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Abstract The main aim of this paper is to propose two semi-implicit Fourier pseu-
dospectral schemes for the solution of generalized time fractional Burgers type
equations, with an analysis of consistency, stability, and convergence. Under some
assumptions, the unconditional stability of the schemes is shown. In implementation
of these schemes, the fast Fourier transform (FFT) can be used efficiently to improve
the computational cost. Various test problems are included to illustrate the results
that we have obtained regarding the proposed schemes. The results of numerical
experiments are compared with analytical solutions and other existing methods in the
literature to show the efficiency of proposed schemes in both accuracy and CPU time.
As numerical solution of fractional stochastic nonlinear partial differential equations
driven by Brownian motions are among current related research interests, we report
the performance of these schemes on stochastic time fractional Burgers equation
as well.
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1 Introduction

In this paper, we study the generalized time fractional Burgers type equations

c
aD

α
t u(x, t) + (u)pux − βuxx + γ uxxxx = f (x, t), (x, t) ∈ �, (1.1)

where � = {(x, t)| xL < x < xR, 0 < t � T }, p > 0, β > 0, γ ≥ 0, 0 < α < 1, the
boundary conditions are periodic as u(xL, t) = u(xR, t), initial condition is denoted
by u0, f (x, t) is a given function, and c

aD
α
t is the Caputo fractional partial derivative

of order α and is defined as follows

c
0D

α
t u(x, t) = 1

�(1 − α)

t∫

0

∂u(x, s)

∂s

ds

(t − s)α
, α ∈ (0, 1), (1.2)

in which �(.) denotes the gamma function. For p = 1 and γ = 0, (1.1) is actually
the time fractional Kuramoto-Sivashinsky (KS) equation, and for p = 1 and γ = 0
it reduces to time fractional Burgers equation.

The fractional Burgers equation is used to describe the physical processes of uni-
directional propagation of weakly nonlinear acoustic waves through a gas-filled pipe
[25]. The fractional derivative results from the cumulative effect of the wall friction
through the boundary layer. The same form can also be found in other models such
as shallow-water waves and waves in bubbly liquids [25, 35, 36]. Moreover, the KS
equation appears in context of long waves on the interface between two viscous flu-
ids, unstable drift waves in plasmas, and flame front instability [24]. This model is a
common nonlinear evolution equation arising in a variety of physical contexts, e.g.,
long waves on thin films, reaction diffusion systems, etc..

In the literature, there are some numerical and semi-analytical methods for the
solution of nonlinear time fractional Burgers and KS equations. Authors of [33] con-
structed the analytical solutions of the fractional KS equation by a new proposed
method via fractional complex transform. The cubic parametric spline functions was
developed for obtaining an approximate solution for the time fractional Burgers equa-
tion in [10]. This equation has been solved by Adomian decomposition method in
[18], Lie group method in [16], variational iteration method in [39], and homotopy
analysis method in [7, 34]. The solutions obtained by the above methods were calcu-
lated in a form of convergent series. Authors of [23] compared the results of general-
ized transformation technique and homotopy perturbation method for the numerical
solution of time fractional Burgers equation. A spectral shifted Legendre colloca-
tion method for both temporal and spatial discretizations of space-time fractional
Burgers equation is given in [3]. Based on the improved generalized exp-function
method, the space-time fractional Burgers and Sharma-Tasso-Olver equations were
studied in [1] and the authors discussed the single-wave, double-wave, three-wave,
and four-wave solutions. Haar wavelet scheme and optimal homotopy asymptotic
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method are presented in [17]. The moving boundary space-time fractional Burger’s
equation is studied in [2] using the fractional Riccati expansion method. Time frac-
tional diffusion equation and time fractional Burgers-Fisher equation are solved in
[13] with Haar wavelet method where fractional derivatives are Caputo derivative.
The quadratic B-spline Galerkin method and finite element method based on the
cubic B-spline collocation approach without any analysis have also been given in
[11, 12] for the time fractional Burgers equation. A linear implicit finite difference
scheme for solving the fractional Burgers equation has been proposed in [25]; their
proposed finite difference method is unconditionally stable and convergent of order
O(τ + h2).

In this paper, we propose two semi-implicit Fourier pseudospectral schemes of
orders O(τ + hm) and O(τ 2−α + hm) for the solution of time fractional general-
ized Burgers equation (1.1). Obviously, order of convergence in one of the proposed
schemes here changes with fractional order α and improves with α → 0+. We dis-
cretize the spatial terms using a Fourier collocation (pseudospectral) method, and
the fractional time derivative is then approximated with an implicit procedure. Then,
the consistency, stability, and convergence of the proposed schemes are discussed.
The order of convergence and the unconditional stability of the schemes, under some
assumptions, are obtained. During the computation, we use the fast Fourier trans-
form to improve the computational cost. We compare the results of our proposed
schemes with the results of [25] in terms of accuracy and CPU time and show the
efficiency and capability of proposed methods. We also examine the efficiency of
proposed schemes for the solution of system of time fractional PDEs with considering
stochastic time fractional Burgers equation with additive noise.

As many readers know, spectral and pseudospectral methods have been developed
for numerical simulation of related differential equations in many fields because of
its high accuracy, especially in sufficiently smooth problems. Obviously, Fourier col-
location method is a natural choice to obtain the optimal spatial accuracy when we
have the periodic boundary condition. There is a wide and varied literature on the
spectral schemes and there has been a significant growth in these fields in the past
two decades, especially for time-dependent nonlinear PDEs. For instance, the analy-
sis of method for 1D conservation laws is given by Tadmor in [31, 32], semi-discrete
viscous Burgers’ equation and Navier-Stokes equations by E [9], Fourier spectral
projection method for Navier-Stokes equations by Guo and Zou [15], and a fully
discrete pseudospectral method for the viscous Burgers, Boussinesq and regularized
long wave equations, by [6, 14, 22].

This article is outlined as follows. In Section 2, we first review the Fourier spectral
and pseudospectral differentiations and then we introduce our two numerical schemes
for the time fractional equation (1.1). In Section 3, the consistency analysis of the
schemes are studied. The stability and convergence analysis of schemes are given in
Sections 4 and 5. In Section 6, the results of numerical experiments are compared
with available analytical solutions and results of a recently reported method. We fur-
ther illustrate numerically the impact of fractional order α and other parameters on
the theoretical features of the schemes already obtained in previous sections.
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2 Some introductory results and the proposed new numerical schemes

Before proposing our numerical schemes, we give here some formulas and prop-
erties of the pseudospectral approximation. Let f (x) ∈ L2(�), � = (0, a), with
Fourier series

f (x) =
∞∑

l=−∞
f̂l e

2πilx/a, f̂l = 1

a

∫

�

f (x)e−2πilx/adx. (2.1)

The truncated series which is defined as the projection of f (x) onto the BN , the space
of trigonometric polynomials in x of degree up to N , is given by

PNf (x) =
N∑

l=−N

f̂l e
2πilx/a. (2.2)

However, to obtain a pseudospectral approximation of the above function at a given
set of points, an interpolation operator IN is introduced. The Fourier interpolation of
a given function f on the uniform numerical grid with (2N + 1 ) points is given as

(INf ) (x) =
N∑

l=−N

(
f̂ N

)
l
e2πilx/a. (2.3)

The pseudospectral coefficients
(
f̂ N

)
l
are computed by imposing interpolation con-

ditions at mentioned equidistant points. Note that to obtain (INf ) (x), we only need
the values of f (x) at a set of suitable grid points. So, for given �, h = a

2N+1 (the step
size of spatial variable), xj = jh, j = 0, 1, ...2N, and fj = f (xj ), considering f
as the discrete vector function containing grid values f (xj ), we will use (INf ) and
(IN f) with the same meaning as (2.3). If f (x) and all its derivatives up to mth order
are continuous and periodic then the convergence of the derivatives of the projection
and interpolation is given by [5]∥∥∥∂kf (x) − ∂kPNf (x)

∥∥∥
L2

�
∥∥∥f (m)

∥∥∥
L2

hm−k, f or 0 � k � m,

∥∥∥∂kf (x) − ∂kINf (x)

∥∥∥
L2

� ‖f ‖Hm hm−k, f or 0 � k � m, m >
1

2
, (2.4)

and

‖f ‖L2 =
(∫

�

f 2(x)dx

)1/2

, ‖f ‖Hm =
⎛
⎝

∫
�

∑
|n|�m

∣∣∣(Dnf (x)
)2∣∣∣ dx

⎞
⎠

1/2

.

