

λ

∫
�

(f e−z/2 log
f

ez
− f e−z/2 + ez/2)dx +

∫
�

α|Dz| +
∫

�

β|D2z|. (12)

It is easy to see that when α(x) = 1 and β(x) = 0, our proposed model is identi-
fied with model (5). Thus our model is expected to keep sharp edges like model (5).
Besides, our model efficiently combines the advantage of the TV denosing model and
high-order TV denoising model. This combined technique is able to preserve edges
while reducing staircase effects in smooth regions.

We now show that the function (12) is strictly convex; hence, the global optimal
solution is guaranteed. Let

g(z) = f e−z/2 log
f

ez
− f e−z/2 + ez/2,

it is easy to obtain the derivative of g(z),

g′(z) = −1

2
f e−z/2 log f + 1

2
f e−z/2z − 1

2
f e−z/2 + 1

2
ez/2,

and the second-order derivative

g′′(z) = 1

4
f e−z/2(ez/f + log f + 3 − z).

When z = log(f ), ez/f + log f + 3 − z attains its minimizer. Therefore,

ez/f + log f + 3 − z ≥ elog f /f + log f + 3 − log f = 4 > 0.

Note that 1
4f e−z/2 is always positive when f > 0, then g′′(z) > 0 when f > 0,

implying that g(z) is strictly convex for all z. Consequently, the proposed objective
function (12) is strictly convex. Then, the existence and uniqueness of the minimizer
of problem (12) is guaranteed based on the discussion in [19].
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3 Numerical algorithm

In the following, we develop the alternating direction method of multipliers (ADMM)
to solve (12). Firstly, we briefly review ADMM [13, 16–18, 21, 30, 50]. The ADMM
solves the following linear separable convex minimization problem of the form:

min θ1(x1) + θ2(x2),

s.t. A1x1 + A2x2 = b,

x1 ∈ �1 and x2 ∈ �2,

(13)

where θ1 : Rn1 → R and θ2 : Rn2 → R are closed proper convex functions, �1 ⊆
R

n1 and �2 ⊆ R
n2 are closed convex sets, A1 ∈ R

l×n1 and A2 ∈ R
l×n2 are given

matrices, and b ∈ R
l is a given vector. The augmented Lagrangian function of (13) is

L(x1, x2, d) = θ1(x1) + θ2(x2) + μ

2
‖(A1x1 + A2x2 − b) − d‖2.

In the framework of ADMM, the optimization problem of (13) can be efficiently
solved by the following algorithm:

Algorithm ADMM

1. Set k = 0. Choose μ > 0. Initialize x0
2 and d0.

2. Calculate xk+1
1 , xk+1

2 and dk+1 using the following equations:
xk+1
1 = argmin

x1
{L(x1, x

k
2 , d

k) | x1 ∈ �1},
xk+1
2 = argmin

x2
{L(xk

1 , x2, d
k) | x2 ∈ �2},

dk+1 = dk − (A1x
k+1
1 + A2x

k+1
2 − b).

3. Stop or set k := k + 1 and go back to step 2.

The convergence proof of ADMM and its variants can be found in [11, 16]. In
many cases, we can not get the exact solutions of subproblems x1 and x2. The con-
vergence of the algorithm is also guaranteed as long as the sequences of optimization
errors with respect to x1 and x2 are absolutely summable [11].

In the following, we present our algorithm for solving the proposed model. Since
we deal with the discrete formulation of the image, we consider the discrete form
of (12). To begin, we introduce some basic notations. Assume S = {(i, j)|i =
1, 2, · · · , m, j = 1, 2, · · · , n} is the discrete grid of the image domain, without loss
of generality, we represent a grayscale image as anm×nmatrix. The Euclidean space
R

m×n is denoted as V . The discrete gradient operator is a mapping ∇ : V → Q,
where Q = V × V and the second-order difference operator ∇2 is a mapping
∇2 : V → Q1, where Q1 = V × V × V × V . We refer the readers to [52] for
more details about the first and second order difference operators. Then, the discrete
version of (12) can be shown as follows:

min
z

λ
∑

(i,j)∈S

g(zi,j ) +
∑

(i,j)∈S

αi,j‖(∇z)i,j‖2 +
∑

(i,j)∈S

βi,j‖(∇2z)i,j‖2, (14)
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where

g(zi,j ) = fi,j e
−zi,j /2 log

fi,j

ezi,j
− fi,j e

−zi,j /2 + ezi,j /2,

‖(∇z)i,j‖2 =
√

((D+
x z)i,j )2 + ((D+

y z)i,j )2,

and

‖(∇2z)ij‖2 =
√

((D−+
xx z)i,j )2 + ((D++

xy z)i,j )2 + ((D++
yx z)i,j )2 + ((D−+

yy z)i,j )2.

