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Abstract We are concerned with the efficient implementation of symplectic implicit
Runge-Kutta (IRK) methods applied to systems of Hamiltonian ordinary differen-
tial equations by means of Newton-like iterations. We pay particular attention to
time-symmetric symplectic IRK schemes (such as collocation methods with Gaus-
sian nodes). For an s-stage IRK scheme used to integrate a d-dimensional system of
ordinary differential equations, the application of simplified versions of Newton iter-
ations requires solving at each step several linear systems (one per iteration) with the
same sd × sd real coefficient matrix. We propose a technique that takes advantage of
the symplecticity of the IRK scheme to reduce the cost of methods based on diago-
nalization of the IRK coefficient matrix. This is achieved by rewriting one step of the
method centered at the midpoint on the integration subinterval and observing that the
resulting coefficient matrix becomes similar to a skew-symmetric matrix. In addition,
we propose a C implementation (based on Newton-like iterations) of Runge-Kutta
collocation methods with Gaussian nodes that make use of such a rewriting of the
linear system and that takes special care in reducing the effect of round-off errors.
We report some numerical experiments that demonstrate the reduced round-off error
propagation of our implementation.
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1 Introduction

The main goal of the present work is the efficient implementation of symplectic
implicit Runge-Kutta schemes for stiff Hamiltonian ordinary differential equation
(ODE) problems. Our primary interest is on geometric numerical integration, which
motivates us to solve the implicit equations determining each step to full machine
precision. The stiff character of the target problems leads us to solving the implicit
equations by some modified version of Newton method. This typically requires
repeatedly solving linear systems of equations with coefficient matrices of the form

(Is ⊗ Id − h A ⊗ J ) ∈ R
sd×sd (1)

where A ∈ R
s×s is the coefficient matrix of the RK scheme and J is some common

approximation of the Jacobian matrices evaluated at the stage values.
A standard approach, independently introduced in [13], [5], and [3], to efficiently

solve such linear systems takes advantage of the special structure of the matrix (1).
More specifically, (1) is similar to a block-diagonal matrix with s blocks of size d×d

of the form Id − h λjJ (j = 1, . . . , s), one per eigenvalue λj of A. Typically, the
coefficient matrix A of standard high-order implicit RK schemes has [s/2] complex
conjugate pairs of eigenvalues (plus a real one for odd s).

The main contribution of the present paper is a technique for transforming
s d-dimensional systems with coefficient matrix (1) into an equivalent (s + 1)d-
dimensional systems that is similar to a matrix with a blockwise sparse structure
that can be favorably exploited. We pay particular attention to implicit Runge-Kutta
schemes that are both time-symmetric and symplectic. (However, our technique is
also applicable for symplectic IRK schemes that are not time-symmetric, and also for
some time-symmetric non-symplectic IRK schemes; see last paragraph in Section 3.3
for more details.)

Compared to the standard approach based on the complex diagonalization of the
RK matrix, our technique allows us completely avoiding complex arithmetic, and
according to our complexity analysis for dense linear algebra (Section 3.6), it requires
fewer arithmetic operations (less than half for Hamiltonian problems). We also show
that our technique has potential advantages when the linear systems are solved by
iterative methods preconditioned by means of incomplete LU factorizations.

A second contribution of the paper is a C code that implements time-symmetric
symplectic IRK schemes (such as RK collocation methods with Gaussian nodes)
based in Newton-like iterations (with the arising linear equations solved with the
proposed new technique) that takes special care of reducing the effect of round-off
errors by adapting some techniques used (for the implementation of symplectic IRK
schemes with fixed-point iterations) in [1].

The plan of the paper is as follows: Section 2 summarizes some standard mate-
rial about implicit Runge-Kutta methods and Newton-like iterations and fixes some
notation. Section 3 presents our new technique to solve the simplified linear system



Numer Algor (2018) 78:63–86 65

of Newton iterations for symplectic IRK schemes. Section 4 is devoted to describing
our implementation of symplectic IRK methods with Newton-like iterations. Some
numerical results are reported in Section 5. A few concluding remarks can be found
in Section 6.

2 Implementation of implicit Runge-Kutta schemes with Newton-like
iterations

2.1 Implicit Runge-Kutta schemes

We consider initial value problems of systems of ODEs of the form

d

dt
y = f (t, y), y(t0) = y0, (2)

where f : Rd+1 → R
d is a sufficiently smooth map and y0 ∈ R

d .
Given a time discretization t0 < t1 < t2 < · · · , the numerical approximations

yn ≈ y(tn), (n = 1, 2, . . .) to the solution y(t) of the initial value problem (2) is
obtained by means of a one-step integrator as

yn+1 = �(yn, tn, tn+1 − tn), n = 0, 1, 2, . . . , (3)

for a map � : Rd+2 → R
d determined in some way from f : Rd+1 → R

d .
In the case of a s-stage implicit Runge-Kutta method, the map � is determined in

terms of the real coefficients aij (1 � i, j � s) and bi , ci (1 � i � s) as

�(y, t, h) := y + h

s∑

i=1

bi f (t + cih, Yi), (4)

where the stage vectors Yi are implicitly defined as functions of (y, t, h) ∈ R
d+2 by

Yi = y + h

s∑

j=1

aij f (t + cjh, Yj ), i = 1, . . . , s. (5)

Typically,

ci =
s∑

j=1

aij , i = 1, . . . , s.

The equations (5) can be solved for the stage vectors Yi by means of some iter-
ative procedure, starting, for instance, from Y

[0]
i = y, i = 1, 2, . . . , s. (In the

non-stiff case, it is usually more efficient initializing the stage vectors with some
other procedure that uses the stage values of the previous steps [6]).

A very simple iterative procedure is fixed-point iteration. For stiff problems, fixed-
point iteration is not appropriate, and Newton iteration may be used to compute
the stage vectors Yi from (5). For non-stiff problems, Newton iteration may still
be an attractive option in some cases, in particular for very-high-precision compu-
tations (for quadruple precision or in arbitrary precision arithmetic calculations) if
implemented with mixed-precision strategies [2] (which reduce the cost of the linear
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algebra and the evaluation of the Jacobians, performed in lower-precision arithmetic
than the evaluations of the right-hand side of the system of ODEs).

In any case, since at each Newton iteration s evaluations of the Jacobian matrix
∂f
∂y

and a LU decomposition of a sd × sd matrix are required, some computationally
cheaper variants are often used instead.

