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Abstract We consider the wide class of all piecewise Chebyshevian splines with
connection matrices at the knots. We prove that a spline space of this class is “good
for interpolation” if and only if the spline space obtained by integration is “good for
design”. As a consequence, this provides us with a simple practical description of
all such spline spaces which can be used for solving Hermite interpolation problems.
These results strongly rely on the properties of blossoms.
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1 Introduction

We investigate the relations existing between Hermite interpolation and geometric
design in spline spaces. Our general context to define Hermite interpolation problems
will be the class of all piecewiseW-spline spaces, that is, all spaces of splines with pieces
taken from different W-spaces and with connection matrices at the knots. Let us recall
that, on a given non-trivial interval I , a W-space is a space of sufficiently differentiable
functions in which the Wronskian of any basis never vanishes on I , or, equivalently,
a space in which any Taylor interpolation problem in I has a unique solution.
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Grenoble, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0360-7&domain=pdf
mailto:Marie-Laurence.Mazure@univ-grenoble-alpes.fr


1214 Numer Algor (2018) 77:1213–1247

This work is inspired by the non-spline case where we know how Hermite interpo-
lation and geometric design are connected, which can be stated as follows [21, 23].

Theorem 1.1 Given a W-space E on I , let ̂E be the W-space on I composed of the
primitives of all elements in E. The following two properties are then equivalent:

(i) the W-space E is good for interpolation;
(ii) the W-space ̂E is good for design.

Moreover, when (i) is satisfied, the space ̂E is good for interpolation in turn.

Let us comment on the latter result. By “E is good for interpolation”, we mean that
any Hermite interpolation problem has a unique solution in E. In that case, classi-
cally, the space E is said to be an Extended Chebyshev space on I (in short, EC-space
on I ) [12, 39]. As for the W-space ̂E, it clearly contains the constants and it satisfies
dim̂E = dimE + 1. The expression “̂E is good for geometric design” means that ̂E
possesses blossoms. In that case, with any d � 1 and any ̂F ∈ ̂E

d , one can associate a
symmetric function ̂f (the blossom of ̂F ), defined on I dimE in a geometrical way by
means of intersections of osculating flats to a given mother function in ̂E. The prop-
erties of blossoms are strongly involved in the proof of Theorem 1.1. Finally, the last
claim in Theorem 1.1 recalls the well-known fact that the class of all EC-spaces on
a given interval is closed under integration, which readily follows from Rolle’s theorem.

Proving the spline version of Theorem 1.1 is the main purpose of the present work.
As a matter of fact, it can be stated similarly to Theorem 1.1, simply assuming I to
be a closed bounded interval [a, b] and replacing the W-space E by a piecewise W-
spline space (for short, PW-spline space) on ([a, b];T), where T is a finite sequence
of interior knots. This yields:

Theorem 1.2 Let S be a PW-spline space on ([a, b];T), and let ̂S be the PW-
spline space obtained from S by continuous integration on [a, b]. The following two
properties are then equivalent:

(i) the PW-spline space S is good for interpolation;
(ii) the PW-spline spacêS is good for design.

Moreover, when (i) is satisfied, the spacêS is good for interpolation in turn.

This calls for some important preliminary observations. The expression “̂S is good
for design” is now well established: it means that blossoms exist in the PW-spline
spacêS, given that spline blossoms only have to be defined on a symmetric restricted
set of tuples depending on the knot-vector, bymeans of (possibly left/right) osculating
flats. In contrast, we will have to give the precise definition of the expression “S is
good for interpolation”. This definition (Section 4) will take into account some fea-
tures specific to the spline context. Firstly, to be of interest, a property is expected to
be refinable, that is, to be preserved under knot insertion. Secondly, it is well known
and easily seen that, as soon as a spline space possesses a basis of the B-spline type,
for a given Hermite interpolation problem to be unisolvent, it is necessary that the
interpolation sites and the knots satisfy some interlacing property often referred to
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as the Schoenberg-Whitney conditions. To conclude this preliminary presentation,
let us mention that we could as well state Theorem 1.2 within the more restricted
framework of piecewise Chebyshevian splines, that is, splines with pieces taken
from different EC-spaces. Indeed, the property (ii) of Theorem 1.2 implies that each
section-space of S is an EC-space on its own interval (see Theorem 1.1).

Let us now describe the organisation of the article. We present the W-spline con-
text in the next section. It is the largest refinable context to define splines with linear
connections between a number of left/right derivatives at each interior knot. It is also
the largest context in which we can consider the most general spline Hermite interpo-
lation problems. We explore in all details such problems with special attention to the
difficulty inherent in the presence of connection matrices. These preliminary inves-
tigations are intended to facilitate the work in the subsequent sections. Unlike most
papers dealing with spline interpolation, at each interior knot, we allow interpolation
conditions beyond the number of derivatives involved in the corresponding connec-
tion conditions. Although bases of the B-spline type are a priori not expected to exist,
we establish necessary conditions for a given interpolation problem to be unisolvent
(Schoenberg-Whitney conditions [4, 37]), and we show how to possibly split such a
problem into several simpler ones.

Theorem 1.2 is mainly based on many crucial results on blossoms which have
been achieved during the last two decades. These results are succinctly reminded in
Section 3, in particular their fundamental link with B-spline bases, from which we
could eventually derive the description of all piecewise W-spline spaces good for
design. Since blossoms cannot exist in ̂S without the spline space S being a piece-
wise Chebyshevian spline space, in each section-space, we can replace the ordinary
derivatives by generalised derivatives which can alternatively be used to write the
connection conditions. The presence of blossoms in̂S is actually characterised by the
existence of convenient generalised derivatives relative to which the connections are
expressed by identity matrices [27]. This strong result is a key point in the proof of
Theorem 1.2 given in Section 4. Besides, it inherently contains a constructive way to
obtain practical necessary and sufficient conditions for ̂S to be good for design, as
was illustrated in [7, 29], for instance. Once Theorem 1.2 is established, these con-
ditions are necessary and sufficient conditions for S to be good for interpolation as
well. The examples treated in [7, 29] will thus enable us to illustrate unisolvence of
spline interpolation in two different frameworks: firstly, a class of L-splines produc-
ing surprisingly powerful tension effects; secondly, geometrically continuous cubic
splines, with special emphasis on interpolation beyond design. Final remarks are
given in Section 6, including comparison with the note [13] in which a different proof
of Theorem 1.2 had been announced, modelled on [5].

2 Preliminaries

In this section, we introduce the piecewise W-spline (PW-spline) context and we
describe how to state the most general Hermite interpolation problems taking account
of the possible presence of connection matrices. We also analyse such problems with
a view to reduce the difficulties.
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2.1 Piecewise W-splines

From now on, we consider a fixed interval [a, b], a < b, and a sequence T of interior
knots

T := (t1, . . . , tq), with t0 := a < t1 < t2 < · · · < tq < tq+1 := b.

We will a priori not deal with functions on [a, b], but with piecewise functions F on
([a, b];T), in the sense that F is defined separately on each interval [t+k , t−k+1], imply-
ing in particular that, for each k = 1, . . . , q, both F(tk

−) and F(tk
+) are defined,

with possibly F(tk
−) �= F(tk

+). In such a case, unless explicitly mentioned, F is
not a function on [a, b]. We shall deliberately use the somewhat abusive notation
F : ∪q

k=0[t+k , t−k+1] → IR to stress this fact. All properties of piecewise functions on
([a, b];T) will be introduced separately on each [t+k , t−k+1]. For instance, given two
piecewise functions F and G on ([a, b];T), the equality F = G (resp. the positivity
of F on ([a, b];T)) means that F(x) = G(x) (resp. F(x) > 0) for all x ∈ [t+k , t−k+1],
and all k = 0, . . . , q. We denote by PCn([a, b];T) the set of all piecewise functions
on ([a, b];T) which are Cn on each interval [t+k , t−k+1], and by PCn+([a, b];T) the
set of all elements of PCn([a, b];T) which are positive on ([a, b];T).

Throughout the paper, for any x ∈ [a, b] and any non-negative integer μ, the
notation x[μ] stands for x repeated μ times. Along with T, we also consider

– a given sequence m1, . . . , mq of interior multiplicities: for each k, mk is the
multiplicity of the knot tk , with 0 � mk � n + 1; this yields the associated
knot-vector

K := (

t0
[m0], t1[m1], . . . , tq [mq ], tq+1

[mq+1]), where m0 := mq+1 := n + 1;

– a given sequence (R1, . . . , Rq) of connection matrices: for each k = 1, . . . , q,
Rk is a lower triangular matrix of order (n + 1 − mk) with positive diagonal
entries;

– a given sequence (E0,E1, . . . ,Eq) of section-spaces: for each k = 0, . . . , q,
Ek ⊂ Cn([tk, tk+1]) is an (n + 1)-dimensional W-space on [tk, tk+1].

Definition 2.1 Based on the latter data, we define the Piecewise W-spline (for short,
PW-spline) space on ([a, b];T) as the linear space S composed of all piecewise
functions S on ([a, b];T) which satisfy

1) for each k = 0, . . . , q, there exists a function Fk ∈ Ek such that S coincides
with Fk on [t+k , t−k+1];

2) for k = 1, . . . , q, S satisfies the connection conditions

(

S(t+k ), S′(t+k ), . . . , S(n−mk)(t+k )
)T = Rk

(

S(t−k ), S′(t−k ), . . . , S(n−mk)(t−k )
)T

, 1 � k � q.

(1)
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It is well known that

dimS = n + 1 + m, with m :=
q

∑

i=1

mi.

A spline S in the PW-spline space S is a priori not a function on [a, b], but a piece-
wise function on ([a, b];T). At a given interior knot tk , k = 1, . . . , q, the possible
discontinuities have two different origins: either mk = n + 1, and there is no con-
nection condition at tk , or mk � n and S(t+k ) = akS(t−k ), with a positive ak �= 1.
Nevertheless, in the latter case, the structure of the connection matrix guarantees that
a spline S ∈ S vanishes p � n+ 1−mk at t

−
k if and only if it vanishes p times at t+k ,

and that it vanishes exactly p < n + 1− mk at t
−
k if and only if it vanishes exactly p

times at t+k . In the latter case, the positivity of the diagonal entries in Rk ensures sign
consistency from t−k to t+k .

The lower triangular nature of the connection matrices is also essential to permit
refinability, that is, to preserve the structure under knot insertion. A PW-spline space
S

� with (n + 1)-dimensional section-spaces S is said to be obtained from S by knot
insertion if S ⊂ S

�. It is based on a knot-vector

K� := (

t0
[m0], t�1

[m�
1], . . . , t�q�

[m�
q� ]

, tq+1
[mq+1]),

also said to be obtained from K by knot insertion. The inclusion S ⊂ S
� means that

– the new knot-vector K� is a refinement of K in the sense that each knot tk is a
knot t�k� in K

�, with new multiplicity m�
k� � mk; the connection matrix R�

k� at tk
in the new space S

� is the lower triangular matrix obtained by deleting the last
(m�

k� − mk) rows and columns of Rk;
– at each knot t�k inK� with multiplicitym�

k which is not a knot inK, the connection
matrix in the PW-spline space S� is the identity matrix of order (n + 1 − m�

k).

