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Abstract For the nonsymmetric saddle point problems with nonsymmetric positive
definite (1,1) parts, the modified generalized shift-splitting (MGSS) preconditioner
as well as the MGSS iteration method is derived in this paper, which generalize the
modified shift-splitting (MSS) preconditioner and the MSS iteration method newly
developed by Huang and Su (J. Comput. Appl. Math. 317:535–546, 2017), respec-
tively. The convergent and semi-convergent analyses of the MGSS iteration method
are presented, and we prove that this method is unconditionally convergent and semi-
convergent. Meanwhile, some spectral properties of the preconditioned matrix are
carefully analyzed. Numerical results demonstrate the robustness and effectiveness
of the MGSS preconditioner and the MGSS iteration method and also illustrate that
the MGSS iteration method outperforms the generalized shift-splitting (GSS) and the
generalized modified shift-splitting (GMSS) iteration methods, and the MGSS pre-
conditioner is superior to the shift-splitting (SS), GSS, modified SS (M-SS), GMSS
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and MSS preconditioners for the generalized minimal residual (GMRES) method for
solving the nonsymmetric saddle point problems.

Keywords Nonsymmetric saddle point problem · Modified generalized
shift-splitting · Convergence · Semi-convergence · Spectral properties
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1 Introduction

In a wide variety of scientific and engineering applications, such as mixed finite ele-
ment approximation of elliptic partial differential equations, the image reconstruction
and registration, computational fluid dynamics, weighted least-squares problems,
networks computer graphics, and constrained optimization [2, 16, 27], we need to
solve the following nonsymmetric saddle point problems of the form

Au =
(

A B

−BT 0

) (
x

y

)
=

(
f

−g

)
≡ b, (1)

where A ∈ R
m×m is nonsymmetric positive definite, B ∈ R

m×n is a rectangular
matrix, f ∈ R

m and g ∈ R
n are given vectors, with n ≤ m. Here, BT denotes the

transpose of B. The system of linear (1) is also termed as a Karush-Kuhn-Tucker
(KKT) system, or an augmented system [25, 29]. For a wider class of saddle point
problems, the readers can refer to [13].

Since the matrices A and B in A are large and sparse in general, the solution of
(1) is suitable for being solved by the iterative method. In the case that the matrix B

is of full column rank, a large amount of effective iterative methods have been pro-
posed to solve the saddle point problems in the literature, for example, the successive
overrelaxation (SOR)-like methods [10, 30, 31, 40], the Uzawa-type methods [10, 11,
15, 23, 26, 38], the Hermitian and skew-Hermitian splitting (HSS) methods [7] and
its variants [5, 6, 8, 9], and the Krylov subspace methods [28, 41] with high-quality
preconditioners such as the structured preconditioners [2], the shift-splitting (SS) pre-
conditioner [17], and its variants [18, 20, 33, 34, 47]. For more details, we refer the
readers to [13] for a comprehensive survey of existing approaches for solving the
saddle point problems.

If B in (1) is rank deficient, then the coefficient matrix A in (1) is singular, and
we call (1) the singular saddle point problem. Some iteration methods and precondi-
tioning techniques for solving singular saddle point problems have been proposed in
the recent literature, see, e.g., [35, 36, 43, 44]. Zheng et al. [45] proposed some suf-
ficient conditions for the semi-convergence of the generalized SOR (GSOR) method
and determined the optimal iteration parameters. Bai [3] derived some necessary and
sufficient conditions to assure the semi-convergence of the HSS method. Chen et al.
[21] and Cao et al. [19] investigated the generalized shift-splitting (GSS) iteration
method for singular saddle point problems. Very recently, Dou et al. [24] introduced



Numer Algor (2018) 78:297–331 299

the modified parameterized inexact Uzawa (MPIU) for singular saddle point prob-
lems, and Zheng and Lu [46] proved the semi-convergence of the upper and lower
triangular (ULT) splitting iterative method for singular saddle point problems.

In [12], Bai et al. proposed an efficient shift-splitting (SS) preconditioner to
accelerate the convergence rates of the Krylov subspace methods for a class of non-
Hermitian positive definite linear systems. Recently, Cao et al. [17] generalized the
idea in [12] and presented the SS preconditioner of the form

PSS = 1

2

(
αI + A B

−BT αI

)

for the saddle point problem (1), where α is a positive constant and I is the identity
matrix with appropriate dimension. The authors also proved that the corresponding
SS iteration method is unconditionally convergent.

After that, on the basis of the SS preconditioner [17], Chen and Ma [20] and Cao
et al. [18] replaced the parameter α in (2,2)-block of the SS preconditioner by another
parameter β and proposed the generalized SS (GSS) preconditioner of the form:

PGSS = 1

2

(
αI + A B

−BT βI

)
,

where α ≥ 0, β > 0, and I is the identity matrix with appropriate dimension. It is
easy to see that PSS is a special case of PGSS when α = β. It is shown in [20, 21]
that the GSS preconditioner is more efficient than the SS preconditioner.

Very recently, based on the well-known Hermitian and skew-Hermitian splitting
(HSS) of the matrix A: A = H + S, where H = 1

2 (A + AT ) and S = 1
2 (A −

AT ), and inspired by the ideas in [12, 17], Zhou et al. in [47] proposed the modified
shift-splitting (M-SS) preconditioner for nonsymmetric saddle point problem (1), and
investigated the convergence properties of the M-SS iteration method.

In the sequel, by replacing the parameter α in (2,2)-block of the M-SS precondi-
tioner by another parameter β, Huang et al. [33] established the generalized M-SS
(GMSS) preconditioner. They proved that, under proper conditions, the correspond-
ing GMSS iteration method is convergent and semi-convergent, respectively, for the
nonsingular and singular saddle point problems. Numerical results showed that the
GMSS iteration method and the GMSS preconditioner outperform the M-SS iteration
method and the M-SS preconditioner, respectively.

In order to increase the convergence rate of the GSS iteration method for the non-
singular saddle point problems with symmetric positive definite (1,1) parts, Huang
and Su [34] newly developed the modified shift-splitting (MSS) preconditioner of the
form:

PMSS =
(

αI + 2A 2B
−2BT αI

)

with α > 0 being a constant and I being the identity matrix with appropriate dimen-
sion, which derived from the following modified shift-splitting of the saddle point
matrix A:

A = PMSS − QMSS =
(

αI + 2A 2B
−2BT αI

)
−

(
αI + A B

−BT αI

)
.
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The authors in [34] theoretically verified the unconditional convergence of the cor-
responding MSS iteration method and estimated the bounds of the eigenvalues of
the iteration matrix of the MSS iteration method. Numerical experiments illustrated
that the MSS preconditioner outperforms the SS and the GSS preconditioners for the
nonsingular saddle point problems with symmetric positive definite (1,1) parts.

To further improve the efficiency of the GSS and the GMSS preconditioned
GMRES methods for the saddle point problems with nonsymmetric positive definite
(1,1) parts, a new preconditioner which is referred to as the modified generalized
shift-splitting (MGSS) preconditioner is developed for the nonsymmetric saddle
point problems in this paper. Theoretical analysis also shows that the correspond-
ing splitting iteration method is convergent and semi-convergent unconditionally.
Besides, we investigate the spectral properties of the corresponding preconditioned
matrix and show that it has clustered eigenvalue distribution by choosing proper
parameters. Numerical experiments are carried out to validate the effectiveness of the
MGSS iteration method and the MGSS preconditioned GMRES method for solving
the nonsymmetric saddle point problems.

The framework of this paper is organized as follows. Section 2 introduces the
MGSS iteration method and analyzes the implementation aspects of the MGSS pre-
conditioner induced by the MGSS iteration method. The unconditionally convergent
and semi-convergent properties of the MGSS iteration method will be proved in
Sections 3 and 4, respectively. The spectral properties of the MGSS preconditioned
matrix will be investigated in detail in Section 5. We examine the feasibility and
effectiveness of the MGSS iteration method and the MGSS preconditioned GMRES
method for solving the nonsymmetric nonsingular and singular saddle point prob-
lems by numerical experiments in Section 6. Finally in Section 7, some conclusions
will be given to end this work.

Throughout this paper, λmin(A) and ρ(A) represent the minimum eigenvalue and
the spectral radius of the matrix A, respectively. (.)∗ denotes the conjugate transpose
of either a vector or a matrix.

2 The modified generalized shift-splitting preconditioner and its
implementation

In this section, motivated by the ideas of [18, 20, 34], we develop a new splitting
called the modified generalized shift-splitting (MGSS) of the nonsymmetric saddle
point matrix A by combining the generalized shift-splitting and the modified shift-
splitting of the saddle point matrix A as follows:

A = PMGSS − QMGSS =
(

αI + 2A 2B
−2BT βI

)
−

(
αI + A B

−BT βI

)
, (2)

where α ≥ 0 and β > 0 are the two constants and I is the unit matrix with appropriate
dimension. Then, the modified generalized shift-splitting iteration method based on
the splitting (2) can be derived as follows:
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The modified generalized shift-splitting (MGSS) iteration method Let α ≥ 0
and β > 0 be two given constants. Given an initial guess (x(0)T , y(0)T )T . For k =
0, 1, 2, · · · , until (x(k)T , y(k)T )T converges, compute(

αI + 2A 2B
−2BT βI

)(
x(k+1)

y(k+1)

)
=

(
αI + A B

−BT βI

)(
x(k)

y(k)

)
+

(
f

−g

)
,

which can be rewritten as the following fixed point form
(

x(k+1)

y(k+1)

)
= T (α, β)

(
x(k)

y(k)

)
+

(
αI + 2A 2B
−2BT βI

)−1 (
f

−g

)
, (3)

where

T (α, β) =
(

αI + 2A 2B
−2BT βI

)−1 (
αI + A B

−BT βI

)

is the iteration matrix of the MGSS iteration method.
As a matter of fact, any matrix splitting not only can automatically lead to a split-

ting iteration method, but also can naturally induce a splitting preconditioner for the
Krylov subspace methods. The splitting preconditioner corresponding to the MGSS
iteration (2) is given by

PMGSS =
(

αI + 2A 2B
−2BT βI

)
, (4)

which is called the MGSS preconditioner for the nonsymmetric saddle point matrix
A.