2.2 Newton-like iterations

Recall that a Newton iteration can be used to compute for k = 1, 2, . . . the
approximations Y

[k]
i of Yi (i = 1, . . . , s) in (5) as follows:

(1) r
[k]
i := −Y

[k−1]
i + y + h

s∑

j=1

aij f (t + cjh, Y
[k−1]
j ), i = 1, . . . , s, (6)

(2) Solve �Y
[k]
i from

�Y
[k]
i − h

s∑

j=1

aij J
[k]
j �Y

[k]
j = r

[k]
i i = 1, . . . , s, (7)

where J
[k]
i = ∂f

∂y
(t + cih, Y

[k−1]
i ) for i = 1, . . . , s,

(3) Y
[k]
i := Y

[k−1]
i + �Y

[k]
i , i = 1, . . . , s. (8)

Observe that, s evaluations of the Jacobian matrix ∂f
∂y

and a LU decomposition of
a sd × sd matrix are required (in addition to s evaluations of f ) at each iteration.
This is typically computationally too expensive, and some variants of the full New-
ton algorithm are implemented instead. Among others, the following alternatives are
possible:

– Application of simplified Newton iterations. This consists on replacing the
Jacobian matrices J

[k]
i in (7) by J

[0]
i = ∂f

∂y
(t + cih, Y

[0]
i ). In that case, LU

decomposition is done only once and the linear system

�Y
[k]
i − h

s∑

j=1

aij J
[0]
j �Y

[k]
j = r

[k]
i i = 1, . . . , s, (9)

has to be solved at each of the simplified Newton iterations. If the simple ini-
tialization Y

[0]
i = y (i = 1, . . . , s) is considered (this is typically the case when

solving stiff systems) and f does not depend on t , then J
[0]
i = J := ∂f

∂y
(y) for

each i = 1, . . . , s, and the linear system (9) reduces to

(Is ⊗ Id − h A ⊗ J )�Y [k] = r [k], (10)

where

Y [k] =
⎛

⎜⎝
Y

[k]
1
...

Y
[k]
s

⎞

⎟⎠ ∈ R
sd , r [k] =

⎛

⎜⎝
r
[k]
1
...

r
[k]
s

⎞

⎟⎠ ∈ R
sd .
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Even in the case where some initialization procedure other than Y
[0]
i = y is

used, in practice, the linear system (9) is often replaced by (10), where J is
some common approximation of ∂f

∂y
(t + cih, Y

[0]
i ), i = 1, . . . , s. An appropriate

choice [17] is J := ∂f
∂y

(t + c̄ h, ȳ), where c̄ = 1
s

∑s
i=1 ci (which for methods

that are symmetric in time gives c̄ = 1
2 ) and ȳ = 1

s

∑s
i=1 Y

[0]
i . Often, it will be

sufficient to evaluate instead of ∂f
∂y

a computationally cheaper approximation of
it.

– Applying the original Newton iteration by solving the linear systems (7) with
some iterative method [15] preconditioned by the inverse of the matrix

Is ⊗ Id − h A ⊗ J. (11)

In practice, the linear systems (7) are only approximately solved with the iterative
method. In such case, the resulting scheme is sometimes referred to as inexact
Newton iteration [15]. Further variants of Newton-like iterations will be obtained
if the Jacobian matrices are not updated at each iteration.

In any of the two alternatives above, one needs to repeatedly solve linear systems of
the form

(Is ⊗ Id − h A ⊗ J )�Y = r, (12)

for given r ∈ R
sd . From now on, we will refer to (12) as simplified linear system (of

Newton-like iterations).
Of course, (12) may be solved by previously computing the LU decomposition of

the full sd × sd matrix (11), but this may be done more efficiently.
A standard approach [3, 5, 13] consists on diagonalizing the matrix A as

� = S−1AS = diag(λ1, . . . , λs), (13)

and computing the LU decomposition of the matrix

Is ⊗ Id − h � ⊗ J = (S−1 ⊗ Id) (Is ⊗ Id − h A ⊗ J ) (S ⊗ Id). (14)

In that case, one needs to compute the LU decomposition of a real (resp. complex)
d × d matrix for each distinct real eigenvalue (for each distinct pair of complex
eigenvalues) of A.

Alternatively, some authors [4, 11] propose solving (12) by an iterative procedure
preconditioned by the inverse of

Is ⊗ Id − h Ã ⊗ J, (15)

where Ã ∈ R
s×s is a matrix chosen so that the LU decomposition of (15) can be

more efficiently computed than that of (11).
In next section, we propose a new technique to efficiently solve simplified linear

systems (12) of Newton iterations, provided that the IRK scheme is symplectic.
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3 Efficient solution of simplified linear systems for symplectic IRK
schemes

3.1 Symplectic IRK schemes

In what follows, we consider symplectic IRK schemes, that is [16], IRK schemes
whose coefficients satisfy

biaij + bjaji − bibj = 0, 1 � i, j � s. (16)

Condition (16) guarantees that the discrete flow resulting from the application of
the IRK scheme to an autonomous Hamiltonian system is symplectic, with impor-
tant favorable consequences in the long-term behavior of the numerical solution [6].
Condition (16) also implies that, when applied to an ODE system with a quadratic
invariant, then it is also a conserved quantity for the numerical solution provided by
the IRK scheme.

Nevertheless, our interest in condition (16) is of a completely different nature:
we will see that such a condition allows to solve efficiently linear systems of
the form (12) for a given d × d real matrix J and a given r ∈ R

sd . We will
pay particular attention to symplectic IRK schemes that additionally satisfy (pos-
sibly after some reordering of the stage values Yi) the time-symmetry condition
[6]

bs+1−i = bi, cs+1−i = 1 − ci, 1 � i � s,

bj = as+1−i,s+1−j + ai,j , 1 � i, j � s, (17)

In particular, the IRK schemes of collocation type with Gaussian nodes are both
symplectic and symmetric in time.

3.2 Alternative symplecticity and time-symmetry characterizations

The map � determining the steps (3) of a IRK scheme can be alternatively written as

�(y, t, h) := y + z,

where the stage vectors Yi ∈ R
d and the increment z ∈ R

d are implicitly defined as
functions of (y, t, h) ∈ R

d+2 by

Yi = y + z

2
+ h

s∑

j=1

āij f (t + cjh, Yj ), i = 1, . . . , s, (18)

z = h

s∑

i=1

bi f (t + cih, Yi), (19)

where

āij = aij − bj

2
, 1 � i, j � s. (20)
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Condition (16) may be equivalently characterized in terms of the matrix
Ā = (āij )

s
i,j=1 and the diagonal matrix B with diagonal entries b1, . . . , bs .

Indeed, (16) is equivalent to the requirement that the real s × s matrix (BĀ) be
skew-symmetric.

As for the time-symmetry condition (17), it reads

bs+1−i = bi, c̄s+1−i = −c̄i , 1 � i � s,

ās+1−i,s+1−j = −āi,j , 1 � i, j � s, (21)

where c̄i = ci − 1
2 for i = 1, . . . , s.