Here, we use D+
x and D+

y to denote forward difference operators with periodic
boundary condition, and D−

x and D−
y to denote backward difference operators with

periodic boundary condition (z is periodically extended). It should be mentioned
that some other boundary conditions and corresponding definitions of ∇ and ∇2 can
be used [15, 39]. For any z ∈ R

m×n, we define (∇z)i,j := ((D+
x z)i,j , (D

+
y z)i,j ),

(∇2z)i,j :=
(

(D−+
xx z)i,j (D++

xy z)i,j
(D++

yx z)i,j (D−+
yy z)i,j

)
, with

(D+
x z)i,j =

{
zi,j+1 − zi,j , 1 � j � n − 1,

zi,1 − zi,n, j = n,

(D+
y z)i,j =

{
zi+1,j − zi,j , 1 � i � m − 1,

z1,j − zm,j , i = m,

(D−
x z)i,j =

{
zi,j − zi,j−1, 2 � j � n,

zi,1 − zi,n, j = 1,

(D−
y z)i,j =

{
zi,j − zi−1,j , 2 � i � m,

z1,j − zm,j , i = 1,

(D−+
xx z)i,j := (D−

x (D+
x z))i,j ,

(D++
xy z)i,j := (D+

x (D+
y z))i,j ,

(D++
yx z)i,j := (D+

y (D+
x z))i,j ,

(D−+
yy z)i,j := (D−

y (D+
y z))i,j .

For every z ∈ R
m×n, p = (p1, p2) ∈ Q and q =

(
q1 q2

q3 q4

)
∈ Q1, we define

‖z‖2 =
⎛
⎝ m∑

i=1

n∑
j=1

(zi,j )
2

⎞
⎠

1/2

,

‖p‖2 =
⎛
⎝ m∑

i=1

n∑
j=1

(p1
i,j )

2 + (p2
i,j )

2

⎞
⎠

1/2

,

‖q‖2 =
⎛
⎝ m∑

i=1

n∑
j=1

(q1
i,j )

2 + (q2
i,j )

2 + (q3
i,j )

2 + (q4
i,j )

2

⎞
⎠

1/2

.
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Then, we reformulate (14) as the following equivalent constrained problem:

min
z,w,p,q

λ
∑

(i,j)∈S

g(wi,j ) +
∑

(i,j)∈S

αi,j‖pi,j‖2 +
∑

(i,j)∈S

βi,j‖qi,j‖2,

s.t. w = z, p = ∇z, q = ∇2z,

(15)

where ‖pi,j‖2 =
√

(p1
i,j )

2 + (p2
i,j )

2, and ‖qi,j‖2 =√
(q1

i,j )
2 + (q2

i,j )
2 + (q3

i,j )
2 + (q4

i,j )
2.

We now show that the model (15) can be reformulated into

min θ1(x1) + θ2(x2),

s.t. A1x1 + A2x2 = b.

Define the two m × m banded circulant matrices D1,m and D2,m by

D1,m =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0
0 −1 1

. . .
. . .

. . .

0 −1 1
1 0 −1

⎞
⎟⎟⎟⎟⎟⎠

,

D2,m =

⎛
⎜⎜⎜⎜⎜⎝

1 0 −1
−1 1 0

. . .
. . .

. . .