For any collocation approximation to the function f (x) at the interpolation point xj

fj = (INf )j =
N∑

l=−N

(
f̂ N

)
l
e2πilxj /a, (2.5)

we can also define discrete differentiation operator DN operating on the vector grid

function f. In application, one may compute the collocation coefficients
(
f̂ N

)
l
via
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FFT, and then multiply them by the true values (given by 2πil
a

) and perform the
inverse FFT. Alternatively, we can view the differentiation operator DN as matrix,
and the above process can be seen as a matrix-vector multiplication [14]. In fact, for
the second and fourth derivatives ∂2x , ∂

4
x , the differentiation matrix can be applied for

multiple times, that is, the vector f is multiplied by D2
N and D4

N respectively.
For periodic vector grid functions f and g, we define the l2 inner product and

norm as

‖f‖2 = √〈f, f〉, with 〈f, g〉 = h

2N∑
j=0

fjgj . (2.6)

Hence, we can write [14]

〈f,DNg〉 = − 〈DN f, g〉 ,
〈
f, D2

Ng
〉
= −〈DN f, DNg〉 ,

〈
f, D4

Ng
〉
=

〈
D2

N f, D2
Ng

〉
.

(2.7)
For positive integer number M , let τ = T

M
be the time step size, i.e., we have

tn = nτ, n = 0, 1, ...,M.

For discretization of time fractional derivative we use the following L1 scheme which
is studied in [8, 19, 20, 26, 37].

Lemma 2.1 Suppose 0 < α < 1 and g(t) ∈ C2[0, tn], then∣∣∣∣∣∣
1

�(1 − α)

tn∫

0

g′(t)
(tn − t)α

dt − τ−α

�(2 − α)

[
a0g(tn)−

n−1∑
k=1

(an−k−1 − an−k)g(tk) − an−1g(t0)

]∣∣∣∣∣∣

� 1

�(2 − α)

[
1 − α

12
+ 22−α

2 − α
− (1 + 2−α)

]
max |g′′(t)|τ 2−α

0�t�tn

,

where ak = (k + 1)1−α − k1−α .

The following lemmas are then needed in analyzing our proposed numerical
schemes.

Lemma 2.2 [37]. If 0 < α < 1 and ak = (k + 1)1−α − k1−α, k = 0, 1, . . ., then

1 = a0 > a1 > . . . > ak → 0 , as k → ∞.

Lemma 2.3 Similar to [14] it can be shown that for any f ∈ BpN (with p an integer)
we have

‖INf ‖Hk � √
p‖f ‖Hk , for any integer k ≥ 0.

Lemma 2.4 (discrete Gronwall’s inequality [30]) Assume that {qn} and {pn} are
nonnegative sequences and the sequence {φn} satisfies

φ0 � g0, φn � g0 +
n−1∑
k=0

pk +
n−1∑
k=0

qkφk, n ≥ 1,
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where g0 ≥ 0. Then the sequence {φn} satisfies

φn �
(

g0 +
n−1∑
k=0

pk

)
exp

(
n−1∑
k=0

qk

)
, n ≥ 1.

Lemma 2.5 Using Taylor series expansion for u(x, t), we have

a) ∂x

(
up+1

)∣∣∣
(x,tn−1)

= ∂x

(
up+1

)∣∣∣
(x,tn)

− τ ∂t x

(
up+1

)∣∣∣
(x,tn)

+ O(τ 2),

b) ∂x

(
up+1

)∣∣∣
(x,t

n− 1
2
)
= 3

2
∂x

(
up+1

)∣∣∣∣
(x,tn−1)

− 1

2
∂x

(
up+1

)∣∣∣
(x,tn−2)

+ O(τ 2).

c) u(x, t
n− 1

2
) = 1

2
(u(x, tn) + u(x, tn−1)) + O(τ 2),

d) u(x, t
n− 1

2
) = 3

4
u(x, tn) + 1

4
u(x, tn−2) + O(τ 2).

2.1 The new schemes

Now, we propose two semi-implicit Fourier pseudospectral schemes for the solution
of time fractional PDE (1.1).

Scheme I:

We first discretize the time fractional derivative using the scheme described in
Lemma 2.1 which is of order O(τ 2−α). Let uk := u(x, tk) and uk be the numerical
vector solution which is evaluated at discrete grid points and in time level k. To
approximate nonlinear term, we can use the first order method presented in [25]
which is as follows

up ∂u

∂x

∣∣∣∣
(x,tn)

� 1

p + 2

[
(un−1)

p
un

x +
(
(un−1)

p
un

)
x

]
. (2.8)

Let un be unknown, then for calculating the Fourier transform of right-hand side of
(2.8), one needs to evaluate convolution of two functions which is expensive. Hence,
we approximate the nonlinear term, using Lemma 2.5 (a), i.e., as

∂x

(
up+1

)∣∣∣
(x,tn)

� ∂x

(
up+1

)∣∣∣
(x,tn−1)

,

and propose the following scheme,

μ

[
a0un−

n−1∑
k=1

(an−k−1−an−k)uk−an−1u0
]
−βD2

Nun+γD4
Nun+ 1

p + 1
DN

(
un−1

)p+1= f n,

(2.9)

where μ = τ−α

�(2−α)
and f n is the vector values of f (x, t) at discrete grid points and

time level tn. We will show that Scheme I is convergent of order O(τ + hm).
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Scheme II:

In scheme I, although the order of time derivative is O(τ 2−α) but this order can
be seriously affected by the approximating order of nonlinear term. Hence, to avoid
this effect and improve the order of scheme in the time-dependent part of equation,
we use Lemma 2.5 (b)-(d) and propose the following scheme,

μ

[
a0

(
un + un−1

2

)
−

n−1∑
k=1

(an−k−1 − an−k)

(
uk + uk−1

2

)
− an−1u0

]

−βD2
N

(
3

4
un + 1

4
un−2

)

+γD4
N

(
3

4
un + 1

4
un−2

)
+ 1

p + 1
DN

(
3

2

(
un−1

)p+1 − 1

2

(
un−2

)p+1
)

=
(
3

4
fn + 1

4
fn−2

)
. (2.10)

We will show that the Scheme II is convergent of order O(τ 2−α + hm).

Remark 2.1 Since scheme II is a three-step method, we first use the Scheme I at first
level to obtain u1 and then employ the Scheme II.