We conclude this presentation recalling that piecewise multiplication by any ω ∈
PCn+([a, b];T) transforms the PW-spline space S into another PW-spline space on
([a, b];T), in which the diagonal of the new (lower triangular) connection matrix at
tk is obtained by multiplying the one of Rk by the positive number ω(t+k )/ω(t−k ).
This will implicitly be involved throughout the article.

2.2 Hermite interpolation in PW-spline spaces

In this difficult and large context, the first delicate task consists in specifying what
exactly is meant by a Hermite interpolation problem in the PW-spline space S. With
this in view, we start with

– interpolation sites x1 < · · · < xr in ∪q

k=0[t+k , t−k+1] (with the convention that
t−k < t+k for k = 1, . . . , q): which we refer to as nodes,

– interpolation multiplicities: positive integers μ1, . . . , μr � n + 1.
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Extending the notation x[μ] for any x ∈ ∪q

k=0[t+k , t−k+1], the associated node-vector
is defined by Y := (x1

[μ1], . . . , xr
[μr ]). We can then consider problems of the form:

find S ∈ S such that S(p)(xi) = ai,p, 0 � p � μi − 1, 1 � i � r, (2)

where ai,j , i = 1, . . . , r , j = 0, . . . , μi − 1, are any real numbers referred to as the
interpolation data. Before saying more on the total number of conditions in (2), we
have to discuss what happens at interior knots. Clearly, for the previous interpolation
problem to have at least one solution, it is necessary that the interpolation data satisfy
the following conditions:

for any integer k ∈ {1, . . . , q} such that xi = t−k and xi+1 = t+k , for some i, 1 � i � r − 1,
(ai+1,0, ai+1,1, . . . , ai+1,ν(k)−1)

T = Rk,ν(k) . (ai,0, ai,1, . . . , ai,ν(k)−1)
T ,
(3)

where

ν(k) := Min(μi, μi+1, n + 1 − mk).

and where Rk,ν(k) denotes the square matrix of order ν(k) obtained by restricting the
connection matrix Rk to the entries in its first ν(k) rows and columns. Then, ν(k)

among the first 2ν(k) interpolation conditions at the two nodes xi and xi+1 being
redundant, we can thus keep only those at one of them. Furthermore, we then do not
change the problem if we assume that

for k = 1, . . . , q : ν(k) < n + 1 − mk ⇒ μi = μi+1. (4)

Taking the latter considerations into account, it is more convenient to present
interpolation problems in the PW-spline space S differently. Each interior knot tk is
allocated three integers ν(k), α−

k , α
+
k , with

0 � ν(k) � n + 1 − mk and 0 � α−
k , α+

k � mk for 1 � k � q, (5)

along with the following consistency conditions

for each k = 1, . . . , q, ν(k) < n − mk + 1 ⇒ α−
k = α+

k = 0. (6)

For 1 � k � q, choose εk ∈ {−, +}. We define the node-vector as a sequence
Y = (y−n, . . . , ym) in ∪q

k=0[t+k , t−k+1], with y−n � y−n+1 � · · · � ym−1 � ym, and
with, up to permutation,

(y−n, . . . , ym) = (

x1
[μ1], . . . , xr

[μr ], tε11
[αε1

1 +ν(1)]
, t

−ε1
1

[α−ε1
1 ]

, . . . , t
εq
q

[αεq
q +ν(q)]

, t
−εq
q

[α−εq
q ])

, (7)

where

x1, . . . , xr ∈ [a, b] \ {t1, . . . , tq}, 0 < μi � n + 1 for 1 � i � r,

r
∑

i=1

μi +
q

∑

k=1

[

α−
k + ν(k) + α+

k

] = n + 1 + m. (8)
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The latter node-vectorY leads to Hermite interpolation problems associated with any
given interpolation data

γi,p, 0 � p � μi − 1, 1 � i � r,

η
εk

k,p, 0 � p � ν(k) + α
εk

k − 1, and η
−εk

k,p , ν(k) � p � ν(k) + α
−εk

k − 1, for 1 � k � q.

In a systematic way, we start by defining all missing η
−εk

k,p , 0 � p � ν(k)− 1, via the
equalities

(η+
k,1, . . . , η

+
k,ν(k)−1) = Rk,ν(k)(η

−
k,1, . . . , η

−
k,ν(k)), 1 � k � q.

This enables us to exchange the rôles of t−k and t+k in the node-vector Y. The asso-
ciated Hermite interpolation problem (H) in the PW-spline space S then consists in
searching for an element S ∈ S which satisfies the total amount of (n + 1 + m)

conditions (9), (10), (11) below

S(p)(xi) = γi,p, 0 � p � μi − 1, 1 � i � r, (9)

and, for k = 1, . . . , q,

S(p)(tεk ) = ηε
k,p, 0 � p � ν(k) − 1 for either ε = −, or ε = +; (10)

S(p)(tεk ) = ηε
k,p, ν(k) � p � ν(k) + αε

k − 1 for both ε = −, and ε = +.(11)

Now that we can exchange the rôles of t−k and t+k , for the sake of symmetry, it is
even preferable not to allocate each integer ν(k), 1 � k � q, to t

εk

k , but directly to tk ,
therefore writing the node-vector Y symmetrically as (up to permutation)

Y = (

x1
[μ1], . . . , xr

[μr ], t−1
[α−

1 ]
, t1

[ν(1)], t+1
[α+

1 ]
, . . . , t−q

[α−
q ]

, tq
[ν(q)], t+q

[α+
q ])

. (12)

Let us select any fixed k0, 1 � k0 � q. The interpolation conditions can then be
separated into three disjoint categories:

– those concerning only ∪k0−1
i=0 [t+i , t−i+1], the total number of which will be denoted

by λ(k0);
– those concerning only ∪q

i=k0
[t+i , t−i+1], the total number of which will be denoted

by 
(k0);
– those concerning both ∪k0−1

i=0 [t+i , t−i+1] and ∪q
i=k0

[t+i , t−i+1], that is, the ν(k0)

conditions

S(p)(tεk0) = ηε
k0,p

, 0 � p � ν(k0) − 1 for either ε = −, or ε = +. (13)

Observe that
λ(k) + ν(k) + 
(k) = n + 1 + m, 1 � k � q.

Let us denote by S−
k0
the restriction of S to ∪k0−1

i=0 [t+i , t−i+1] and by S+
k0
its restriction

to ∪q
i=k0

[t+i , t−i+1]. It is natural to consider the following two problems

– (H−
k0

): find a spline S− in the PW-spline space S−
k0

satisfying the λ(k0) + ν(k0)

interpolation conditions which concern ∪k0−1
i=0 [t+i , t−i+1], among which the ν(k0)

conditions (13) obtained with ε = −;
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– (H+
k0

): find a spline S+ in the PW-spline space S+
k0

satisfying the 
(k0) + ν(k0)

interpolation conditions which concern ∪q
i=k0

[t+i , t−i+1], among which the ν(k0)

conditions (13) obtained with ε = +.

It should be observed that (H−
k0

) cannot be considered a Hermite interpolation prob-

lem in the PW-spline space S−
k0
stricto sensu because, without additional assumptions,

we do not know whether or not the equality

λ(k0) + ν(k0) = dim(S−
k0

) = n + 1 +
k0−1
∑

i=1

mi (14)

is satisfied. Similarly, (H+
k0

)will be a Hermite interpolation problem in the PW-spline

space S−
k0

only if we can make sure that


(k0) + ν(k0) = dim(S+
k0

) = n + 1 +
q

∑

i=k0+1

mi. (15)

Still, whether or not (14) and (15) hold, any solution S ∈ S to the initial problem
(H) yields a solution S− ∈ S

−
k0

to (H−
k0

) and a solution S+ ∈ S
+
k0

to (H+
k0

) by

restriction to∪k0−1
i=0 [t+i , t−i+1] and∪q

i=k0
[t+i , t−i+1], respectively. Conversely, let us start

from a solution S− ∈ S
−
k0

to (H−
k0

) and a solution S+ ∈ S
+
k0

to (H+
k0

). Let S be the
piecewise function on ([a, b];T) built from S− and S+. Though S obviously satisfies
the (n + 1 + m) interpolation conditions required by (H), it is not necessarily a
solution to (H) because it is not necessarily an element of the PW-spline space S.
Note that, for S to belong to S, it is sufficient that

ν(k0) = n + 1 − mk0 . (16)

When condition (16) holds, solving any Hermite interpolation problem (H) associ-
ated with Y is thus equivalent to solving separately the corresponding two problems
(H−

k0
) and (H+

k0
), even though these may still fail to be Hermite interpolation

problems in S−
k0
, S+

k0
.

2.3 Schoenberg-Whitney conditions

After the previous discussion, we can establish necessary conditions for any problem
(H) to have a unique solution in S.

Theorem 2.2 Consider any given Hermite interpolation problem (H) based on the
node-vector Y defined by (12). If (H) possesses a unique solution in S, then the node
vector Y satisfies the following conditions

for each k = 1, . . . , q, λ(k) �
k

∑

i=1

mi and 
(k) �
q

∑

i=k

mi, (17)

which we refer to as the Schoenberg-Whitney conditions (for short, SW-conditions).
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Proof With no loss of generality, we can assume that all interpolation data are 0.
Given an integer k0, 1 � k0 � q, assume that λ(k0) <

∑k0
i=1 mi . We shall then

prove the existence of a non-zero S ∈ S which is a solution to (H). Let us first build
S− the restriction of S to ∪k0−1

k=0 [t+k , t−k+1]. It must satisfy the interpolation conditions
concerned, that is, a total amount of conditions equal λ(k0) + ν(k0). In case ν(k0) <

n + 1 − mk0 , we even add (n + 1 − mk0 − ν(k0)) additional conditions, requiring
S− to have all derivatives up to order (n − mk0) to be zero at t−k0 . This way, the total
amount of interpolation requirements on S− is

λ(k0) + n + 1 − mk0 < n + 1 +
k0

∑

i=1

mi − mk0 = n + 1 +
k0−1
∑

i=1

mi = dimS
−
k0

.

We can thus choose a non-zero S− ∈ S
−
k0

satisfying all previous interpolation con-

ditions. For the restriction S+ of S to ∪q
k=k0

[t+k , t−k+1], we take 0. Since S− vanishes

at least n − mk0 + 1 times at t−k0 , the function S built from S− and S+ is indeed a
non-zero element of S which satisfies the interpolation problem (H).

Similar arguments can be used to prove the right part of (17).

When the node-vector Y satisfies the SW-conditions (17), we will say as well that
any Hermite interpolation problem (H) based on Y satisfies the SW-conditions. We
can now complete the discussion above as follows.

