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Abstract Numerical methods are considered for singularly perturbed quasilinear
problems having interior-shock solutions. It is shown that the direct discretization
on a layer-adapted mesh is ineffective for these problems. A special method is pro-
posed for the case when the solution is monotonic: the problem is transformed by
interchanging the dependent and independent variables, and it is then discretized on a
uniformmesh. The method is analyzed both theoretically and numerically. It is shown
that it can be effective, but that it is not entirely without problems. An approach for
improving the method is suggested.
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1 Introduction

We consider the problem of finding a C2[0, 1]-solution to the singularly perturbed
boundary-value problem

− ε
d2u

dx2
− b(u)

du

dx
+ c(u) = 0, x ∈ (0, 1), u(0) = A, u(1) = B, (1)

where ε is a small positive parameter, b and c are sufficiently smooth functions, and
A and B are given constants. It is assumed throughout the paper that the following
condition is satisfied:

d

du
c(u) ≥ c∗ > 0, u ∈ R. (2)

The condition guarantees that the problem has a unique solution, [11].
We are exclusively interested here in the case when the solution, which we denote

by uε, is strictly monotonically increasing. Throughout the paper we assume that

u′
ε(x) > 0, x ∈ [0, 1], (3)

and, necessarily, that A < B. According to [12, Lemma 2.1], (3) holds true if in
addition to (2) we have

c(0) = 0, A < 0 < B. (4)

The problem (1)–(2) is a challenging problem to solve numerically when uε has
one or more interior layers. This happens under certain conditions (see [7, 12] for
details) and the interior layers are located around the points pε such that b(uε(pε)) =
0. The exact value of pε is not known in general, but when ε → 0, pε approaches
the point x∗, where the solution of the corresponding reduced problem (problem (1)
with ε = 0) is discontinuous (has a shock). Points x∗ can be determined, [7, 12].

Not even the numerical methods specialized for singular perturbation problems
can resolve the interior layer for problems of type (1). This is because the corre-
sponding interior layer of the discrete problem is shifted from the position where the
layer of uε is located. An analogous situation can be observed in the shifted posi-
tion of the soliton when the Korteweg-de Vries equation is solved numerically, [6].
Therefore, ε-uniform pointwise accuracy is very hard to achieve. The special layer-
adapted meshes, like Shishkin’s, are of no help here. This is why we want to explore
here another, very unique, approach which utilizes the fact that uε is monotonically
increasing. We call this approach the “inversion method” because we interchange the
variables x and u in (1). This results in the “inverted problem,”

ε

(
1

x′

)′
− c(u)x′ + b(u) = 0, u ∈ (A, B), x(A) = 0, x(B) = 1, (5)

where ′ = d/du. Let xε be the solution of (5). It may happen that xε has no layers
and then it suffices to discretize (5) on a uniform mesh.

Because of the difficulties mentioned above, ε-uniform numerical methods are
often constructed for problems whose solution only simulates the interior-shock
behavior. For instance, a linear problem of this kind is considered in [17] and a non-
linear one is analyzed in [5]. In these modifications of (1), the position of the interior
layer is known in advance and is fixed in the sense of not depending on the numerical
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solution. Another special case of (1) treated numerically is the boundary-layer case,
in which b(0) = 0 and u(0) = 0, [16, 24, 27, 28].

The general case, but with b(u) = u, is considered in [15, 25]. The analysis is
simpler when b(u) = u because there is no more than one interior layer. The cor-
responding two-dimensional problem is dealt with in [21]. The three papers have in
common that they analyze the solution of the problem (1) by considering its behav-
ior separately on the left and right sides of the layer. The error of the approximate
solution obtained in [25] contains an ln(1/ε)-factor, so strictly speaking, this method
is not uniform in ε. The analysis in [15] produces an error estimate which includes a
O(|pε −q|/ε)-term, where q is an approximate location of the interior layer (q = x∗
is used in the numerical experiments there). This shows how sensitive the direct dis-
cretization is with respect to our ability to pinpoint where the interior layer is located.
An intricate algorithm for capturing the location of the layer is proposed by Shishkin
in [21]. It involves O(N3/2) operations, where N is the number of mesh steps in
each spatial direction, to obtain ε-uniform accuracy of the numerical solution of the
order O(N−1/5 ln1/2 N). In [22], Shishkin analyzes an analogous parabolic problem
using the same approach. Some numerical experiments with Shishkin’s method for
the parabolic problem are provided in [18].

As opposed to the approaches described above, the inversion method only requires
assumptions (2) and (3), and it does not need a special procedure for locating the
layer(s). In Section 3, we introduce a discretization scheme for the inverted problem
(5) and we prove under these general assumptions that the discrete problem has a
unique monotonically increasing solution. Convergence uniform in ε is not proved;
it is analyzed through numerical experiments in Section 4. We only consider test
problems with solutions which have exactly one layer. The simplest problem of this
kind is the Lagerstrom-Cole model problem ([8, p. 56], [9, p. 86], [14, p. 167]),

− ε
d2u

dx2
− u

du

dx
+ u = 0, x ∈ (0, 1), u(0) = A, u(1) = B, (6)

with appropriate conditions on A and B. Whereas the numerical results for (6) are
mostly satisfactory, a slight shift in the position of the layer is still present when the
method is applied to more complicated problems. In Section 5, we propose a method
of improving the results, which is based on the value of x∗, but in a way that is
different from those used in [15, 25].

We start off by using (6) in Section 2 to illustrate numerically that the direct dis-
cretization cannot resolve the interior layer effectively, and we conclude the paper by
offering some final remarks in Section 6.

2 The inadequacy of the direct discretization

Problems of type (1) are usually solved numerically by discretizing the corresponding
conservation form,

− ε
d2u

dx2
− d

dx
a(u) + c(u) = 0, x ∈ (0, 1), u(0) = A, u(1) = B, (7)
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where

a(u) =
∫ u

0
b(t)dt.

The Engquist-Osher scheme [19] is one of the most often used schemes for solving
(7) numerically. For its construction, we need the functions

a±(u) =
∫ u

0
b±(t)dt, b+ = 1

2
(b + |b|), and b− = 1

2
(b − |b|). (8)

Consider the discretization mesh with points 0 = x0 < x1 < x2 < · · · < xN−1 <

xN = 1 and let ui be the ith component of the numerical solution; ui ≈ uε(xi). Let
also hi = xi − xi−1, i = 1, 2, . . . , N , and �i = (hi + hi+1)/2, i = 1, 2, . . . , N − 1.
The Engquist-Osher discretization of (7) is

− εD′′ui − D−a−(ui) − D+a+(ui) + c(ui) = 0, i = 1, 2, . . . , N − 1, (9)

where u0 := A, uN := B, and

D′′ui := 1

�i

(
ui+1 − ui

hi+1
− ui − ui−1

hi

)
,

D−ui := ui − ui−1

�i

, D+ui := ui+1 − ui

�i

.