3 Consistency analysis

In this section, by similar idea as in [14, 22], we will analyze the consistency of
proposed schemes for the solution of fractional equation (1.1). In the consistency
analysis, instead of a direct comparison between the numerical solution and the exact
solution, we construct an approximate solution by projecting the exact solution in the
spatial variable onto BN [14]. The consistency analysis shows that in Scheme I, such
an approximate solution satisfies the numerical scheme up to an O(τ ) accuracy in
time and a spectral accuracy in space. We first recall some space functions and norms
which will be used in our analysis as follows:

‖f ‖L2(0,T ;Hr) =
⎛
⎝

T∫

0

‖f ‖2Hr dt

⎞
⎠

1
2

, ‖f ‖L∞(0,T ;Hr) = sup
0�t�T

‖f ‖Hr ,

‖f ‖l2(0,T ;Hr) =
√√√√τ

M∑
k=0

∥∥f k
∥∥2

Hr , ‖f ‖l∞(0,T ;Hr) = max
0�k�M

∥∥∥f k
∥∥∥

Hr
, M =

[
T

τ

]
.

3.1 Analysis of truncation error for UN

Let ue(x, t) be the exact solution of (1.1) and, in view of (2.2), define FN(x, t) =
PNf (x, t),

UN(x, t) = PNue(x, t).
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From (2.4), we have

‖UN − ue‖L∞(0,T ;Hr) � Chm‖ue‖L∞(0,T ;Hm+r ), r � 0, (3.1)

‖FN − f ‖L∞(0,T ;L2) � Chm‖f ‖L∞(0,T ;Hm), (3.2)

∥∥∥∂2x (UN − ue)

∥∥∥
L2

� Chm‖ue‖Hm+2 , (3.3)

∥∥∥∂4x (UN − ue)

∥∥∥
L2

� Chm‖ue‖Hm+4 , (3.4)

where C is a constant which has different values in different occurrences. As

c
0D

α
t UN(x, t) =c

0 Dα
t PNue(x, t) = PN

c
0D

α
t ue(x, t),

we can write ∥∥c
0D

α
t (UN − ue)

∥∥
L2 � Chm

∥∥c
0D

α
t ue

∥∥
Hm. (3.5)

Now, we rewrite the above relations in the discrete norm ‖.‖2 which has been used
in the truncation error derivation. Since ∂2xUN ∈ BN , so IN∂2xUN = ∂2xUN , and
we have

∥∥∥∂2xUN − ∂2xue

∥∥∥
2

=
∥∥∥IN

(
∂2x (UN − ue)

)∥∥∥
L2

�
∥∥∥∂2x (UN − ue)

∥∥∥
L2

+
∥∥∥IN∂2xue − ∂2xue

∥∥∥
L2

,

(3.6)

where ∂2xUN and ∂2xue are vector grid functions of ∂2xUN and ∂2xue respectively. The
second term of (3.6) could be bounded by∥∥∥IN

(
∂2xue

)
− ∂2xue

∥∥∥
L2

� Chm
∥∥∥∂2xue

∥∥∥
Hm

� Chm‖ue‖Hm+2 . (3.7)

Then, from (3.3) and (3.7), we have∥∥∥∂2xUN − ∂2xue

∥∥∥
2
� Chm‖ue‖Hm+2 . (3.8)

In a similar manner, we can write∥∥∥∂4xUN − ∂4xue

∥∥∥
2
� Chm‖ue‖Hm+4, (3.9)

∥∥c
0D

α
t UN −c

0 Dα
t ue

∥∥
2 � Chm

∥∥c
0D

α
t ue

∥∥
Hm. (3.10)

For the nonlinear term, we can write [22]

(ue)
p(ue)x − (UN)p(UN)x = (UN)p(ue − UN)x + [

(ue)
p − (UN)p

]
(ue)x

= (UN)p(ue − UN)x

+(ue)x(ue − UN)

p−1∑
k=0

(ue)
k(UN)p−1−k. (3.11)
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Using the Young and Hölder inequalities
∥∥(UN)p(ue − UN)

∥∥
L2 �

∥∥(UN)p
∥∥

L∞‖(ue − UN)‖L2 ,∥∥∥(ue)
k(UN)p−1−k

∥∥∥
L∞ =

∥∥∥∥
(
ue

)(p−1) k
p−1

(
UN

)(p−1)
(
1− k

p−1

)∥∥∥∥
L∞

� k

p − 1

∥∥∥(ue)
p−1

∥∥∥
L∞ +

(
1 − k

p − 1

) ∥∥∥(UN)p−1
∥∥∥

L∞,

and also 1D Sobolev embedding and (3.11), we obtain

∥∥(ue)
p(ue)x − (UN)p(UN)x

∥∥
L2 � C

(∥∥(UN)p
∥∥

L∞ ‖ue − UN‖H 1+ ‖ue − UN‖L∞

×
[
‖ue‖p−1

L∞ + ‖UN‖p−1
L∞

]
‖ue‖H 1

)

� C‖ue − UN‖H 1 ‖ue‖p

H 1 � Chm‖ue‖Hm+1 ‖ue‖p

H 1 .

(3.12)

Hence, we get

∥∥(ue)
p(ue)x −(UN)p(UN)x

∥∥
2 = 1

p + 1

∥∥∥∂x(ue)
p+1 − ∂x(UN)p+1

∥∥∥
2

= 1

p + 1

∥∥∥IN

(
∂x

[
(ue)

p+1 − (UN)p+1
])∥∥∥

L2

= 1

p + 1

∥∥∥∂x

[
(ue)

p+1 − (UN)p+1
]

− ∂x(ue)
p+1

+IN∂x(ue)
p+1 + ∂x(UN)p+1 − IN∂x(UN)p+1

∥∥∥
L2

� 1

p + 1

(∥∥∥∂x

[
(ue)

p+1 − (UN)p+1
]∥∥∥

L2

+
∥∥∥∂x(ue)

p+1 − IN∂x(ue)
p+1

∥∥∥
L2

+
∥∥∥∂x(UN)p+1 − IN∂x(UN)p+1

∥∥∥
L2

)

� Chm ‖ue‖p

H 1 ‖ue‖Hm+1 . (3.13)

Note that, in (3.13), we used the following relations

∥∥∥∂x(ue)
p+1 − IN∂x(ue)

p+1
∥∥∥

L2
� Chm

∥∥∥∂x(ue)
p+1

∥∥∥
Hm

� Chm ‖ue‖p

H 1 ‖ue‖Hm+1 ,

∥∥∥∂x(UN)p+1 − IN∂x(UN)p+1
∥∥∥

L2
� Chm

∥∥∥∂x(UN)p+1
∥∥∥

Hm
� Chm ‖ue‖p

H 1 ‖ue‖Hm+1 .

Then, using (3.8)–(3.10) and (3.13), we conclude that UN satisfies (1.1) with a
truncation error of spectral accuracy O(hm), i.e.,

c
aD

α
t UN + (UN)p(UN)x − β(UN)xx + γ (UN)xxxx = FN + r0, (3.14)

in which ‖r0‖2 � Chm.
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3.2 Analysis of truncation error in time

Let I be the discrete interpolation operator. For the approximate solution Un
N =

UN(x, tn) define its vector grid function Un = IUn
N as its discrete interpolation.

Theorem 3.1 Suppose the unique periodic solution of (1.1) satisfies the following
regularity assumption

ue ∈ H 2(0, T ; L2) ∩ L∞(0, T ; Hm+1) ∩ H 1(0, T ; H 2).

Then, we have

μ

[
a0Un −

n−1∑
k=1

(an−k−1 − an−k)Uk − an−1U0

]
− βD2

NUn+

γD4
NUn + 1

p + 1
DN

(
Un−1

)p+1 = F n + r n,

(3.15)

in which r n satisfies

‖r‖l2(0,T ;l2) =
(

τ

M∑
k=0

∥∥∥rk
∥∥∥2
2

)1/2

� C(τ + hm),

and F is discrete interpolation of FN .