Theorem 2.3 Given a PW-spline space based on the knot-vector K, we assume that
condition (16) holds for some integer k0, 1 � k0 � q. The following properties are
then equivalent

(i) the node-vector Y satisfies the SW-conditions (17);
(ii) for any Hermite interpolation problem (H) in S, based on Y, the two prob-

lems (H−
k0

) and (H+
k0

) presented above are Hermite interpolation problems

in the PW-spline spaces S−
k0
, S+

k0
, respectively, and each of them satisfies the

SW-conditions.

Furthermore, if (i) holds, then, solving (H) is equivalent to solving separately the
(H−

k0
) and (H+

k0
).

Proof First, observe that the last statement results from the discussion above.
•(i) ⇒ (ii): Suppose thatY satisfies (17). Since λ(k0)+ν(k0)+
(k0) = n+1+m,

we first note that (16) holds if and only if

λ(k0) + 
(k0) = m + mk0 =
k0

∑

i=1

mi +
q

∑

i=k0

mi.

Given that λ(k0) �
∑k0

i=1 mi and 
(k0) �
∑q

i=k0
mi , the previous equality implies

λ(k0) =
k0

∑

i=1

mi, 
(k0) =
q

∑

i=k0

mi. (18)
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From (18) and (16), one can easily deduce that both (14) and (15) hold. In other
words, (H−

k0
) and (H+

k0
) are indeed Hermite interpolation problems in the PW-spline

spaces S−
k0
, S+

k0
, respectively.

It remains to check that they both satisfy the SW-conditions (17). With each inte-
rior knot tk , k ∈ {1, . . . , tk0−1} of the PW-spline space S−

k0
, we associate two numbers

λ−(k), 
−(k) defined similarly to λ(k), 
(k) in S. Clearly,

λ−(k) = λ(k), 
−(k) = 
(k) − 
(k0), 1 � k � k0 − 1. (19)

Taking account of (18) and of (H) satisfying (17) this yields

λ−(k) �
k

∑

i=1

mi, 
−(k) �
q

∑

i=k

mi −
q

∑

i=k0

mi =
k0−1
∑

i=k

mi,

which proves that (H−
k0

) satisfies (17). Symmetric arguments can be used for S+
k0
.

•(ii) ⇒ (i) : Suppose that (ii) holds. This means in particular that the two condi-
tions (14) and (15) are fulfilled. Taking account of (16), one can deduce from them
that the two equalites in (18) are satisfied. Using (19), the symmetric equalities for
S

+
k0
, and the fact that both (H−

k0
) and (H+

k0
) satisfy the SW-conditions (17), it is easy

to derive that (H) itself satisfies (17).

Remark 2.4 Let us comment on Theorem 2.3.
1- Iterated application of Theorem 2.3 ensures that solving any given Hermite

interpolation problem satisfying the SW-conditions can be replaced by solving
a number of Hermite interpolation problems (in PW-spline spaces obtained by
restriction of S) which all satisfy the SW-conditions plus the condition

ν(k) < n + 1 − mk at all their interior knots tk. (20)

2- Condition (16) holds in particular whenever the interior knot tk0 has multiplicity
mk0 = n+1, in which case ν(k0) = 0, that is, there is no interpolation condition of the
form (10) at tk0 . Nevertheless, there may be α−

k0
� n+1 interpolation conditions at t−k0

and α+
k0

� n+1 interpolation conditions at t+k0 . Solving a given Hermite interpolation
problem (H) satisfying the SW-conditions (17) in a W-spline space with interior
multiplicities less than or equal to (n+1) can thus equivalently be replaced by solving
a number of Hermite interpolation problems all satisfying (17) in PW-spline spaces
with interior multiplicities less than or equal to n. This important observation will
enable us to assume all interior multiplicities bounded by n if needed.

Suppose there exists k0 ∈ {1, . . . , q} such that at least one of the two integers
α−

k0
, α+

k0
is not zero. Then the consistency condition (6) implies that ν(k0) = n +

1− mk0 , and according to Theorem 2.3, we can split the problem (H). It is therefore
interesting to focus on the situation where

α−
k = α+

k = 0 for k = 1, . . . , q. (21)

Throughout the rest of the article, the knot-vector K will also be denoted as

K = (ξ−n, ξ−n+1, . . . , ξm+n+1), with ξk � ξk+1 for − n � k � m + n. (22)
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This notation will be useful to state the SW-conditions in a more usual way under the
restricted assumption (21). For each integer, k = 0, . . . , q + 1, let jk be the greatest
integer j such that ξj � tk . We thus have

j0 = 0, jk =
k

∑

i=1

mi, 1 � k � q.

Moreover, each knot tk , k = 0, . . . , q + 1, with positive multiplicity satisfies

ξj = tk ⇔ jk − mk + 1 � j � jk. (23)

Theorem 2.5 Consider a node-vector Y for which (21) holds. The following
properties are then equivalent:

1. Y satisfies the SW-conditions (17);
2. the interior knots interlace the nodes as follows:

y�−n−1 < ξ� < y�, 1 � � � m. (24)

3. for all integers 0 � k < k′ � q + 1, such that mk, mk′ > 0, the relative interior

of [tk, tk′ ] (in [a, b]) contains at least
(

−n − 1 + ∑k′
i=k mi

)

nodes (counted with

their multiplicities).

Proof When (21) holds, for each k = 1, . . . , q, t−k , t+k do not appear in the node-
vector Y written as (12) up to permutation. Therefore, the two numbers λ(k) et 
(k)

can be defined as follows:

λ(k) := #{j, −n � j � m | yj < tk}, 
(k) := #{j, −n � j � m | yj > tk}.
•(i) ⇒ (ii): Suppose the existence of some �0, 1 � �0 � m, such that y�0−n−1 �

ξ�0 . Then, ξ�0 = tk0 for some integer k0 ∈ {1, . . . , q}, implying that

mk0 > 0, jk0 − mk0 + 1 � �0 � jk0 .

Then, the indices j for which yj < tk0 all belong to the set {−n, . . . , �0 − n − 2}.
Therefore,

λ(k0) � �0 − 1 � jk0 − 1 < jk0 =
k0

∑

i=1

mi,

which contradicts (17). Similar arguments show that, if there exists an integer �0 ∈
{1, . . . , m} such that y�0 � ξ�0 , the SW-conditions (17) cannot be satisfied either.

•(ii) ⇒ (iii): Let an integer k, 1 � k � q, satisfy mk > 0. Then, combining (24)
and (23) shows that

−n � j � jk − n − 1 ⇒ yj < tk, jk − mk + 1 � j � m ⇒ yj > tk.

It is therefore straightforward to obtain (iii).
•(iii) ⇒ (i): That λ(k) �

∑k
i=1 mi and μ(k) �

∑q
i=k mi for each k = 1, . . . , q

such that mk > 0, is contained in (iii). The case mk = 0 readily follows.
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3 The background

In this section, we briefly review the background necessary for Theorem 1.2. We
will mainly list various ways to characterise the fact that a PW-spline space is
good for design. Beforehand, it is necessary to remind the reader of the construc-
tion of Extended Chebyshev (piecewise) spaces by means of (piecewise) generalised
derivatives.

3.1 PEC-splines and (piecewise) weight functions

Given a non-trivial real interval I , an (n + 1)-dimensional space E ⊂ Cn(I) is an
EC-space on I if and only if any non-zero F ∈ E vanishes at most n times on I ,
counting multiplicities up to (n+1). Let us recall the classical procedure to build EC-
spaces via systems of weight functions on I . A system of weight functions on I is a
sequence (w0, . . . , wn) of functions defined on I , with the requirement that, for i =
0, . . . , n, wi is positive andCn−i on I . Classically, such a system generates associated
generalised derivatives L0, . . . , Ln, recursively defined on Cn(I) as follows:

L0F := F

w0
, LiF := DLi−1F

wi

for 1 � i � n, (25)

where D stands for the ordinary differentiation. As is well known, the set of
all functions F ∈ Cn(I) such that LnF is constant on I is then an (n + 1)-
dimensional EC-space on I . We denote it by EC(w0, . . . , wn). Conversely, in
case the interval I is closed and bounded, any given (n + 1)-dimensional EC-
space E on I is of the form E = EC(w0, . . . , wn). In other words, on the
closed bounded interval I = [a, b], a < b, (i) of Theorem 1.1 is equivalent to
the existence of a system (w0, . . . , wn) of weight functions on I such that E =
EC(w0, . . . , wn), or such that ̂E = EC(1I, w0, . . . , wn). Here, and throughout the
article, we use the notation 1I for the constant 1I(x) = 1 for all x in any given inter-
val. The infinitely many different such systems of weight functions such that E =
EC(w0, . . . , wn) were described in [26].

Let us come back to the piecewise W-spline space S presented in Definition 2.1.
We now assume that it is a PEC-spline space, i.e., the section-spaces are EC-spaces
on their intervals. For each k = 0, . . . , q, select any system (wk

0, . . . , w
k
n) of weight

functions on [tk, tk+1] such that
Ek = EC(wk

0, . . . , w
k
n), k = 0, . . . , q,

For each k = 0, . . . , q, denote by Lk
0, . . . , L

k
n the associated generalised derivatives

on Cn([tk, tk+1]). Then, instead of (1), we can alternatively express the connection
conditions at the interior knot tk , k = 1, . . . , q, as follows:

(

Lk
0(t

+
k ), Lk

1(t
+
k ), . . . , Lk

n−mk
(t+k )

)T = Rk

(

Lk−1
0 (t−k ), Lk−1

1 (t−k ), . . . , Lk−1
n−mk

(t−k )
)T

, (26)



Numer Algor (2018) 77:1213–1247 1225

the new matrix Rk being lower triangular with positive diagonal entries due to the
positivity of all weight functions. For convenience, for each i = 0, . . . , n, denote
by wi the piecewise function on ([a, b];T) whose restriction to each [t+k , t−k+1] coin-
cides with wk

i . According to our notations and terminology, each wi is positive on
([a, b];T), and therefore, wi ∈ PCn−i+ ([a, b];T). We say that such a sequence is
a system of piecewise weight functions on ([a, b];T). We can now associate with
it piecewise generalised derivatives, defined on PCn([a, b];T) by formulæ similar
to (25), which now have the meaning of piecewise equalities. Then, we can as well
describe the spline space S as the set of all piecewise functions S ∈ PCn([a, b];T)

such that LnS is piecewise constant on ([a, b];T) and which satisfy the connection
conditions

(

L0(t
+
k ), L1(t

+
k ), . . . , Ln−mk

(t+k )
)T = Rk

(

L0(t
−
k ), L1(t

−
k ), . . . , Ln−mk

(t−k )
)T

, k = 1, . . . , q. (27)

To conclude this section, consider again the PW-spline space S presented in Defi-
nition 2.1, but now in the special case where mk = 0 for all k = 1, . . . , q. Then, S is
(n + 1)-dimensional. In that case, we will rather name it E instead of S. According
to our reminder in the previous section, we can now count the zeroes in E with mul-
tiplicities up to (n + 1). When any non-zero element of E vanishes at most n times,
we say that E is an Extended Chebyshev Piecewise space (for short, ECP-space) on
([a, b];T) [22–24, 27]. In particular, a piecewise version of Rolle’s theorem [23]
shows that it is so when the ((n+1)-th order) connection matrices in (27) are identity
matrices, as recalled in the theorem below.