The scheme is an upwind scheme for quasilinear problems and it is stable uniformly
in ε, [12, 19]. On the uniform mesh, the upwind scheme cannot produce ε-uniform
numerical results even for linear problems, let alone quasilinear ones. However,
whereas special, layer-adapted meshes (like those of Bakhvalov or Shishkin types,
[10, 20]) enable ε-uniform convergence for linear and boundary-layer quasilinear
problems, such meshes do not work well for quasilinear problems with interior layers.
We demonstrate this below.

We tested the direct discretization on the Lagerstrom-Cole problem (6) under the
conditions that guarantee the presence of a unique shock at x∗ = (1 − A − B)/2.
These conditions are B − A > 1 and B, −A ∈ [0, 1], and the reduced solution is

ur =
{

x + A if 0 ≤ x < x∗,
x − 1 + B if x∗ < x ≤ 1,

see [7–9, 12, 14]. It is shown in [12] that the Engquist-Osher scheme, when applied
to the reduced problem, yields a numerical solution which approximates ur with
O(h)-accuracy at all mesh points except for the two points surrounding the point x∗.

Because (4) is satisfied, the solution uε is monotonically increasing and there is a
unique point pε such that b(uε(pε)) = 0; in this case uε(pε) = 0. The interior layer is
located around pε, but since this point is not known, we used x∗ as its approximation.
We did the same in the numerical experiments of Section 4.

We solved the discrete problem (9) both on a uniform mesh and on a Shishkin
mesh dense around x∗, which is defined as follows. Let

τ = min {η, 2ε lnN} , η = 1

2
min{x∗, 1 − x∗}.

The mesh consists of three parts: a fine uniform mesh with N/2 mesh steps in the
interval [x∗ − τ, x∗ + τ ] and two coarse uniform meshes, each with N/4 mesh steps,
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one in the interval [0, x∗ − τ ] and another in [x∗ + τ, 1]. All numerical experiments
presented here are for ε = 10−6 and N = 64.

The nonlinear system of the discrete problem was solved by Newton’s method
with the initial guess formed by the values on the straight line between the points
(0, A) and (1, B). The iterations were stopped when the maximum norm of the differ-
ence between two successive iterations dropped below the user-prescribed tolerance
of 10−9.

Figure 1 shows the graph of the numerical solution in the case when A = − 1
2 and

B = 1, which gives x∗ = 1
4 . It is easily observed that the layer is not resolved well.

The numerical solution has its own layer, which is in this case shifted to the left of x∗.
This is what Herman and Knickerbocker [6] call a numerically induced phase shift in
the position of the soliton, occurring when the Korteweg-de Vries equation is solved
by the Zabusky-Kruskal scheme. In our case, the numerically induced shift places the
layer where the mesh is not dense, and the fine mesh, around x∗ = 1

4 , gives a cluster
of 33 points above the right branch of the reduced solution ur , see Fig. 2. This is the
inadequacy of the Shishkin mesh (or any “layer-adapted” mesh) for interior-shock
problems. The results are in fact even worse than what we can get using the uniform
mesh (see Fig. 3), which, of course, cannot resolve the layer either.

Satisfactory results can only be obtained when both continuous and numerical
solutions are centrally symmetric with respect to the point ( 12 , 0), like when −A =
B = 1, giving x∗ = 1

2 . Figure 4 shows this situation and illustrates what is meant by
a “well-resolved layer.” This is in a striking contrast to Fig. 1.

3 The discretization of the inverted problem

Recall that A < B. Let �N be the discretization mesh with points uN
i = ui =

A + ih, i = 0, 1, . . . , N , where h = (B − A)/N . By xN , yN , etc., we denote mesh
functions on�N \{A, B}. Any mesh function xN is identified with the corresponding
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Reduced Solution

Fig. 1 Numerical solution of Eq. 6 with A = − 1
2 , B = 1, discretized on the Shishkin mesh
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Fig. 2 A zoomed-in portion of the numerical solution presented in Fig. 1

R
N−1 column-vector, xN = [x1, x2, . . . , xN−1]T. For simplicity, the superscript N

is removed from mesh points and mesh-function components unless the value of
N needs to be emphasized. We formally set x0 := 0 and xN := 1. Let eN :=
[1, 1, . . . , 1]T. We are particularly interested in the monotonically increasing mesh
functions; they belong to the set

XN :=
{
xN | 0 < x1 < x2 < · · · < xN−1 < 1

}
.

We shall also use

X̄N :=
{
xN | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN−1 ≤ 1

}
.
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Fig. 3 Numerical solution of Eq. 6 with A = − 1
2 , B = 1, discretized on a uniform mesh
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Fig. 4 Numerical solution of Eq. 6 with A = −1, B = 1, discretized on the Shishkin mesh

Let �+xi = xi+1 − xi and �−xi = �+xi−1 = xi − xi−1, and define the norms

∥∥xN
∥∥∞ = max

1≤i≤N−1

∣∣xi

∣∣ and
∥∥xN

∥∥h

1 = h
∥∥xN

∥∥
1, where

∥∥xN
∥∥
1 =

N−1∑
i=1

∣∣xi

∣∣.
The matrix norm induced by the vector norm ‖ ·‖1 (or ‖ ·‖h

1) is also denoted by ‖ ·‖1.
For any C[A, B]-function g, we use gN to indicate the discretization of g on

�N\{A, B}. In particular, xN
ε is the discretization on�N\{A, B} of the exact solution

xε to the problem (5). We simply write gi for g(ui). Let gi±1/2 = g(ui ± h/2). We
also write g± in the sense of b± in (8).

We discretize the inverted problem (5) on �N as follows:

T Nxi := ε

(
1

�+xi

− 1

�−xi

)
− D′[c]xi = −b̂i , (10)

i = 1, 2, . . . , N − 1,

where

D′[c]xi := 1 − si

2
· ci−1/2

h
�−xi + 1 + si

2
· ci+1/2

h
�+xi

and

b̂i = 1 − si

2
bi−1/2 + 1 + si

2
bi+1/2

with

si = sign ci =
⎧⎨
⎩

1 if ci > 0,
0 if ci = 0,

−1 if ci < 0.