Proof Let us consider the operator A as

A(Un) = μ

[
a0Un −

n−1∑
k=1

(an−k−1 − an−k)Uk − an−1U0

]
.

From Lemma 2.1, we have

A
(
Un

N

) =c
a Dt

α

(
Un

N

) + rn
1 (.),

in which∥∥rn
1

∥∥
L2

≤ Cτ 2−α‖UN(.)‖H 2(0,T ;L2)
≤ Cτ 2−α‖ue‖H 2(0,T ;L2). (3.16)

Therefore,∥∥A(Un) − I
(
c
aD

t
α(Un

N)
)∥∥

2 = ∥∥A(Un
N) −c

a Dt
α(Un

N)
∥∥

L2
� Cτ 2−α‖ue‖H 2(0,T ;L2).

Note that
∥∥Fn − I Fn

N

∥∥
2 = 0, and since Un

N ∈ BN we have
∥∥∥D2

NUn − I(∂2xUn
N)

∥∥∥
2

= 0,

∥∥∥D4
NUn − I(∂4xUn

N)

∥∥∥
2

= 0.
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For the nonlinear term, we can write

∥∥∥∥DN

(
Un−1

)p+1 − I ∂x

((
Un−1

N

)p+1
)∥∥∥∥

2
=

∥∥∥∥∂xIN

(
Un−1

N

)p+1− IN∂x

(
Un−1

N

)p+1
∥∥∥∥

L2

�
∥∥∥∥∂xIN

(
Un−1

N

)p+1 − ∂x

(
Un−1

N

)p+1
∥∥∥∥

L2

+
∥∥∥∥∂x

(
Un−1

N

)p+1 − IN∂x

(
Un−1

N

)p+1
∥∥∥∥

L2

�
∥∥∥∥IN

(
Un−1

N

)p+1 −
(
Un−1

N

)p+1
∥∥∥∥

H 1

+Chm

∥∥∥∥∂x

(
Un−1

N

)p+1
∥∥∥∥

Hm

� Chm

∥∥∥∥
(
Un−1

N

)p+1
∥∥∥∥

Hm+1

� Chm ‖UN‖p+1
L∞(0,T ;Hm+1)

. (3.17)

Also from Lemma 2.5, we have

1

p + 1
∂x

((
Un−1

N

)p+1
)

− (
Un

N

)p
∂xU

n
N = rn

2 (.) = −τ
(
∂tx

(
Un

N

)p+1
)

+ O(τ 2),

so

∥∥∥∥I
(

1

p + 1
∂x

((
Un−1

N

)p+1
)

− (
Un

N

)p
∂xU

n
N

)∥∥∥∥
2
� Cτ

∥∥∥IN

(
∂tx

(
Un

N

)p+1
)∥∥∥

L2

� Cτ

∥∥∥∂t

(
Un

N

)p+1
∥∥∥

H 2

� Cτ ‖UN‖p+1
H 1(0,T ;H 2)

� Cτ ‖ue‖p+1
H 1(0,T ;H 2)

,

(3.18)

which gives

‖r2‖l2(0,T ;l2) � Cτ ‖ue‖p+1
H 1(0,T ;H 2)

. (3.19)

Then, from the analysis of truncation error of UN in (3.14) and r = r0 + r1 + r2, the
proof is completed.

Theorem 3.2 Suppose the unique periodic solution of (1.1) satisfies the following
regularity assumption

ue ∈ H 2(0, T ; H 1) ∩ L∞(0, T ; Hm+1) ∩ H 1(0, T ; H 2).
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Then, for the Scheme II, we have

μ

[
a0

(
Un + Un−1

2

)
−

n−1∑
k=1

(an−k−1 − an−k)

(
Uk + Uk−1

2

)
− an−1U0

]

−βD2
N

(
3

4
Un + 1

4
Un−2

)
+ γD4

N

(
3

4
Un + 1

4
Un−2

)

+ 1

p + 1
DN

(
3

2

(
Un−1

)p+1 − 1

2

(
Un−2

)p+1
)

=
(
3

4
Fn + 1

4
Fn−2

)
+ rn− 1

2 ,

(3.20)

in which

‖r‖l2(0,T ;l2) � C(τ 2−α + hm).

Proof The proof can be followed in a similar manner as previous Theorem.

4 Stability and convergence analysis of Scheme I

Let un be the vector of grid values of numerical solution at nth time level, and en
i =

Un
i − un

i be the point-wise error function at ith grid. Then, with the interpolation
formula given by (2.3) in view of (2.5), i.e., un

N = INun and en
N = INen, the

continuous solution function un
N ∈ BN , and continuous error function en

N ∈ BN are
obtained, respectively.

Regarding the regularity of the constructed solution, we suppose that UN belongs
to the sobolev space W 2,∞ so, we have

‖UN‖L∞(0,T ;W 2,∞) � C∗, i.e.
∥∥Un

N

∥∥
L∞ � C∗,

∥∥(
Un

N

)
x

∥∥
L∞ � C∗,

∥∥(
Un

N

)
xx

∥∥
L∞ � C∗.

(4.1)

Theorem 4.1 For any fixed time T, assume that the exact solution ue for the frac-
tional equation (1.1) belongs to H 2(0, T ; L2) ∩ L∞(0, T ; Hm+1) ∩ H 1(0, T ; H 2)

and f ∈ L∞(0, T ; Hm). Let uτ,h be the continuous extension of the fully discrete
numerical solution obtained by scheme (2.9). Then as h, τ → 0, we have the
following convergence result:

∥∥uτ,h − ue

∥∥
l∞(0,T ;H 2)

� C̃
(
τ + hm

)
. (4.2)

Proof We start by assuming a prior that the numerical error function has anH 2 bound
at time step tn−1 [14]:∥∥∥en−1

N

∥∥∥
H 2

� 1, with en−1
N = INen−1,
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which yields directly the following results, using 1D Sobolev embedding,
∥∥∥un−1

N

∥∥∥
H 2

=
∥∥∥Un−1

N − en−1
N

∥∥∥
H 2

� C∗ + 1 = C1,

∥∥∥un−1
∥∥∥∞ � C

∥∥∥un−1
N

∥∥∥
L∞ � C

∥∥∥un−1
N

∥∥∥
H 2

� CC1 = C2. (4.3)

Subtracting (2.9) from (3.15), with operator A as in Theorem 3.1, yields

A(en)−βD2
Nen+γD4

Nen+ 1

p + 1

[
DN

(
Un−1

)p+1−DN

(
un−1

)p+1
]
= Fn−fn+rn.

(4.4)
Let

A1 = 1

p + 1

[
DN

(
Un−1

)p+1 − DN

(
un−1

)p+1
]

.