At each step of the MGSS iteration (3) or applying the MGSS preconditioner
PMGSS within a Krylov subspace method, a linear system with PMGSS as the coef-
ficient matrix needs to be solved. That is to say, we need to solve a linear system of
the form (

αI + 2A 2B
−2BT βI

)
z = r,

where z = (zT
1 , zT

2 )T and r = (rT
1 , rT

2 )T with z1, r1 ∈ R
m and z2, r2 ∈ R

n. It is not
difficult to check that

PMGSS =
(

I 2
β
B

0 I

)(
αI + 2A + 4

β
BBT 0

0 βI

)(
I 0

− 2
β
BT I

)
. (5)

It follows from the decomposition of PMGSS in (5) that
(

z1
z2

)
=

(
I 0

2
β
BT I

) (
αI + 2A + 4

β
BBT 0

0 βI

)−1 (
I − 2

β
B

0 I

)(
r1
r2

)
. (6)

Therefore, we can derive the following algorithmic version of the MGSS iteration
method.

Algorithm 2.1 For a given vector r = (rT
1 , rT

2 )T , the vector z = (zT
1 , zT

2 )T can be
computed by (6) according to the following steps:
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(1) compute t1 = r1 − 2
β
Br2;

(2) solve (αI + 2A + 4
β
BBT )z1 = t1;

(3) compute z2 = 1
β
(2BT z1 + r2).

From Algorithm 2.1, it is known that at each iteration, it is required to solve a
linear system with the coefficient matrix αI + 2A + 4

β
BBT . Since the matrix αI +

2A + 4
β
BBT is positive definite for all α ≥ 0 and β > 0, in inexact manner, we

can employ the GMRES method to solve the sub-linear systems with the coefficient
matrix αI + 2A + 4

β
BBT by a prescribed accuracy. In addition, they also can be

solved exactly by the LU factorization in combination with AMD or column AMD
reordering [17]; however, using the direct methods may be time consuming, so what
we want to pose here is that we always use the GMRES method to solve this problem
in our paper.

3 Convergence of the MGSS iteration method for nonsingular saddle
point problems

The main purpose of this section is to study the convergent properties of the MGSS
iteration method by analyzing the spectral properties of the iteration matrix. To this
end, we start with some lemmas which will be useful in our proofs.

Lemma 3.1 [11] Both roots of the complex quadratic equation x2 − φx + ψ = 0
are less than one in modulus if and only if |φ − φ̄ψ |+ |ψ |2 < 1, where φ̄ denotes the
conjugate complex of φ.

Lemma 3.2 Let A ∈ R
m×m be a positive definite matrix, B ∈ R

m×n be of full
column rank, and α ≥ 0 and β > 0 be two given constants. If λ is an eigenvalue of
the iteration matrix T (α, β), then λ �= ±1.

Proof Let λ be an eigenvalue of the iteration matrix T (α, β) of the MGSS iteration
method, and (u∗, v∗)∗ ∈ C

m+n be the corresponding eigenvector. Then, it holds that(
αI + A B

−BT βI

) (
u

v

)
= λ

(
αI + 2A 2B
−2BT βI

) (
u

v

)
,

which can be equivalently written as{
(αI + A)u + Bv = λ(αI + 2A)u + 2λBv,

− BT u + βv = −2λBT u + λβv.
(7)

If λ = 1, then from (7), it has Au + Bv = 0 and BT u = 0, which lead to u =
−A−1Bv and BT A−1Bv = 0. Thus, we get Bv = 0 by the positive definiteness
of A−1, and therefore, v = 0 and u = −A−1Bv = 0, which contradicts with the
assumption that (u∗, v∗)∗ is an eigenvector. In addition, if λ = −1, then it follows

from the second equation of (7) that v = 3BT u
2β . Substituting this relation into the first
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equation of (7) gives Āu =
(
2αI + 3A + 9BBT

2β

)
u = 0, then u = 0 is due to the

fact that Ā is nonsingular, which yields that v = 3BT u
2β = 0, a contradiction.

Lemma 3.3 Assume that the conditions in Lemma 3.2 are satisfied. Let λ be an
eigenvalue of the iteration matrix T (α, β) of the MGSS iteration method and u =
(u∗, v∗)∗ ∈ C

m+n, with u ∈ C
m and v ∈ C

n, be the corresponding eigenvector. Then
u �= 0. Moreover, if v = 0, then |λ| < 1.

Proof If u = 0, then from the second equation of (7), we have (λ − 1)βv = 0.
Inasmuch as λ �= 1 and β > 0, we derive v = 0. This contradicts to the assumption
that u = (u∗, v∗)∗ is an eigenvector. Furthermore, if v = 0, then it follows from the
first equation of (7) that

(αI + A)u = λ(αI + 2A)u. (8)

Since u �= 0, the definition u∗
u∗u does make sense. Premultiplying (8) with u∗

u∗u gives

λ = (α + a) + ib

(α + 2a) + 2ib
, (9)

where a + ib = u∗Au
u∗u . Since A is positive definite, a > 0. It follows from (9) that

|λ| =
√

(α + a)2 + b2

(α + 2a)2 + 4b2
< 1.

Thus, the proof of Lemma 3.3 is completed.

Theorem 3.1 Assume that the conditions in Lemma 3.2 are satisfied. Let λ be an
eigenvalue of the iteration matrix T (α, β) of the MGSS iteration method and u =
(u∗, v∗)∗ ∈ C

m+n, with u ∈ C
m and v ∈ C

n, be the corresponding eigenvector.
Then the MGSS iteration method converges to the exact solution of the saddle point
problem (1) for all α ≥ 0 and β > 0.

Proof By making use of Lemma 3.2, we have λ �= 1, then from the second equation
of (7), it has

v = (2λ − 1)BT u

(λ − 1)β
,

substituting it into the first equation of (7) results in

λ2(αβI +2βA+4BBT )u−λ(2αβI +3βA+4BBT )u+ (αβI +βA+BBT )u = 0.
(10)

By making use of Lemma 3.3, it holds that u �= 0. Denote

a + ib = u∗Au

u∗u
, c = u∗BBT u

u∗u
≥ 0.
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By multiplying u∗
u∗u on (10) from the left, we have

λ2(αβ+2βa+4c+2βbi)−λ(2αβ+3βa+4c+3βbi)+(αβ+βa+c+βbi) = 0. (11)

Having in mind that A is positive definite, we get a > 0 and c ≥ 0, which lead to
αβ + 2βa + 4c + 2βbi �= 0 by α ≥ 0 and β > 0. Hence, (11) can be rewritten as
λ2 − φλ + ψ = 0, where

φ = 2αβ + 3βa + 4c + 3βbi

αβ + 2βa + 4c + 2βbi
, ψ = αβ + βa + c + βbi

αβ + 2βa + 4c + 2βbi
.

If c = 0, then (11) can be expressed as

λ2 − λ
2α + 3a + 3bi

α + 2a + 2bi
+ α + a + bi

α + 2a + 2bi
= 0. (12)

Solving the two roots of (12), we obtain

λ = 1 or λ = α + a + bi

α + 2a + 2bi
.

Lemma 3.2 implies that λ �= 1, then

|λ| =
∣∣∣∣ α + a + bi

α + 2a + 2bi

∣∣∣∣ =
√

(α + a)2 + b2

(α + 2a)2 + 4b2
< 1.

Now, we turn to prove |λ| < 1 under the condition c > 0. According to Lemma 3.1,
we know that |λ| < 1 if and only if |φ − φ̄ψ | + |ψ |2 < 1. After some manipulations,
we derive

φ − φ̄ψ = 2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2 + 3βbci

(αβ + 2βa + 4c)2 + 4β2b2

and

1 − |ψ |2 = 2αβ2a + 6αβc + 3β2a2 + 14βac + 15c2 + 3β2b2

(αβ + 2βa + 4c)2 + 4β2b2
.

Hence, |φ − φ̄ψ | + |ψ |2 < 1 is valid if and only if

|2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2 + 3βbci|
=

√
(2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)2 + 9β2b2c2

< 2αβ2a + 6αβc + 3β2a2 + 14βac + 15c2 + 3β2b2,

which is equivalent to

(2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)2 + 9β2b2c2 < (2αβ2a

+ 6αβc + 3β2a2 + 14βac + 15c2 + 3β2b2)2. (13)
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In terms of a > 0, c > 0, b2 ≥ 0, α ≥ 0 and β > 0, it holds that

(2αβ2a + 6αβc + 3β2a2 + 14βac + 15c2 + 3β2b2)2

= [(2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2 + (βac + 3c2)]2
= (2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)2 + (βac + 3c2)2

+2(2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)(βac + 3c2)

> (2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)2

+(2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)(βac + 3c2)

> (2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)2 + 3β2b2(βac + 3c2)

≥ (2αβ2a + 6αβc + 3β2a2 + 13βac + 12c2 + 3β2b2)2 + 9β2b2c2,

which implies that (13) holds true, i.e., |φ − φ̄ψ | + |ψ |2 < 1, and therefore, |λ| < 1.
Hence, the MGSS iteration method is convergent for any α ≥ 0 and β > 0. This
proof is completed.

4 Semi-convergence of the MGSS iteration method for singular saddle
point problems

When the saddle point matrix A is nonsingular, the MGSS iteration scheme (3) con-
verges to the exact solution of (1) for any initial vector if and only if ρ(T (α, β)) < 1,
whereas for the singular matrix A, we have ρ(T (α, β)) ≥ 1. In this section,
we assume that the sub-matrix B in (1) is rank deficient and discuss the semi-
convergence of the MGSS iteration method for solving the singular saddle point
problems.

To analyze the semi-convergent properties of the MGSS iteration method, we first
present the following lemma which describes the semi-convergent property about the
iteration scheme (3) when A is singular.

Lemma 4.1 [14] The iteration scheme (3) is semi-convergent if and only if the fol-
lowing two conditions are satisfied:
(i) index(I − T ) = 1, or equivalently, rank((I − T )2) = rank(I − T ), where
T = I − GM is the iteration matrix;
(ii) the pseudo-spectral radius of T is less than 1, i.e.,

γ (T ) = max{|λ| : λ ∈ σ(T ), λ �= 1} < 1,

where σ(T ) is the spectral set of the matrix T . Here, we denote the null space, the
index and the rank of A by null(A), index(A) and rank(A), respectively.