The above scheme for the c(u)x′-term is the second-order midpoint upwind scheme.
If ci > 0, the scheme reduces to

D′[c]xi = ci+1/2
xi+1 − xi

h
,
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which approximates (cx′)i+1/2 with second-order accuracy. Note that then ci+1/2 >

0 because of (2). On the other hand, if ci < 0, then ci−1/2 < 0 and

D′[c]xi = ci−1/2
xi − xi−1

h

is a second-order approximation of (cx′)i−1/2. If ci = 0 (which because of (2) can-
not happen more than once), D′[c] is a transition scheme which averages the above
midpoint upwind schemes. The way D′[c] changes is accompanied with the corre-
sponding changes in b̂i . This means that the reduced problem outside the layer is
solved with second-order accuracy.

The main result of the paper follows.

Theorem 1 Assume the condition (2). Then, the following is true:

(a) The discrete problem (10) has a solution x̃N ∈ XN .
(b) The discrete operator T N is ε-uniformly stable in XN . More precisely, the

stability inequality
∥∥xN − yN

∥∥h

1 ≤ 2

c∗
∥∥T NxN − T NyN

∥∥h

1

is satisfied for any two mesh functions xN, yN ∈ XN . Therefore, the solution
x̃N is unique in XN .

(c) For some positive constant K ,∥∥x̃N − xN
ε

∥∥h

1 ≤ Kh,

where K may depend on ε, but is independent of h.

Proof (a) The first part of the theorem is proved in several steps.

1◦ We first consider an auxiliary linear system, defined using a fixed vector yN ∈ X̄N

and a positive constant σ :

LN [yN ]xi = σyi, i = 1, 2, . . . , N − 1, (11)

where the linear operator LN [yN ] is given by
LN [yN ]xi := ε

(
�−xi − �+xi

) − �−yi�
+yiD

′[c]xi + D[b, yN ]xi + σxi

and
D[b, yN ]xi := b̂+

i �+yi�
−xi + b̂−

i �−yi�
+xi.

Let M = [mij ] be the matrix of the system (11). It is a tridiagonal matrix and its
entries satisfy

mi,i−1 = −ε + �−yi�
+yi

c−
i−1

h
− b̂+

i �+yi < 0, i = 2, 3, . . . , N − 1,

mi,i+1 = −ε − �−yi�
+yi

c+
i+1

h
+ b̂−

i �−yi < 0, i = 1, 2, . . . , N − 2,

and finally, upon formally setting m10 := 0 and mN−1,N := 0,

mii ≥ σ − mi,i−1 − mi,i+1, i = 1, 2, . . . , N − 1,
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where the equality holds true for i = 2, 3, . . . , N − 2. Therefore, M is an L-matrix
satisfying MeN ≥ σeN . This implies that M is an inverse-monotone matrix. Equiv-
alently, LN [yN ] is an inverse-monotone operator for which the following stability
inequality holds true for any two vectors vN and wN :

∥∥vN − wN
∥∥∞ ≤ 1

σ

∥∥LN [yN ](vN − wN
)∥∥∞. (12)

Because of this, the system (11) has a unique solution, which we denote by xN(yN).
2◦ We now show that xN(yN) is in X̄N . First, 0 ≤ xi(y

N) ≤ 1, i = 1, 2, . . . , N −
1, because LN [yN ] is inverse monotone and we have that

LN [yN ]0 = 0 ≤ σyi = LN [yN ]xi(y
N) ≤ σ = LN [yN ]1, i = 1, 2, . . . , N − 1,

(keep in mind that x0(yN) = y0 = 0 and xN(yN) = yN = 1). Then, we consider the
differences di := �+xi(y

N) and we want to show that di ≥ 0, i = 0, 1, . . . , N − 1.
We already have that

d0 = x1(y
N) ≥ 0 and dN−1 = 1 − xN−1(y

N) ≥ 0. (13)

The differences di satisfy the system

�Ndi = σ(yi+1 − yi), i = 1, 2, . . . , N − 2, (14)

where

�Ndi := LN [yN ]xi+1(y
N) − LN [yN ]xi(y

N)

= mi,i−1di−1 + (σ − mi+1,i − mi,i+1)di + mi+1,i+2di+1.

Let P = [pij ] ∈ R
N−2,N−2 be the matrix of the system (14). It is obvious that P

is an L-matrix. We also have
(
P T eN

)
i
= pi−1,i + pii + pi+1,i = σ, i = 2, 3, . . . , N − 3,

and moreover, (
P T eN

)
1 = p11 + p21 = σ − m12 > σ

and (
P T eN

)
N−2 = pN−2,N−2 + pN−3,N−2 = σ − mN−1,N−2 > σ.

This means that P T eN ≥ σeN and, therefore, P T is an inverse-monotone matrix, and
so is P . Thus, the operator �N is also inverse monotone. Then, since (14) yields that
�Ndi ≥ 0 = �N0 and since (13) holds true, it follows that di ≥ 0, i.e., xN(yN) ∈
X̄N .

3◦ We can now define the mapping G, G : X̄N → X̄N ,

GyN = xN, where xN = xN(yN), that is, L[yN ]xN = σyN .
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To show that G is continuous, consider Gyj,N = xj,N , j = 1, 2. We use (12) to get∥∥Gy1,N − Gy2,N
∥∥∞ = ∥∥x1,N − x2,N

∥∥∞

≤ 1

σ

∥∥LN [y1,N ]x1,N − LN [y1,N ]x2,N
∥∥∞

≤ 1

σ

∥∥σy1,N − σy2,N
∥∥∞

+ 1

σ

∥∥LN [y2,N ]x2,N − LN [y1,N ]x2,N
∥∥∞

≤ κ
∥∥y1,N − y2,N

∥∥∞
with some positive constant κ , κ > 1. This constant may depend on ε and h, but
that is irrelevant here. We have that G is continuous and we can use the Brouwer
fixed-point theorem to conclude that G has a fixed point x̃N ∈ X̄N . The fixed point
satisfies LN [x̃N ]x̃N = σ x̃N and this system reduces to

ε
(
�−x̃i − �+x̃i

) − �−x̃i�
+x̃i

(
D′[c]x̃i − b̂i

) = 0, i = 1, 2, . . . , N − 1. (15)

4◦ We now show that x̃N ∈ XN . Suppose x̃j−1 = x̃j for some j , i.e., �−x̃j = 0.
Then the equations in (15) imply that x̃j = x̃j+1 and x̃j−2 = x̃j−1 and the conditions
x̃0 = 0 and x̃N = 1 cannot be satisfied. Since x̃N ∈ XN , the system (15) can be
rewritten as

T N x̃i = −b̂i , i = 1, 2, . . . N − 1.

This completes the proof of part (a) of the theorem.