Theorem 3.1 Let (w0, . . . , wn) be a system of piecewise weight functions on
([a, b];T), with associated piecewise generalised derivatives L0, . . . , Ln. Denote
by ECP(w0, . . . , wn) the set of all piecewise functions F ∈ PCn([a, b];T) such
that:

1. LnF is constant on [a, b];
2. for each i = 1, . . . , n − 1, LiF is continuous on [a, b].
The space ECP(w0, . . . , wn) is an (n + 1)-dimensional ECP-space on ([a, b];T).
Conversely, any (n + 1)-dimensional ECP-space on ([a, b];T) is of the form
ECP(w0, . . . , wn) for some system (w0, . . . , wn) of piecewise weight functions on
([a, b];T).

3.2 Design with PW-splines

Our background will now concern the class of all PW-splines which can be used
to design, according to the definition below. Though blossoms and their properties
are inherently connected with design, we will say the least possible about them to
facilitate the reading. Readers interested in this elegant and powerful tools can refer
to [16–23, 25, 27, 35], for instance, and additional references therein.
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Definition 3.2 In short, we say that the PW-spline space S introduced in Definition
2.1 is good for design when the following two properties are satisfied:

1- S contains the constants;
2- blossoms exist in S.

In case one interior knot tk0 , 1 � k0 � q, is of multiplicity mk0 = n + 1, all tools
involved in the present section can be introduced separately in each of the PW-spline
spaces S−

k0
and S

+
k0
. Without loss of generality, throughout the section, we therefore

assume that
0 � mk � n, 1 � k � q. (28)

Definition 3.3 In the PW-spline S, a sequence (B−n, B−n+1, . . . , Bm), is said to be
a B-spline-like basis of S if, for each �, B� satisfies the following properties:

(BSLB)1 support property: B�(x) = 0 for x < ξ� or x > ξ�+n+1;
(BSLB)2 positivity property: B�(x

ε) > 0 for ξ� < x < ξ�+n+1 and ε = ±;
(BSLB)1 endpoint property: B� vanishes exactly (n−s+1) times at ξ+

� and exactly
(n − s′ + 1) at ξ−

�+n+1, where s := #{j � � | ξj = ξ�} and s′ := #{j �
� + n + 1 | ξj = ξ�+n+1}.

Definition 3.4 In the PW-spline S, a B-spline basis is a B-spline-like basis
(N−n, N−n+1, . . . , Nm) which is normalised, in the sense that

∑m
�=−n N� = 1I.

Let us now comment on each requirement in Definition 3.2. For S to contain the
constants it is necessary and sufficient to assume that

– firstly, each section-space Ek , k = 0, . . . , q, contains the constants;
– secondly, the first column of each connection matrix Rk is equal to

(1, 0, . . . , 0
︸ ︷︷ ︸

(n−mk) times

)T .

For the remainder of the section, the PW-spline space S is assumed to contain
the constants. Then, it can as well be defined as the set of all continuous functions
S : [a, b] → IR which satisfy the connection conditions

(

S′(t+k ), . . . , S(n−mk)(t+k )
)T = Mk

(

S′(t−k ), . . . , S(n−mk)(t−k )
)T

, 1 � k � q,

(29)
where Mk is the lower triangular matrix of order (n − mk), with positive diagonal
entries, obtained after deleting the first row and column ofRk . Note that the splines in
S are then geometrically continuous at tk in the weak sense of continuity of the Frenet
frames of order (n − mk). Besides, when the PW-spline space S contains constants,
if D denotes the piecewise differentiation on ([a, b];T), the space DS is in turn a
PW-spline space on ([a, b];T), with n-dimensional section-spaces.

Without giving the precise definition of blossoms, recall that, when they exist, i.e.,
when S is good for design, blossoms are symmetric functions of n variables defined
by means of intersections of (possibly left/right) osculating flats on the symmetric
set An(K) of all n-tuples in [a, b]n which are admissible (with respect to the knot
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vector K). An n-tuple (x1, . . . , xn) ∈ [a, b]n is admissible when each interior knot
tk , k = 1, . . . , q, which satisfies

min(x1, . . . , xn) < tk < max(x1, . . . , xn),

appears in the sequence (x1, . . . , xn) a number of times at least equal to its multiplic-
ity mk . Blossoms satisfy a crucial (and difficult to prove) property on An(K): they
are pseudoaffine in each variable. This property extends the simple affinity in each
variable of polynomial spline blossoms [36]. Roughly speaking, for fixed convenient
x1, . . . , xn−1, c, d, c < d , and x ∈ [c, d], the value s(x1, . . . , xn−1, x) of the blos-
som s of a given S ∈ S

d , d � 1, is as convex combination of s(x1, . . . , xn−1, c)

and s(x1, . . . , xn−1, d), with coefficients independent of S. Along with symmetry,
this pseudoaffinity property permits the evaluation of all values of the blossom s of a
given S ∈ S

d , d � 1, as convex combinations of the poles or control points of S ∈ S
d

defined as
P� := s(ξ�+1, ξ�+2, . . . , ξ�+n), � = −n, . . . , m,

through an n-step de Boor-type algorithm. This yields non-negative functions ν� on
An(K) (independent of the spline S) such that

s(x1, . . . , xn) =
m

∑

�=−n

ν�(x1, . . . , xn)P�, with
m

∑

�=−n

ν�(x1, . . . , xn) = 1, (x1, . . . , xn) ∈ An(K).

(30)
The most important design algorithms (knot insertion, passage from the poles to the
Bézier points of each section, . . . ) are contained in the previous description, and they
are corner-cutting algorithms. Besides, the geometrical definition of blossoms makes
it obvious that s coincides with S on the diagonal of [a, b]n (diagonal property of
blossoms). From (30), we can thus derive:

S(x) = s(x[n]) =
m

∑

�=−n

N�(x)P�,

m
∑

�=−n

N�(x) = 1, x ∈ [a, b]. (31)

The functions N�, −n � � � m, form the B-spline basis of the spline space S and
their blossoms are the functions ν� involved in (30). That knot insertion is corner-
cutting explains why the B-spline basis is totally positive on [a, b], i.e., given any
sequence y−n < y−n+1 < · · · < ym in [a, b], the matrix with entries N�(yj ),
−n � �, j � m, is totally positive (i.e., all its minors are non-negative), see [19].
Concerning the importance of total positivity, see for instance [8, 11].

The previous description justifies the terminology employed in Definition 3.2.
The pseudoaffinity of blossoms is more generally the main underlying tool in the
theorem below which gathers the crucial results on which the present work is based.
In particular, it gives a complete description of the class of all PW-spline spaces good
for design. For the equivalence (i) ⇔ (ii), see [17, 18, 20, 25]. For all other points,
see [27].

Theorem 3.5 Assume the PW-spline S to contain the constants. Then, all properties
listed below are equivalent:

(i) S is good for design;
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(ii) S possesses a B-spline basis and so does any spline space derived from S by
knot insertion;

(iii) the PW-spline space DS possesses a B-spline-like basis and so does any spline
space derived from DS by knot insertion;

(iv) there exists a system (w1, . . . , wn) of piecewise weight functions on ([a, b];T)

such that
ECP(1I, w1, . . . , wn) ⊂ S; (32)

(v) there exists a system (w1, . . . , wn) of piecewise weight functions on ([a, b];T)

such that
ECP(w1, . . . , wn) ⊂ DS. (33)

(vi) there exists a positive piecewise function  ∈ PCn−1+ ([a, b];T) such the PW-
spline space S
 obtained by piecewise division of all elements of DS by  is
good for design.

Furthermore, when (i) holds, the B-spline basis (N−n, . . . , Nm) is the optimal
normalised totally positive basis in the spline space S.

Remark 3.6 Theorem 3.5 is valid when q = 0 (that is, when there is no interior knot),
or when q > 0 with mk = 0 for k = 1, . . . , q — in which cases it provides us with
various characterisations of EC-spaces good for design on [a, b] [21, 23, 26], or ECP-
spaces good for design on ([a, b];T) [22–24], respectively. Note that, in both cases,
(ii) and (iii) can equivalently be replaced by the existence of a Bernstein basis in S

(resp., a Bernstein-like basis in DS) relative to each couple (c, d) ∈ [a, b]2, c < d.

Remark 3.7 As observed in the introduction, without loss of generality, in addition to
S containing the constants, we could directly have assumed the PW-spline space DS

to be a PEC-spline space. This amounts to assuming each section-space to be of the
form Ek = EC(1I, wk

1, . . . , w
k
n) for some system (wk

1, . . . , w
k
n) of weight functions

on [tk, tk+1]. With Lk
0 equal to the identity on Cn([tk, tk+1]), we could then replace

the connection relations (29) by
(

Lk
1(t

+
k ), . . . , Lk

n−mk
(t+k )

)T = Mk

(

Lk−1
1 (t−k ), . . . , Lk−1

n−mk
(t−k )

)T

, k = 1, . . . , q,

(34)
the matrix Mk being obtained by deleting the first row and column in Rk . All other
approaches of piecewise Chebyshevian splines start with given systems of weight
functions, given totally positive matrices Mk , and connection conditions (34). P. J.
Barry initiated them in [1], with additional assumptions on the differentiability of
the weight functions to make it possible to consider the dual EC-spaces (see also
[33, 34]). This total positivity assumption is only a sufficient condition for obtaining
“good” properties for the spline space S, such as existence of B-spline bases. By
comparison, we clearly established the advantages of the blossoming approach in
[17], with four-dimensional section-spaces. The results gathered in Theorem 3.5 (see
[27]) definitively highlighted the powerfulness of blossoms: in a good for design PW-
spline space, we can always find appropriate systems of weight functions so that all
connection matrices Mk involved in (34) are identity matrices, that is, the simplest
possible totally positive matrices.
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4 Interpolation versus design

The crucial results recalled in Theorem 3.5 will enable us not only to demonstrate
Theorem 1.2, but also to describe and characterise the class of all PW-spline spaces
which are “good for interpolation”, as defined in Definition 4.1 below.

4.1 The results

Definition 4.1 Given a PW-spline space S as introduced in Definition 2.1, for short,
we say that S is good for interpolation when

1- any Hermite interpolation problem in S which satisfies the SW-conditions has a
unique solution;

2- the same holds in any spline space obtained from S under knot insertion.

This terminology is justified by the fact that, when dealing with spline Hermite
interpolation problems, it is interesting to refine the knot-vector. On the other hand,
when the PW-spline space S� is obtained from S by knot insertion, a priori there is no
obvious correlation between the unisolvence of all Hermite interpolation problems
based on node-vectors satisfying the SW-conditions in S and in S�.