Lemma 4.1 describes the semi-convergence property about the iteration scheme
(3) whenA is singular. Therefore, to get the semi-convergent properties of the MGSS
iteration method, only the two conditions in Lemma 4.1 need to be verified. We
consider these two conditions in Lemmas 4.2 and 4.3, respectively.



306 Numer Algor (2018) 78:297–331

Lemma 4.2 Let A be nonsymmetric positive definite, B be rank deficient and α ≥
0, β > 0 be given constants. Then, the iteration matrix T (α, β) of the MGSS iteration
method satisfies index(I − T (α, β)) = 1, or equivalently,

rank(I − T (α, β)) = rank((I − T (α, β))2). (14)

Proof Inasmuch as T (α, β) = P−1
MGSSQMGSS = I − P−1

MGSSA, (14) holds if

null
(
P−1

MGSSA
)

= null

((
P−1

MGSSA
)2)

.

It is obvious that null
(
P−1

MGSSA
)

⊆ null

((
P−1

MGSSA
)2)

. Thus, we only need to

prove

null
(
P−1

MGSSA
)

⊇ null

((
P−1

MGSSA
)2)

.

Let x = (x∗
1 , x

∗
2 )

∗ ∈ C
m+n ∈ null

((
P−1

MGSSA
)2)

, then it has
(
P−1

MGSSA
)2

x = 0.

Denote by y = P−1
MGSSAx. Careful calculation gives

y =
(

y1
y2

)
=

(
αI + 2A 2B
−2BT βI

)−1 (
A B

−BT 0

) (
x1
x2

)

=
(

I 0
2
β
BT I

)(
αI + 2A + 4

β
BBT 0

0 βI

)−1 (
I − 2

β
B

0 I

) (
A B

−BT 0

) (
x1
x2

)

=
⎛
⎜⎝

(
αI + 2A + 4

β
BBT

)−1 (
Ax1 + Bx2 + 2

β
BBT x1

)
2
β
BT

(
αI + 2A + 4

β
BBT

)−1 (
Ax1 + Bx2 + 2

β
BBT x1

)
− 1

β
BT x1

⎞
⎟⎠ ,

i.e.,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 =
(

αI + 2A + 4

β
BBT

)−1 (
Ax1 + Bx2 + 2

β
BBT x1

)
,

y2 = 2

β
BT

(
αI + 2A + 4

β
BBT

)−1 (
Ax1 + Bx2 + 2

β
BBT x1

)
− 1

β
BT x1.

(15)

Since P−1
MGSSAy =

(
P−1

MGSSA
)2

x = 0, it holds that Ay = 0, i.e.,

Ay1 + By2 = 0, −BT y1 = 0. (16)

Since A is positive definite, from the first equation of (16) we can easily get
y1 = −A−1By2. Then, substituting y1 into the second equation of (16), we obtain
BT A−1By2 = 0, which leads to By2 = 0. Taking By2 = 0 into y1 = −A−1By2, we
obtain y1 = 0. Hence, the first equation of (15) becomes

y1 =
(

αI + 2A + 4

β
BBT

)−1 (
Ax1 + Bx2 + 2

β
BBT x1

)
= 0.
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Substituting y1 = 0 into y2 yields y2 = − 1
β
BT x1. Since By2 = 0, − 1

β
BBT x1 = 0,

it has x∗
1BBT x1 = 0. This results in BT x1 = 0, then we get y2 = − 1

β
BT x1 = 0.

Hence, we obtain y = 0, which means that

null
(
P−1

MGSSA
)

⊇ null

((
P−1

MGSSA
)2)

. (17)

(17) implies the conclusion in Lemma 4.2.

In the sequel, we show that the iteration scheme (3) satisfies the condition (ii)
in Lemma 4.1. Without loss of generality, we assume that rank(B) = r < n. Let
B = U(Br, 0)V ∗ be the singular decomposition of the matrix B, where

Br =
(


r

0

)
∈ C

m×r , 
r = diag(σ1, σ2, · · · , σr) ∈ C
r×r

with U ∈ C
m×m, V ∈ C

n×n being two unitary matrices and σi (i = 1, 2, · · · , r)

being a singular value of B.
We introduce a block diagonal matrix

P =
(

U 0
0 V

)

which is an (m + n) × (m + n) unitary matrix, and the iteration matrix T (α, β) is
unitarily similar to the matrix T̂ (α, β) = P ∗T (α, β)P . Hence, the matrix T (α, β)

has the same spectrum with the matrix T̂ (α, β). Thus, we only need to analyze the
pseudo-spectral radius of the matrix T̂ (α, β) now.

Denoting Â = U∗AU , then it holds that

T̂ (α, β) = P ∗
(

αI + 2A 2B
−2BT βI

)−1 (
αI + A B

−BT βI

)
P

=
(

αI + 2U∗AU 2U∗BV

−2V ∗BT U βI

)−1 (
αI + U∗AU U∗BV

−V ∗BT U βI

)

=
⎛
⎝ αI + 2Â 2Br 0

−2BT
r βI 0

0 0 βI

⎞
⎠

−1 ⎛
⎝ αI + Â Br 0

−BT
r βI 0

0 0 βI

⎞
⎠

=
⎛
⎝

(
αI + 2Â 2Br

−2BT
r βI

)−1 (
αI + Â Br

−Br βI

)
0

0 In−r

⎞
⎠

=
(
T̃ (α, β) 0

0 In−r

)
. (18)

Then, from (18), γ (T̂ (α, β)) < 1 holds if and only if ρ(T̃ (α, β)) < 1.
Note that T̃ (α, β) can be viewed as the iteration matrix of the MGSS iteration

method applied to the nonsingular saddle point problem(
Â Br

−BT
r 0

) (
x̂

ŷ

)
=

(
f̂

−ĝ

)
,

where Â = U∗AU and ŷ, ĝ ∈ R
r .
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ρ(T̃ (α, β)) < 1 implies γ (T (α, β)) = γ (T̂ (α, β)) < 1. By making use of the
proof of Theorem 3.1, we derive the following result.

Lemma 4.3 Let A be nonsymmetric positive definite, B be rank deficient and α ≥
0, β > 0 be two given constants. Then, the pseudo-spectral radius of the matrix
T (α, β) is less than 1, i.e., γ (T (α, β)) < 1 for all α ≥ 0 and β > 0.

It follows from Lemmas 4.2 and 4.3 that two conditions in Lemma 4.1 are satisfied
naturally. Thus, the following theorem readily follows from Lemmas 4.1–4.3.

Theorem 4.1 Let A be nonsymmetric positive definite, B be rank deficient and α ≥
0, β > 0 be two given constants. Then the MGSS iteration method is semi-convergent
for solving the singular saddle point problem (1) for all α ≥ 0 and β > 0.

5 Spectral analysis of the MGSS preconditioned matrix

In this section, we will analyze the spectral properties of the preconditioned matrix
P−1

MGSSA, since the convergence behavior relates closely to the eigenvalue distribu-
tion of the preconditioned matrix. The following theorem is given to describe the
eigenvalue distribution of the preconditioned matrix P−1

MGSSA.

Theorem 5.1 Let the MGSS preconditioner be defined as in (4) and (λ, (u∗, v∗)∗)
be an eigenpair of the preconditioned matrix P−1

MGSSA. Then if B is of full column
rank and BT u = 0, then

λmin(H)(α + 2λmin(H))

(α + 2ρ(H))2 + 4ρ(S)2
≤ Re(λ) ≤ ρ(H)(α + 2ρ(H)) + 2ρ(S)2

(α + 2λmin(H))2
,

|Im(λ)| ≤ αρ(S)

(α + 2λmin(H))2
, (19)

where Re(λ) and Im(λ) denote the real part and the imaginary part of λ, respec-
tively. If B is rank deficient and u = 0, then λ = 0. Besides, if B is rank deficient
and BT u = 0, then λ = 0 or λ satisfies the Inequalities (19). If BT u �= 0, then the
eigenvalues of the preconditioned matrix P−1

MGSSA satisfy

λ+ = 1

2
+ (z1 − αβ − βa1) + i(z2 − βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
, λ−

= 1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
, (20)

where

u∗Au

u∗u
= a1 + ib1,

u∗BBT u

u∗u
= c1 (21)

and z1, z2 are real numbers and z1 + iz2 is one of the square roots of a2 + b2i, with

a2 = β2(a21 − b21) − 4αβc1, b2 = 2β2a1b1
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and

z1 =

√√√√
√[

β2
(
a21 − b21

) − 4αβc1
]2 + 4β4a21b

2
1 + β2

(
a21 − b21

) − 4αβc1

2
,

z2 = sign(b1)

√√√√
√[

β2
(
a21 − b21

) − 4αβc1
]2 + 4β4a21b

2
1 − β2

(
a21 − b21

) + 4αβc1

2
:= sign(b1)z3, (22)

and the second root of a2+b2i is−(z1+iz2). The eigenvalues λ± satisfy the following
inequality:

∣∣∣∣λ± − 1

2

∣∣∣∣
2

≤ (αβ + 2βρ(H))2 + (βρ(S) + √
β2ρ(S)2 + 4αβρ(BBT ))2

4(αβ + 2βλmin(H) + 4λmin(BBT ))2
. (23)

When β → 0+, it holds that⎧⎪⎪⎨
⎪⎪⎩

λ+ = 1

2
+ (z1 − αβ − βa1) + i(z2 − βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
→ 1

2
,

λ− = 1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
→ 1

2
,

i.e., for α > 0, the eigenvalues of the preconditioned matrix P−1
MGSSA tend to cluster

near the point ( 12 , 0) as β → 0+; and when α → 0+, it has

⎧⎪⎪⎨
⎪⎪⎩

λ+ = 1

2
+ (z1 − αβ − βa1) + i(z2 − βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
→ 1

2
+ (z1 − βa1) + i(z2 − βb1)

2(2βa1 + 4c1 + 2iβb1)
= 1

2
,

λ− = 1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
→ 1

2
− (z1 + βa1) + i(z2 + βb1)

2(2βa1 + 4c1 + 2iβb1)
= 1

2
− βa1 + iβb1

2βa1 + 4c1 + 2iβb1
.