3.3 Efficient solution of the linear systems of the form (12)

From now on, we will only consider, without loss of generality1, symplectic IRK

schemes with invertible B. Since BĀ is skew-symmetric, so is B
1
2 ĀB− 1

2 , which
implies that Ā is diagonalizable with all eigenvalues in the imaginary axis. This is
equivalent to the existence of a s × s invertible matrix Q such that

Q−1ĀQ =
(

0 D

−DT 0

)
(22)

where D is a real diagonal matrix (with non-negative diagonal entries) of size m ×
(s − m), where m = [(s + 1)/2] (and s − m = [s/2]).

We will next show that (22) may be exploited to solve efficiently linear systems of
the form (12). Consider the implicit equations (18)–(19). Application of simplified
Newton iteration to such implicit equations leads to linear systems of the form

(
Is ⊗ Id − h Ā ⊗ J

)
�Y − 1

2 (es ⊗ Id)�z = r,
(
−h eT

s B ⊗ J
)

�Y + �z = 0, (23)

where es = (1, . . . , 1)T ∈ R
s . Clearly, if (�Y, �z) is solution of (23), then �Y is

solution of (12).
By virtue of (22), the linear system (23) is equivalent, with the change of variables

�Y = (Q ⊗ Id)W to
(

Im ⊗ Id −h D ⊗ J

h DT ⊗ J Is−m ⊗ Id

)
W − 1

2 (Q−1es ⊗ Id)�z = (Q−1 ⊗ Id) r,

−h (eT
s BQ ⊗ J )W + �z = 0, (24)

The blockwise sparsity pattern of the system (24) allows obtaining its LU decompo-
sition by computing, in addition to several multiplications of matrices of size d × d,
the LU decompositions of [s/2] + 1 real matrices of size d × d: the matrices

Id + h2σ 2
i J 2, i = 1, . . . , [s/2],

1Any symplectic IRK method with bi = 0 for some i is equivalent to a symplectic IRK scheme with fewer
stages and bi �= 0 for all i [9]
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where σ1, . . . , σ[s/2] � 0 are the diagonal entries in D, and an additional d × d

matrix obtained from the former. We will give more details in Section 3.4 in the case
of time-symmetric symplectic IRK schemes.

It is worth remarking that such a technique for solving linear systems of the form
(12) is not restricted to symplectic IRK schemes. It is enough that the corresponding
matrix Ā be diagonalizable with all its eigenvalues in the imaginary axis. This seems
to be the case of several families of (non-symplectic) time-symmetric IRK methods
of collocation type, in particular, for the nodes of Lobatto quadrature formulas, or if
the nodes are either the zeros or the extrema of Chebyshev polynomials of the first
kind.

3.4 The case of time-symmetric symplectic IRK schemes

In the present section, in addition to the symplecticity conditions, that guarantee that

the matrix B
1
2 ĀB− 1

2 is skew-symmetric, we assume that the symmetry conditions
(21) hold.

Consider the s × s orthogonal matrix P = (P1 P2) such that, for x =
(x1, . . . , xs)

T ∈ R
s , P T

1 x = (y1 · · · ym)T , and P T
2 x = (ym+1, · · · ys)

T , where

yi =
√
2

2
(xs+1−i + xi), for i = 1, . . . , [s/2],

ym = xm, if s is odd,

yi =
√
2

2
(xs+1−i − xi), for i = m + 1, . . . , s,

with m = [(s + 1)/2].
The time-symmetry condition (21) implies that P T

i B
1
2 ĀB− 1

2 Pi = 0 for i = 1, 2,

and since by symplecticity B
1
2 ĀB− 1

2 is a skew-symmetric matrix, we conclude that
the matrix Ā is similar to

P T B
1
2 ĀB− 1

2 P =
(

0 K

−KT 0

)
(25)

where K = P T
1 B

1
2 ĀB− 1

2 P2 (which is a real matrix of size m × (s − m) = [(s +
1)/2] × [s/2]). Let K = UDV T be the singular value decomposition of K , (where
U ∈ R

m×m and V ∈ R
(s−m)×(s−m) are orthonormal matrices, and D ∈ R

m×(s−m)

is a diagonal matrix with the singular values σ1, . . . , σs−m of K as diagonal entries).
We have that (22) holds with

Q = (Q1 Q2) = B−1/2(P1 P2)

(
U 0
0 V

)
= B−1/2 (

P1U P2V
)
,

and Q−1 = QT B. This implies that the linear system (23), with the change of
variables

�Y = (Q ⊗ Id)W = (Q1 ⊗ Id)W ′ + (Q2 ⊗ Id)W ′′ (26)
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is equivalent to (24). Due to the first symmetry conditions in (21), eT
s BP2 = 0, and

hence eT
s BQ2 = eT

s BP2V = 0, so that (24) reads

W ′ − h (D ⊗ J )W ′′ − 1
2 (QT

1 Bes ⊗ Id)�z = (QT
1 B ⊗ Id) r,

h (DT ⊗ J )W ′ + W ′′ = (QT
2 B ⊗ Id) r,

−h (eT
s BQ1 ⊗ J )W ′ + �z = 0.

By solving for W ′′ from the second equation of the linear system above,

W ′′ = −h (DT ⊗ J )W ′ + (QT
2 B ⊗ Id) r. (27)

and substitution in the remaining two equations, one obtains

(Im ⊗ Id + h2 DDT ⊗ J 2)W ′ − 1
2 (QT

1 Bes ⊗ Id)�z = R,

−h (eT
s BQ1 ⊗ J )W ′ + �z = 0.

where R = (QT
1 B ⊗ Id) r + h (DQT

2 B ⊗ J ) r ∈ R
md .

The linear system above can be rewritten in terms of

R =
⎛

⎜⎝
R1
...

Rm

⎞

⎟⎠ , W ′ =
⎛

⎜⎝
W1
...

Wm

⎞

⎟⎠

with Ri, Wi ∈ R
d , i = 1, . . . , m, as follows:

(Id + h2σ 2
i J 2)Wi − αi

2
�z = Ri, i = 1, . . . , m, (28)

−h J

m∑

i=1

αi Wi + �z = 0. (29)

where ⎛

⎜⎝
α1
...

αm

⎞

⎟⎠ = QT
1 Bes,

and σ1 � · · · � σ[s/2] are the singular values of K , and if s is odd (in which case
m = [(s + 1)/2] = [s/2] + 1), then σm = 0.