Example 4.2 Let us illustrate Definition 4.1 with a trivial example. Assume that S is
a PW-spline space with all interior multiplicities given by mk = n+ 1, k = 1, . . . , q.
In S, solving a Hermite interpolation problem satisfying the SW-conditions consists
in solving separately in each section-space a Hermite interpolation problem in (n+1)
data. It clearly results that S is good for interpolation in the sense of Definition 4.1
if and only for each k = 0, . . . , q, the section-space Ek is an EC-space on [tk, tk+1],
i.e., if and only if S is a PEC-spline space. By contrast, if we no longer assume that
mk = n + 1, k = 1, . . . , q, then a PEC-spline space is not necessarily good for
interpolation.

The object of the present section is to prove the following theorem.

Theorem 4.3 Let S be the PW-spline space described in Definition 2.1. The
following properties are equivalent:

(i) the PW-spline space S is good for interpolation;
(ii) S possesses a B-spline-like basis and so does any PW-spline space obtained

from S by knot insertion;
(iii) there exists a system (w0, . . . , wn) of piecewise weight functions on ([a, b];T)

such that

ECP(w0, . . . , wn) ⊂ S; (35)

The equivalence between (ii) and (iii) is already contained in Theorem 3.5. That
(i) ⇒ (ii) will be proved in Section 4.2 and that (iii) ⇒ (i) in Section 4.4, while
Section 4.3 will establish intermediate results on bounds of zeroes. Once Theorem 4.3 is
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proven, additional characterisations of being good for interpolation will follow from
Theorem 3.5, among which the equivalence between (i) and (ii) of Theorem 1.2. The
last claim in Theorem 1.2—i.e., “good for design” implies “good for interpolation”—
is then trivially obtained with w0 = 1I in (35). As a matter of fact, we can even state
more, because we know how to select all w0 =  ∈ PCn−1+ ([a, b];T) involved in
the property (vi) of Theorem 3.5 (see [27], Theorem 5.2). Indeed, the terminology
introduced in Definition 4.1 enables us to restate Corollary 5.4 of [27] as follows (to
be compared with the equivalence (i) ⇔ (ii) in Theorem 3.5).

Theorem 4.4 A PW-spline space S being given, the following two properties are
equivalent:

(i) S is good for design:
(ii) S is good for interpolation and S possesses a B-spline basis.

4.2 Proof of Theorem 4.3: (i) implies (ii)

Proposition 4.5 Assume that any Hermite interpolation satisfying the SW condi-
tions is unisolvent in S. Then, the same property holds true in any PW-spline space
obtained by restriction of S.

Proof Let S∗ be the restriction of S to a subinterval [a∗, b∗], a � a∗ < b∗ � b. Out
of symmetry and iteration arguments, it is sufficient to consider the following two cases:

1- a∗ = a, tq < b∗ < tq+1 = b;
2- a∗ = a, b∗ = tq .

Let Y∗ be a node-vector of a given Hermite interpolation (H∗) in S
∗, assumed to

satisfy the SW-conditions. In case 1, dimS
∗ = dimS, the same node-vector and

the same data define a Hermite interpolation problem (H) in S which satisfies the
SW-conditions. By restriction to [a∗, b∗], the unique solution to (H) in S provides
us with a unique solution to (H∗) in S

∗. In case 2, dimS = n + 1 + m∗, with
m∗ := ∑q−1

k=1 mk = m − mq . Write the node-vector Y∗ as

Y
∗ = (y∗−n, . . . , y

∗
m∗), with y∗

j � y∗
j+1 for − n � j � m∗ − 1.

Let the node-vector Y = (y−n, . . . , ym) be defined by

yj := y∗
j for j = −n, . . . , m∗, ym∗+1 = · · · = ym−1 = ym = b.

It is easily checked that the node-vector Y satisfies the SW-conditions relative to S.
Selecting anymq additional data at b, we transform (H∗) into a Hermite interpolation

problem (H) in S which has a unique solution. By restriction to ∪q−1
k=0[t+k , t−k+1], we

obtain a unique solution to (H∗) in S∗.

As a special case, for k = 0, . . . , q, the section-space Ek can be viewed as the
PW-spline space obtained from S by restriction to the subinterval [tk, tk+1]. For this
restriction, being good for interpolation simply means that Ek is an EC-space on
[tk, tk+1]. We can therefore state the following:
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Corollary 4.6 If any Hermite interpolation satisfying the SW-conditions is unisol-
vent in a PW-spline space S, then S is a PEC-spline space.

On account of Definition 4.1, that (i) ⇒ (ii) in Theorem 4.3 readily follows from
the following proposition.

Proposition 4.7 Assume that any Hermite interpolation satisfying the SW-conditions
is unisolvent in S. Then, S possesses B-spline-like bases.

Proof Suppose that an interior knot tk , 1 � k � q, has multiplicity mk = n + 1.
Then, we split the spline space S into S

−
k and S

+
k . From Proposition 4.5, we know

that, in both spline spaces, any Hermite interpolation problem satisfying the corre-
sponding SW-conditions is unisolvent. On the other hand, searching for B-spline-like
bases in S amounts to searching for B-spline-like bases separately in S

−
k and S

+
k .

Accordingly, without loss of generality, we can assume that we are working under the
assumption

mk � n for k = 1, . . . , q.

Under this assumption, for any k = 1, . . . , q, a spline S ∈ S vanishes at t−k if and
only if it vanishes at t+k . Consider an integer j , −n � j � m. Let k < k′ be the two
integers such that

ξj = tk, ξj+n+1 = tk′ ,

and let Sk,k′ denote the restriction of S to ∪k′−1
i=k [t+i , t−i+1]. We thus have

j = jk −mk + r with 1 � r � mk, j +n+ 1 = jk′ −mk′ + r ′ with 1 � r ′ � mk′,

so that

n + 1 = mk − r + r ′ +
k′−1
∑

i=k+1

mi.

Accordingly,

dimSk,k′ = n + 1 +
k′−1
∑

i=k+1

mi = 2(n + 1) − mk + r − r ′.

According to Proposition 4.5, in the PW-spline space Sk,k′ , any Hermite interpolation
problem satisfying the SW-conditions has a unique solution. Consider the problem
of finding an element S ∈ Sk,k′ such that

S(q)(tk) = 0, 0 � q � n − mk + r − 1, (36)

S(n−mk+r)(t+k ) = 1, (37)

S(q)(tk′) = 0, 0 � q � n − r ′. (38)
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This Hermite interpolation problem in (2n + 2− mk + r − r ′) data satisfies the SW-
conditions relative to Sk,k′ since the numbers of interpolation conditions at the end
points respectively satisfy

n + 1 − mk + r =
k′−1
∑

i=k+1

mi + r ′ >

p
∑

i=k+1

mi, n + 1 − r ′ = mk − r

+
k′−1
∑

i=k+1

mi �
k′−1
∑

i=p

mi, k + 1 � p � k′ − 1. (39)

Let Bj ∈ Sk,k′ denote the unique element satisfying (36)–(38).
Suppose the existence of an x0 in the open interval ]tk, tk′ [ such that Bj (x0) = 0

(in the sense that both Bj (x
−
0 ) = 0 and Bj (x

+
0 ) = 0 in case x0 is an interior knot in

Sk,k′). Then Bj would be a solution to the Hermite interpolation in (2n+2−mk +r−
r ′) data obtained by replacing in the previous one the condition (37) by S(x0) = 0.
This interpolation problem too satisfy the SW-conditions relative to Sk,k′ (see (39)).
Its interpolation data being all 0, this would imply Bj = 0, which would contradict

the fact that Bj
(n−mk+r−1)

(t+k ) = 1. The interpolating conditions at tk implying the
positivity of S on a sufficiently small interval contained in ]tk, tk+1[, it follows that
Bj (x

ε) > 0 for all x ∈]tk, tk′ [, and ε = ±.
Denote by Bj the element of S obtained by extending Bj by 0 on [t0, t−k ] (if

k � 1) and [t+
k′ , tq+1] (if k′ � q). The sequence (B−n, . . . , Bm) so obtained is a

Bernstein-like basis in S.

4.3 Interpolation and zeroes

In this subsection, we characterise the unisolvence of convenient interpolation
problems in terms of upper bounds on the numbers of zeroes of splines in S.

First recall that, in a W-space on a non-trivial interval I , a function cannot be zero
on a non-trivial subinterval of I without it being zero on the whole of I . Accordingly,
a PW-spline S ∈ S being given, for each k = 0, . . . , q, either S has only isolated
zeroes on [t+k , t−k+1] or S is zero on the whole of [t+k , t−k+1]. In the latter case, we say
that [t+k , t−k+1] is a zero interval for S.

Second, we have to specify the definition of the multiplicity of an interior knot
tk , k = 1, . . . , q, as a zero of S. Supposing that neither [t+k−1, t

−
k ] nor [t+k , t−k+1]

are zero intervals for S, with no possible ambiguity the exact left/right multiplicities
μ−

k (S), μ+
k (S) � n of tk as a left/right zero of S are defined by

S(i)(t−k ) = 0 for 0 � i � μ−
k (S) − 1, S(i)(t−k ) �= 0 for i = μ−

k (S),

S(i)(t+k ) = 0 for 0 � i � μ+
k (S) − 1, S(i)(t+k ) �= 0 for i = μ+

k (S).
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Definition 4.8 Given k = 1, . . . , q, assume that neither [t+k−1, t
−
k ] nor [t+k , t−k+1[ are

zero intervals of a given spline S ∈ S.

1- If μ−
k (S) < n + 1 − mk , then μ+

k (S) = μ−
k (S). The multiplicity μk(S) of tk as

a zero of S is defined as μk(S) := μ+
k (S) = μ−

k (S).
2- If μ−

k (S) � n + 1 − mk , then μ+
k (S) � n + 1 − mk . The multiplicity μk(S) of

tk as a zero of S is understood as

μk(S) := n + 1 − mk + β−
k (S) + β+

k (S), (40)

the non-negative integers β−
k (S), β+

k (S) being defined by

μ−
k (S) = n + 1 − mk + β−

k (S), μ+
k (S) = n + 1 − mk + β+

k (S). (41)

In other words, we add the left and right multiplicities (as would be natural for
piecewise functions on ([a, b];T)) given that, below (n + 1 − mk), successive zero
conditions at t+k follow from those at t−k and they should not be counted twice. The
previous two cases can be summarized by the common formula

μk(S) := μ−
k (S) + μ+

k (S) − min
(

n + 1 − mk, μ
−
k (S), μ+

k (S)
)

. (42)

It should be observed that, with Definition 4.8, the count of zeroes of a given spline
S ∈ S is related to the space S. If S is an element of another spline space, the count
will be different. Subsequently, we will not allocate numbers of zeroes to zero inter-
vals. Given S ∈ S, and given any two integers k, k′, 0 � k < k′ � q + 1, such that
none of the intervals [t+i , t−i+1], i = k, . . . , k′ − 1 is a zero interval for S, Defini-
tion 4.8 makes it possible to define with no ambiguity the total number Z(S; [tk, tk′ ])
of zeroes of S on the interval [tk, tk′ ] as follows:

Z(S; [tk, tk′ ]) := μ+
k (S) + μ−

k′(S) +
k′−1
∑

i=k+1

μi(S) +
k′−1
∑

i=k

Z(S; ]ti , ti+1[).