That is, for β > 0, the eigenvalues of the preconditioned matrix P−1
MGSSA tend

to cluster near the points
(
1
2 , 0

)
and

(
βa1c1+2c21(

βa21+2c1
)2+β2b21

, − βb1c1(
βa21+2c1

)2+β2b21

)
as

α → 0+. In addition, the eigenvalues of P−1
MGSSA tend to cluster near the points(

α0β
2
0 a1+2β2

0

(
a21+b21

)+12β0a1c1+(α0β0+4c1)(4c1+z1)+2β0(a1z1+|b1z2|)
2
[
(α0β0+2β0a1+4c1)2+4β2

0 b21

] ,
(α0β0+2β0a1+4c1)(z2+β0b1)−2β0b1(β0a1+4c1+z1)

2
[
(α0β0+2β0a1+4c1)2+4β2

0 b21

]
)

and
(

α0β
2
0 a1+2β2

0 (a21+b21 )+12β0a1c1+(α0β0+4c1)(4c1−z1)−2β0(a1z1+|b1z2 |)
2
[
(α0β0+2β0a1+4c1)2+4β2

0 b21

] ,
(α0β0+2β0a1+4c1)(β0b1−z2)−2β0b1(β0a1+4c1−z1)

2
[
(α0β0+2β0a1+4c1)2+4β2

0 b21

]
)

as α → α0 and β → β0 (0 ≤ α0 < +∞, 0 < β0 < +∞).

Proof Let (λ, (u∗, v∗)∗) be an eigenpair of the preconditioned matrix P−1
MGSSA, we

consider the eigenvalue problemP−1
MGSSAη = λη, where η = (u∗, v∗)∗, then it holds

that (
A B

−BT 0

) (
u

v

)
= λ

(
αI + 2A 2B
−2BT βI

)(
u

v

)
,
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which can be equivalently rewritten as{
Au = λ(αI + 2A)u + (2λ − 1)Bv,

(2λ − 1)BT u = λβv.
(24)

If B has full column rank and u = 0, then it follows from the second equation of
(24) that λv = 0 and therefore v = 0, which contradicts with the assumption that
(u∗, v∗)∗ is an eigenvector. Hence, u �= 0. If B is of full column rank and BT u = 0,
then from the second equation of (24), we have v = 0 and

Au = λ(αI + 2A)u. (25)

Owing to u �= 0, it holds that the definition u∗
u∗u does make sense. Premultiplying

(25) with u∗
u∗u and utilizing the symbols defined as in (21) give

λ = a1 + ib1

α + 2a1 + 2ib1
= a1(α + 2a1) + 2b21 + iαb1

(α + 2a1)2 + 4b21
. (26)

It is easy to verify that λ → ( 12 , 0) as α → 0+. Besides, (26) implies that

Re(λ) = a1(α + 2a1) + 2b21
(α + 2a1)2 + 4b21

, Im(λ) = αb1

(α + 2a1)2 + 4b21
.

Since

λmin(H) ≤ a1 = 1

2

(
u∗Au

u∗u
+ u∗AT u

u∗u

)
= u∗Hu

u∗u
≤ ρ(H),

0 ≤ |b1| = 1

2

∣∣∣∣1i
(

u∗Au

u∗u
− u∗AT u

u∗u

)∣∣∣∣ =
∣∣∣∣u

∗iSu

u∗u

∣∣∣∣ ≤ ρ(S),

it is not difficult to derive (19).
If B is rank deficient and u = 0, then from the second equation of (24), we derive

λ = 0. Additionally, if B is rank deficient and BT u = 0, then it holds that λ = 0 or
v = 0, λ �= 0 by virtue of the second equation of (24). Similar to the derivation of
(19), we also deduce (19) as B is rank deficient, v = 0 and λ �= 0.

Subsequently, we assume that BT u �= 0. Then, λ �= 0 and u �= 0. Otherwise, it
follows from the second equation of (24) that BT u = 0, a contradiction. By making

use of the second equation of (24), we have v = (2λ−1)BT u
λβ

. Then, substituting v into
the first equation of (24) gives

λ2(αβI + 2βA + 4BBT )u − λ(4BBT + βA)u + BBT u = 0. (27)

By multiplying u∗
u∗u on (27) from the left and using the symbols defined as in (21), it

follows that

λ2(αβ + 2βa1 + 2iβb1 + 4c1) − λ(4c1 + βa1 + iβb1) + c1 = 0,

which can be equivalently transformed into the following equation

λ2 − λ
4c1 + βa1 + iβb1

αβ + 2βa1 + 2iβb1 + 4c1
+ c1

αβ + 2βa1 + 2iβb1 + 4c1
= 0. (28)
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By solving (28), we obtain its two roots as follows:

λ+ = 1

2
+ (z1 − αβ − βa1) + i(z2 − βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
, λ−

= 1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
, (29)

where z1 and z2 are given by (22). Applying (22) leads to

z1 =

√√√√
√[

β2
(
a21 − b21

) − 4αβc1
]2+4β4a21b

2
1+β2

(
a21 − b21

) − 4αβc1

2

=

√√√√
√

β4
(
a21+b21

)2−8αc1β3
(
a21−b21

)+16α2β2c21+β2
(
a21−b21

)−4αβc1

2

≤

√√√√
√[

β2
(
a21+b21

)+4αβc1
]2+β2

(
a21−b21

)−4αβc1

2
=βa1, (30)

|z2| = z3=

√√√√
√[

β2
(
a21−b21

)−4αβc1
]2+4β4a21b

2
1 − β2

(
a21−b21

)+4αβc1

2

≤

√√√√
√[

β2
(
a21+b21

)+4αβc1
]2−β2

(
a21−b21

)+4αβc1

2
=

√
β2b21+4αβc1,

(31)

which yield that

∣∣∣∣λ± − 1

2

∣∣∣∣
2

= (αβ + βa1 ± z1)
2 + (βb1 ± z2)

2

4[(αβ + 2βa1 + 4c1)2 + 4β2b21]

≤
(αβ + 2βa1)

2+(β|b1| +
√

β2b21+4αβc1)
2

4[(αβ+2βa1 + 4c1)2+4β2b21]
:=f (a1, b1, c1). (32)

It is evident that an upper bound of
∣∣∣λ± − 1

2

∣∣∣2 is f (a1, b1, c1), with a1, b1, c1 being

bounded as follows:

λmin(H)≤a1≤ρ(H), 0≤|b1|≤ρ(S), 0≤b21 ≤ρ(S)2, λmin(BBT )≤c1≤ρ(BBT ),
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from which one may deduce the following result

∣∣∣∣λ±− 1

2

∣∣∣∣
2

≤f (a1, b1, c1)≤ (αβ+2βρ(H))2+(βρ(S)+√
β2ρ(S)2+4αβρ(BBT ))2

4(αβ+2βλmin(H)+4λmin(BBT ))2
.

Furthermore, it is not difficult to verify that z1, z2 → 0 as β → 0+, and therefore
for α > 0, λ+, λ− → ( 12 , 0) as β → 0+. Moreover, if α → 0+, then it follows from
(22) that z1 → βa1 and z2 → βb1, thus

⎧⎪⎪⎨
⎪⎪⎩

λ+ → 1

2
+ (z1 − βa1) + i(z2 − βb1)

2(2βa1 + 4c1 + 2iβb1)
= 1

2
,

λ− → 1

2
− (z1 + βa1) + i(z2 + βb1)

2(2βa1 + 4c1 + 2iβb1)
= 1

2
− βa1 + iβb1

2βa1 + 4c1 + 2iβb1
,

whichmeans that for β >0, the eigenvalues of the preconditionedmatrixP−1
MGSSA tend to

cluster near the points ( 12 , 0) and

(
βa1c1+2c21(

βa21+2c1
)2+β2b21

, − βb1c1(
βa21+2c1

)2+β2b21

)
as α → 0+.

Additionally, it is easily seen that the eigenvalues of P−1
MGSSA tend to cluster near the

points
(

α0β
2
0 a1+2β2

0

(
a21+b21

)+12β0a1c1+(α0β0+4c1)(4c1+z1)+2β0(a1z1+|b1z2 |)
2
[
(α0β0+2β0a1+4c1)2+4β2

0 b21

] ,
(α0β0+2β0a1+4c1)(z2+β0b1)−2β0b1(β0a1+4c1+z1)

2[(α0β0+2β0a1+4c1)2+4β2
0 b21 ]

)

and
(

α0β
2
0 a1+2β2

0 (a21+b21)+12β0a1c1+(α0β0+4c1)(4c1−z1)−2β0(a1z1+|b1z2 |)
2[(α0β0+2β0a1+4c1)2+4β2

0 b21 ]
,

(α0β0+2β0a1+4c1)(β0b1−z2)−2β0b1(β0a1+4c1−z1)

2
[
(α0β0+2β0a1+4c1)2+4β2

0 b21

]
)

as α → α0 and β → β0 (0 ≤ α0 < +∞, 0 < β0 < +∞).

Remark 5.1 It follows from Theorem 5.1 that

Re(λ+) = αβ2a1 + 2β2
(
a21 + b21

)+12βa1c1 + (αβ + 4c1)(4c1 + z1) + 2β(a1z1 + |b1z2|)
2

[
(αβ + 2βa1 + 4c1)2 + 4β2b21

] >0,

Re(λ−) = αβ2a1 + 2β2
(
a21 + b21

) + 12βa1c1 + (αβ + 4c1)(4c1 − z1) − 2β(a1z1 + |b1z2|)
2

[
(αβ + 2βa1 + 4c1)2 + 4β2b21

]

≥ 8c1(βa1 + 2c1)

2
[
(αβ + 2βa1 + 4c1)2 + 4β2b21

] > 0

as α ≥ 0, β > 0 and BT u �= 0, and if B is of full column rank and BT u = 0,
then from (19), we infer that Re(λ) > 0, where (λ, (u∗, v∗)∗) is an eigenpair of the
preconditioned matrixP−1

MGSSA. Thus, all eigenvalues ofP−1
MGSSA have positive real

parts and lie in a positive box as B is of full column rank, which may result in fast
convergence of Krylov subspace acceleration. Besides, from the proof of Theorem

5.1, it can be seen that when BT u = 0 and α → 0+, it holds that λ →
(
1
2 , 0

)
or λ =

0; when BT u �= 0, λ →
(
1
2 , 0

)
as β → 0+ for α ≥ 0. This implies that the MGSS

preconditioned matrix P−1
MGSSA with proper parameters α and β has much denser

spectrum distribution compared with the saddle point matrix A. Consequently, when
the MGSS preconditioner is applied for the GMRES method, the rate of convergence
(semi-convergence) can be improved considerably. This fact is further confirmed by
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the numerical results presented in Tables 2, 3, 7 and 8 of Section 6. What is more, if
BT u �= 0, then c1 > 0 and

(αβ + 2βa1)
2 + (β|b1| +

√
β2b21 + 4αβc1)

2 = (αβ + 2βa1)
2 + 2β2b21 + 4αβc1

+2β|b1|
√

β2b21 + 4αβc1

≤ (αβ + 2βa1)
2 + 2β2b21 + 4αβc1 + 2β|b1|

√
β2|b1|2 + 4αβc1 +

(
2αc1

|b1|
)2

= (αβ + 2βa1)
2 + 4β2b21 + 8αβc1 < (αβ + 2βa1 + 4c1)

2 + 4β2b21,

then it follows from (32) that

∣∣∣∣λ± − 1

2

∣∣∣∣
2

≤
(αβ + 2βa1)

2 + (β|b1| +
√

β2b21 + 4αβc1)
2

4[(αβ + 2βa1 + 4c1)2 + 4β2b21]
<

1

4
,

which implies that
∣∣∣λ± − 1

2

∣∣∣ < 1
2 when BT u �= 0. When BT u = 0, λ = 0 or λ

satisfies (26). From (26), it has
∣∣∣∣λ − 1

2

∣∣∣∣
2

= α2

4[(α + 2a1)2 + 4b21]
<

1

4
.