(b) For any xN ∈ XN , let F = [fij ] be the Fréchet derivative at xN of the operator
T N . We have that F is a tridiagonal matrix with the entries

fi,i−1 = − ε(
�−xi

)2 + 1 − si

2
· ci−1/2

h
< 0, i = 2, 3, . . . , N − 1,

fii = ε(
�+xi

)2 + ε(
�−xi

)2 − 1 − si

2
· ci−1/2

h
+ 1 + si

2
· ci+1/2

h
> 0,

i = 1, 2, . . . , N − 1,

fi,i+1 = − ε(
�+xi

)2 − 1 + si

2
· ci+1/2

h
< 0, i = 1, 2, . . . , N − 2.

Our next goal is to show that

FT eN ≥ c∗
2

eN , (16)

which implies the desired stability inequality. For i = 2, 3, . . . , N − 2, we have

(
FT eN

)
i
= fi−1,i + fii + fi+1,i = 2 + si − si+1

2
· ci+1/2

h
+ si − si−1 − 2

2
· ci−1/2

h
.
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If si−1 ≥ 0, then si = si+1 = 1 and ci−1/2 > 0, and it follows that

(
FT eN

)
i
≥ ci+1/2

h
− ci−1/2

h
≥ c∗.

The same inequality holds true for si+1 ≤ 0. If si−1 = −1 and si+1 = 1, then si can
have any of the three possible values. For instance, if si = −1, we have

(
FT eN

)
i
= −ci−1/2

h
>

ci

h
− ci−1/2

h
≥ c∗

2
.

The remaining cases, si = 0 and si = 1, can be treated in the same way. It can also
be shown that (

FT eN
)
1 = f11 + f21 >

c∗
2

,

as well as (
FT eN

)
N−1 = fN−2,N−1 + fN−1,N−1 >

c∗
2

.

Therefore, (16) is satisfied.

(c) This result follows from the stability inequality in part (b) and the fact that T N is
an Oε(h) scheme for the inverted continuous problem (5).

Remark 1 Wecomment here on the different techniques used in the proof of Theorem 1.
The use of the Brouwer fixed theorem to prove the existence of a solution to a

discretization of a quasilinear singularly perturbed boundary-value problem is due
to Zadorin [28]. The problem considered there is of a non-turning-point type and
the scheme is an exponentially fitted one. This technique is used in [23] for direct
discretizations of quasilinear problems with monotonic solutions. It is adapted here to
the inverted problem, particularly in the way the discrete operator LN is constructed.
The proof of part (a) 2◦ uses the same technique as in [26] and part (a) 4◦ is like in
[12, 19].

Remark 2 The scheme (10) is not the only one for which Theorem 1 can be proved.
In general, the inverted problem (5) has to be discretized in its original form, without
switching to the conservation form. This is because the corresponding linear operator
LN in step (a) 1◦ of the proof of Theorem 1 has to be stable in the maximum norm.
On the other hand, the scheme should also be stable in norm ‖ · ‖h

1 because of part
(b) of Theorem 1.

The regular upwind scheme for discretizing (5) is like (10), but with

D̄′[c]xi := c−
i

h
�−xi + c+

i

h
�+xi

instead ofD′[c]xi and bi instead of b̂i . However, Theorem 1 cannot be proved for this
scheme. The difficulty is in part (b) of the proof and it occurs at the columns j − 1
and j of the Fréchet derivative of the discrete operator, where j is such an index that
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cj−1 < 0 ≤ cj . This can be rectified by adding a O(h2)-term to the scheme at the
points uj−1 and uj :

T̄ Nxi := ε

(
1

�+xi

− 1

�−xi

)
− D̄′[c]xi − γi

(
�+xi − �−xi

) = −bi,

i = 1, 2, . . . N − 1,

where

γi =
{

γ if i = j − 1, j ,

0 otherwise,

with γ a fixed constant in (0, c∗). (If cj = 0, γj−1 may be also set equal to 0.)
Another possible modification of the regular upwind scheme, which satisfies

Theorem 1, is

T̃ Nxi := ε

(
1

�+xi

− 1

�−xi

)
− D̃′[c]xi = −bi,

i = 1, 2, . . . N − 1,

where

D̃′[c]xi := 1 − si

2
· ci−1

h
�−xi + 1 + si

2
· ci+1

h
�+xi.

The c(u)x′-term can also be discretized using the following scheme:

Ť Nxi := ε

(
1

�+xi

− 1

�−xi

)
− Ď′[c]xi = −bi,

i = 1, 2, . . . N − 1,

where

Ď′[c]xi = 1

2h

[
ci

(
xi+1 − xi−1

) + �
(
�+xi − �−xi

)]
.

and |c(u)| ≤ �, u ∈ [A, B]. This is similar to the Lax-Friedrichs scheme, [19].

Remark 3 Under the conditions of Theorem 1 we have
N−1∑
i=1

∣∣uε(x̃i) − ui

∣∣ ≤ K̃,

where K̃ is a positive constant, which may depend on ε, but is independent of h. This
follows from part (c) of Theorem 1 and the fact that ui = uε(xε(ui)). Therefore,
the values ui approximate those of uε(x̃i) with first-order accuracy in the discrete
L1 norm. It cannot be concluded from here that the inversion method produces ε-
uniform pointwise accuracy. We leave it to numerical experiments to see whether this
can be achieved.

4 Numerical results

We experimented with the scheme (10) and the schemes mentioned in Remark 2. The
scheme (10) produced the most accurate results. We only present these results here.
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All examples satisfy the conditions (2) and (4), so it is guaranteed that uε is strictly
monotonically increasing.

Since Newton’s method works fine for the direct discretization (9), we also con-
sidered it for solving the nonlinear system (10) representing the discretization of the
inverted problem. We wanted to use a general initial guess that can work for all test
problems. The values on the straight line between (A, 0) and (B, 1) represented a
natural choice. However, with this initial iteration, Newton’s method (which is well-
known for its sensitivity to the initial guess) only converged to a monotonic solution
when ε was close to 1. To enable the convergence of Newton’s method for all val-
ues of ε that we considered in our experiments, we applied ε-extrapolation, that is,
we combined Newton’s method with ε-iterations. We experimented with sequences
of ε-values decreasing either arithmetically or geometrically. Although our intention
was not to find a procedure that would require the smallest number of iterations, the
geometric sequence generally performed better in that sense than the arithmetic one
and it is the only sequence we present below.