Theorem 4.9 For a given PW-spline space S, the following two properties are
equivalent:

(i) any Hermite interpolation satisfying the SW-conditions is unisolvent in S;
(ii) given any S ∈ S, and any 0 � k < k′ � q + 1, such that none of the intervals

[t+i , t−i+1], i = k, . . . , k′ − 1, is a zero interval for S, we have

Z(S; [tk, tk′ ]) � n +
∑

k<i<k′
mi = dimSk,k′ − 1. (43)

Proof •(i) ⇒ (ii): Suppose that any Hermite interpolation satisfying the SW condi-
tions is unisolvent in S. Then, for 0 � k < k′ � q + 1, the same property is true in
the PW-spline space Sk,k′ (Proposition 4.5). It is therefore sufficient to prove that

Z(S; [a, b]) � n + m = n +
q

∑

i=1

mi, (44)
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for any given spline S ∈ S with no zero interval. For s = 0, . . . , q, denote by P(s)

the following property

for k = 0, . . . , q − s, Z(S; [tk, tk+s+1]) � n +
k+s
∑

i=k+1

mi.

We know that the property P(0) holds true (Corollary 4.6) and (44) is the property
P(q). Assume that q � 1 and that P(s) is satisfied for each s � q − 1, while P(q)

fails to be true. We thus have Z(S; [a, b]) � n + 1 + m. On account of Defini-
tion 4.8, we can select (n + 1 + m) (multiple) zeroes of S so as to form a Hermite
interpolation problem (H) with all interpolation data equal to 0, to which S yields a
non-zero solution in S. Let us allocate to (H) the notations introduced in Section 2.
For k = 1, . . . , q, we thus have

n + 1 +
q

∑

i=1

mi = λ(k) + Z(S; [tk; tq+1]) � λ(k) + n +
q

∑

i=k+1

mi,

the inequality resulting from our assumption that P(q − k) holds true. This implies
λ(k) �

∑k
i=1 mi . Symmetric arguments work for 
(k). Therefore, (H) satisfies the

SW-conditions, which contradicts the fact that (H) has a non-zero solution. There-
fore, if P(s) is satisfied for each s � q − 1, then (44) is satisfied too. The induction
will be complete by applying (44) in a convenient space Sk,k′ , replacing q by some
s, 1 � s < q.

•(ii) ⇒ (i): Assume that (ii) holds. Given a node-vector Y satisfying the SW-
conditions relative to S, let us prove that the zero spline is the only solution to the
Hermite interpolation problem (H) based on Y when all interpolation data are equal
to zero. Since (ii) holds in any Sk,k′ , from Theorem 2.3 and Remark 2.4, with no loss
of generality, we can assume that ν(k) � n − mk for all k = 1, . . . , q, implying both
that α−

k = α+
k = 0 and that mk � n for all k = 1, . . . , q. Let S ∈ S be a non-zero

solution to (H). For each k = 1, . . . , q such that neither [t+k−1, t
−
k ] nor [tk, t−k+1] are

zero intervals for S, we can say that μk(S) � ν(k). If S had no zero interval, we
would therefore have Z(S; [a, b]) � dimS, which would contradict (43) for k = 0,
k′ = q + 1. Accordingly, at least one interval [t+k , t−k+1], k = 0, . . . , q, is a zero
interval for S. We can therefore find either an integer k ∈ {1, . . . , q} such that none of
the intervals [t+i , t−i+1], i = 0, . . . , k − 1 (resp., i = k, . . . , q) is a zero interval for S

while S is zero on [t+k , t−k+1] (resp. on [t+k−1, t
−
k ]), or two integers k, k′ ∈ {1, . . . , q},

k < k′, such that S is zero on both [t+k−1, t
−
k ] and [t+

k′ , t
−
k′+1], and none of the interval

[t+i , t−i+1], i = k, . . . , k′ − 1, is a zero interval for S. In the first case, we know that
Z(S; [a, tk[) � λ(k) and S vanishes at least (n + 1 − mk) times at t−k since it is zero
on [t+k , t−k+1]. Taking account of the SW-conditions (17), we thus have

Z(S; [a, tk]) � λ(k) + (n + 1 − mk) � n + 1 +
k−1
∑

i=1

mi = dimS
−
k .

This contradicts (43). Out of symmetry, the second case leads to a similar contradic-
tion. Consider the third case. Then, from (iii) of Theorem 2.5, we know that at least
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(

−n − 1 + ∑k′
i=k mi

)

nodes are contained in the interval ]tk, tk′ [. The spline S being

zero on both [t+k−1, t
−
k ] and [t+

k′ , t
−
k′+1], we have

Z(S; [tk, tk′ ]) �
(

−n − 1 +
k′

∑

i=k

mi

)

+ (n + 1 − mk) + (n + 1 − mk′)

= n + 1 +
∑

k<i<k′
mi = dimSk,k′ .

Again, this contradicts (43). Therefore, S must be zero everywhere on [a, b].

4.4 Proof of Theorem 4.3: (iii) ⇒ (i)

In this subsection, we assume the existence of a system (w0, . . . , wn) of piecewise
weight functions on ([a, b];T) satisfying (35), and we denote by L0, L1 . . . , Ln

the associated piecewise generalised derivatives. The count of zeroes can now be
done using the piecewise generalised derivatives L0, . . . , Ln rather than the ordi-
nary (left/right) derivatives. For instance, for 1 � k � q, when neither [t+k−1, t

−
k ]

nor [t+k , t−k+1] are zero intervals for S ∈ S, the exact left/right multiplicities
μ−

k (S), μ+
k (S) � n of tk as a left/right zero of S are as well defined by

LiS(t−k ) = 0 for 0 � i � μ−
k (S) − 1, LiS(t−k ) �= 0 for i = μ−

k (S),

LiS(t+k ) = 0 for 0 � i � μ+
k (S) − 1, LiS(t+k ) �= 0 for i = μ+

k (S).

Moreover, from (35), we know that the connection conditions satisfied by any spline
S ∈ S can be expressed as follows:

LjS(t+k ) = LjS(t−k ) for j = 0, . . . , n − mk, k = 1, . . . , q. (45)

This will be a key point in the proof of Theorem 4.10 below.
Any PW-spline space S

� obtained from S by insertion of knots satisfies
ECP(w0, . . . , wn) ⊂ S ⊂ S

�. Moreover, the inclusion ECP(w0, . . . , wn) ⊂ S

induces a similar inclusion for any Sk,k′ , 0 � k < k′ � q + 1. Therefore, on account
of Theorem 4.9, that (iii) ⇒ (i) in Theorem 4.3 will clearly result from the bounds
obtained below.

Theorem 4.10 Let the PW-spline space S satisfy (35). Given S ∈ S, we assume that
S has no zero interval. Then the total number Z(S; [a, b]) of zeroes of S on [a, b] is
bounded above as follows:

Z(S; [a, b]) � n + m − z(S; ]a, b[) = dimS − 1 − z(S; ]a, b[), (46)

where z(S; ]a, b[) is the number of interior knots tk , 1 � k � q, such that μk(S) �
n + 1− mk , or equivalently, such that L0S(tk) = L1S(tk) = · · · = Ln−mk

S(tk) = 0.

The proof of Theorem 4.9 relies on a number of preliminary results. The suc-
cessive steps are rather classical when bounding numbers of zeroes in spline spaces
(e.g., [9, 10, 34, 38]). Nevertheless, we will give all details, for the context is not
exactly the same, and also we do not use the same definition for the multiplicity of an
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interior knot as a zero of a spline. Subsequently, the notation S− will count the num-
ber of strict changes of sign in any sequence of real numbers, that is, the number of
sign changes after deletion of all zeroes in the sequence. The notation S+ will count
the weak sign changes, that is, the maximum number of possible sign changes after
replacing each zero in the sequence by either 1 or −1. In particular, given a piecewise
function F ∈ PCn([a, b];T), which vanishes μ � n times at xε ∈ ∪q

k=0[t+k , t−k+1],
we have

S−(

F(xε), F ′(xε), . . . , F (n)(xε)
)

� n−μ and S+(

F(xε), F ′(xε), . . . , F (n)(xε)
)

� μ,

or, equivalently,

S−(

L0F(xε), L1F(xε), . . . , LnF (xε)
)

� n−μ and S+(

L0F(xε), L1F(xε), . . . , LnF (xε)
)

� μ.
(47)

Subsequently, S denotes a given spline in S.

Lemma 4.11 For each integer i = 0, . . . , q such that [t+i , t−i+1] is not a zero interval
for S, denote by pi � n the smallest integer such that Lpi

is constant on [ti , ti+1].
Then, the total number Z(S; ]ti , ti+1[) � n of S on ]ti , ti+1[ satisfies

Z(S; ]ti , ti+1[) � S−
pi

(t+i ) − S+
pi

(t−i+1), i = 0, . . . , q, (48)

where, for each p � n, the condensed notations S−
p (tεi ) and S−

p (tεi ) respectively
stand for

S−(

L0S(tεi ), L1S(tεi ), . . . , LpS(tεi )
)

, S+(

L0S(tεi ), L1S(tεi ), . . . , LpS(tεi )
)

.

Proof This classical result [39] is known as the Budan-Fourier theorem in the EC-
space Ei = EC(wi

0, . . . , w
i
n), where wi

0, . . . , w
i
n are the restrictions of w0, . . . , wn

to [t+i , t−i+1].

Lemma 4.12 Given an integer i ∈ {1, . . . , q}, assume that neither [t+i−1, t
−
i ] nor

[t+i , t−i+1] are zero intervals for S. Then we have, with the notation introduced in
Lemma 4.11,

{

μi(S) � mi − S−
pi

(t+i ) + S+
pi−1

(t−i ) − 1 if μi(S) � n + 1 − mi,

μi(S) � mi − S−
pi

(t+i ) + S+
pi−1

(t−i ) if μi(S) < n + 1 − mi.
(49)

Proof We know that

S+
pi−1

(t−i ) � μ−
i (S), S−

pi
(t+i ) = S−

n (t+i ) � n − μ+
i (S).

Accordingly, we can state that

mi − S−
pi

(t+i ) + S+
pi−1(t

−
i ) � mi − n + μ−

i (S) + μ+
i (S)

• Let us first assume that μi(S) � n + 1− mi . Then, the inequality claimed in the
first line of (49) is trivially satisfied since; according to (40) and (41), we have

μ−
i (S) + μ+

i (S) + (mi − n) = μi(S) + 1.
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• Let us now assume that μi(S) � n−mi . In that case, we have mi � n. From the
connection conditions (45), we can derive that

S−
n−mi

(t−i ) = S−
n−mi

(t+i ). (50)

Given that μi(S) = μ+
i (S) = μ−

i (S), we can sharpen the bounds in (47) as follows:

S+
pi−1

(t−i ) � S−
pi−1

(t−i ) + μi � S−
n−mi

(t−i ) + μi,

S−
pi

(t+i ) = S−
n (t+i ) � S−

n−mi
(t+i ) + mi.