We summarize the above discussions and obtain that all eigenvalues of P−1
MGSSA are

located in a circle centered at ( 12 , 0) with radius 1
2 .

Owing to the fact that the convergence of Krylov subspace methods is not only
dependent on the eigenvalue distribution of the preconditioned matrix, but also on
the corresponding eigenvectors of the preconditioned matrix [1, 4] except for the
case that the preconditioned matrix is symmetric, we next discuss the eigenvector
distribution of P−1

MGSSA in the following theorem.

Theorem 5.2 Let the MGSS preconditioner PMGSS be defined as in (4). If B is of
full column rank and α = 0, then the preconditioned matrix P−1

MGSSA has m + t

(0 ≤ t ≤ m) linearly independent eigenvectors, and if B is of full column rank
and α > 0, then the preconditioned matrix P−1

MGSSA has t (0 ≤ t ≤ m) linearly
independent eigenvectors. If B is rank deficient and α = 0, then the preconditioned
matrix P−1

MGSSA has m + i + j (0 ≤ i ≤ m, 1 ≤ j ≤ n) linearly independent
eigenvectors, and if B is rank deficient and α > 0, then the preconditioned matrix
P−1

MGSSA has i + j (0 ≤ i ≤ m, 1 ≤ j ≤ n) linearly independent eigenvectors.
There are

1) m eigenvectors of the form

(
ul

0

)
(1 ≤ l ≤ m) that correspond to the eigenvalue

1
2 as α = 0, where ul �= 0 (1 ≤ l ≤ m) are arbitrary linearly independent vectors;

2) If B is of full column rank, t (0 ≤ t ≤ m) eigenvectors of the form

(
u1l

(2λ−1)BT u1l
λβ

)
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(1 ≤ l ≤ t) that correspond to the eigenvalues λ �= 1
2 , where u1l (1 ≤ l ≤ t) satisfy

λβAu1l = βλ2(αI + 2A)u1l + (2λ − 1)2BBT u1l .

3) If B is rank deficient, i (0 ≤ i ≤ m) eigenvectors of the form

(
u1l

(2λ−1)BT u1l
λβ

)

(1 ≤ l ≤ i) that correspond to the eigenvalues λ �= 1
2 , 0, where u1l (1 ≤ l ≤ i) satisfy

λβAu1l = βλ2(αI + 2A)u1l + (2λ − 1)2BBT u1l ; and j (1 ≤ j ≤ n) eigenvectors

of the form

(
0
v2l

)
(1 ≤ l ≤ j) that correspond to the eigenvalue 0, where v2l �= 0

(1 ≤ l ≤ j) satisfy Bv2l = 0.

Proof Let λ be an eigenvalue of the preconditioned matrixP−1
MGSSA and

(
u

v

)
be the

corresponding eigenvector. To investigate the eigenvector distribution of P−1
MGSSA,

we consider (24) as follows:{
Au = λ(αI + 2A)u + (2λ − 1)Bv,

(2λ − 1)BT u = λβv.
(33)

We first consider the case that B has full column rank. If u = 0, then it follows from
the second equation of (33) that λv = 0 and therefore v = 0, which contradicts with
the assumption that (u∗, v∗)∗ is an eigenvector. Hence u �= 0. If λ = 1

2 , then from
(33) we can easily get αu = 0 and v = 0. If α = 0, then (33) satisfies naturally for
the case of λ = 1

2 . Hence, there are m linearly independent eigenvectors of the form(
ul

0

)
(l = 1, 2, · · · , m) that correspond to the eigenvalue 1

2 as α = 0, where ul

(l = 1, 2, · · · , m) are arbitrary linearly independent vectors. If α > 0, then u = 0
and v = 0, a contradiction. If λ �= 1

2 , then it follows from the second equation of (33)

that v = (2λ−1)BT u
λβ

. Substituting v into the first equation of (33) results in

λβAu = βλ2(αI + 2A)u + (2λ − 1)2BBT u. (34)

If there exists u �= 0 which satisfies (34), there will be t (1 ≤ t ≤ m) linearly

independent eigenvectors of the form

(
u1l
v1l

)
(1 ≤ l ≤ t) that correspond to the

eigenvalues λ �= 1
2 . Here, u

1
l �= 0 (1 ≤ l ≤ k) satisfy λβAu1l = βλ2(αI + 2A)u1l +

(2λ − 1)2BBT u1l and the forms of v1l (1 ≤ l ≤ t) are

v1l = (2λ − 1)BT u1l

λβ
.

Next, we consider the case that B is rank deficient. In this case, λ = 0 is an
eigenvalue of P−1

MGSSA. If λ = 0, then from (33), it holds that BT u = 0 and Au =
−Bv, which lead to BT A−1Bv = 0, and therefore Bv = 0 is due to the fact that A−1 is
positive definite, thus u = 0. Recalling that B is rank deficient, then there exists v �=
0 which satisfies Bv = 0, hence there will be j (1 ≤ j ≤ n) linearly independent
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eigenvectors of the form

(
0
v2l

)
(1 ≤ l ≤ j) that correspond to the eigenvalue 0,

where v2l �= 0 (1 ≤ l ≤ j) satisfy Bv2l = 0. With a quite similar strategy utilized in
the case that B has full column rank, we also can obtain the forms of the eigenvectors
that correspond to λ = 1

2 and λ �= 0, 1
2 for the case that B is rank deficient.

Now, we show the linear independence of the m + t eigenvectors when B is
of full column rank and α = 0. Let c(1) = [c(1)

1 , c
(1)
2 , · · · , c

(1)
m ]T and c(2) =

[c(2)
1 , c

(2)
2 , · · · , c

(2)
t ]T be two vectors with 0 ≤ t ≤ m. Then, we need to show that

(
u1 · · · um

0 · · · 0

)⎛
⎜⎝

c
(1)
1
...

c
(1)
m

⎞
⎟⎠ +

(
u11 · · · u1t
v11 · · · v1t

)⎛
⎜⎝

c
(2)
1
...

c
(2)
t

⎞
⎟⎠ =

⎛
⎜⎝
0
...

0

⎞
⎟⎠ (35)

holds if and only if the vectors c(1) and c(2) both are zero vectors. Recalling that the
first matrix in (35) arises from the case λl = 1

2 (l = 1, 2, · · · , m) in 1), and the
second matrix from the case λl �= 1

2 (l = 1, 2, · · · , t) in 2). Multiplying both sides

of (35) from left with 2P−1
MGSSA leads to

(
u1 · · · um

0 · · · 0

) ⎛
⎜⎝

c
(1)
1
...

c
(1)
m

⎞
⎟⎠ +

(
u11 · · · u1t
v11 · · · v1t

)⎛
⎜⎝
2λ1c

(2)
1

...

2λtc
(2)
t

⎞
⎟⎠ =

⎛
⎜⎝
0
...

0

⎞
⎟⎠ . (36)

Then, by subtracting (35) from (36), it holds that

(
u11 · · · u1t
v11 · · · v1t

) ⎛
⎜⎝

(2λ1 − 1)c(2)
1

...

(2λt − 1)c(2)
t

⎞
⎟⎠ =

⎛
⎜⎝
0
...

0

⎞
⎟⎠ .

Since the eigenvalues λl �= 1
2 and

(
u1l
v1l

)
(1 ≤ l ≤ t) are linearly independent,

we infer that c
(2)
l = 0 (l = 1, 2, · · · , t). Because of the linear independence of ul

(l = 1, 2, · · · , m), it follows that c
(1)
l = 0 (l = 1, 2, · · · , m). Therefore, the m + t

eigenvectors are linearly independent.
In the sequel, we verify that the m + i + j eigenvectors are linearly indepen-

dent when B is rank deficient and α = 0. Let c(1) = [c(1)
1 , c

(1)
2 , · · · , c

(1)
m ]T ,

c(2) = [c(2)
1 , c

(2)
2 , · · · , c

(2)
i ]T and c(3) = [c(3)

1 , c
(3)
2 , · · · , c

(3)
j ]T be three vectors with

0 ≤ i ≤ m and 1 ≤ j ≤ n, and

(
u1 · · · um

0 · · · 0

)⎛
⎜⎝

c
(1)
1
...

c
(1)
m

⎞
⎟⎠+

(
u11 · · · u1i
v11 · · · v1i

)⎛
⎜⎝

c
(2)
1
...

c
(2)
i

⎞
⎟⎠+

(
0 · · · 0
v21 · · · v2j

)⎛
⎜⎜⎝

c
(3)
1
...

c
(3)
j

⎞
⎟⎟⎠=

⎛
⎜⎝
0
...

0

⎞
⎟⎠ .

(37)
It is necessary for us to prove that (37) holds if and only if the vectors c(1), c(2)

and c(3) are all zero vectors, where the first matrix consists of the eigenvectors that
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correspond to the eigenvalue 1
2 for the case 1), and the second and the third matri-

ces consist of those for the case 3). Premultiplying (37) with 2P−1
MGSSA and going

through the same algebraic operations as before, we also obtain

(
u11 · · · u1i
v11 · · · v1i

)⎛
⎜⎝

(2λ1 − 1)c(2)
1

...