Then, taking an l2 inner product of (4.4) with en gives

μ

[
a0

〈
en, en

〉 −
n−1∑
k=1

(an−k−1 − an−k)
〈
ek, en

〉
− an−1

〈
e0, en

〉]
− β

〈
D2

Nen, en
〉

+ γ
〈
D4

Nen, en
〉
+ 〈

A1, en
〉 = 〈

Fn − fn, en
〉 + 〈

rn, en
〉
. (4.5)

For each positive number ε, using inequality ab � εa2 + 1
4ε b2, we can write

〈
rn, en

〉
� 1

μan−1

∥∥rn
∥∥2
2 + μan−1

4

∥∥en
∥∥2
2 . (4.6)

Based on (2.7), and the regularity of constructed solution (4.1), and the a prior
assumptions (4.3), we have

〈
A1, en

〉 = h

p + 1

2N∑
j=0

[
DN

(
Un−1

)p+1 − DN

(
un−1

)p+1
]

j

en
j

= − h

p + 1

2N∑
j=0

[(
Un−1

)p+1−
(
un−1

)p+1
]

j

(
DNen

)
j

]

= − h

p + 1

2N∑
j=0

(
en−1
j

p∑
k=1

(
Un−1

j

)p−k(
un−1

j

)k
) (

DNen
)
j

� Ch

2N∑
j=0

∣∣∣en−1
j

∣∣∣
∣∣∣(DNen

)
j

∣∣∣ � C

(
C

2β

∥∥∥en−1
∥∥∥2
2
+ β

2C

∥∥DNen
∥∥2
2

)

= C2

2β

∥∥∥en−1
∥∥∥2
2
+ β

2

∥∥DNen
∥∥2
2 . (4.7)
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Substituting (4.6)–(4.7) in (4.5) and using (2.7), we get

μ
∥∥en

∥∥2
2+β

∥∥DNen
∥∥2
2+γ

∥∥∥D2
Nen

∥∥∥2
2
� μ

n−1∑
k=1

(an−k−1 − an−k)
〈
ek, en

〉
+μan−1

〈
e0, en

〉

+ 1

μan−1

∥∥rn
∥∥2
2 + C2

2β

∥∥∥en−1
∥∥∥2
2
+ μan−1

4

∥∥en
∥∥2
2

+ β

2

∥∥DNen
∥∥2
2 + 〈

Fn − fn, en
〉

� μ

2

n−1∑
k=1

(an−k−1 − an−k)

(∥∥∥ek
∥∥∥2
2
+ ∥∥en

∥∥2
2

)

+μan−1

(
2
∥∥∥e0

∥∥∥2
2
+ 1

8

∥∥en
∥∥2
2

)
+ 1

μan−1

∥∥rn
∥∥2
2

+ C2

2β

∥∥∥en−1
∥∥∥2
2
+ μan−1

4

∥∥en
∥∥2
2 + β

2

∥∥DNen
∥∥2
2

+ μan−1

8

∥∥en
∥∥2
2 + 2

μan−1

∥∥Fn − fn
∥∥2
2

= μ

2

n−1∑
k=1

(an−k−1 − an−k)

∥∥∥ek
∥∥∥2
2
+ 2μan−1

∥∥∥e0
∥∥∥2
2

+ μ

(
1

2
− 1

4
an−1

) ∥∥en
∥∥2
2

+ 1

μan−1

∥∥rn
∥∥2
2 + C2

2β

∥∥∥en−1
∥∥∥2
2
+ μan−1

4

∥∥en
∥∥2
2

+ β

2

∥∥DNen
∥∥2
2 + 2

μan−1

∥∥Fn − fn
∥∥2
2 .

Using∥∥Fn − fn
∥∥
2 = ∥∥IFn

N − fn
∥∥
2 = ∥∥PNf n − f n + f n − IN fn

∥∥
L2 � C

∥∥f n
∥∥

Hmhm,

we then obtain

μ
∥∥en

∥∥2
2 + β

∥∥DNen
∥∥2
2 + 2γ

∥∥∥D2
Nen

∥∥∥2
2

≤ μ

n−1∑
k=1

(an−k−1 − an−k)

∥∥∥ek
∥∥∥2
2

+C2

β

∥∥∥en−1
∥∥∥2
2
+ C(τ + hm)2,

or

∥∥en
∥∥2
2+βμ−1

∥∥DNen
∥∥2
2+2γμ−1

∥∥∥D2
Nen

∥∥∥2
2
�

n−1∑
k=1

(an−k−1 − an−k)

∥∥∥ek
∥∥∥2
2

+ C2μ−1

β

∥∥∥en−1
∥∥∥2
2
+Cμ−1(τ + hm)2.

(4.8)
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Note that in the last equation, we use the fact that
∥∥e0∥∥

H 1 � Chm due to the collo-
cation spectral approximation of the initial data. Also μ−1 = τα�(2 − α) is always
bounded. Then, using Gronwall’s Lemma 2.2 and (4.8), we obtain

∥∥en
∥∥2
2 + βμ−1

∥∥DNen
∥∥2
2 + 2γμ−1

∥∥∥D2
Nen

∥∥∥2
2

� Cμ−1(τ + hm)2 exp

(
n−1∑
k=1

(an−k−1 − an−k)

)
� C(τ + hm)2, (4.9)

so ∥∥en
N

∥∥
H 2 � C∗∗(τ + hm). (4.10)

Finally, the proof is fully established with just recalling that the a priori assumed
bound (4.3) holds inductively.

Recovery of the H 2 a priori assumed bound (4.3) Obviously, using this
l∞(0, T ; H 2) error estimate, (4.10), it can be obtained that the a priori assumed H 2

bound (4.3) is also valid for the numerical error vector en at time step tn, provided

τ �
(
C∗∗)−1

, h �
(
C∗∗)−m

.

5 Stability and convergence analysis of Scheme II

Theorem 5.1 For any fixed time T, assume that the exact solution ue for the frac-
tional equation (1.1) satisfies ue ∈ L∞(0, T ; Hm+1) ∩ H 3(0, T ; H 2) and f ∈
L∞(0, T ; Hm). Let uτ,h be the continuous extension of the fully discrete numeri-
cal solution of proposed scheme (2.9). Then as h, τ → 0, we have the following
convergence result:

∥∥uτ,h − ue

∥∥
l∞(0,T ;H 2)

� C̃
(
τ 2−α + hm

)
. (5.1)

Proof We again start by assuming a prior that the numerical error function has an
H 2 bound at time steps tn−1, tn−2, which implies that (4.3) holds for tn−1, tn−2.
Subtracting (2.10) from (3.20) yields

A

(
en + en−1

2

)
− βD2

N

(
3

4
en + 1

4
en−2

)
+ γD4

N

(
3

4
en + 1

4
en−2

)

+ 1

p + 1
DN

[(
3

2

(
Un−1

)p+1 − 1

2

(
Un−2

)p+1
)

−
(
3

2

(
un−1

)p+1 − 1

2

(
un−2

)p+1
)]

= 3

4

(
Fn − fn

) + 1

4

(
Fn−2 − fn−2

)
+ rn− 1

2 . (5.2)
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Let

A2= 1

p + 1
DN

[(
3

2

(
Un−1

)p+1− 1

2

(
Un−2

)p+1
)

−
(
3

2

(
un−1

)p+1− 1

2

(
un−2

)p+1
)]

.

Taking an l2 inner product of (5.2) with en gives

μ

[
a0

〈
en + en−1

2
, en

〉
−

n−1∑
k=1

(an−k−1 − an−k)

〈
ek + ek−1

2
, en

〉
− an−1

〈
e0, en

〉]

− β

〈
D2

N

3en + en−2

4
, en

〉
+ γ

〈
D4

N

3en + en−2

4
, en

〉
+ 〈

A2, en
〉

= 3

4

〈
Fn − fn, en

〉 + 1

4

〈
Fn−2 − fn−2, en

〉
+

〈
rn− 1

2 , en
〉
.