−1 1 0
0 −1 1

⎞
⎟⎟⎟⎟⎟⎠

,

then D+
y z = D1,mz, D+

x z = zDT
1,n, D−

y z = D2,mz, D−
x z = zDT

2,n. Let x1 =
vec(z) ∈ R

mn,

x2 =
(
(vec(w))T , (vec(p1))T , (vec(p2))T , (vec(q1))T , (vec(q2))T , (vec(q3))T , (vec(q4))T

)T ∈ R
7mn,

θ1(x1) = 0, θ2(x2) = λ
∑

(i,j)∈S g(wi,j ) + ∑
(i,j)∈S αi,j‖pi,j‖2 +∑

(i,j)∈S βi,j‖qi,j‖2, then (15) can be reformulated into

min
x1,x2

θ1(x1) + θ2(x2)

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Imn

D1,n ⊗ Im

In ⊗ D1,m
(D2,nD1,n) ⊗ Im

D1,n ⊗ D1,m
D1,n ⊗ D1,m

In ⊗ (D2,mD1,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

x1 − x2 = 0,

where Im denotes the identity matrix with size m × m, and 0 denotes the zero vector
with size 7mn × 1.
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Remark: It is not necessary to construct the explicit matrices A1 and A2 in real
application, some fast transforms can be applied to solve x1-subproblem. Similar
techniques are used in [6, 7, 15, 20, 40, 55, 56].

The corresponding augmented Lagrangian function of (15) is given by:

L(z, w, p, q,b)= λ
∑

(i,j)∈S g(wi,j ) + ∑
(i,j)∈S αi,j‖pi,j‖2 + ∑

(i,j)∈S βi,j‖qi,j‖2
+μ

2 ‖w − z − d1‖22+μ
2 ‖p − ∇z − d2‖22 + μ

2 ‖q − ∇2z − d3‖22,

where d1 ∈ R
m×n, d2 ∈ Q, d3 ∈ Q1, and μ > 0 is a penalty parameter to control the

speed of convergence [40]. The variables w, p, q, z can be separated into two groups,
(w, p, q) and z. For a fixed value of z, the variables w, p, q are decoupled. Then, we
can solve them on their corresponding subproblems by ADMM. The iterative scheme
of (15) is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk+1= argmin
z

μ

2
‖z + dk

1 −wk‖22+
μ

2
‖∇z+ dk

2 − pk‖22 + μ

2
‖∇2z + dk

3 − qk‖22,
wk+1 = argmin

w
λ

∑
(i,j)∈S

g(wij ) + μ

2
‖w − zk+1 − dk

1‖22,

pk+1 = argmin
p

∑
(i,j)∈S

αi,j‖pi,j‖2 + μ

2
‖p − ∇zk+1 − dk

2‖22,

qk+1 = argmin
p

∑
(i,j)∈S

βi,j‖qi,j‖2 + μ

2
‖q − ∇2zk+1 − dk

3‖22,

dk+1
1 = dk

1 − (wk+1 − zk+1),

dk+1
2 = dk

2 − (pk+1 − ∇zk+1),

dk+1
3 = dk

3 − (qk+1 − ∇2zk+1).

(16)
For the z-subproblem, we obtain

(
I + ∇T ∇ + (∇2)T ∇2

)
zk+1 = wk − dk

1 + ∇T (pk − dk
2 ) + (∇2)T (qk − dk

3 ). (17)

As ∇ and ∇2 are the first-order and the second-order difference operators respec-
tively, the coefficient matrix associated with z can be diagonalized by some fast
transforms. Since we impose periodic boundary condition for the discrete scheme, the
z-subproblem can be solved efficiently by fast Fourier transform. For more details,
we refer the reader to [15, 39].

The minimization of w in (16) is a set of m × n decoupled scalar convex mini-
mizations. Since the objective function F(wi,j ) = λg(wi,j )+ μ

2 (wi,j − zi,j − d1i,j
)2

is strictly convex, the solution of w is unique. The w-subproblem can be solved by
Newton method efficiently. An iterative scheme of w is

wk+1
M+1 = wk+1

M − F ′(wk+1
M )

F ′′(wk+1
M )

, (18)
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where M is the number of inner iteration of Newton method. In the numerical exper-
iments, we set M = 2. We will discuss about the choice of inner iteration number in
more details in Section 4.

As the p-subproblem is componentwise separable, the solution of p is

pk+1
i,j = shrink

(
(∇zk+1 + dk

2 )i,j ,
αi,j

μ

)
, (i, j) ∈ S, (19)

where pk+1
i,j ∈ R

2 represents the component of pk+1 located at (i, j) ∈ S, and the
shrinkage operator is defined by

shrink(t, α) =
{
0, t = 0,
(‖t‖2 − α) t

‖t‖2 , t �= 0.