(2λi − 1)c(2)
i

⎞
⎟⎠ −

(
0 · · · 0
v21 · · · v2j

)
⎛
⎜⎜⎝

c
(3)
1
...

c
(3)
j

⎞
⎟⎟⎠ =

⎛
⎜⎝
0
...

0

⎞
⎟⎠ .

Inasmuch as λl �= 1
2 and u1l (1 ≤ l ≤ i) are linearly independent, it holds that

c
(2)
l = 0 (l = 1, 2, · · · , i). Then, it has

(
0 · · · 0
v21 · · · v2j

)
⎛
⎜⎜⎝

c
(3)
1
...

c
(3)
j

⎞
⎟⎟⎠ =

⎛
⎜⎝
0
...

0

⎞
⎟⎠ .

As the vectors v2l (l = 1, 2, · · · , j) are also linearly independent, we have c
(3)
l = 0

(l = 1, 2, · · · , j). Thus, (37) reduces to

(
u1 · · · um

0 · · · 0

)⎛
⎜⎝

c
(1)
1
...

c
(1)
m

⎞
⎟⎠ =

⎛
⎜⎝
0
...

0

⎞
⎟⎠ .

Since ul (l = 1, 2, · · · , m) are linearly independent, we have c
(1)
l = 0 (l =

1, 2, · · · , m). As a result, it holds that the m + i + j eigenvectors are linearly
independent.

Finally, we prove that the i + j eigenvectors are linearly independent when
B is rank deficient and α > 0. Let c(1) = [c(1)

1 , c
(1)
2 , · · · , c

(1)
i ]T and c(2) =

[c(2)
1 , c

(2)
2 , · · · , c

(2)
j ]T be two vectors with 0 ≤ i ≤ m, 1 ≤ j ≤ n. It is left to show

that

(
u11 · · · u1i
v11 · · · v1i

) ⎛
⎜⎝

c
(1)
1
...

c
(1)
i

⎞
⎟⎠ +

(
0 · · · 0
v21 · · · v2j

)⎛
⎜⎜⎝

c
(2)
1
...

c
(2)
j

⎞
⎟⎟⎠ =

⎛
⎜⎝
0
...

0

⎞
⎟⎠

holds if and only if the vectors c(1) and c(2) both are zero vectors. Since u1l (1 ≤ l ≤ i)

are linearly independent, it follows that c
(1)
l = 0 (l = 1, 2, · · · , i). Because of the

linear independence of v2l (l = 1, 2, · · · , j), it holds that c(2)
l = 0 (l = 1, 2, · · · , j).

Consequently, the above i + j eigenvectors are linearly independent.

6 Numerical experiments

In this section, we carry out two numerical examples to validate the effectiveness of
the MGSS iteration method and the MGSS preconditioned GMRES method. In the
meanwhile, we compare the MGSS iteration method with the GSS and the GMSS
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iteration methods, and also compare the MGSS preconditioner with the SS, GSS,
M-SS, GMSS, and MSS ones for the GMRES method from aspects of the num-
ber of iterations (denoted by “IT”) and the elapsed CPU times (denoted by “CPU”).
All codes are run in MATLAB R2016a and all experiments are performed on an
Intel(R) Pentium(R) CPU G3240T 2.70 GHz, 4.0GB memory and XP operating
system. In our implementations, the linear systems (αI + A + 1

α
BBT )x = b,

(αI + A + 1
β
BBT )x = b and (αI + 2A + 4

β
BBT )x = b involved in the SS, GSS,

and MGSS iterations, respectively, are solved inexactly by the GMRES method. In
addition, the linear systems with the coefficient matrices αI + 2H + 1

α
BBT and

αI + 2H + 1
β
BBT are solved inexactly by the conjugate gradient (CG) method. The

inner GMRES and the inner CG methods are terminated if the current residuals of
the inner iterations satisfy ‖r(k)‖ < 10−7 ×‖r(0)‖, where r(k) denotes the residual of
the kth GMRES iteration or the kth CG iteration.

In all the tests, the initial vector x(0) is set to be a zero vector and the right-hand
side vector b is chosen such that the exact solution of the saddle point problem (1) is
a vector of all ones. The iterations are terminated as soon as the current iterate x(k)

satisfies

RES =
√

‖f − Ax(k) − By(k)‖22 + ‖g − BT x(k)‖22√
‖f ‖22 + ‖g‖22

< 10−6,

and we use “–” to indicate that the corresponding iteration method does not satisfy
the prescribed stopping criterion until 500 iteration steps.

In our numerical experiments, the parameters adopted in the iteration methods
are the experimentally found optimal ones that minimize the total number of iter-
ation steps for those methods. In addition, to implement the tested preconditioners
efficiently and obtain fast convergence rates of the corresponding preconditioned
GMRES methods, the parameters involved in these preconditioners should be cho-
sen appropriately. Here, we adopt two ways to compare the involved preconditioners’
numerical efficiencies. First, by making use of the methods applied in [18], the
parameters chosen for the tested preconditioners in Tables 2, 3, 7 and 8 of our
numerical experiments are as follows:

αSS = ‖B‖22
‖A‖2 ; αGSS = v, βGSS = ‖B‖22

‖A‖2 ; αM−SS = ‖B‖22
2‖H‖2 ;

αGMSS = v, βGMSS = ‖B‖22
2‖H‖2 ; αMSS = 2‖B‖22

‖A‖2 ; αMGSS = v,

βMGSS = 2‖B‖22
‖A‖2 ,

where v and ‖A‖2 denote the viscosity value and the Euclidean norm of the matrix
A, respectively. On the other hand, we list the numerical results of the tested precon-
ditioned GMRES methods for different values of parameters α and β for each value
of v in Tables 4, 5, 9 and 10.
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Table 1 Numerical results for the three iteration methods with v = 0.1

Method p

16 32 64

αexp 20 51 125

βexp 2.7 5 1.5

GSS IT 58 72 102

CPU 0.2428 1.0425 15.3155

RES 8.79e-07 8.68e-07 9.80e-07

αexp 22 36 38

βexp 16 8.3 5.9

GMSS IT 66 73 89

CPU 0.4360 1.2271 16.4183

RES 8.45e-07 9.09e-07 9.50e-07

αexp 0.2 0.5 0.2

βexp 0.1 0.1 0.1

MGSS IT 21 21 21

CPU 0.1438 0.6311 7.0078

RES 9.88e-07 9.85e-07 9.57e-07

Example 6.1 Consider the nonsymmetric nonsingular saddle point problem struc-
tured as (1) with the following coefficient sub-matrices [37]:

A =
(

I ⊗ T + T ⊗ I 0
0 I ⊗ T + T ⊗ I

)
∈ R

2p2×2p2
,

B =
(

I ⊗ F

F ⊗ I

)
∈ R

2p2×p2
,

T = v

h2
· tridiag(−1, 2, −1) + 1

2h
· tridiag(−1, 0, 1) ∈ R

p×p,

F = 1

h
· tridiag(−1, 1, 0) ∈ R

p×p.

The symbol⊗ denotes the Kronecker product and h = 1
p+1 is the discretization mesh

size.

In Table 1, we list the parameters involved in the tested methods which are
chosen to be the experimentally found optimal ones that minimize the total num-
ber of iteration steps for those methods, as well as the numerical results of the
GSS, GMSS, and MGSS iteration methods when v = 0.1 with respect to different
grids 16 × 16, 32 × 32, and 64 × 64. Moreover, numerical results of the GMRES
method and the preconditioned GMRES methods incorporated with the SS, GSS,
M-SS, GMSS, MSS and MGSS preconditioners are listed in Tables 2 and 3 for
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Table 2 Numerical results for the seven preconditioned GMRES methods with v = 1

Preconditioner p

16 32 48 64

I IT 121 264 429 –

CPU 0.1550 3.8574 24.7021 –

RES 7.21e-07 9.74e-07 9.95e-07 –

α 0.9995 0.9999 1.0000 1.0000

PSS IT 10 12 13 14

CPU 0.1130 0.5992 2.1863 9.9617

RES 9.16e-07 7.41e-07 5.21e-07 2.10e-07

α 1 1 1 1

β 0.9995 0.9999 1.0000 1.0000

PGSS IT 10 12 13 14

CPU 0.0515 0.3958 2.2862 10.0452

RES 9.12e-07 7.41e-07 5.21e-07 2.10e-07

α 0.4997 0.5000 0.5000 0.5000

PM−SS IT 15 15 16 16

CPU 0.0803 0.4858 2.6539 10.6907

RES 3.29e-07 7.63e-07 6.33e-07 8.29e-07

α 1 1 1 1

β 0.4997 0.5000 0.5000 0.5000

PGMSS IT 15 15 16 16

CPU 0.0907 0.4491 2.5381 10.8585

RES 3.31e-07 7.80e-07 6.49e-07 8.50e-07

α 1.9989 1.9999 2.0000 2.0000

PMSS IT 10 12 13 14

CPU 0.0848 0.5783 2.2968 10.0103

RES 9.16e-07 7.41e-07 5.21e-07 2.10e-07

α 1 1 1 1

β 1.9989 1.9999 2.0000 2.0000

PMGSS IT 10 11 12 12

CPU 0.0494 0.3832 2.0440 8.8767

RES 3.06e-07 6.16e-07 4.01e-07 3.01e-07

v = 1 and 0.1 on different uniform grids, respectively. To further show the advan-
tages of the MGSS preconditioner over the GSS and the GMSS ones, numerical
results of the GSS, GMSS, and MGSS preconditioned GMRES methods with dif-
ferent values of α and β for v = 1 and v = 0.1 are listed in Tables 4 and 5,
respectively.