(51)

Combining (51) and (50), it readily follows that

S+
pi−1

(t−i ) − S−
pi

(t+i ) � μi − mi,

which is the inequality claimed in the second line of (49).

Lemma 4.13 If none of the intervals [t+i , t−i+1], i = k, . . . , k + s, is a zero interval
for S, then

Z(S; ]tk, tk+s+1[) � S−
pk

(t+k )−S+
pk+s

(t−k+s+1)+
k+s
∑

i=k+1

mi − z(S; ]tk, tk+s+1[), (52)

with z defined as in Theorem 4.10.

Proof With the notations introduced above, we have

Z(S; ]tk, tk+s+1[) =
k+s
∑

i=k

Z(S; ]ti , ti+1[) +
k+s
∑

i=k+1

μi(S).

The claimed inequality (52) is simply obtained by application of (51) for i =
k, . . . , k + s and of (49) for i = k + 1, . . . , k + s.

Proof of Theorem 4.9 From Lemma 4.13 we know that

Z]a,b[(S) � S−
p0

(a) − S+
pq

(b) + m − z(S; ]a, b[) = S−
n (a) − S+

pq
(b) + m.

Accordingly, if μ0 (resp., μq+1) denotes the multiplicity of a+ = a = t0 (resp.
b− = b = tq+1) as a zero of S, we have

Z[a,b](S) = μ0+Z]a,b[(S)+μq+1 �
(

S−
n (a)+μ0

)+(

μq+1−S+
pq

(b)
)+m−z(S; ]a, b[).

Since S−
n (a)+μ0 � n and μq+1−S+

pq
(b) � 0 (see (47)), the proof is complete.

4.5 A few remarks

We would like to conclude this section with a few observations.

1– We have presented what we consider the natural way to count the zeroes in a
given PW-spline S, limiting this count to sequences of consecutive non-zero
intervals for S. As already mentioned, this approach differs from what is gener-
ally done (e.g., [9, 10, 34, 38]). We believe that our definition is also the most
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efficient, as pointed out below. In addition to (35), assume that mk = n + 1,
k = 1, . . . , q. Then, for any S ∈ S with no zero interval, z(S; ]a, b[) = q, and
formula (46) yields:

Z(S; [a, b]) � n + (n + 1)q − q = dimS − 1 − q = (q + 1)n, (53)

which is consistent with the bounds Z(S; [tk, tk+1]) � n, k = 0, . . . , q, result-
ing from the section-spaces being EC-spaces on their intervals. Instead of (53),
the general bound provided in the articles cited above would be Z(S; [a, b]) �
dimS − 1 = n + (n + 1)q.

Take the following trivial example, obtained under the additional assumption
that q = 1 (i.e., there is only one interior knot), and that S vanishes exactly
n times at t−1 and exactly n times at t+1 , that is, β−

1 (S) = β+
1 (S) = n. Then,

according to (40), our multiplicity of the interior knot t1 as a zero of S is
μ1(S) = 2n. The bound Z(S; [a, b]) � 2n provided in (53) is thus the best
possible: it tells us that S vanishes neither on [a, t1[ nor on ]t1, b], which again
is consistent with the fact that E0 and E1 are EC-spaces on their intervals. For
comparison, in the various papers mentioned above, the multiplicity of t1 as a
zero of S would be defined either by n, or by n + 1, depending on the signs of
S close to t−k and t+k . Accordingly, in all cases, the best bound for the zeroes of
S on [a, t1[∪]t1, b] would be 2n + 1 − (n + 1) = n.

2– Two different bounds of zeroes have been encountered: (43) and (46). As a
matter of fact, in any given PW-spline space, a spline S being given, with no
zero interval, the inequality (44) holds true if and only if so does (46). Indeed,
one can easily check that our definition of the multiplicities of interior knots as
zeroes implies that each of the two inequalities (44) and (46) is equivalent to the
fact that (43) is satisfied for any 0 � k < k′ � q + 1 such that μi(S) � n − mi

for k < i < k′.
3– Let us work within the property (iii) of Theorem 4.3. Under the requirement that

ν(k) � n + 1 − mk at all interior knots, any Hermite interpolate problem in S,
based on a node-vector Y = (

x1
[μ1], . . . , xr

[μr ]), with a � x1 < · · · < xr � b,
and positive μ1, . . . , μr can as well be presented as the search for an S ∈ S

satisfying

LjS(xi) = ci,j , j = 0, . . . , μi − 1, i = 1, . . . , r,

for convenient real numbers ci,j . The unisolvence of any Hermite interpolation
problem satisfying the SW-conditions in the spline space L0S could have been
deduced from either [38] or from [34]. Then we could have derived it in S after-
wards. Nevertheless, we preferred to give a complete proof of the implication
(iii) ⇒ (i)with reference to our Definition 4.1 to stress the difference with other
counts of zeroes.

5 Consequences

Theorem 4.3 provides us with a description of the whole class of all PEC-spline
spaces which are good for interpolation. A PEC-spline space S being given; it also
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provides us with a constructive way to answer the question: is S good for interpolation
or not? Given that, in each section-space Ek , k = 0, . . . , q, we know an explicit
construction of all possible systems (wk

0, . . . , w
k
n) of weight functions on [tk, tk+1]

such that Ek = EC(wk
0, . . . , w

k
n), in theory the question we have to answer is: can

we find such systems so that, in terms of the associated generalised derivatives, the
connection matrices will be the identity matrices? Answering this question is all the
more difficult as n increases and as the multiplicities decrease. As a matter of fact,
this is also the constructive way to answer the question: is the PEC-spline space ̂S

obtained from S by continuous integration good for design or not? We have been
able to answer this latter question in some specific cases [7, 29]. Subsequently, we
take advantage from these cases to illustrate the unisolvence of Hermite interpolation
problems in S via Theorem 4.3.

5.1 Example 1: Hermite interpolation with W-splines

In this section, we assume that E ⊂ Cn([a, b]) is an (n + 1)-dimensional W-space
on [a, b]. We also assume that it is not an EC-space on the whole of [a, b]. As usual,
we consider the sequence T of interior knots and the knot-vector K in (22). Here, for
k = 0, . . . , q, the section-space Ek is the restriction of E to [tk, tk+1], and at each
interior knot tk , k = 1, . . . , q, the splines in S are Cn−mk , i.e., the connection matrix
Rk is the identity matrix of order (n+1−mk). We can therefore assume that mk > 0
for k = 1, . . . , q.

It is known that one can find a positive number � such that E is an EC-space on
each interval [c, d] ⊂ [a, b], if and only if 0 < d − c < � � b − a [39]. This positive
number is called the critical length of E on [a, b], see [28]. We can then state the
following:

Proposition 5.1 Let � > 0 be the critical length of E on [a, b]. For the W-spline
space S to be good for interpolation it is necessary that

tk+1 − tk < �, k = 0, . . . , q, (54)

while it is sufficient that

ξk+n − ξk < �, k = 0, . . . , m + 1 − n. (55)

Proof Condition (54) means that the section-spaces are EC-spaces on their intervals,
which is necessary for S to be good for interpolation. The second claimed statement
corresponds to the obvious inclusion

An+1(K) ⊂
m+1−n

⋃

k=0

[ξk, ξk+n]n+1. (56)

To make this clear, let ̂E ⊂ Cn+1([a, b]) satisfy D̂E = E. Take (n + 1) functions
̂Φ0, . . . , ̂Φn ∈ ̂E whose first derivatives span the space E. Via convenient intersec-
tions of osculating flats, we can define the blossom ϕ̂ of ̂Φ := (̂Φ0, . . . , ̂Φn)

T . It
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is well defined on some subset of [a, b]n+1 containing the diagonal. We denote this
subset by �(̂Φ). From (56), we can say that

�(ϕ̂) ⊃
m+1−n

⋃

k=0

[ξk, ξk+n]n+1 ⇒ �(ϕ̂ ) ⊃ An+1(K). (57)

The left inclusion in (57) means that ̂E is an EC-space good for design on each
[ξk, ξk+n], that is, E is an EC-space on each [ξk, ξk+n]. This is satisfied when (55)
holds. The right inclusion in (57) means that the spline space ̂S is good for design,
that is, the spline space S is good for interpolation. This concludes the proof.

Remark 5.2 Within this remark, we work under the stronger requirement that E ⊂
Cn+1([a, b]). Then, the (n + 1)-dimensional W-space on [a, b] is the null space of a
linear differential operator L on Cn+1([a, b]), of the form

L = Dn+1 +
n

∑

i=0

aiD
i,

where a0, . . . , an are continuous functions on [a, b]. The class of all W-spline space
then coincides with the class of all L-spline spaces [39]. Under the additional assump-
tion that, for i = 0, . . . , n, ai ∈ Cn+1−i ([a, b]) (which makes it possible to consider
the adjoint of L), the study of minors of LB-spline collocation matrices carried out
in [15] (see also [31, 32]) tells us that our W-spline space is good for interpolation
when ξk+n+1 − ξk < �, for all convenient k. By comparison, our conditions (55) thus
represent an improvement.

Example 5.3 A positive number a being given, consider the space E spanned on IR
by four functions

U1(x) := cosh(ax) cos x, U2(x) := cosh(ax) sin x,

U3(x) := sinh(ax) cos x, U4(x) := sinh(ax) sin x. (58)

One can check that E is the null space of the linear differential operator L with
constant coefficients

L := D4 + 2(1 − a2)D2 + (a2 + 1)2D0.

The critical length � on IR of the W-space E is located in the open interval ]π, 3π
2 [,

see [6]. Here, all interior knots are simple, and we assume that tk+1 − tk = h for each
k = 0, . . . , q, with 0 < h < �. We proved in [7] that, if q � 2, the spline spacêS is
good for design if and only if h < π . This is therefore the necessary and sufficient
condition for the spline space S to be good for interpolation. Observe that our general
sufficient condition (55) is much more restrictive since it implies that h < π

2 . For
comparison, the sufficient conditions in [15] would imply h < 3π

8 .

Let ̂
̂S be obtained by one additional step of continuous integration, with there-

fore pieces taken from the space ̂
̂E spanned by the six functions 1, x, U1(x), U2(x),

U3(x), U4(x). The condition h < π is sufficient for each of the spline spaces ̂S, ̂̂S
to be good for interpolation. We conjecture that it is also necessary, but this is not
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Fig. 1 Lagrange interpolation by C4 splines: equispaced knots with tk+1−tk = 3, section-spaces spanned
by 1, x, cosh(ax) cos x, cosh(ax) sin x, sinh(ax) cos x, sinh(ax) sin x. From left to right: a = 0.1; a = 1;
a = 8

proved so far. In [7], we showed the very strong shape effects resulting from the two
parameters a, h when designing with the space ̂S. In Fig. 1, we consider Lagrange

interpolating parametric spline curves in̂
̂S. For the sake of simplicity, we assume that

we are dealing with periodic splines and that the nodes coincide with the knots. We
therefore have symmetric cardinal B-spline bases with knot spacing h. As the param-
eter a tends to infinity, the splines behave as C4 piecewise affine splines (!), all the
more efficiently as h is closer to the limit π−. This is why in all pictures we take
h = 3. Then, visually speaking, we already obtain nearly perfect shape preservation
with rather small values of a (a = 8).