(5.3)

We can write

〈
rn− 1

2 , en
〉
� 2

μan−1

∥∥∥rn− 1
2

∥∥∥2
2
+ μan−1

8

∥∥en
∥∥2
2 , (5.4)

and

〈
A2, en

〉 = 1

p + 1

〈
DN

[(
3

2

(
Un−1

)p+1 − 1

2

(
Un−2

)p+1
)

−
(
3

2

(
un−1

)p+1 − 1

2

(
un−2

)p+1
)]

, en

〉

= − 1

p + 1

〈
3

2

((
Un−1

)p+1 −
(
un−1

)p+1
)

− 1

2

((
Un−2

)p+1 −
(
un−2

)p+1
)

,DNen

〉

= − h

p + 1

2N∑
j=0

[
3

2

(
en−1
j

p∑
k=1

(
Un−1

j

)p−k(
un−1

j

)k
)

− 1

2

(
en−2
j

p∑
k=1

(
Un−2

j

)p−k(
un−2

j

)k
)] (

DNen
)
j

� Ch

2N∑
j=0

(∣∣∣en−1
j

∣∣∣ +
∣∣∣en−2

j

∣∣∣
) ∣∣∣(DNen

)
j

∣∣∣

� C

(
2C

β

∥∥∥en−1
∥∥∥2
2
+ 2C

β

∥∥∥en−2
∥∥∥2
2
+ β

4C

∥∥DNen
∥∥2
2

)

= 2C2

β

(∥∥∥en−1
∥∥∥2
2
+

∥∥∥en−2
∥∥∥2
2

)
+ β

4

∥∥DNen
∥∥2
2 . (5.5)
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Substituting (5.4)–(5.5) in (5.3), we obtain

2μ
∥∥en

∥∥2
2+3β

∥∥DNen
∥∥2
2+3γ

∥∥∥D2
Nen

∥∥∥2
2
�2μ

n−1∑
k=1

(an−k−1−an−k)
(〈
ek,en

〉
+

〈
ek−1, en

〉)

+ 4μan−1

〈
e0, en

〉
+ 8

μan−1

∥∥∥rn− 1
2

∥∥∥2
2
+ μan−1

2

∥∥en
∥∥2
2 + 8C2

β

∥∥∥en−1
∥∥∥2
2

+ 8C2

β

∥∥∥en−2
∥∥∥2
2

+ β
∥∥DNen

∥∥2
2 + β

4

∥∥∥DNen−2
∥∥∥2
2
+ β

∥∥DNen
∥∥2
2 + γ

8

∥∥∥D2
Nen−2

∥∥∥2
2
+ 2γ

∥∥∥D2
Nen

∥∥∥2
2

+ 3
〈
Fn − fn, en

〉 +
〈
Fn−2 − fn−2, en

〉

� μ

n−1∑
k=1

(an−k−1 − an−k)

(
2
∥∥∥ek

∥∥∥2
2
+ 2

∥∥∥ek−1
∥∥∥2
2
+ ∥∥en

∥∥2
2

)

+ μan−1

(
16

∥∥∥e0
∥∥∥2
2
+ 1

4

∥∥en
∥∥2
2

)
+ 8

μan−1

∥∥∥rn− 1
2

∥∥∥2
2
+ μan−1

2

∥∥en
∥∥2
2

+ 8C2

β

∥∥∥en−1
∥∥∥2
2

+ 8C2

β

∥∥∥en−2
∥∥∥2
2
+ β

∥∥DNen
∥∥2
2 + β

4

∥∥∥DNen−2
∥∥∥2
2
+ β

∥∥DNen
∥∥2
2 + γ

8

∥∥∥D2
Nen−2

∥∥∥2
2

+ 2γ
∥∥∥D2

Nen
∥∥∥2
2
+ μan−1

4

∥∥en
∥∥2
2+

18

μan−1

∥∥Fn − fn
∥∥2
2 + 2

μan−1

∥∥∥Fn−2 − fn−2
∥∥∥2
2
.

Now, we can write
(
μ

∥∥en
∥∥2
2+β

∥∥DNen
∥∥2
2+γ

∥∥∥D2
Nen

∥∥∥2
2

)
�2μ

n−1∑
k=1

(an−k−1 − an−k)

(∥∥∥ek
∥∥∥2
2
+

∥∥∥ek−1
∥∥∥2
2

)

+ 16μan−1

∥∥∥e0
∥∥∥2
2
+ 8

μan−1

∥∥∥rn− 1
2

∥∥∥2
2
+ 8C2

β

∥∥∥en−1
∥∥∥2
2
+ 8C2

β

∥∥∥en−2
∥∥∥2
2

+ β

4

∥∥∥DNen−2
∥∥∥2
2
+ γ

8

∥∥∥D2
Nen−2

∥∥∥2
2
+ Ch2m,

or

∥∥en
∥∥2
2 + βμ−1

∥∥DNen
∥∥2
2 + γμ−1

∥∥∥D2
Nen

∥∥∥2
2
� 2

n−1∑
k=1

(an−k−1 − an−k)

×
(∥∥∥ek

∥∥∥2
2
+

∥∥∥ek−1
∥∥∥2
2

)

+ 8C2

β
μ−1

∥∥∥en−1
∥∥∥2
2
+ 8C2

β
μ−1

∥∥∥en−2
∥∥∥2
2
+ β

4
μ−1

∥∥∥DNen−2
∥∥∥2
2

+ γ

8
μ−1

∥∥∥D2
Nen−2

∥∥∥2
2
+ Cμ−1(τ 2−α + hm)2.
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Using Gronwall’s Lemma 2.2 gives

∥∥en
∥∥2
2 + βμ−1

∥∥DNen
∥∥2
2 + 2μ−1γ

∥∥∥D2
Nen

∥∥∥2
2

� Cμ−1(τ 2−α + hm)2 exp

(
n−1∑
k=1

(an−k−1 − an−k)

)
� C(τ 2−α + hm)2,

so
∥∥en

N

∥∥
H 2 � C∗∗(τ 2−α + hm). (5.6)

Then, the proof is fully established as, from (5.6), it is simply obtained that the a
priori assumed bound (4.3) holds inductively.

Regarding the consistency analysis, regularity of constructed solution (4.1), (4.10),
and (5.6), we can state the following corollary on the stability of the proposed
schemes.

Corollary 1 The numerical scheme I, (2.9), and the scheme II, (2.10), are uncondi-
tionally stable.

6 Numerical experiments

In this section, we present the numerical results of the new schemes on several
test problems. We tested the accuracy and stability of the schemes described in this
paper by performing the mentioned schemes for different values of h and τ . We
performed our computations using Matlab 7 software on a Pentium IV, 2800 MHz
CPU machine with 2 Gbyte of memory. Also, we have calculated the computational
order of the schemes presented in this article (denoted by C-order) with the following
formula [29]:

log(E1
E2

)

log(h1
h2

)
,

in which E1 and E2 are errors correspond to grids with mesh size h1 and h2
respectively.

Test problem 1 We consider the time fractional (1.1) for x ∈ [−2, 2], with initial
condition

u(x, 0) = 0, (6.1)

and

f (x, t) = 2t2−α

�(3 − α)
sin(πx) + πt2p+2 sin (πx)p cos(πx) + π2βt2 sin(πx)

+π4γ t2 sin(πx). (6.2)
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The exact solution of this problem is u(x, t) = t2 sin(πx). We solve this problem
with the proposed schemes in this paper for two cases γ = 0 and γ �= 0. Also for
this test problem, we set T = 1.

Case I : γ = 0

If in (1.1), we put γ = 0, the following generelized time fractional Burgers
equation is resulted

c
0D

α
t u(x, t) + upux − βuxx = f (x, t). (6.3)

We consider this equation with conditions (6.1) and (6.2). For this problem, beside
to the proposed schemes in paper, we also implemented the linear implicit finite
difference scheme presented in [25], given with following formula

a0u
n
j −

n−1∑
k=1

(an−k−1−an−k) uk
j −an−1u

0
j = βμ−1

(
un

j

)
xx̄

− μ−1

p + 2

[
(un−1

j )
p
(un

j )x̂
+((un−1

j )
p
un

j )x̂

]
.