Thus, the unknown �z ∈ R
d can be obtained by solving the linear system

M �z = h J

m∑

i=1

αi(Id + h2σ 2
i J 2)−1Ri, (30)

where

M = Id + J
h

2

m∑

i=1

α2
i (Id + h2σ 2

i J 2)−1 ∈ R
d×d . (31)

The unknowns in W ′ ∈ R
md are then solved from (28), while W ′′ ∈ R

(s−m)d may
be obtained from (27).

The required solution �Y of the original linear system (12) may finally be
obtained from (26).
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3.5 Alternative reformulation of symplectic IRK schemes

If the coefficients bi, aij determining a symplectic IRK are replaced by floating point
numbers b̃i , ãij that approximate them, then the resulting IRK scheme typically fails
to satisfy the symplecticity conditions (16). This results [8] in a method that exhibits
a linear drift in the value of quadratic invariants of the system and in the Hamiltonian
function when applied to autonomous Hamiltonian systems.

Motivated by that, the map � : Rd+2 → R
d of the one-step integrator (3) corre-

sponding to the IRK scheme, defined by (4)–(5), is rewritten in [1] in the following
equivalent form:

�(y, t, h) := y +
s∑

i=1

Li,

where Li ∈ R
d , i = 1, . . . , s are implicitly defined as functions of (t, y, h) ∈ R

d+2

by

Li = h bi f

⎛

⎝t + cih, y +
s∑

j=1

μij Lj

⎞

⎠ , i = 1, . . . , s, (32)

where

μij = aij /bj , 1 � i, j � s.

The symplecticity condition (16) is equivalent to

μij + μji − 1 = 0, 1 � i, j � s. (33)

The main advantage of the proposed formulation over the standard one is that the
absence of multiplications in the symplecticity condition (33) makes possible to find
machine number approximations μij of aij /bj satisfying exactly the symplecticity
condition (33).

With that alternative formulation, the Newton iteration reads as follows: initialize
L

[0]
i = 0 (i = 1, . . . , s) and compute for k = 1, 2, . . .

(1) Y
[k]
i := y +

s∑

j=1

μij L
[k−1]
j , i = 1, . . . , s.

g
[k]
i := −L

[k−1]
i + h bi f (t + cih, Y

[k]
i ), i = 1, . . . , s,

(2) Solve �L
[k]
i from (34)

�L
[k]
i − hbiJ

[k]
i

s∑

j=1

μij �L
[k]
j = g

[k]
i , i = 1, . . . , s,

where J
[k]
i = ∂f

∂y
(t + cih, Y

[k]
i ) for i = 1, . . . , s,

(3) L[k] := L[k−1] + �L[k].
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In the simplified version of the Newton iteration where the Jacobian matrices J
[k]
i

are replaced by a common approximation J (say, J = ∂f
∂y

(t + h/2, y)), the linear
system in (34) is replaced by

�L[k] =
(
Is ⊗ Id − h BAB−1 ⊗ J

)−1

⎛

⎜⎝
g

[k]
1
...

g
[k]
s

⎞

⎟⎠ , (35)

In that case, we need to repeatedly solve systems of the form
(
Is ⊗ Id − h BAB−1 ⊗ J

)
�L = g, (36)

for prescribed g ∈ R
sd . Repeated solution of linear systems of this form is also

required if the linear system in (34) is iteratively solved as described in Section 4.2
below.

Of course, (36) can be solved by adapting the technique described in Sections 3.3
and 3.4 for the solutions of systems of the form (12). We next describe, for the time-
symmetric case (i.e., when the symmetry condition (17) holds), the corresponding
procedure (with the notation adopted in Section 3.4) to compute the solution �L of
(36).

Proposed algorithm to solve the linear systems of the form (36)

1. Computations only depending on the coefficient matrix of the linear system:

– Compute the inverses of the Rd×d matrices

Id + h2 σ 2
i J 2, i = 1, . . . , [s/2], (37)

– Compute the matrix M ∈ R
d×d given in (31) (recall that σm = 0 when s is

odd), and obtain its LU decomposition.

2. Computations depending on the right-hand side vector g:

– Compute R ∈ R
md from

R = (QT
1 ⊗ Id) g + h (DQT

2 ⊗ J ) g,

– Compute

d = h J

m∑

i=1

αi(Id + h2σ 2
i J 2)−1Ri,

– Compute �z ∈ R
d as the solution of the linear system M �z = d,

– Next, compute W1, . . . , Wm ∈ R
d from

(Id + h2σ 2
i J 2)Wi − αi

2
J �z = Ri, i = 1, . . . , m.

– Follow by computing Wm+1, . . . , Ws ∈ R
d from

⎛

⎜⎝
Wm+1

...

Ws

⎞

⎟⎠ = −
⎛

⎜⎝
h σ1 J W1

...

h σs−m J Ws−m

⎞

⎟⎠ + (QT
2 ⊗ Id) g.
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– And finally, �L ∈ R
sd is obtained from

�L = (BQ ⊗ Id)

⎛

⎜⎝
W1
...

Ws

⎞

⎟⎠ .

3.6 Potential advantages of the new solution technique for simplified linear
systems

We will next compare the standard approach based on the decomposition (14) of the
matrix (Is ⊗ Id − h A ⊗ J ) with the algorithm presented above.

In the standard approach, for even number of stages s = 2m, one has to solve
m linear systems, each of them with a different complex coefficient matrix of size
d × d. For odd number of stages, s = 2m + 1, one has to solve one additional
linear system with a real coefficient matrix of size d × d. The main computational
work is dominated by m complex LU decompositions (resp. m complex and one real
LU decompositions). In our new approach, for s = 2m or s = 2m + 1, the main
computational work is dominated by the computation of m inverses and one LU
decomposition of real matrices of dimension d × d, and two additional real matrix-
matrix multiplications of size d × d required to compute the matrix M in (31).

One obvious advantage of our approach is that complex arithmetic is completely
avoided. For instance, not all linear algebra routines (in particular, sparse direct
solvers) are available for complex arithmetic. Of course, the real block-diagonal
equivalent of (14) could be used in the standard approach but it is at the cost of not
exploiting the special structure of the 2 × 2 blocks in the diagonal (automatically
exploited in the complex formulation by the definition of the complex arithmetic
operations, see for instance Section 4.8 in [7]), which typically will imply increasing
the computational cost.

Another advantage of our approach is that allows us exploiting the special structure
of the Jacobian matrix of Hamiltonian systems to reduce the computational cost of
the algorithm. Indeed, consider a general Hamiltonian systems of the form

d

dt
y = K ∇H(y),

where K is a constant skew-symmetric matrix of size d × d, so that J = K ∇2H(y),
where ∇2H(y) represents the Hessian matrix of the Hamiltonian function H(y). One
can check that

K−1(Id + h2σ 2
j J 2) = K−1 + h2σ 2

j ∇2H(y)K∇2H(y),

which is a skew-symmetric matrix. Its inverse can be efficiently computed with
approximately half the arithmetic operations needed to invert a general matrix
of the same size, for instance, by applying the block LDLT factorization for
skew-symmetric matrices described in [10].