Let ε∗ ∈ (0, 1] be an ε-value for which we have obtained the solution of the
discrete problem (10) and let ε∗ ∈ (0, ε∗) be the value of ε for which we want to
produce new numerical results. We define a sequence of ε-values,

εi = εi−1
k

√
ε∗
ε∗ , i = 1, 2, . . . , k, ε0 = ε∗,

so that εk = ε∗. All tables of results for the inversion method in this section are cre-
ated by solving first the discrete problem for ε = ε0 = 1 using Newton’s method
with the initial guess created by the straight line between the points corresponding to
the boundary conditions. This numerical solution serves as the initial guess for New-
ton’s method applied to the discrete problem with ε = ε1. The procedure continues
in the same manner, i.e., the numerical solution for ε = εi−1 is the initial guess for
Newton’s method used to solve the discrete problem with ε = εi . All Newton’s itera-
tions xN,m are calculated until ‖xN,m −xN,m−1‖ ≤ TOL, where TOL is a prescribed
tolerance. The result for ε = εk = ε∗ is recorded and used as the initial guess for
the next smaller value of ε in the table. Typical choices in our numerical experiments
were TOL ≤ 10−14 and k = 5.

While it is the inverted problem (5) that is solved numerically, we are more inter-
ested in how accurately the solution uε of the original problem (1) is calculated,
rather than the solution xε of the inverted problem. This is why we want to estimate
the errors

EN
ε := max

1≤i≤N−1

∣∣uε(xi) − ui

∣∣. (17)

We also calculate the numerical order of convergence of the scheme using

OrdN
ε := log2 EN

ε − log2 E2N
ε

and the numerical order of ε-uniform convergence as

OrdN := min
ε

OrdN
ε .

The first test problem is the linear boundary-layer problem

− εu′′ − u′ + u = 0, x ∈ (0, 1), u(0) = −1, u(1) = 1. (18)
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The solution has a layer in the neighborhood of x = 0. Of course, the inversion
method is not created for such simple problems, but the exact solution uε is known
here and we can find the exact values of the error (17). The results are presented in
Table 1. The errors do not increase as ε decreases, which indicates that the method
is ε-uniformly convergent. The values of OrdN are close to 1, as expected from a
first-order scheme. The table also contains the number of iterations, Iterε, defined as

Iterε = max
N

IterNε ,

where IterNε is the total number of Newton iterations for all ε-iterations between two
consecutive ε-values shown in the table. The values of IterNε stabilize as N increases
and change very little for ε ≤ 10−3 (it is known in general that the number of Newton
iterations is independent of N , [1]). The value of Iterε for the greatest ε in any table
includes all iterations from the initial value of ε = 1.

After the above boundary-layer problem, we consider two test problems with solu-
tions that have an interior layer and no other layers. In these problems, b(0) = 0, so
that the value u = 0 corresponds to the x-value where the layer is located.

The first such problem is the Lagerstrom-Cole problem (6) with different values
of A and B that guarantee the presence of an interior layer. In general, when B ≤ 1,
A ≥ −1, and B − A > 1, the shock is at x∗ = (1 − A − B)/2 and the asymptotic
solution can be given as (see [8])

ũε(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x + A if 0 ≤ x < x∗ + 1

θ
ε ln ε,

θ tanh
θ(x − x∗)

2ε
if |x − x∗| ≤ −1

θ
ε ln ε,

x − 1 + B if x∗ − 1

θ
ε ln ε < x ≤ 1,

where

θ = B − A − 1

2
> 0.

For this problem, instead of using (17), we estimate the error by

ẼN
ε := max

1≤i≤N−1

∣∣ũε(xi) − ui

∣∣

Table 1 Errors EN
ε for the linear boundary-layer problem (18)

− log10 ε N = 32 N = 64 N = 128 N = 256 N = 512 Iterε

1 2.04e–02 1.05e–02 5.34e–03 2.69e–03 1.35e–03 49

2 2.54e–02 1.33e–02 6.84e–03 3.47e–03 1.75e–03 47

3 2.70e–02 1.40e–02 7.22e–03 3.69e–03 1.87e–03 44

4 2.72e–02 1.41e–02 7.27e–03 3.73e–03 1.89e–03 40

5 2.73e–02 1.41e–02 7.27e–03 3.73e–03 1.89e–03 40

6 2.73e–02 1.41e-02 7.27e–03 3.74e–03 1.89e–03 40

OrdN 0.95 0.96 0.96 0.98
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Table 2 Errors ẼN
ε for the Lagerstrom-Cole problem (6) with A = −1, B = 1 (x∗ = 1

2 )

− log10 ε N = 32 N = 64 N = 128 N = 256 N = 512 Iterε

5 2.28e–02 1.25e–02 6.57e–03 3.41e–03 1.71e–03 297

6 2.30e–02 1.26e–02 6.66e–03 3.51e–03 1.80e–03 52

7 2.31e–02 1.26e–02 6.67e–03 3.52e–03 1.81e–03 48

8 2.31e–02 1.26e–02 6.67e–03 3.52e–03 1.81e–03 44

9 2.31e–02 1.26e–02 6.67e–03 3.52e–03 1.81e–03 40

Õrd
N

0.87 0.92 0.92 0.96

and the order of convergence by the corresponding Õrd
N

ε and Õrd
N
, calculated

analogously to OrdN
ε and OrdN .

We present the results for two cases of the problem (6). The first case is with
A = −1 and B = 1, when the shock is at x∗ = 1

2 and the solution uε is symmetric
about ( 12 , 0). The other case is A = − 1

2 and B = 1, giving x∗ = 1
4 and an asym-

metric solution. Our numerical experiments revealed that 0 has to be a mesh point;
otherwise, a numerically induced shift is still present and the results are not satisfac-
tory. Therefore, when A = −1 and B = 1, N needs to be even, and when A = − 1

2
and B = 1, N needs to be divisible by 3. As Tables 2 and 4 show, the results behave
similarly to those in Table 1.

The errors in Table 2 can be compared to the errors presented in Table 3, which
result from the direct Engquist-Osher discretization on the Shishkin mesh (see
Section 2; one such numerical solution is shown in Fig. 4). For the values of N con-
sidered in Table 3, the numerical orders of convergence still do not show the influence
of lnN factors, which are typically present in the errors when the Shishkin mesh is
used. We can see from Tables 2 and 3 that the inverse discretization outperforms the
direct one in terms of accuracy.

Of course, when it comes to the Lagerstrom-Cole problem (6) with asymmetric
solution, the inversion method is incomparably better. This can be confirmed by tak-
ing a look of Tables 4 and 5 and the graphs in Figs. 5 and 1. Whereas the errors for
the inversion method in the asymmetric case (Table 4) behave similarly to the errors
in the symmetric case (Table 2), those for the direct method in the asymmetric case
do not even indicate convergence when N increases (Table 5).