From numerical results listed in Tables 1, 2, 3, 4 and 5, we can conclude some
observations as follows.
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Table 3 Numerical results for the seven preconditioned GMRES methods with v = 0.1

Preconditioner p

16 32 48 64

I IT 115 240 367 495

CPU 0.1326 3.4868 20.4798 81.8770

RES 9.50e-07 9.34e-07 9.80e-07 9.73e-07

α 9.9931 9.9992 9.9998 9.9999

PSS IT 24 26 27 28

CPU 0.1283 0.8748 4.6786 18.9283

RES 5.93e-07 4.11e-07 6.79e-07 6.89e-07

α 0.1 0.1 0.1 0.1

β 9.9931 9.9992 9.9998 9.9999

PGSS IT 14 15 15 16

CPU 0.0747 0.4911 2.5376 11.2892

RES 7.09e-07 6.49e-07 9.17e-07 6.30e-07

α 4.9974 4.9996 4.9999 5.0000

PM−SS IT 25 26 27 27

CPU 0.1012 0.7269 4.0839 16.4194

RES 4.91e-07 5.27e-07 4.37e-07 4.46e-07

α 0.1 0.1 0.1 0.1

β 4.9974 4.9996 4.9999 5.0000

PGMSS IT 23 24 25 25

CPU 0.3316 0.7313 3.6292 15.8545

RES 6.78e-07 8.45e-07 5.48e-07 6.72e-07

α 19.9861 19.9983 19.9995 19.9998

PMSS IT 24 26 27 28

CPU 0.2198 0.8668 4.5341 19.8549

RES 5.94e-07 4.11e-07 6.79e-07 6.89e-07

α 0.1 0.1 0.1 0.1

β 19.9861 19.9983 19.9995 19.9998

PMGSS IT 14 15 15 15

CPU 0.0740 0.4912 2.4140 10.5017

RES 4.46e-07 3.12e-07 4.38e-07 5.86e-07

• From Table 1, it can be observed that the IT of the GSS and the GMSS iter-
ation methods increase as the increasing of the problem size, but that of the
MGSS iteration method keeps constant. Among these methods, the MGSS iter-
ation method requires the least IT and CPU times, which implies that the MGSS
iteration method is superior to the other two methods in terms of computing
efficiency.
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Table 4 Numerical results for the three preconditioned GMRES methods with v = 1

p (α, β) PGSS PGMSS PMGSS

IT CPU IT CPU IT CPU

16 (0.6, 0.8) 10 0.0748 15 0.0658 8 0.0472

(0.2, 0.5) 8 0.0407 15 0.0619 7 0.0373

(0.25, 0.15) 6 0.0406 12 0.0535 5 0.0288

(0.05, 0.08) 5 0.0334 11 0.0488 4 0.0323

(1, 0.8) 10 0.0503 15 0.0669 8 0.0436

(1.2, 1.5) 12 0.0616 17 0.0722 10 0.0524

32 (0.6, 0.8) 11 0.3878 17 0.4845 8 0.2902

(0.2, 0.5) 9 0.3235 15 0.4300 7 0.2417

(0.25, 0.15) 7 0.2386 13 0.4227 6 0.2274

(0.05, 0.08) 6 0.2549 11 0.3548 5 0.1962

(1, 0.8) 11 0.4006 17 0.4913 9 0.2952

(1.2, 1.5) 13 0.4570 18 0.5579 11 0.3939

64 (0.6, 0.8) 12 8.5137 18 11.9339 10 7.0529

(0.2, 0.5) 10 7.2786 16 10.7576 8 5.7586

(0.25, 0.15) 8 5.8886 13 8.7388 6 4.5626

(0.05, 0.08) 6 4.6207 12 8.1109 5 3.8777

(1, 0.8) 13 9.2250 18 12.1414 10 7.0628

(1.2, 1.5) 15 10.6303 20 12.4562 12 8.4906

• By comparing the results in Tables 2 and 3, we see that that the GMRES method
with no preconditioner converges very slowly and it is even not convergent within
500 iteration steps when p = 64 and v = 1. All aforementioned preconditioners
can accelerate the convergence rate of the GMRES method, and the MGSS pre-
conditioner is more efficient than other five preconditioners according to IT and
CPU times. When p ≤ 48, the IT of the GSS preconditioned GMRES method is
almost the same as that of the MGSS preconditioned GMRES method. However,
for p = 64, the IT of the MGSS preconditioned GMRES method is less than that
of the GSS preconditioned GMRES method.

• Tables 4 and 5 show that for different parameters, the MGSS preconditioned
GMRES method requires less IT and CPU times than the other two pre-
conditioned GMRES methods, which means that the MGSS preconditioner
outperforms the GSS and the GMSS preconditioners in accelerating the conver-
gence of the GMRES method for solving the saddle point problem in Example
6.1.

To better show the convergence behavior of the tested iteration methods with the
experimentally found optimal parameters in Table 1, we plot the residual curves of the
tested iteration methods in Fig. 1. Figure 1 clearly shows that among these iteration
methods, the MGSS iteration one is the most effective method as its residual reduces
the fastest.
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Table 5 Numerical results for the three preconditioned GMRES methods with v = 0.1

p (α, β) PGSS PGMSS PMGSS

IT CPU IT CPU IT CPU

16 (0.6, 0.8) 7 0.0418 17 0.1916 6 0.0326

(0.2, 0.5) 6 0.0313 16 0.0743 5 0.0313

(0.25, 0.15) 5 0.0350 15 0.0629 4 0.0316

(0.05, 0.08) 4 0.0456 14 0.0687 4 0.0425

(1, 0.8) 8 0.0446 17 0.0774 6 0.0551

(1.2, 1.5) 9 0.0554 18 0.0747 7 0.0408

32 (0.6, 0.8) 8 0.3138 16 0.4968 6 0.2598

(0.2, 0.5) 6 0.2848 16 0.5158 5 0.2113

(0.25, 0.15) 5 0.2108 14 0.4361 5 0.1955

(0.05, 0.08) 4 0.1632 14 0.4282 4 0.1543

(1, 0.8) 8 0.2757 17 0.6801 7 0.2483

(1.2, 1.5) 10 0.3776 19 0.5779 8 0.2670

64 (0.6, 0.8) 8 5.9215 17 10.8365 7 5.1948

(0.2, 0.5) 7 5.2904 16 10.4351 6 4.5064

(0.25, 0.15) 6 4.5613 14 9.2630 5 3.9649

(0.05, 0.08) 5 3.9050 14 9.2313 4 3.2229

(1, 0.8) 9 6.4687 17 11.2160 7 5.1702

(1.2, 1.5) 11 7.7398 19 12.3902 8 5.8822

To further confirm the effectiveness of the MGSS preconditioned GMRESmethod
compared with the GSS and the GMSS ones, we illustrate the changing of their IT
with parameters α = β from 0.1 to 10 with step size 0.1 in Fig. 2. From Fig. 2,
we can observe that the MGSS preconditioned GMRES method needs less IT than
the other two preconditioned GMRES ones with the changing of α. What is more,
the MGSS preconditioner is more insensitive to the parameter α than the other two

Fig. 1 Convergence curves of algorithms with v = 0.1 for p = 16, p = 32, and p = 64, respectively
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Fig. 2 IT of three preconditioned GMRES methods with varying α = β for p = 32

preconditioners. From these two points, our proposed preconditioner is more effec-
tive and practical for solving the nonsymmetric nonsingular saddle point problems,
in comparison with the GSS and the GMSS preconditioners.

Figure 3 demonstrates the eigenvalue distributions of the six preconditioned matri-
ces with experimentally found optimal parameters for v = 1 and p = 32. As seen
from Fig. 3, the eigenvalue distributions of the preconditioned matrix P−1

MGSSA are
clustered more closely than those of the other ones. This further confirms that the
MGSS preconditioner outperforms the other five preconditioners for the GMRES
method.

Example 6.2 Consider the nonsymmetric singular saddle point problem structured as
(1) with the following coefficient sub-matrices [42]:

A=
(

I ⊗ T +T ⊗ I 0
0 I ⊗ T +T ⊗ I

)
∈ R

2p2×2p2
, B =(

B̂ b1 b2
)∈ R

2p2×(p2+2),

where

Fig. 3 The eigenvalue distributions of the six preconditioned matrices for p = 32 and v = 1
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Table 6 Numerical results for the three iteration methods with v = 0.1

Method p

16 32 64

αexp 13 29 66

βexp 39 53 60

GSS IT 85 136 230

CPU 0.2729 1.7084 32.7261

RES 9.48e-07 9.83e-07 9.73e-07

αexp 16 18 24

βexp 75 134.4 240

GMSS IT 143 213 337

CPU 0.6913 3.5548 62.2509

RES 9.86e-07 9.90e-07 9.98e-07

αexp 0.02 0.01 0.05

βexp 0.1 0.05 0.1

MGSS IT 21 21 21

CPU 0.0842 0.5365 7.9819

RES 9.53e-07 9.54e-07 9.54e-07

T = v

h2
· tridiag(−1, 2, −1)+ 1

2h
· tridiag(−1, 0, 1)∈R

p×p, B̂ =
(

I ⊗ F
F ⊗ I

)
∈ R

2p2×p2
,

b1= B̂

(
e
0

)
, b2= B̂

(
0
e

)
, e=(1, 1, · · · , 1) ∈ R

p2/2,

F = 1

h
· tridiag(−1, 1, 0) ∈ R

p×p, h= 1

p+1
.

Here, ⊗ denotes the Kronecker product symbol and h = 1
p+1 is the discretization

meshsize.

Table 6 reports the IT, CPU times and relative residual (RES) of the tested iteration
methods with respect to different values of the problem size p for v = 0.1. We adopt
the parameters of the tested methods to be the experimentally found optimal ones.
From Table 6, we observe that the MGSS iteration method outperforms the GSS and
the GMSS iteration methods in terms of the IT and CPU times, and the advantage of
the MGSS iteration method becomes more pronounced as the system size increases.