The inversion of the relevant matrices can be simplified for Hamiltonian sys-
tems with Hamiltonian function of the form H(q, p) = 1/2pT M−1p + U(q),
with q, p ∈ R

d/2 and an invertible (typically diagonal) mass matrix M . In that
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case, the inverses of the matrices Id + h2σ 2
j J 2 (resp. the LU decompositions of

the matrices Id + hγj J ) can be computed by inverting the real symmetric matri-
ces Id/2 +h2σjM

−1/2∇2U(q)M−1/2 (resp. computing the LU decomposition of the
complex non-symmetric matrices Id/2 + h2γ 2

j M−1/2∇2U(q)M−1/2).
We next compare the complexity of the two approaches for dense linear

algebra. It is well known that for relatively large dimension d each real LU
decomposition requires approximately 2d3/3 (real) arithmetic operations, and each
complex LU decomposition approximately needs the equivalent of 8d3/3 real
arithmetic operations. We thus have that for s = 2m (resp. s = 2m + 1),
approximately 8md3/3 (resp. (8m + 2)d3/3) arithmetic operations are performed
for the computations of the LU decompositions required at each integration
step.

The inversion of each real matrix of size d ×d approximately costs 2d3 arithmetic
operations for general matrices. However, we have seen above that the inversion of
skew-symmetric (and in some particular case, symmetric) matrices is required in the
case of Hamiltonian systems. In that case, the number of arithmetic operations of
each matrix inversion is approximately halved. We thus have that, when s = 2m
or s = 2m + 1, the computation of m inverses and one LU decomposition of real
matrices of dimension d × d, and two additional real matrix-matrix multiplications
of size d × d require approximately (m + 2/3 + 4)d3 = (3m + 14)d3/3 arithmetic
operations.

For sparse matrices, similar improvements may be obtained when sparse direct
solvers are used to perform the matrix inversions required in our algorithm. As for the
application of iterative solvers typically applied for systems of very large dimension,
our approach could be particularly exploited for a more efficient preconditioning
based on incomplete LU decompositions. Indeed, the squares σ 2

j of the singular val-
ues σj , j = 1, . . . , m decrease approximately at a geometric rate of 1/10 (unlike
the modulus |γi | of the eigenvalues of the RK matrix A, that are all similar in size).
Motivated by that, it makes sense to apply an iterative solver to the linear system
(28)–(29), preconditioned by the application of an incomplete LU decompositions to
the system resulting from replacing in (28)–(29) most of the σj (the smallest ones)
by zero.

4 Implementation of symplectic IRK schemes with Newton-like
iterations

In this section, we present an algorithm (Algorithm 4 below) that implements sym-
plectic IRK schemes by making use of the techniques in previous section. Special
care is taken to try to reduce the effect of round-off errors by adapting some tech-
niques used in [1] for the implementation of symplectic IRK schemes with fixed
point iterations. Our algorithm is intended to be applied with the 64-bit IEEE
double-precision floating-point arithmetic.

We originally implemented the standard simplified Newton iteration obtained
by replacing the linear system in (34) by (35) (efficiently solved with our new
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algorithm). However, we observed in our numerical experiments with the double pen-
dulum problem that some linear drift of the energy error (due to accumulation of
round-off errors) arises in some cases. We already observed similar linear drift of the
energy error for our fixed-point implementation of symplectic IRK methods in [1],
but expected this phenomenon to disappear in implementations based on Newton iter-
ations. On the other hand, we observed that our simplified Newton implementation
required more iterations per step for increasing values of the stiffness constant. These
observations motivated us to modify the standard simplified Newton iteration to pro-
duce Algorithm 4 below, which requires, at each step, s additional evaluations of the
Jacobian matrix. (It is worth noting that such Jacobian evaluations can be computed
in parallel provided that s processors or cores are available.) We have observed in
our numerical experiments with the stiff pendulum problem, that the additional com-
putational cost of Algorithm 4 does improve efficiency (the number of iterations is
substantially reduced) and robustness (unlike simplified Newton iteration, the num-
ber of iterations of Algorithm 4 does not increase for increasing stiffness constant),
and in addition, the linear drift of the energy error mentioned above completely
disappears.

4.1 Auxiliary techniques

In this subsection, we summarize some techniques associated to the use of finite
precision arithmetic that we applied in the fixed-point iteration implementation of
symplectic IRK schemes proposed in [1], and will be used in the algorithm proposed
in Sections 4.3.

Let F ⊂ R be the set of machine numbers of the 64-bit IEEE double-precision
floating-point arithmetic. We consider the map fl : R −→ F that sends each real
number x to a nearest machine number fl(x) ∈ F .

4.1.1 Kahan’s compensated summation

The application of any one-step integrator of the form (3) requires computing sums
of the form

yn+1 = yn + xn, n = 0, 1, 2, . . . , (38)

For an actual implementation that only uses a floating-point arithmetic with machine
numbers in F, special care must be taken with the additions (38). The naive recur-
sive algorithm ŷn+1 := fl(ŷn + fl(xn)), (n = 0, 1, 2, 3 . . .), typically suffers, for
large n, a significant loss of precision due to round-off errors. It is well known that
such a round-off error accumulation can be greatly reduced with the use of Kahan’s
compensated summation algorithm [12] (see also [10, 14]).

Given y0 ∈ R
d and a sequence {x0, x1, . . . , xn, . . .} ⊂ F

d of machine numbers,
Kahan’s algorithm is aimed to compute the sums yn = y0 + ∑n−1


=0 x
, (n � 1,) using



Numer Algor (2018) 78:63–86 77

a prescribed floating point arithmetic, more precisely than with the naive recursive
algorithm. The actual algorithm reads as follows:

Algorithm 1: Compensated summation algorithm

ỹ0 = fl(y0); e0 = fl(y0 − ỹ0);

for l ← 0 to n do

Xl = fl(xl + el);
ỹl+1 = fl(ỹl + Xl);

X̂l = fl(ỹl+1 − ỹl);

el+1 = fl(Xl − X̂l);

end

The sums ỹl + el ∈ R
d are more precise approximations of the exact sums yl than

ỹl ∈ F. Algorithm 1 can be interpreted as a family of maps parametrized by n and d,

Sn,d : F(n+3)d → F
2d ,

that given the arguments ỹ0, e0, x0, x1, . . . , xn ∈ F
d , returns ỹn+1, en+1 ∈ F

d such
that ỹn+1 + en+1 ≈ (ỹ0 + e0) + x0 + x1 + · · · + xn with some small error.