5.2 Example 2: geometrically continuous cubic splines

Throughout the present section, we are dealing with simple equispaced knots tk = k,
k = 0, . . . , q + 1. We denote by ̂S the associated space of geometrically continu-
ous quadric splines, described by (29), the entries of the connection matrices at the
interior knots being denoted as follows:

Mk =
⎡

⎣

ak 0 0
bk ck 0
dk ek fk

⎤

⎦ , with ak, ck, fk > 0 for all k = 1, . . . , q. (59)

In [29], we obtained necessary and sufficient conditions for̂S to be good for design.
However, in [29], the integer k was ranging over the whole of ZZ. Adapting the results
to our present context, we can state, with

Bk := bk + 3ak + 3ck, Ek := ek + 4ck + 4fk,

Dk := dk + 3ek + 4bk + 6(ak + 2ck + fk), k = 1, . . . , q. (60)

Theorem 5.4 If q � 2, the spline space ̂S of geometrically continuous quadric
splines with connection matrices (59) is good for design if and only if the quantities
introduced in (60) satisfy the following conditions:

Bk > 0, Dk > 0, EkBk − ckDk for k = 1, . . . q,

4BkBk+1fk+1 < Dk(Ek+1Bk+1 − ck+1Dk+1) for k = 1, . . . , q − 1. (61)
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We now consider the space S of all geometrically continuous cubic splines with
connection conditions
(

S′(t+k ), S′′(t+k )
)T =

[

ck 0
ek fk

]

(

S′(t−k ), S′′(t−k )
)T

, with ck, fk > 0 for k = 1, . . . , q.

(62)
Such connections for cubic splines were first considered by B. Barsky in [2], in the
special case fk = ck

2 and ek � 0, i.e., G2 continuity with total positivity of the
connection matrices (see also [3] and [9, 10] for extensions to higher degrees). The
following result was first obtained in [17], see also [29].

Theorem 5.5 The space S of geometrically continuous cubic splines with connection
conditions (62) is good for design if and only

Xk := ek + 2(ck + fk) > 0 for k = 1, . . . , q. (63)

Our purpose is now to obtain necessary and sufficient conditions for S to be good
for interpolation and to compare them with (63). We obtain the following:

Theorem 5.6 Assume that q � 2. The space S of all geometrically continuous cubic
splines with connection conditions (62) is good for interpolation if and only if, with
the notation introduced in (63)

Xk + 2(ck + 1) min(fk, 1) > 0 for k = 1, . . . , q, and
[

Xk + 2(ck + 1)
][

Xk+1 + 2fk+1(ck+1 + 1)
]

> 4(ck + 1)(ck+1 + 1)fk+1 for k = 1, . . . , q − 1.
(64)

Proof Consider the spacêS of geometrically continuous quadric splines defined by
the connection matrices (59) in which we take

ak = 1, bk = dk = 0, for k = 1, . . . , q.

With these data, Theorem 5.4 shows that the conditions (64) are necessary and
sufficient for̂S to be good for design, that is, for S to be good for interpolation.

Remark 5.7 Comparison of (63) and (64) makes it obvious that “S good for design”
implies “S good for interpolation” as stated in Theorem 1.2 (see also Theorem 4.4).
When q = 1, one can check the two properties are equivalent.

Subsequently, we illustrate conditions (64) in several situations, all of which guar-
antee preservation of the symmetry of the data. Without real loss of generality, we
assume that we are dealing with periodic data. Non-negative values of the parame-
ters ek correspond to totally positive connection matrices. In that case, some specific
interpolation problems by geometrically polynomial splines were investigated in [9]
(see also [14]). We will only mention this case incidentally, for comparison and for
the sake of completeness. We are more specifically interested in illustrating uni-
solvence of interpolation problems, with special focus on “interpolation beyond
design”.
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Fig. 2 Lagrange interpolation by C1, G2, cubic splines with connection conditions (62) and (65), see
Example 5.8. From left to right: e = −3 (design/interpolation limit: −4); e = 0 (ordinary cubic splines);
e = 100

Example 5.8 Assume that all the connection matrices in (62) are the same, that is,

ck = c, fk = f, ek = e, k = 1, . . . , q. (65)

Then, it is easily seen that the conditions (64) reduce to X > 0, with X := e + 2(c +
f ). In other words, in that case, S is good for interpolation if and only if it is good for
design. In order to preserve the symmetry of the data (see [30]), we must additionally
assume that c = f = 1. The spline space S depends on the sole parameter e which
ranges over the interval ]−4, +∞[. It is a good opportunity to show how efficient this
parameter is for tension properties when it tends to infinity, while when e → −4+,
the interpolating curve becomes looser and looser. See Fig. 2. On purpose, for better
comparison, we have kept the same frame in all figures in spite of the left curve
extending off the edges.

Example 5.9 In our second example, we investigate examples of local shape effects.
Consider the case where each connection matrix is the identity matrix, except at

one selected control point, indicated with a circle, where it is equal M =
[

c 0
e f

]

,

given that, in order to preserve symmetry, we have to take the connection matrix
[

1/c 0
e/(cf ) 1/f

]

at the symmetric control point, indicated with a square. Set X :=
e+2(c+f ). With our interpolating data, two different situations can be encountered:

1- The control points marked with a circle and a square are consecutive. Then con-
ditions (64) reduce to X > 0. In that case, the spline space S is good for design
if and only if it is good for interpolation. This case occurs in the sixth situation
of Figs. 3 and 4.

2- Otherwise, the matrix M is preceded and followed by the identity matrix. In that
case, the spline space is good for interpolation if and only

X + (c + 1) min(f, 1) > 0, (66)

that is,

e + 3c + 2f + 1 > 0 if f � 1, e + 2c + 3f + cf > 0 if f � 1.

We can see that the condition “S is good for interpolation” is strictly weaker than
“S is good for design”. As an instance, when c = f = 1, we have X = e + 4
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Fig. 3 Lagrange interpolation at the knots with C1,G2 cubic splines which are C2 everywhere except at
a circle/square according to Example 5.9 with c = f = 1, e = −5 (beyond the design limit −4) in each
case, except the rightmost bottom one where c = f = 1, e = −3. See Example 5.9

and (66) means that e + 6 > 0. Note that taking c = f = 1 is compulsory for
symmetry preservation when the circled point is its own symmetric, as occurs in the
first situation of Figs. 3 and 4.

Figure 3 illustrates the limit values for “being good for interpolation” and more
specifically the comparison with the corresponding limit for design, according to the
discussion above. Though not specially concerned with the quality of the interpolat-
ing curves, we briefly comment on this point. Figure 4 illustrates the efficiency of the
sole parameter e for local shape preservation when its tends to infinity. Oppositely,
when e tends to the negative limit provided by (66), we may obtain oscillations or
loops (e.g., Fig. 3, up, middle). This drawback can easily be overcome by increas-
ing the value of e so as to get closer to the corresponding picture in Fig. 4. However,

Fig. 4 Lagrange interpolation at the knots with C1,G2 cubic splines which are C2 everywhere except at
a circle/square according to Example 5.9 with c = f = 1, e = 100 in each case
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Fig. 5 Interpolation beyond design: examples of G1 cubic splines which are C2 everywhere except the
circle/square (see Example 5.9). In all examples f = 1. From left to right: c = 1, e = −5 (design limit
−4); c = 3, e = −9 (design limit −8); c = 9, e = −21 (design limit −20)

if ever we are interested in keeping the general shape, it is alternatively possible to
modify the three parameters c, e, f at the same time. We can indeed change the cur-
vature in a predictable way by increasing/decreasing the value of c, while remaining
in the “beyond design” context. Examples are given in Fig. 5: at a circle/square the
splines are no longer C1, but G1.

Remark 5.10 Let S be any space of geometrically continuous cubic splines in a situa-
tion “interpolation beyond design”, such as illustrated in Figs. 3 and 5. Then, S being
good for interpolation, it possesses B-spline-like bases, and so does any S

� obtained
from S by knot insertion. By contrast, since S is not good for design, Theorem 4.4
ensures that S does not possess a B-spline basis. Since S contains the constants, this
means that the expansion of the function 1I in any given B-spline-like basis of S
possesses at least one non-positive coefficient.

6 Concluding remarks

1– This work has enabled us to identify the whole class of spline spaces which can
be used for solving appropriate Hermite interpolation problems within the largest
possible context of PW-spline spaces on a given ([a, b];T). It is the class of all spline
spaces based on ECP-spaces on ([a, b];T). The foundations of this work was the
previously obtained description of the whole class of spline spaces which can be used
for design within the same context [27].

Our main concern was to establish the crucial links existing between spline Her-
mite interpolation and spline design. As announced in Theorem 1.2, differentiation/
integration transforms “good for design” into “good for interpolation” and vice versa,
while decreasing/increasing the dimension of the section-spaces by one. From the
more complete Theorems 4.3 and 3.5, we can additionally say that multiplication by a
piecewise weight function also transform “good for design” into the weaker property
“good for interpolation” and vice versa. Denoting byDn([a, b];T) into In([a, b];T)

the classes of all PW- (or PEC-) spline spaces which are good for respectively design
and interpolation, we can symbolically summarize this as follows:

Dn+1([a, b];T) =
∫

In([a, b];T), In([a, b];T) =
⋃

∈PCn+([a,b];T)

Dn([a, b];T).
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In other words, piecewise generalised derivatives constitute the fundamental tools
ensuring the passage from spline interpolation to spline design and conversely.

2– Theorem 1.2 was already announced in the note [13]. As briefly indicated in
[13], the proof of its implication (i) ⇒ (ii) which was initially planned consisted in
the two main points listed below:

– Firstly, in all given PW-spline spaces good for design, the expansions of the B-
spline bases in the new B-spline bases obtained after insertion of knots all have
exactly the same structure. This structure is a clear consequence of the properties
of blossoms, mainly of their pseudoaffinity.

– Secondly, the geometric proof of the positivity of all minors of polynomial col-
location B-spline matrices under SW-conditions provided in [5], with a view
to spline interpolation, based on knot insertion, depends only on the previous
structure.

Applied to a PW-spline space S assumed to be good for design, the proof carried
out in [5] should have enabled us to demonstrate that, if, after knot insertion, we
obtain a PW-spline spaceDS

� good for interpolation, then the initial PW-spline space
DS itself is good for interpolation. The conclusion would then have been achieved
via Example 4.2. Unfortunately, a very careful checking showed that the proof in
question in [5] contained a very small mistake in the set of values over which an index
is ranging, difficult or even impossible to rectify. Fortunately, the characterisation of
all spline spaces good for design obtained in [27] enabled us to replace this incorrect
expected proof of Theorem 1.2 by a correct one, based on totally different arguments.
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