If B/(−A) is a rational number, we can find two positive integers N1 and N0 such
that B/(−A) = N1/N0. Then, N = N0 + N1 guarantees that 0 is a mesh point. We

Table 3 Errors ẼN
ε for the

Lagerstrom-Cole problem (6)
with A = −1, B = 1 (x∗ = 1

2 )
solved by the Engquist-Osher
scheme on the Shishkin mesh

− log10 ε N = 32 N = 64 N = 128 N = 256 N = 512

5 4.40e–02 2.28e–02 1.19e–02 6.21e–03 3.26e–03

6 4.39e–02 2.28e–02 1.18e–02 6.11e–03 3.14e–03

7, 8, 9 4.39e–02 2.28e–02 1.18e–02 6.10e–03 3.13e–03

Õrd
N

0.95 0.94 0.94 0.93
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Table 4 Errors ẼN
ε for the Lagerstrom-Cole problem (6) with A = − 1

2 , B = 1 (x∗ = 1
4 )

− log10 ε N = 30 N = 60 N = 120 N = 240 N = 480 Iterε

5 1.58e–02 9.29e–03 4.91e–03 2.53e–03 1.22e–03 329

6 1.62e–02 9.53e–03 5.11e–03 2.70e–03 1.40e–03 61

7 1.63e–02 9.57e–03 5.13e–03 2.72e–03 1.42e–03 55

8 1.63e–02 9.58e–03 5.14e–03 2.73e–03 1.42e–03 50

9 1.63e–02 9.58e–03 5.14e–03 2.73e–03 1.42e–03 45

Õrd
N

0.77 0.90 0.91 0.94

experimented with other asymmetric cases with B/(−A) rational and got results sim-
ilar to the caseA = − 1

2 ,B = 1. However, ifB/(−A) is irrational, there is no uniform
mesh containing 0 as a mesh point and a numerically induced shift occurs. A slightly
nonuniform mesh is needed to make 0 a mesh point when B/(−A) is irrational and it
is possible to construct a nonuniform generalization of the scheme (10) and to prove
for it a result analogous to Theorem 1. We experimented with the Lagerstrom-Cole

problem (6) with A = −
√
2
2 and B = 1, giving x∗ =

√
2
4 . We tried two types of

nonuniform meshes, those that are slightly nonuniform around 0 and those that uni-
form around 0 and become nonuniform away from the layer. Neither approach gave
satisfactory results. We can still report that a good rational approximation of an irra-
tional B/(−A) can produce reasonably accurate results on a uniform mesh, although
the uniformity in ε cannot be entirely preserved as ε decreases. It is also interesting
to point out that in this case greater accuracy cannot be achieved by doubling the pre-
vious values of N0 and N1, but by increasing N0 and N1 so that N1/N0 becomes a
more accurate approximation of B/(−A).

The asymptotic solution does not represent uε well for greater values of ε and this
is why Tables 2–5 only contain results for ε ≤ 10−5. When ε is greater, errors can be
estimated using the double-mesh principle, described, for example, in [4]. We tested
the principle on the direct Engquist-Osher discretization (9) of the Lagerstrom-Cole
problem (6) on the Shishkin mesh, see Section 2. The results correctly indicate first-
order accuracy for the symmetric problem with A = −1, B = 1, and the inadequacy
of the method for the asymmetric problem with A = − 1

2 and B = 1. For the inverse
discretization, the double-mesh principle is applied as follows. Once xN and x2N are
calculated for a particular ε, a piecewise linear interpolant uI,2N is created using the
points

(
x2N
i , u2Ni

)
, i = 0, 1, . . . , 2N . Then, the values of uI,2N(xN

i ) are compared to
uN

i and the following error is found:

EI,N
ε = max

1≤i≤N−1

∣∣∣uN
i − uI,2N(xN

i )

∣∣∣ .

Table 5 Errors ẼN
ε for the

Lagerstrom-Cole problem (6)
with A = − 1

2 , B = 1 (x∗ = 1
4 )

solved by the Engquist-Osher
scheme on the Shishkin mesh

− log10 ε N = 30 N = 60 N = 120 N = 240 N = 480

5 5.03e–01 4.88e–01 4.82e–01 4.81e–01 4.82e-01

6,7,8,9 5.04e–01 4.88e–01 4.82e–01 4.82e–01 4.84e–01
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Fig. 5 Numerical solution of Eq. 6 with A = − 1
2 , B = 1 (x∗ = 1

4 ), ε = 10−6, obtained by the inversion
method with N = 60

Results for the asymmetric Lagerstrom-Cole problem are given in Table 6. The table
also shows the corresponding numerical order of convergence OrdI,N , which is anal-
ogous to OrdN . As N increases, OrdI,N increases as well, but the values are still
well below 1 for these values of N . The errors stabilize when ε → 0, indicating the
uniformity in ε. When compared to Table 4, the errors are smaller, but the orders of
convergence are lower.

The second interior-layer problem is from [12]:

− εu′′ − u

1 + u
u′ + u = 0, x ∈ (0, 1), u(0) = A, u(1) = B. (19)

Table 6 Errors EI,N
ε for the

Lagerstrom-Cole problem (6)
with A = − 1

2 , B = 1 (x∗ = 1
4 )

− log10 ε N = 30 N = 60 N = 120 N = 240

1 1.13e–03 6.18e–04 3.22e–04 1.64e–04

2 3.49e–03 1.98e–03 1.07e–03 5.52e–04

3 4.48e–03 3.12e–03 1.86e–03 1.02e–03

4 5.17e–03 3.36e–03 2.11e–03 1.18e–03

5 5.42e–03 3.53e–03 2.17e–03 1.21e–03

6 5.50e–03 3.58e–03 2.19e–03 1.22e–03

7 5.54e–03 3.60e–03 2.19e–03 1.22e–03

8 5.55e–03 3.60e–03 2.20e–03 1.22e–03

9 5.55e–03 3.60e–03 2.20e–03 1.23e–03

OrdI,N 0.52 0.67 0.84
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The reduced solution is

ur =
{

uL := (A + 1)ex − 1 if 0 ≤ x < x∗,

uR := (B + 1)ex−1 − 1 if x∗ < x ≤ 1,

where the location x∗ of the shock is found from the equation a(uL(x)) = a(uR(x)),

x∗ = ln

(
ln

B + 1

A + 1
− 1

)
− ln

(
B + 1

e
− A − 1

)
.

Like in [12], we take A = − 1
2 and B = 2, which gives x∗ = 0.271282. In this

problem, we again have b(u) = 0 when u = 0 and we make 0 a mesh point by using
N divisible by 5.