4.1.2 Stopping criterion for iterative processes

Given a smooth map F : RD → R
D and Z[0] = (Z

[0]
1 , . . . , Z

[0]
D ) ∈ R

D assume that
the iteration

Z[k] = F(Z[k−1]), for k = 1, 2, . . . (39)

produces a sequence {Z[0], Z[1], Z[2], . . .} ⊂ R
D that converges to a fixed pointZ[∞]

of F .
Assume now that instead of the original map F , we have a computational

substitute

F̃ : FD → F
D. (40)

Ideally, for each Z ∈ F
D , F̃ (Z) := fl(F (Z)). In practice, the intermediate

computations to evaluate F̃ are typically made using the floating-point arithmetic cor-
responding to F, which will result in some additional error caused by the accumulated
effect of several round-off errors.

The resulting sequence Z̃[k] = F̃ (Z̃[k−1]), k = 1, 2, . . . (started with Z̃[0] =
fl(Z[0])) will either converge to a fixed point of F̃ in a finite number K of iterations
or will fail to converge. In the former case, the fixed point Z̃[K] ∈ F

D of F̃ may be
expected to be a good approximation of the fixed point Z[∞] ∈ R

D of F . In the later
case, one would expect that there exists an index K such that the approximations
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Z̃[k] ≈ Z[∞] improves for increasing k up to k = K , but the quality of the approxi-
mations Z̃[k] does not improve for k > K . It then make sense to apply an algorithm
of the form
Algorithm 2: Stopping criterion

k = 0;
Z̃[0] = fl(Z[0]);

while ( ContFcn(Z̃[0], · · · , Z̃[k]) ) do

k = k + 1;
Z̃[k] = F̃ (Z̃[k−1]);

end

where ContFcn(Z̃[0], · · · , Z̃[k]) gives either true if it is judged appropriate to con-
tinue iterating, and false otherwise. In [1], we propose defining this function so that
ContFcn(Z̃[0], · · · , Z̃[k]) returns,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

false → if (Z̃[k] = Z̃[k−1]) or
k > 1 and k = K − 1 and k = K and ∀j ∈ {1, . . . , D},
min

(
{|Z̃[1]

j − Z̃
[0]
j |, · · · , |Z̃[k−1]

j − Z̃
[k−2]
j |} /{0}

)
� |Z̃[k]

j − Z̃
[k−1]
j |

true → otherwise.

(41)

The output Z̃[K] of the algorithm will be a fixed point of F̃ when it stops because
Z̃[K] = Z̃[K−1], and in any case, it is not expected that Z̃[k] for k > K be a better
approximation of the fixed point Z[∞] ∈ R

D of F than Z̃[K].

4.2 An inexact Newton iteration

In our implementation of symplectic IRK schemes to be described in Section 4.3, we
consider a modified version of the Newton iteration (34). First of all, we will consider
fixed approximations Ji of the Jacobian matrices ∂f

∂y
(t + ci h, Yi) (i = 1, . . . , s)

for each Newton-like iteration, so that in each iteration, we have to solve the linear
system

�L
[k]
i − hbi Ji

s∑

j=1

μij �L
[k]
j = g

[k]
i , i = 1, . . . , s, (42)

where

g
[k]
i = −L

[k−1]
i + h bi f

⎛

⎝t + cih, y +
s∑

j=1

μij L
[k−1]
j

⎞

⎠ , i = 1, . . . , s, (43)
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and

�L[k] =
⎛

⎜⎝
�L

[k]
1

...

�L
[k]
s

⎞

⎟⎠ ∈ R
sd , g[k] =

⎛

⎜⎝
g

[k]
1
...

g
[k]
s

⎞

⎟⎠ ∈ R
sd ,

In addition, instead of exactly solving for �L
[k]
i (i = 1, . . . , s), we iteratively

compute a sequence �L
[k,0]
i , �L

[k,1]
i , �L

[k,2]
i , . . . of approximation of the solution

�L[k] ∈ R
sd of (42) as shown below (Algorithm 3).

Algorithm 3: Inner iteration

�L[k,0] = (Is ⊗ Id − h BAB−1 ⊗ J )−1 g[k];

while ( ContFcn(fl32(�L[k,0]), · · · , fl32(�L[k,
])) ) do

l = l + 1;

G
[k,
]
i = g

[k]
i − �L

[k,
−1]
i + hbi Ji

∑s
j=1 μij �L

[k,
−1]
j , i = 1, . . . , s;

�L[k,l] = �L[k,l−1] + (Is ⊗ Id − h BAB−1 ⊗ J )−1 G[k,l];
end

Here, fl32(x) represents the 32-bit IEEE single-precision machine number that is
closest to x ∈ R, and we let fl32 act componentwise on vectors.

In the algorithm we propose in Section 4.3, the Jacobian matrices Ji (i = 1, . . . , s)
in (42) will be evaluated (only once at each step) in approximations of the stage
values Yi that are not very accurate. This implies that it does not make sense to apply
the iteration (Algorithm 3) until an accurate double-precision approximation �L[k,
]
of the solution �L[k] of (42) is obtained. Motivated by that, we will stop the iteration
when ContFcn(fl32(�L[k,0]), · · · , fl32(�L[k,
])) returns false (i.e., typically, when
fl32(�L[k,
]) = fl32(�L[k,
−1]).

4.3 Algorithm for one step of the IRK scheme

In our implementation, the numerical solution yn ≈ y(tn) ∈ R
d , n = 1, 2, . . ., is

obtained as the sum ỹn + en of two vectors in Fd . In particular, the initial value y0 ∈
R

d is (approximately) represented as ỹ0+e0, where ỹ0 = fl(y0) and e0 = fl(yn−ỹn).
Instead of (3), we actually have

(ỹn+1, en+1) = �̃(ỹn, en, tn, tn+1 − tn),

where �̃ : F2d+2 → F
2d .

Our proposed implementation of one step

(ỹ∗, e∗) = �̃(ỹ, e, t, h)

of the IRK scheme is performed in five substeps:

1. Starting from L[0] = 0 ∈ R
sd , we apply several simplified Newton iterations
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(i.e., the simplified version of Newton iterations (34) where the linear system is
replaced by (35)) to compute

L[1] = L[0] + �L[1], L[2] = L[1] + �L[2], . . .

until fl32(L[k]) = fl32(L[k−1]) (or rather, by using the notation introduced in
paragraph 4.1.2, until ContFcn(fl32(L[0]), · · · , fl32(L[k])) returns false).