For the q-subproblem, the solution is

qk+1
i,j = shrink

(
(∇2zk+1 + dk

3 )i,j ,
βi,j

μ

)
, (i, j) ∈ S, (20)

where qk+1
i,j ∈ R

2×2 represents the component of qk+1 located at (i, j) ∈ S.
In summary, the proposed alternating direction method for ultrasound speckle

removal is given as follows.

Algorithm The proposed speckle removal method

1. Choose λ > 0, α > 0, β > 0, μ > 0 and tolerance error ε > 0. Initialize w0, p0,
q0, d0

1 , d
0
2 , d

0
3 .

2. Iteration:
zk+1 is given by (17),
wk+1 is given by (18),
pk+1 is given by (19),
qk+1 is given by (20),
dk+1
1 = dk

1 − (wk+1 − zk+1),
dk+1
2 = dk

2 − (pk+1 − ∇zk+1),
dk+1
3 = dk

3 − (qk+1 − ∇2zk+1),

then, the restoration image u is uk+1 = ezk+1
,

until ‖uk+1 − uk‖2/‖uk‖2 < ε.

4 Numerical results

In this section, some numerical experiments of the proposed method on both syn-
thetic images and real ultrasound images are presented. We compare our method with
some state-of-the-art TV based speckle removal algorithms introduced in [19, 22],
and the I-divergence model with TGV regularization proposed in [12]. For simplic-
ity, we call the method proposed in [12, 19, 22], as PDTGV-Idiv, FRSNU, RMNU,
separately. For quantitative comparison, the peak signal to noise ratio (PSNR) and
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the structural similarity index (SSIM) [51] are introduced to measure the quality of
the restoration. The PSNR is calculated by

PSNR = 10 log10
N × MAX2

u∗

‖u − u∗‖22
,

where u∗, u, N and MAXu are the ground truth image, the recovered image, the
number of pixels of the image, and the maximum possible pixel value of the image,
respectively. The SSIM which measures the structural detail similarity between u and
u∗ is defined by

SSIM(u, u∗) = (2μuμu∗)(2σuu∗ + c2)

(μ2
u + μ2

u∗ + c1)(σ 2
u + σ 2

u∗ + c2)
,

where μu and μu∗ are the mean values of image u and u∗. σu and σu∗ denote their
standard deviations, and σuu∗ is the covariance of u and u∗. Moreover, c1 = (K1L)2

and c2 = (K2L)2, where L is the dynamic range of the pixel intensities (255 for 8-
bit gray-scale images). K1 � 1 and K2 � 1 are small constants. The range of SSIM
value lies in [0,1] with 1 for the perfect quality. In the numerical experiments, we
use the following parameter values: K1 = 0.001 and K2 = 0.03. All the algorithms

are terminated when ‖uk+1−uk‖2
‖uk‖2 < 5 × 10−4 except RMNU. As the performance

of RMNU depends on the estimation of noise variance, we stop RMNU when the
variance of the recovered noise matches that of the prior knowledge as described in
[22]. For a fair comparison among the competing methods, we have carefully tuned

Fig. 1 Six different test synthetic images used in our experiments. Top left: Zelda (512×512); top middle:
Face (268 × 360); top right: House (512 × 512); bottom left: Pallon (256 × 256); bottom middle: Tulip
(256 × 256); bottom right: Barche (256 × 256)
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the parameters in RMNU, FRSNU, and PDTGV-Idiv for each image to give the best
possible performance.

For our proposed method, we choose x0 = 0, p0 = 0, q0 = 0, d0
1 = 0, d0

2 = 0,
d0
3 = 0. The data fidelity coefficient λ is related to noise levels. The larger the noise

is, the smaller λ is. There are several methods to choose regularization parameters α

and β, such as the methods proposed in [29, 35]. In [29], the authors suggest that the
scheme of α and β can be choosen as