The graph of the numerical solution for ε = 10−6 and N = 60, presented in
Fig. 6, looks quite acceptable, but the naked eye cannot detect that the position of
the numerical layer is in fact slightly shifted from x∗. This is shown in Fig. 7. At the
same time, the errors calculated using the double-mesh principle are not satisfactory
for smaller values of ε, see Table 7. These results can be compared to Table 8 which
shows the errors of the direct discretization by the Engquist-Osher scheme on the
Shishkin mesh with the fine part around x∗ = 0.271282. Except for ε = 0.1, the
errors for larger values of ε are smaller when the inversion method is used, but,
generally speaking, both methods produce useless results. The graph obtained by the
direct method is similar to what we have seen for the asymmetric Lagerstrom-Cole
problem (Fig. 1). It is of small consolation that the inversion-method graph looks
better.

To explain the difficulties we encountered when solving (19), we compare the
problem to the Lagerstrom-Cole problem (6). The main difference between the two
problems is that the former has nonlinear reduced solutions uL and uR , as opposed
to the linear uL and uR of (6). This means that the scheme we use is practically exact

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Numerical Solution
Reduced Solution

x
*

Fig. 6 Numerical solution of Eq. 19 with A = − 1
2 , B = 2, ε = 10−6, obtained by the inversion method

with N = 60
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Fig. 7 A zoomed-in portion of the numerical solution presented in Fig. 6

outside the layer when applied to (6), but not when applied to (19). We attribute the
difficulties with (19) to this fact.

5 Improving the results

We cannot be completely satisfied with the results of the inversion method for the
Lagerstrom-Cole problem (6) when B/(−A) is irrational and the results for the
problem (19) are even worse, particularly for smaller values of ε. We now describe
how it is possible to improve these results. Let j = j (N) be such that uj−1 < 0 ≤ uj .
We are interested in the situation when uj > 0. In our experiments with the
Lagerstrom-Cole problem and B/(−A) irrational, we noticed that a slight change in
N (by one more point, for instance) typically causes the corresponding xj values to
be on different sides of x∗. Motivated by this, we consider two numerical solutions,
xN1 and xN2 , where N1 and N2 are different but close. Let

αk = x
Nk

j (Nk)
− x∗, k = 1, 2,

Table 7 Errors EI,N
ε for the

problem (19) with A = − 1
2 ,

B = 2

− log10 ε N = 30 N = 60 N = 120 N = 240

1 1.00e–02 5.26e–03 2.66e–03 1.33e–03

2 7.42e–03 4.39e–03 2.40e–03 1.35e–03

3 4.98e–02 5.98e–03 3.52e–03 1.90e–03

4 5.34e–01 4.89e–02 3.87e–03 5.97e–03

5 7.51e–01 4.79e–01 7.80e–02 7.07e–02

6 7.51e–01 7.50e–01 6.14e–01 5.62e–01

7, 8, 9 7.51e–01 7.50e–01 7.71e–01 7.81e–01
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Table 8 Errors EI,N
ε for the

problem (19) with A = − 1
2 ,

B = 2 solved by the the
Engquist-Osher scheme on the
Shishkin mesh

− log10 ε N = 30 N = 60 N = 120 N = 240

1 5.20e–03 2.81e–03 1.46e–03 7.44e–04

2 2.25e–01 1.11e–01 5.58e–02 2.74e–02

3 5.58e–01 4.21e–01 3.07e–01 2.35e–01

4 6.10e–01 5.80e–01 5.64e–01 5.32e–01

5–9 6.14e–01 5.90e–01 5.80e–01 5.74e–01

with α1α2 < 0. We see that for

α = α2

α2 − α1

we get

αx
N1
j (N1)

+ (1 − α)x
N2
j (N2)

= x∗.
Based on this, we consider the linear combination

xN1,N2 := αxI,N1 + (1 − α)xI,N2 ,

where xI,Nk is the piecewise linear interpolant corresponding to the solution xNk . We
take

xN1,N2(u
N1
i ) = αx

N1
i + (1 − α)xI,N2(u

N1
i ) (20)

as the new numerical solution instead of x
N1
i , i = 1, 2, . . . , N1 − 1. The inequality

α1α2 < 0 is desirable in this construction because it is equivalent to 0 < α < 1,
which itself implies that xN1,N2 remains monotonically increasing.

The value of x∗, which is needed in the above approach, can be found from the
equation a(uL(x)) = a(uR(x)), [12]. This equation does not involve ε and standard
nonlinear solvers may be used to determine x∗ with arbitrary accuracy.

When applying the linear combination (20) to the Lagerstrom-Cole problem, we
used N1 = N and N2 = N + 1, and got α1α2 < 0. The results are presented in
Table 9. They are comparable to those in Tables 2 and 4.

As for the problem (19), we were able to find suitable values of N1 and N2 (those
producing α1α2 < 0) only for smaller values of ε, but this is exactly where the need
for improvement is greatest. We used N1 = N and N2 = N + 1 and obtained the
results presented in Table 10. The errors behave like in the corresponding part of

Table 9 Errors ẼN
ε of the linear

combination (20) for the
Lagerstrom-Cole problem (6)

with A = −
√
2
2 , B = 1

(x∗ =
√
2
4 )

− log10 ε N = 30 N = 60 N = 120 N = 240 N = 480

5 2.93e–02 1.33e–02 7.67e–03 3.37e–03 1.63e–03

6 2.94e–02 1.34e–02 7.83e–03 3.47e–03 1.74e–03

7 2.94e–02 1.35e–02 7.85e–03 3.48e–03 1.75e–03

8 2.94e–02 1.35e–02 7.85e–03 3.48e–03 1.76e–03

9 2.94e–02 1.35e–02 7.85e–03 3.48e–03 1.76e–03

Õrd
N

1.12 0.78 1.17 0.98
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Table 10 Errors EI,N
ε of the

linear combination (20) for the
problem (19) with A = − 1

2 ,
B = 2

− log10 ε N = 30 N = 60 N = 120 N = 240

6 2.38e–02 6.19e–03 4.22e–03 2.20e–03

7 2.39e–02 6.24e–03 4.11e–03 2.25e–03

8 2.39e–02 6.24e–03 4.10e–03 2.27e–03

9 2.39e–02 6.24e–03 4.10e–03 2.27e–03

OrdI,N 1.94 0.55 0.85

Table 6. Regarding the greater values of ε, it should be mentioned that it is question-
able whether the numerical layer should be placed at x∗. The location of the layer
is at the point pε (recall that b(u(pε)) = 0) and x∗ only approximates pε. This
approximation is more accurate for smaller values of ε.