2. Use L[k] to compute the Jacobian matrices

Ji = ∂f

∂y

⎛

⎝t + ci h, ỹ +
s∑

j=1

μij L
[k]
j

⎞

⎠ , i = 1, . . . , s,

3. Then consider the increment�L[k] ∈ F
sd obtained in first substep as an approxi-

mation�L[k,0] of the exact solution�L[k] of the linear system in (34), and apply
the inner iterations (Algorithm 3) to obtain as output an approximation �L[k,
]
(accurate at least at single-precision level).

4. Follow by updating L[k] = L[k−1] +�L[k,
], and k = k+1, and applying a final
inexact Newton iteration with the Jacobian matrices Ji computed in the second
substep. More precisely, compute an approximation �L[k,
] (again accurate at
least at single-precision level) of the solution �L[k] of (42)–(43) by applying
Algorithm 3.

5. Finally, the increment �̃(ỹ, e, t, h), defined as the sum (ỹ +e)+∑s
i=1(L

[k−1]
i +

�L
[k,
]
i ) is accurately obtained as the (unevaluated) sum of the double-precision

vectors ỹ∗, e∗ ∈ F
d with the help of Kahan’s compensated summation algo-

rithm (summarized in paragraph 4.1.1) as follows: First, perform the sum
δ := e + ∑s

i=1 �L
[k,
]
i ) of the vectors with relatively smaller size in

the double-precision floating-point arithmetic, and then compute (ỹ∗, e∗) =
Ss,d(ỹ, δ, L

[k−1]
1 , . . . , L

[k−1]
s ).

Some remarks about our actual implementation are in order:

– All the linear system with coefficient matrix (Is ⊗Id −h BAB−1⊗J ) are solved
by means of the algorithm at the end of Section 3.

– The coefficients μij are machine numbers in F (i.e., in the target precision
floating-point system) satisfying exactly the symplecticity condition (33) and the
symmetry conditions μj,i = μs+1−i,s+1−j .

– The remainders (43) (i = 1, . . . , s, k � 1) should in principle be computed with
y ∈ R

d replaced by ỹ + e (ỹ, e ∈ F
d ). However, the effect of ignoring the extra

digits of y that may be contained in e is expected to be so small that it should be
enough to take it into account only in the final inexact Newton iteration (substep
4 above). That is, it should be enough considering (43) with y ∈ R

d replaced by
ỹ ∈ F

d in all the Newton-like iterations with the exception of the final one. And
in the final inexact Newton iteration, rather than computing (43) with y ∈ R

d
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replaced by ỹ+e, we make use of the Jacobian matrices Ji to obtain the following
approximation:

h bi f

⎛

⎝t + cih, ỹ + e +
s∑

j=1

μij L
[k−1]
j

⎞

⎠ − L
[k−1]
i ≈

(
h bi f

[k]
i − L

[k−1]
i

)
+ h bi Ji e,

where f
[k]
i = f

(
t + cih, ỹ + ∑s

j=1 μij L
[k−1]
j

)
.

– If the FMA (fused-multiply-add) instruction is available, it should be used to
compute h bi f

[k]
i − L

[k−1]
i (with precomputed coefficients hbi ∈ F satisfying

the symmetry conditions hbs+1−i = hbi).

Our final implementation is summarized in Algorithm 4.

5 Numerical experiments

We next report some numerical experiments with our implementation of the 6-stage
Gauss collocation method of order 12 based on Newton-like iterations (Algorithm 4)
with 64-bit IEEE double-precision floating-point arithmetic. We are particularly
interested in assessing the quality of our implementation with respect to the propaga-
tion of round-off errors.

5.1 The stiff double pendulum problem

We consider the planar stiff double pendulum problem: a double bob pendulum with
masses m1 and m2 attached by rigid massless rods of lengths l1 and l2 and spring of
elastic constant k between both rods (the rods are aligned at equilibrium). For k = 0,
the problem is non-stiff, and the system’s stiffness arises through increasing the value
of k.

The configuration of the pendulum is described by two angles q = (φ, θ): while
φ is the angle (with respect to the vertical direction) of the first bob, the second
bob’s angle is defined by ψ = φ + θ . We denote the corresponding momenta as
p = (pφ, pθ ).

Its Hamiltonian H(q, p) is

− l1
2 (m1 + m2) pθ

2 + l2
2 m2 (pθ − pφ)2 + 2 l1 l2 m2 pθ (pθ − pφ) cos(θ)

l1
2 l2

2 m2 (−2 m1 − m2 + m2 cos(2θ))

− g cos(φ) (l1 (m1 + m2) + l2 m2 cos(θ)) + g l2 m2 sin(θ) sin(φ) + k

2
θ2. (44)

We consider the following fixed parameter values

g = 9.8
m

s2
, l1 = 1.0 m , l2 = 1.0 m , m1 = 1.0 kg , m2 = 1.0 kg,
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Algorithm 4: Implementation of one step of the IRK scheme

L[0] = 0;
J = ∂f

∂y
(t + h/2, ỹ);

M = Id + J h
2

∑m
i=1 α2

i (Id + h2σ 2
i J 2)−1;

Compute the LU decomposition of M;
/************************** 1st substep **************************/;
k = 0;
while ContFcn(fl32(L[0]), . . . , fl32(L[k])) do

k = k + 1;
Y

[k]
i = ỹ + ∑s

j=1 μij L
[k−1]
j , i = 1, . . . , s;

f
[k]
i = f

(
t + cih, Y

[k]
i

)
, i = 1, . . . , s;

g
[k]
i = h bi f

[k]
i − L

[k−1]
i , i = 1, . . . , s;

�L[k] = (
Is ⊗ Id − h BAB−1 ⊗ J

)−1
g[k];

L[k] = L[k−1] + �L[k];
end
/************************** 2nd substep **************************/;

Ji = ∂f
∂y

(
t + cih, ỹ + ∑s

j=1 μij L
[k]
j

)
, i = 1, . . . , s;

/************************** 3rd substep **************************/;

 = 0;
�L[k,0] = �L[k];
while ContFcn(fl32(�L[k,0]), . . . , fl32(�L[k,
])) do


 = 
 + 1;
G

[k,
]
i = g

[k]
i − �L

[k,
−1]
i + hbiJi

∑s
j=1 μij �L

[k,
−1]
j , i = 1, . . . , s;

�L[k,
] = �L[k,
−1] + (
Is ⊗ Id − h BAB−1 ⊗ J

)−1
G[k,
];

end
L[k] = L[k−1] + �L[k,
];
/************************** 4th substep **************************/;
k = k + 1;
Y

[k]
i = ỹ + ∑s

j=1 μij L
[k−1]
j , i = 1, . . . , s;

f
[k]
i = f

(
t + cih, Y

[k]
i

)
, i = 1, . . . , s;

g
[k]
i =

(
h bi f

[k]
i − L

[k−1]
i

)
+ h bi Ji e, i = 1, . . . , s;