α = γ + η|∇(Gδ ∗ f )|2
1 + γ + η|∇(Gδ ∗ f )|2 ,

and

β = 1 − α,

Fig. 2 First row: performance comparison of different methods on Zelda with σ = 2, from left to right:
observed image, restored results by RMNU with PSNR = 32.27dB, FRSNU with PSNR = 32.78dB,
PDTGV-Idiv with PSNR = 33.19dB, and the proposed method with PSNR = 33.38dB (λ = 0.8, μ =
10). Second row: corresponding zoomed-in regions in the first row. Third row: performance comparison
of different methods on Flower with σ = 3, from left to right: observed image, restored results by RMNU
with PSNR = 29.90dB, FRSNU with PSNR = 31.07dB, PDTGV-Idiv with PSNR = 31.64dB, and
the proposed method with PSNR = 31.46dB (λ = 0.5, μ = 10). Bottom row: corresponding zoomed-in
regions in the third row
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where γ > 0 is a very small positive number, η > 0 is a contrast factor, Gδ is the
Gaussian kernel, δ denotes the standard deviation, and ∗ is a convolution operator.
We adopt this strategy to choose α and β in our numerical experiments by setting
γ = 0.0001, η = 0.01 and δ = 2. By this selection of α and β, α‖∇z‖ tends to be
predominant when |∇(Gδ ∗ f )| is large (large |∇(Gδ ∗ f )| corresponds to locations
where the edges most likely to appear); and β‖∇2z‖ tends to be predominant when
|∇(Gδ ∗f )| is small (small |∇(Gδ ∗f )| corresponds to locations with smooth areas).
Thus the proposed model can preserve sharp edges and restore smooth regions well.

All simulations are implemented in MATLAB R2010a on a personal computer
with a 2.80GHz Intel Pentium CPU and 4 Gb of RAM.

4.1 Experiments on synthetic images

In Fig. 1, six original synthetic images are presented and we denote them by Zelda,
Face, House, Pallon, Tulip, and Barche, respectively.

Test 1 Figures 2, 3 and 4 present the restored results of the images Zelda, Face, and
House corrupted by speckle noise with σ = 2 and σ = 3. From the despeckled

Fig. 3 First row: performance comparison of different methods on Face image with σ = 2, form left
to right: observed image, restored results by RMNU with PSNR = 31.13dB, FRSNU with PSNR =
31.35dB, PDTGV-Idiv with PSNR = 31.19dB, and the proposed method with PSNR = 31.61dB

(λ = 0.6, μ = 70). Second row: corresponding zoomed-in regions in the first row. Third row: perfor-
mance comparison of different methods on Face image with σ = 3, form left to right: observed image,
restored results by RMNU with PSNR = 29.09dB, FRSNU with PSNR = 29.41dB, PDTGV-Idiv with
PSNR = 29.12dB, and the proposed method with PSNR = 29.53dB (λ = 0.3, μ = 70). Bottom row:
corresponding zoomed-in regions in the third row
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Fig. 4 First row: performance comparison of different methods on House with σ = 2, from left to right:
observed image, restored results by RMNU with PSNR = 28.15dB, FRSNU with PSNR = 28.35dB,
PDTGV-Idiv with PSNR = 28.32B, and the proposed method with PSNR = 28.47dB (λ = 0.8, μ =
70). Second row: corresponding zoomed-in regions in the first row. Third row: performance comparison
with different methods on House with σ = 3, from left to right: observed image, restored results by RMNU
with PSNR = 26.30dB, FRSNU with PSNR = 26.60dB, PDTGV-Idiv with PSNR = 26.41dB, and
the proposed method with PSNR = 26.72dB (λ = 0.5, μ = 70). Bottom row: corresponding zoomed-in
regions in the third row

results, we observe that all methods improve the images quality well even the noise
level is high. For better visualisation, we also present the zoomed-in local results in
Figs. 2–4. From Figs. 2 and 3, one can see the despeckled results by RMNU, FRSNU
are significantly degraded by staircase effects, especially in smooth regions, such as
the cheek of Zelda and Face. However, our proposed method and PDTGV-Idiv pro-
cess smooth regions better than RMNU, FRSNU. At the same time, our method and
PDTGV-Idiv are able to keep the discontinuity around the lip and nose. In Fig. 4, one
can observe that our method and PDTGV-Idiv are effective to recover smooth regions
as well as discontinuities at object boundaries. Meanwhile, the smooth regions are
recovered as piecewise constant regions by RMNU and FRSNU. The restored results
by our method and PDTGV-Idiv are much visual pleasant. This illustrates that
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Fig. 5 First row: performance comparison of different methods on Pallon with σ = 2, from left to right:
observed image, restored results by RMNU with PSNR = 32.05dB, FRSNU with PSNR = 32.19dB,
PDTGV-Idiv with PSNR = 32.32dB, and the proposed method with PSNR = 32.37dB (λ = 0.8, μ =
20). Second row: performance comparison of different methods on Pallon with σ = 3, from left to right:
observed image, restored results by RMNU with PSNR = 29.62dB, FRSNU with PSNR = 30.28dB,
PDTGV-Idiv with PSNR = 30.37dB, and the proposed method with PSNR = 30.45dB (λ = 0.5,
μ = 20)

the introduction of higher-order term in the denoising procedure produces higher
quality.