(6.4)

This method needs to solve a tri-diagonal system of algebraic equations Au = b at
each time level in which both A and b should be updated at each level. But the linear
systems resulted from our proposed schemes (2.9) and (2.10) are diagonal in Fourier
space and combining them with fast Fourier transform (FFT) routine, leads to the
schemes with less CPU time and will be confirmed by numerical implementation.
Beside this, updating scheme (6.4) for the solution of time fractional equation (1.1)
(with γ �= 0), resulted to a penta-diagonal system which is more expensive.

We put β = p = 1 and show the CPU time (s) and l2-error of proposed schemes
I and II with N = 16 and method of [25] with N = 500 for different values of α and
τ in Tables 1 and 2.

Table 1 Comparison of C-order, CPU time (s) and l2-error for Test problem 1 with α = 0.7

Scheme I Method of [25]

τ l2-error CPU time C-order l2-error CPU time C-order

1/10 9.4380 × 10−3 0.0031 − 2.7389 × 10−3 0.4555 −
1/20 5.0332 × 10−3 0.0053 0.9070 1.3741 × 10−3 0.8717 0.9951

1/50 2.0883 × 10−3 0.0146 0.9601 5.5651 × 10−4 2.2129 0.9864

1/100 1.0556 × 10−3 0.0233 0.9843 2.8484 × 10−4 4.1571 0.9663

1/500 2.1253 × 10−4 0.1979 0.9959 7.2784 × 10−5 23.7387 0.8478

1/1000 1.0629 × 10−4 0.6494 0.9997 5.0030 × 10−5 47.3176 0.5408

1/2000 5.3134 × 10−5 2.3198 1.0003 4.0776 × 10−5 103.5368 0.2951
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Table 2 Comparison of C-order, CPU time (s) and l2-error for Test problem 1 with α = 0.2

Scheme II Method of [25]

τ l2-error CPU time C-order l2-error CPU time C-order

1/5 7.9956 × 10−3 0.0025 − 5.4806 × 10−3 0.2307 −
1/10 2.2720 × 10−3 0.0056 1.8152 2.7430 × 10−3 0.4219 0.9985

1/15 1.0496 × 10−3 0.0093 1.9046 1.8317 × 10−3 0.7200 0.9959

1/30 2.7289 × 10−4 0.0131 1.9120 9.2130 × 10−4 1.4087 0.9914

1/80 3.9490 × 10−5 0.0297 1.9708 3.5344 × 10−4 3.4099 0.9768

1/200 6.4273 × 10−6 0.0871 1.9814 1.5087 × 10−4 8.8447 0.9291

1/500 1.0448 × 10−6 0.3183 1.9827 7.3265 × 10−5 23.1248 0.7883

1/800 4.1173 × 10−7 0.6895 1.9813 5.5801 × 10−5 37.5429 0.5793

1/1500 1.1869 × 10−7 2.0836 1.9787 4.4043 × 10−5 71.6557 0.3764

1/3000 3.0196 × 10−8 7.6103 1.9748 3.8684 × 10−5 162.7427 0.1872

Tables 1 and 2 confirm that the proposed schemes I and II are more efficient
and have good results in terms of both accuracy and CPU time. We fix the spatial
resolution (N = 32) and show the computational order of proposed schemes I and II
in time component for different values of α with p = 3, β = 2 in Table 3.

Table 3 Computational order of proposed schemes in time variable for Test problem 1

Scheme I Scheme II

α τ l2-error C-order l2-error C-order

0.1 1/20 2.3494 × 10−3 − 6.1841 × 10−4 −
1/40 1.2794 × 10−3 0.8768 1.6940 × 10−4 1.8681

1/80 6.6783 × 10−4 0.9379 4.4153 × 10−5 1.9399

1/160 3.4119 × 10−4 0.9689 1.1260 × 10−5 1.9713

1/320 1.7245 × 10−4 0.9844 2.8428 × 10−6 1.9858

1/640 8.6691 × 10−5 0.9922 7.1426 × 10−7 1.9928

1/1280 4.3463 × 10−5 0.9961 1.7903 × 10−7 1.9962

0.9 1/50 1.0694 × 10−3 − 4.3473 × 10−4 −
1/100 5.4517 × 10−4 0.9720 1.9876 × 10−4 1.1291

1/200 2.7443 × 10−4 0.9903 9.2140 × 10−5 1.1091

1/400 1.3730 × 10−4 0.9991 4.2907 × 10−5 1.1026

1/800 6.8495 × 10−5 1.0033 2.0007 × 10−5 1.1007

1/1600 3.4132 × 10−5 1.0049 9.3325 × 10−6 1.1002
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Fig. 1 Plots of obtained errors for Schemes I and II in solving Test problem 1 with γ = 0

As we see form Table 3, the order of Scheme I in time variable is approximately
1 for both values α = 0.1 and α = 0.9 which is in good agreement with theoretical
results. Also the order of Scheme II for α = 0.1 is approximately 1.9 and for α = 0.9
is 1.1 which again are compatible with theoretical orderO(τ 2−α). Figure 1 shows the
error obtained with schemes I and II with γ = 0, p = β = 1, N = 64, τ = 0.001
and α = 0.5 for Test problem 1.

Case II : γ �= 0

In this case, we consider the time fractional KS (1.1) with conditions (6.1) and
(6.2). In Tables 4 and 5, we present the l2-error, CPU time, and computational orders
of Schemes I and II with N = 32, p = β = γ = 1 and different values of α and τ .

As we see the proposed Schemes I and II need to less CPU time and computational
orders are compatible with theoretical orders. To investigate the spectral accuracy in
space, we put τ = 0.001 and solve the problem with different values of N . Figure 2

Table 4 Numerical results of proposed schemes in time variable for test problem 1 with α = 0.2

Scheme I Scheme II

τ l2-error CPU time C-order l2-error CPU time C-order

1/10 2.3963 × 10−4 0.0033 − 7.3203 × 10−5 0.0096 −
1/20 1.2900 × 10−4 0.0086 0.8934 1.9523 × 10−5 0.0120 1.9067

1/40 6.6931 × 10−5 0.0126 0.9466 5.1461 × 10−6 0.0194 1.9236

1/80 3.4091 × 10−5 0.0226 0.9733 1.3525 × 10−6 0.0366 1.9279

1/160 1.7204 × 10−5 0.0458 0.9866 3.5630 × 10−7 0.0805 1.9245

1/320 8.6420 × 10−6 8.6420 0.9933 9.4335 × 10−8 0.2212 1.9172
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Table 5 Numerical results of proposed schemes in time variable for test problem 1 with α = 0.8

Scheme I Scheme II

τ l2-error CPU time C-order l2-error CPU time C-order

1/30 1.2249 × 10−4 0.0103 − 8.5470 × 10−5 0.0154 −
1/60 5.8511 × 10−5 0.0175 1.0659 3.7012 × 10−5 0.0265 1.2074

1/120 2.8049 × 10−5 0.0342 1.0608 1.6070 × 10−5 0.0550 1.2036

1/240 1.3515 × 10−5 0.0797 1.0534 6.9860 × 10−6 0.1352 1.2018

1/480 6.5480 × 10−6 0.2299 1.0454 3.0388 × 10−6 0.3725 1.2010

1/960 3.1898 × 10−5 0.7405 1.0376 1.3222 × 10−6 1.1935 1.2006

1/1920 1.5615 × 10−6 2.6886 1.0305 5.7542 × 10−7 4.7280 1.2003

1/3840 7.6769 × 10−7 13.456 1.0243 2.5044 × 10−7 19.969 1.2002

shows the l2-error of Schemes I and II with α = 0.5 and different values of β = γ

and N which apparently the spatial spectral accuracy is verified.