With respect to different sizes of the coefficient matrix, we list the numerical
results of the SS, GSS, M-SS, GMSS, MSS, and MGSS preconditioned GMRES
methods with two different values of v (v = 1 and v = 0.1) in Tables 7 and 8,
respectively. From Tables 7 and 8, we can conclude some observations as follows.
Firstly, without preconditioning, the GMRES method converges very slowly. Sec-
ondly, all the discussed preconditioners can improve the convergence behavior of the
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Table 7 Numerical results for the seven preconditioned GMRES methods with v = 1

Preconditioner p

16 32 48 64

I IT 145 278 366 465

CPU 0.2146 4.1297 20.2558 76.1434

RES 7.95e-07 9.79e-07 9.71e-07 9.71e-07

α 6.5105 12.7108 18.9346 25.1644

PSS IT 16 21 24 26

CPU 0.0941 0.6623 3.8408 17.4955

RES 9.05e-07 5.84e-07 8.19e-07 9.49e-07

α 1 1 1 1

β 6.5105 12.7108 18.9346 25.1644

PGSS IT 12 13 13 12

CPU 0.0879 0.4463 2.2246 8.4683

RES 9.71e-07 7.57e-07 5.29e-07 9.66e-07

α 3.2553 6.3554 9.4673 12.5822

PM−SS IT 18 21 23 24

CPU 0.1031 0.5961 3.2619 14.5996

RES 8.29e-07 9.82e-07 7.33e-07 8.64e-07

α 1 1 1 1

β 3.2553 6.3554 9.4673 12.5822

PGMSS IT 18 22 23 23

CPU 0.1018 0.6227 3.2238 14.5045

RES 9.17e-07 3.20e-07 5.93e-07 9.22e-07

α 13.0210 25.4217 37.8619 50.3288

PMSS IT 16 21 24 26

CPU 0.0799 0.7197 3.9288 17.6278

RES 9.06e-07 5.84e-07 8.19e-07 9.49e-07

α 1 1 1 1

β 13.0210 25.4217 37.8619 50.3288

PMGSS IT 12 12 11 11

CPU 0.0801 0.4196 1.9405 7.8001

RES 5.34e-07 4.87e-07 8.65e-07 5.35e-07

GMRES method efficiently, but the MGSS preconditioned GMRES method returns
better numerical results than the other preconditioned GMRES methods in terms
of IT and CPU times. Thirdly, the IT of the GSS and the MGSS preconditioned
GMRES methods are almost constant for v = 1 and even reduce with size grows
for v = 0.1. Lastly, the M-SS and the GMSS preconditioned GMRES methods have
worse convergence behaviors as v becomes small.
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Table 8 Numerical results for the seven preconditioned GMRES methods with v = 0.1

Preconditioner p

16 32 48 64

I IT 122 237 350 461

CPU 0.1422 3.3291 19.3841 76.1620

RES 8.71e-07 9.87e-07 9.99e-07 9.82e-07

α 65.0943 127.1068 189.3452 251.6436

PSS IT 58 87 109 128

CPU 0.4285 2.9045 16.9213 83.8172

RES 9.24e-07 9.20e-07 9.27e-07 9.16e-07

α 0.1 0.1 0.1 0.1

β 65.0943 127.1068 189.3452 251.6436

PGSS IT 17 17 14 13

CPU 0.1532 0.5840 2.4159 9.7652

RES 9.33e-07 4.86e-07 9.50e-07 7.68e-07

α 32.5526 63.5542 94.6729 125.8219

PM−SS IT 44 61 73 83

CPU 0.2846 1.6266 9.9969 51.6923

RES 9.26e-07 8.07e-07 8.43e-07 8.50e-07

α 0.1 0.1 0.1 0.1

β 32.5526 63.5542 94.6729 125.8219

PGMSS IT 38 46 53 56

CPU 0.1518 1.2584 7.3594 33.5253

RES 7.07e-07 9.84e-07 8.04e-07 8.29e-07

α 130.1886 254.2136 378.6905 503.2872

PMSS IT 58 87 109 128

CPU 0.2778 2.8788 17.1494 82.8753

RES 9.24e-07 9.20e-07 9.27e-07 9.16e-07

α 0.1 0.1 0.1 0.1

β 130.1886 254.2136 378.6905 503.2872

PMGSS IT 17 15 14 12

CPU 0.1381 0.5395 2.4073 9.1421

RES 4.65e-07 9.91e-07 7.75e-07 7.05e-07

Furthermore, the performances of the GSS, GMSS, and MGSS preconditioned
GMRES methods for different choices of α and β with v = 1 and v = 0.1 are exhibi-
ted in Tables 9 and 10, respectively. From the numerical results shown in Tables 9
and 10, we see that the MGSS preconditioner is superior to the GSS and the GMSS
preconditioners in terms of the IT and CPU times.

The graphs of RES (log10) against number of iterations of in Table 6 for three
different sizes are displayed in Fig. 4. As observed in Fig. 4, the MGSS iteration
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Table 9 Numerical results for the three preconditioned GMRES methods with v = 1

p (α, β) PGSS PGMSS PMGSS

IT CPU IT CPU IT CPU

16 (0.5, 0.8) 9 0.0484 15 0.0650 7 0.0495
(0.3, 0.6) 8 0.0410 15 0.0707 6 0.0348
(0.45, 0.25) 7 0.0394 13 0.0682 5 0.0291
(0.1, 0.05) 4 0.0243 10 0.0725 4 0.0326
(1.2, 0.8) 9 0.0460 15 0.1082 7 0.0424
(1.8, 1.5) 11 0.0577 16 0.1700 9 0.0464

32 (0.5, 0.8) 9 0.3467 16 0.4792 7 0.2328
(0.3, 0.6) 8 0.2720 15 0.4482 7 0.2773
(0.45, 0.25) 7 0.2625 13 0.3908 6 0.2675
(0.1, 0.05) 5 0.1826 10 0.3738 4 0.1601
(1.2, 0.8) 10 0.3154 16 0.6572 8 0.2900
(1.8, 1.5) 12 0.4139 17 0.6794 9 0.3033

64 (0.5, 0.8) 10 7.1345 17 10.5319 8 5.8608
(0.3, 0.6) 8 5.7044 16 10.5535 7 5.2030
(0.45, 0.25) 7 5.1791 14 9.3277 6 4.5605
(0.1, 0.05) 5 3.9282 10 7.1549 4 3.3178
(1.2, 0.8) 10 7.2011 17 10.6561 8 5.8994
(1.8, 1.5) 12 8.3663 18 11.5827 10 7.2121

Table 10 Numerical results for the three preconditioned GMRES methods with v = 0.1

p (α, β) PGSS PGMSS PMGSS

IT CPU IT CPU IT CPU

16 (0.5, 0.8) 6 0.0345 18 0.0976 5 0.0296

(0.3, 0.6) 6 0.0365 17 0.0717 5 0.0300

(0.45, 0.25) 5 0.0302 17 0.0698 4 0.0277

(0.1, 0.05) 4 0.0256 15 0.0663 3 0.0197

(1.2, 0.8) 7 0.0367 18 0.0780 6 0.0357

(1.8, 1.5) 9 0.0492 19 0.0817 7 0.0404

32 (0.5, 0.8) 7 0.2727 17 0.5033 5 0.1827

(0.3, 0.6) 6 0.2186 17 0.4947 5 0.2233

(0.45, 0.25) 5 0.2199 16 0.4751 4 0.1468

(0.1, 0.05) 4 0.1533 15 0.4473 3 0.1582

(1.2, 0.8) 7 0.2456 18 0.5349 6 0.2173

(1.8, 1.5) 9 0.3269 19 0.6920 7 0.2928

64 (0.5, 0.8) 7 5.3262 17 11.1527 5 4.0357

(0.3, 0.6) 6 4.7161 17 11.0136 5 3.9860

(0.45, 0.25) 5 4.0828 16 10.5630 5 3.9198

(0.1, 0.05) 4 3.3399 15 10.0314 3 2.6391

(1.2, 0.8) 8 6.0988 17 11.2515 6 4.6330

(1.8, 1.5) 9 6.5748 19 11.8322 7 5.3267
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Fig. 4 Convergence curves of algorithms with v = 0.1 for p = 16, p = 32, and p = 64, respectively

method leads to much better performance than the GSS and the GMSS iteration
methods. It is worthy noting that the IT of the GSS and the GMSS iteration meth-
ods increase when p becomes large, but this is not true for the MGSS iteration
method.

In order to compare the effects of the GSS, GMSS, and the MGSS preconditioned
GMRES methods with respect to the parameters α and β, we test these methods with
α = β and plot the IT of the three preconditioned GMRES methods with α from 0.1
to 10 with step size 0.1 in Fig. 5. The conclusions obtained from Fig. 5 are similar to
those of Fig. 2.

In order to better investigate the performances of the tested preconditioned
GMRES methods, Fig. 6 depicts the eigenvalue distributions of the SS, GSS, M-SS,
GMSS, MSS, and MGSS preconditioned matrices with experimentally found opti-
mal parameters for v = 0.1 and p = 32. These subfigures clearly show that the
eigenvalue distribution of the MGSS preconditioned matrix is more clustered com-
pared with those of the other ones. From the view point of clustering properties of
spectrum, the MGSS preconditioner established in this paper is better than the SS,
GSS, M-SS, GMSS, and MSS preconditioners and it can act as an efficient precondi-
tioner for solving the singular saddle point problems by the preconditioned GMRES
method. In the meanwhile, as in accordance with the results of Remark 5.1, we find
that the all eigenvalues of P−1

MGSSA are located in a circle centered at (0.5, 0) with
radius 0.5 in Fig. 6.

Fig. 5 IT of three preconditioned GMRES methods with varying α = β for p = 32
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Fig. 6 The eigenvalue distributions of the six preconditioned matrices for p = 32 and v = 0.1

7 Conclusions

To solve the nonsymmetric saddle point problems, by combining the GSS and MSS
of a matrix, we establish a modified generalized shift-splitting (MGSS) iteration
method and the corresponding preconditioner called the MGSS preconditioner in
this paper. The unconditional convergence and semi-convergence of the MGSS itera-
tion method for solving nonsingular and singular saddle point problems, respectively,
are discussed in detail. Moreover, eigenproperties of the preconditioned matrix are
described. Numerical results given in Section 6 illustrate that the efficiency of the
MGSS iteration method and the MGSS preconditioner for the saddle point problems
with nonsymmetric positive definite (1,1) parts, and confirm that they outperform
some existing ones. We should point out that the MGSS preconditioner may not have
the optimality property, i.e., the iteration counts depend on the parameters α and β

(see Figs. 2 and 5). Besides, admittedly, the choice of the optimal parameters of the
MGSS iteration method and the MGSS preconditioned GMRES method is a chal-
lenging problem that deserves further study. For most iterative methods, this work is
very complicated. Nevertheless, by adopting certain approximation strategies, there
have been practically useful formulas for obtaining nearly optimal iteration parame-
ters; see [22, 32, 39]. To further investigations, we would like to study how to further
improve the MGSS preconditioner and choose the optimal parameters for the MGSS
iteration method.
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