It is interesting that we observe some isolated spots in the restored results by
PDTGV-Idiv. This phenomena is also observed in the results presented in Figs. 5, 6
and 7. On the other hand, our method do not produce this artifact.

Fig. 6 First row: performance comparison of different methods on Tulip with σ = 2, from left to right:
observed image, restored results by RMNU with PSNR = 26.59dB, FRSNU with PSNR = 27.26dB,
PDTGV-Idiv with PSNR = 27.20dB, and the proposed method with PSNR = 27.40dB (λ = 1, μ =
10). Second row: performance comparison of different methods on Tulip with σ = 3, from left to right:
observed image, restored results by RMNU with PSNR = 24.45dB, FRSNU with PSNR = 25.33dB,
PDTGV-Idiv with PSNR = 25.21dB, and the proposed method with PSNR = 25.57dB (λ = 0.7,
μ = 10)
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Fig. 7 First row: performance comparison of different methods on Barche with σ = 2, from left to right:
observed image, restored results by RMNU with PSNR = 27.54dB, FRSNU with PSNR = 27.87dB,
PDTGV-Idiv with PSNR = 27.76dB, and the proposed method with PSNR = 27.96dB (λ = 1.2, μ =
10). Second row: performance comparison of different methods on Barche with σ = 3, from left to right:
observed image, restored results by RMNU with PSNR = 25.64dB, FRSNU with PSNR = 25.96dB,
PDTGV-Idiv with PSNR = 25.84dB, and the proposed method with PSNR = 26.17dB (λ = 0.6,
μ = 50)

Figures 5, 6 and 7 present the comparison between different methods on the
images Pallon, Tulip, and Barche contaminated by the speckle noise with σ = 2 and
σ = 3. One can similar observe that the staircase effects in flat regions are avoided
by our method and PDTGV-Idiv such as the petals of Tulip in Fig. 6. In these exper-
iments, our method achieves the highest SSIM values. Therefore, it is reasonable
to conclude that our results are pleasant to the human eye. All these experiments
show that our method is effective to remove speckle noise and alleviate staircase
effects.

Table 1 summarizes the PSNR (in dB), SSIM and CPU time of the different meth-
ods on all testing images in Fig. 1 with σ = 2, σ = 3 and σ = 4. From Table 1, one
can see that in most cases, our method generates a slightly higher PSNR, and SSIM
than RMNU, FRSNU, and PDTGV-Idiv, indicating that our method is powerful in
removing noise and preserving geometry. The computation time is quite competitive
with other compared methods in most cases.

Test 2 We study the sensitivity of the number of inner iterations to be set in the pro-
posed algorithm for solving the x-subproblem. We use the Face image contaminated
by the noise with standard deviation σ = 3 as an example. Table 2 shows the PSNR
values, SSIM values and computation time for different inner iteration number. From
this table, we observed that when the iteration number becomes larger, the PSNR
values and SSIM almost keep unchanged, but the computation time becomes much
longer. We remark that the above observation is also valid for other testing images.
From the discussion, we get that it is sufficient to set the number of inner iteration to
be 2 for solving the x-subproblem.
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Table 1 Comparison of the performance of the methods: RMNU, FRSNU, and PDTGV-Idiv in terms of
PSNR, SSIM and CPU time (seconds)