 = 0;
�L[k,0] = (

Is ⊗ Id − h BAB−1 ⊗ J
)−1

g[k];
while ContFcn(fl32(�L[k,0]), . . . , fl32(�L[k,
])) do


 = 
 + 1;
G

[k,
]
i = g

[k]
i − �L

[k,
−1]
i + hbiJi

∑s
j=1 μij �L

[k,
−1]
j , i = 1, . . . , s;

�L[k,
] = �L[k,
−1] + (
Is ⊗ Id − h BAB−1 ⊗ J

)−1
G[k,
];

end

/************************** 5th substep **************************/;
δ = e + ∑s

i=1 �L
[k,
]
i ;

(ỹ∗, e∗) = Ss,d(ỹ, δ, L
[k−1]
1 , . . . , L

[k−1]
s );
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and we choose various values for the elastic constant k to study different levels of
stiffness in the double pendulum. The largest eigenvalues of the Jacobian matrix of
that system are ∼ ±i

√
k. The initial values are chosen as follows: For k = 0, we

choose the initial values considered in [1], which gives rise to a non-chaotic trajec-
tory, q(0) = (1.1, −1.1) and p(0) = (2.7746, 2.7746). The initial values for k �= 0
are chosen as

q(0) =
(
1.1,

−1.1√
1 + 100k

)
, p(0) = (2.7746, 2.7746)

so that the total energy of the system is bounded as k → ∞.
All the integrations are performed with step-size h = 2−7, which is small enough

for round-off errors to dominate over truncation errors in the case k = 0. The trun-
cation errors dominate over the round-off errors for large enough stiffness constant
k > 0, even before than becoming truly stiff. We integrate over Tend = 212 s and
sample the numerical results every m = 210 steps.

5.2 Round-off error propagation

First, we check the performance of round-off error propagation of our new imple-
mentation based on Newton-like iterations. In [1], we proposed an implementation
based on fixed-point iterations for non-stiff problems that takes special care of reduc-
ing the propagation of round-off errors. We will compare the round-off error of both
implementations of the 6-stage Gauss collocation method.

We have studied in detail the errors in energy of the double pendulum problem
for three values of the stiffness constant: k = 0, where the round-off errors dominate
over truncation errors, k = 210, where both kinds of errors are similar in size, and
k = 212, where truncation errors dominate over round-off errors. In order to make
a more robust comparison of the numerical errors due to round-off errors, we adopt
(as in [8]) an statistical approach. We have considered for each of the three initial
value problems, P = 1000 perturbed initial values by randomly perturbing each
component of the initial values with a relative error of size O(10−6).

The numerical tests in Fig. 1 seem to confirm the good performance of round-off
error propagation of our new implementation. On one hand, one can observe that, as
in [1], the fixed-point implementation exhibits a small linear drift of the mean energy
error for k = 0 and k = 210, while in the Newton implementation, this energy drift
does not appear at all. On the other hand, the standard deviation of the energy errors

are of similar size and grow proportionally to t
1
2 in both implementations.

5.3 Fixed-point versus Newton iteration

We summarize in Table 1 the main results of numerical integrations for both imple-
mentations: the fixed-point iteration and Newton-like iteration for four different
values of k.

We have compared their efficiency by sequential execution of each iteration
method and reported the cpu-time of each numerical integration. In addition, we have
reported the number of iterations per step (It. per step) in both implementations and
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Fig. 1 Evolution of mean (left) and standard deviation (right) of relative errors in energy for
fixed-point implementation (blue), and Newton implementation (orange). Increasing values of
stiffness constant: k = 0 in (a, b), k = 210 in (c, d), and k = 212 in (e, f)

the number of linear systems solved in the Newton implementation. To check the
precision of the numerical solution, we have reported the maximum relative energy
error,

max

∣∣∣∣
E(tn) − E(t0)

E(t0)

∣∣∣∣ , tn = t0 + nh, n = 1, 2, . . .

We can see that, as expected, the fixed-point implementation is more efficient
than Newton implementation for low values of k. But as we increase the stiff-
ness of the double pendulum, the number of iteration needed at each step in the
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Table 1 Summary of numerical integrations with fixed-point iteration- and Newton iteration-based
implementation for the following elastic constant values: k = 0, k = 26, k = 212, and k = 216

k 0 26 212 216

E0 −14.39 −5.75 −5.64 −5.64

Fixed-points it.

Cpu-time (s) 10 12 19 51

It. per step 8.58 11.1 22. 64.2

Max energy error 2.96 × 10−15 1.81 × 10−14 2.94 × 10−11 6.33 × 10−5

Newton it.

Cpu-time (s) 18 20 19 18

It. per step 5.09 5.53 5.58 5.01

L. solves per step 11.37 12.92 12.72 11.04

Max energy error 1.6 × 10−15 1.74 × 10−14 2.94 × 10−11 6.33 × 10−5

E0 indicates the initial energy of the system. We show the cpu-time, the number of iteration per step (It.
per step), the number of linear system solving operations (L. solves per step), and maximum energy error
for each numerical computation

fixed-point implementation grows up notably, while in the Newton implementa-
tion, the number of iterations even becomes slightly lower for higher values of k.
Hence, the Newton implementation eventually becomes more efficient as the stiff-
ness increases. For k values higher than k = 218, the fixed-point iteration fails
to converge, while the Newton implementations succeeds while keeping approxi-
mately the same number of iterations per step (cpu-time, 17 s; iterations per step,
4.95; linear solves per step, 10.94). It must be pointed out that the example con-
sidered here is of very low dimension. For systems of higher dimension with dense
Jacobian matrix, the complexity of each Newton-like iteration may be largely dom-
inated by the linear algebra, so the fixed-point implementation may still be more
efficient than the Newton implementation for larger values of k. Of course, eventu-
ally, fixed-point iteration will fail to converge for large enough values of the stiffness
constant k.

6 Conclusions

Our main contribution is a technique to solve efficiently the simplified linear systems
of symplectic IRK schemes. This technique can be adapted for some time-symmetric
non-symplectic schemes as well. Such technique could also be exploited for the
numerical solution of boundary value problems with collocation methods with
Gaussian quadrature nodes.

In addition, an efficient and robust algorithm for implementing symplectic IRK
methods with reduced round-off error propagation is provided. A C code with our
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implementation for s-stage Gauss collocation methods of order 2s in 64-bit IEEE
double-precision floating-point arithmetic can be downloaded from IRK-Newton
Github software repository, whose URL is as follows: https://github.com/mikelehu/
IRK-Newton.
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