6 Conclusion

In this paper, we have introduced the inversion method, a very special numerical
method for solving one-dimensional quasilinear interior-shock problems (1)–(2) in
the case when they have strictly monotonic solutions. The monotonicity requirement
comes from the main idea of the method, which is to interchange the independent
and dependent variables and then to discretize the problem. For problems (1)–(2),
there exists a convenient sufficient condition, (4), which guarantees that the solution
is strictly monotonically increasing. The class of problems includes the Lagerstrom-
Cole model problem, about which much has been written, [8, 9, 14]. Another
related problem, which arises in applications, is the steady-state Burgers equation.
Although the Burgers equation is of a different type since c ≡ 0, the corresponding
boundary-value problem also has a monotonically increasing solution when A < B,
[14, pp. 12–15]. Of course, it cannot be expected of application problems in general
to satisfy (4), or to have strictly monotonic solutions (cf. the quasilinear application
problems in [3] for instance). Although the scope of the inversion method is limited
to one-dimensional problems with strictly monotonic solutions, we are motivated to
consider it as an alternative to the direct discretization methods, which happen to be
inadequate when applied to quasilinear interior-shock problems. As for the condition
(4), it should be pointed out that it is not required in our analysis of the inversion
method, since only (2) and A < B are needed in the proof of Theorem 1. There-
fore, the main idea of the inversion method applies to any one-dimensional problem
if it is known that the problem has a strictly monotonic solution. We are not aware of
some other simple condition like (4), but this information may come from the phys-
ical meaning of the problem or from preliminary numerical experiments. It should
be kept in mind that any theoretical analysis of the method has to be adjusted to the
specific problem, in the same way as it has been tailored here to problems (1)–(2).

Our numerical results have shown that the inversion method is generally better
than the direct discretization. However, the inversion method is not without prob-
lems of its own. The numerically induced shift in the position of the layer, from
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which the direct method suffers acutely, is still present in all problems solved by the
inversion method, except the simplest Lagerstrom-Cole problem when B/(−A) is
rational. This indicates that some additional information about the continuous prob-
lem needs to be included in the numerical method. We have used the known position
of the shock, x∗, to eliminate the numerically-induced shift and improve the results
obtained by the inversion method. The value of x∗ can be used like in [15, 25], or
to divide the problem into two boundary-shock problems, but we have introduced
here another possibility: our approach is based on an appropriate x∗-dependent linear
combination of two numerical solutions. Whereas this resolves the difficulty with the
Lagerstrom-Cole problem when B/(−A) is irrational, for more complicated prob-
lems, the approach seems to be appropriate only when ε-values are fairly small. This
is because x∗ approximates the exact position of the interior layer better when ε is
smaller.

All this shows that quasilinear interior-shock problems are indeed difficult to solve
numerically.

Acknowledgments Thanks are due to two anonymous reviewers whose comments helped us improve
the paper.
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2. Bohl, E.: Finite Modelle Gewöhnlicher Randwertaufgaben. Teubner, Stuttgart (1981)
3. Chang, K.W., Howes, F.A.: Nonlinear Singular Perturbation Phenomena: Theory and Application

(Applied Mathematical Sciences, vol. 56. Springer, New York (1984)
4. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational

Techniques for Boundary Layers. Chapman & Hall/CRC, Boca Raton (2000)
5. Farrell, P.A., O’Riordan, E., Shishkin, G.I.: A class of singularly perturbed quasilinear differential

equations with interior layers. Math. Comput. 78, 103–127 (2009)
6. Herman, R.L., Knickerbocker, C.J.: Numerically induced phase shift in the KdV soliton. J. Comput.

Phys. 104, 50–55 (1993)
7. Howes, F.A.: Boundary-Interior Layer interactions in nonlinear singular perturbation theory. Mem.

Amer. Math. Soc. 203 (1978)
8. Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics (Applied Mathematical

Sciences, vol. 34). Springer, New York (1980)
9. Lagerstrom, P.A.: Matched Asymptotic Expansions (Applied Mathematical Sciences, vol. 76).

Springer, New York (1988)
10. Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems (Lecture Notes in

Mathematics, vol. 1985). Springer, Berlin, Heidelberg (2010)
11. Lorenz, J.: Stability and monotonicity properties of stiff quasilinear boundary problems. Univ. u

Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 12, 151–175 (1982)
12. Lorenz, J.: Analysis of difference schemes for a stationary shock problem. SIAM J. Numer. Anal. 21,

1038–1053 (1984)
13. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singularly Perturbation

Problems. World Scientific, Singapore (1996)
14. O’Malley, R.E. Jr.: Singular Perturbation Methods for Ordinary Differential Equations (Applied

Mathematical Sciences, vol. 89). Springer, New York (1991)
15. O’Riordan, E., Quinn, J.: Numerical Method for a Nonlinear Singularly Perturbed Interior Layer

Problem. In: Clavero, C., Gracia, J.L., Lisbona, F. (eds.) Proceedings BAIL 2010 (Lecture Notes in
Computational Science and Engineering 81), pp. 187–195. Springer, Berlin, Heidelberg (2011)



Numer Algor (2018) 77:1117–1139 1139

16. O’Riordan, E., Quinn, J.: Parameter-uniform numerical methods for some linear and nonlinear
singularly perturbed convection diffusion boundary turning point problems. BIT 51, 317–337 (2011)

17. O’Riordan, E., Quinn, J.: A singularly perturbed convection diffusion turning point problem with an
interior layer. J. Comp. Meth. Appl. Math. 12, 206–220 (2012)

18. O’Riordan, E., Quinn, J.: Numerical experiments with a Shishkin numerical method for a sin-
gularly perturbed quasilinear parabolic problem with an interior layer. In: Dimov, I., Farago, I.,
Vulkov, L. (eds.) Numerical Analysis and Its Applications: 5th International Conference, NAA 2012,
Lozenetz, Bulgaria, June 15–20, 2012, Revised Selected Papers, (Lecture Notes in Computer Science
8236), pp. 420–427. Springer, Heidelberg (2013)

19. Osher, S.: Nonlinear singular perturbation problems and one sided difference schemes. SIAM J.
Numer. Anal. 18, 129–144 (1981)

20. Roos, H.-G., Stynes, M., Tobiska L.: Numerical Methods for Singularly Perturbed Differential
Equations (Springer Series in Computational Mathematics, 2nd edn, vol. 24). Springer, Berlin (2008)

21. Shishkin, G.I.: Grid approximation of a singularly perturbed quasilinear equation in the presence of a
transition layer. Russian Acad. Sci. Dokl. Math. 47, 83–88 (1993)

22. Shishkin, G.I.: Difference approximation of the Dirichlet problem for a singularly perturbed quasi-
linear parabolic equation in the presence of a transition layer. Russian Acad. Sci. Dokl. Math. 48,
346–352 (1994)
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