σ
Image

RMNU FRSNU PDTGV-Idiv Proposed

PSNR/SSIM/Time PSNR/SSIM/Time PSNR/SSIM/Time PSNR/SSIM/Time

Zelda 32.27/0.9224/26.8 32.78/0.9286/44.5 33.19/0.9364/16.1 33.38/0.9381/7.0

Face 31.13/0.9022/6.8 31.35/0.8988/6.4 31.19/0.8792/3.8 31.61/0.9185/5.7

2 House 28.15/0.8837/28.4 28.35/0.8881/34.8 28.32/0.8732/16.7 28.47/0.8864/17.9

Pallon 32.05/0.8799/5.3 32.19/0.8756/8.7 32.32/0.8806/3.3 32.37/0.8847/2.6

Tulip 26.59/0.8007/6.4 27.26/0.8213/7.7 27.20/0.8172/3.0 27.40/0.8282/2.6

Barche 27.54/0.7721/7.0 27.87/0.7817/7.1 27.76/0.7729/3.0 27.96/0.7892/2.0

Zelda 29.90/0.8783/50.9 31.07/0.8965/66.9 31.64/0.9097/23.5 31.46/0.9114/9.5

Face 29.09/0.8709/10.4 29.41/0.8682/9.5 29.12/0.8258/4.2 29.53/0.8889/8.1

3 House 26.30/0.8312/51.0 26.60/0.8358/52.7 26.41/0.8134/25.7 26.72/0.8317/27.1

Pallon 29.62/0.8505/10.7 30.28/0.8478/13.4 30.37/0.8528/4.7 30.45/0.8583/3.5

Tulip 24.45/0.7248/11.0 25.33/0.7555/11.9 25.21/0.7501/4.6 25.57/0.7739/2.7

Barche 25.64/0.7061/10.2 25.96/0.7183/12.2 25.84/0.7103/4.7 26.17/0.7311/5.6

Zelda 28.53/0.8569/60.6 29.62/0.8674/81.9 30.49/0.8823/30.9 30.01/0.8940/35.8

Face 27.21/0.8451/18.1 27.98/0.8465/11.8 27.61/0.7670/6.1 28.18/0.8660/10.4

4 House 24.70/0.7793/83.5 25.33/0.7903/70.7 25.11/0.7582/33.7 25.37/0.8062/39.8

Pallon 27.19/0.8217/17.4 28.69/0.8266/18.5 29.17/0.8304/6.0 28.71/0.8441/4.6

Tulip 22.74/0.6549/16.4 23.97/0.7018/15.7 23.99/0.7016/6.3 24.21/0.7251/3.2

Barche 24.28/0.6553/14.8 24.74/0.6704/15.1 24.65/0.6611/6.6 24.90/0.6871/7.9

The italicized entries represent the highest PSNR and SSIM for each test images

4.2 Experiments on real ultrasound images

In this section, we test the performance of the proposed method on some real ultra-
sound images and compare with FRSNU, PDTGV-Idiv. Since the performance of the
RMNU depends on the estimation of the variance, we do not compare our method
with the RMNU in this section. The denoising results on the real ultrasound thy-
roid nodules, the breast cancer mass image and the abdomen image are presented in
Fig. 8. The second column shows the restoration results by FRSNU. We can see from
the restored images that FRSNU method remove speckle noise effectively but at the

Table 2 Restoration results with different inner iteration number in proposed algorithm of Facewith σ = 3

Iteration number 1 2 6 10 14 18 22

PSNR 29.53 29.53 29.54 29.54 29.54 29.54 29.54

SSIM 0.8887 0.8889 0.8889 0.8889 0.8889 0.8889 0.8889

Time 7.3 8.1 13.2 20.3 21.9 26.5 29.6
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Fig. 8 Comparison with different methods on ultrasound images. First column, from top to bottom: a
real ultrasound thyroid nodules image, a real breast cancer mass ultrasound image, a real ultrasound ovary
cancer images; second column to last column: corresponding restoration results by FRSNU, PDTGV-Idiv
and the proposed method

same time cause the staircase artifacts. However, our method and PDTGV-Idiv can
suppress staircase effects.

5 Conclusions

We propose a new approach to suppress speckle noise in ultrasound images which
combines the advantage of total variation and high-order total variation. We get the
data fidelity term of the proposed model by using I -divergence. Then, we solve
the proposed model by alternating direction method with multiplier and compare
with three other competitive speckle removal methods. Numerical simulations show
that the proposed method removes speckle noise quite well and overcomes stair-
case effect which is caused by total variation regularization. In our paper, we do not
update the regularization parameters α and β during the iteration. Some adaptive
techniques can be used to choose regularization parameters to get better restoration
results.
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