Test problem 2:

We consider the time fractional (1.1) for x ∈ [−4, 4], with initial condition

u(x, 0) = cos(πx), (6.5)

and

f (x, t) = t1−α

�(2 − α)
cos(πx) − π(t + 1)p+1 sin(πx)cosp(πx)

+(π2β + π4γ )(t + 1) cos(πx). (6.6)

The exact solution of this problem is u(x, t) = (t +1) cos(πx). For this problem, we
set T = 1, p = 2, β = γ = 3. Tables 6 and 7 present the results of Schemes I and
II with N = 32, α = 0.5, 0.9 and different values of τ .

Fig. 2 l2-errors of Schemes I and II with τ = 0.001 and different values of β and N for test problem 1
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Table 6 Numerical results of proposed schemes in time variable for test problem 2 for α = 0.5

Scheme I Scheme II

τ l2-error CPU time C-order l2-error CPU time C-order

1/20 1.0061 × 10−3 0.0065 − 3.8242 × 10−5 0.0122 −
1/40 5.0945 × 10−4 0.0139 0.9815 9.6214 × 10−6 0.0198 1.9908

1/80 2.5633 × 10−4 0.0216 0.9912 2.4129 × 10−6 0.0373 1.9955

1/160 1.2856 × 10−4 0.0468 0.9956 6.0418 × 10−7 0.0826 1.9977

1/320 6.4383 × 10−5 0.1229 0.9977 1.5117 × 10−7 0.2089 1.9988

1/640 3.2217 × 10−5 0.3555 0.9989 3.7806 × 10−8 0.6067 1.9995

1/1280 1.6115 × 10−5 1.2394 0.9994 9.4536 × 10−9 2.0323 1.9997

1/2560 8.0589 × 10−6 5.1819 0.9997 2.3637 × 10−9 8.0000 1.9998

1/5120 4.0298 × 10−6 24.583 0.9999 5.9097 × 10−10 34.086 1.9999

Remark 6.1 For the exact solution of this test problem, we have ∂2u(x,t)

∂t2
= 0, so

from Lemma 2.1, we evaluate the fractional derivative exactly. Therefore, the order
of schemes in time component depends to the order of approximating other terms in
(1.1). Obviously, this order for Scheme I is 1 and for Scheme II is 2 and hence the
computational orders reported in Tables 6 and 7 are compatible with theoretical ones.

Test problem 3:

As more realistic problem, we consider the following time fractional Burgers
equation for x ∈ [−2, 2]

c
0D

α
t u(x, t) + upux − βuxx = f (x, t). (6.7)

with the so-called Maxwellian initial condition [22] which is a Gaussian pulse
initially centered at x = 0 and is as follows

u(x, 0) = exp(−bx2). (6.8)

Table 7 Computational order of proposed schemes in time variable for test problem 2 for α = 0.9

Scheme I Scheme II

τ l2-error CPU time C-order l2-error CPU time C-order

1/30 6.7655 × 10−4 0.0072 − 1.7080 × 10−5 0.0159 −
1/60 3.4111 × 10−4 0.0168 0.9880 4.2880 × 10−6 0.0281 1.9939

1/120 1.7127 × 10−4 0.0335 0.9940 1.0743 × 10−6 0.0602 1.9969

1/240 8.5813 × 10−5 0.0795 0.9970 2.6885 × 10−7 0.1395 1.9985

1/480 4.2951 × 10−5 0.2261 0.9985 6.7251 × 10−8 0.3822 1.9992

1/960 2.1487 × 10−5 0.7310 0.9992 1.6819 × 10−8 1.2155 1.9995

1/1920 1.0746 × 10−5 2.6555 0.9997 4.2059 × 10−9 4.1593 1.9996
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Table 8 Numerical results of schemes I, II in time variable for Test problem 3 for α = 0.1

Scheme I Scheme II

τ l2-error C-order l2-error C-order

1/20 1.7516 × 10−2 − 1.4304 × 10−3 −
1/40 8.9035 × 10−3 0.9762 3.6309 × 10−4 1.9780

1/80 4.4870 × 10−3 0.9886 9.1600 × 10−5 1.9869

1/160 2.2521 × 10−3 0.9944 2.3035 × 10−5 1.9915

1/320 1.1282 × 10−3 0.9972 5.7962 × 10−6 1.9906

1/640 5.6466 × 10−4 0.9986 1.4725 × 10−6 1.9768

1/1280 2.8246 × 10−4 0.9993 3.9332 × 10−7 1.9045

For this problem

f (x, t) = 2t2−α

�(3 − α)
exp(−bx2) + (t2 + 1)p+1 exp(−2bx2)(−2bx)

−β(t2 + 1)(−2b + 4b2x2) exp(−2bx2). (6.9)

and the exact solution is u(x, t) = (t2 + 1) exp(−bx2). We set T = p = β = 1
and b = 5. Tables 8 and 9 present the results of Schemes I and II with N = 32,
α = 0.2, 0.8 and different values of τ .

Tables 8 and 9 show that the computational orders of scheme I, II in time compo-
nent are approximately O(τ ) and O(τ 2−α) respectively which are compatible with
theoretical ones. Figure 3 shows the l2-error of Schemes I and II with α = 0.5,
τ = 0.001 and different values of β and N which apparently the spatial spectral
accuracy is verified.

Table 9 Numerical results of schemes I,II in time variable for test problem 3 for α = 0.7

Scheme I Scheme II

τ l2-error C-order l2-error C-order

1/20 1.5123 × 10−2 − 3.3905 × 10−3 −
1/40 7.7086 × 10−3 0.9722 1.3322 × 10−3 1.3476

1/80 3.8998 × 10−3 0.9830 5.3502 × 10−4 1.3161

1/160 1.9651 × 10−3 0.9887 2.1662 × 10−4 1.3044

1/320 9.8798 × 10−4 0.9920 8.7943 × 10−5 1.3005

1/640 4.9604 × 10−4 0.9940 3.5741 × 10−5 1.2990

1/1280 2.4882 × 10−4 0.9954 1.4540 × 10−5 1.2976

1/2560 1.2473 × 10−4 0.9963 5.9276 × 10−6 1.2945
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Fig. 3 l2-errors of Schemes I and II with τ = 0.001 and different values of β and N for test problem 3

Test problem 4:

We examine the efficiency of proposed schemes for the solution of system of time
fractional PDEs. To this end, we consider the following stochastic time fractional
equation with additive noise

c
aD

α
t u(x, t) + uux − uxx + uxxxx + σB(t) = 0, x ∈ [−15, 15], (6.10)

Fig. 4 Surface plots of approximate solution of test problem 4 with σ = 0 and different values of α
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with initial condition

u(x, 0) = sech2(x),

where the boundary conditions are periodic, σ is a constant that indicates the ampli-
tude of noise and B(t) is a Wiener process on L2(R) (the space of real valued square
integrable functions on R). We first solve deterministic version of problem (σ = 0).
We put T = 10, N = 128, τ = 0.01. Figure 4 presents the surface plots of approx-
imate solution of this test problem for different values of α with Scheme II (plots of
approximate solution using Scheme I are also similar to Scheme II).

Now, we investigate the effect of noise to the numerical solutions. After applying
polynomial chaos (PC) expansion (see Appendix) to discretize the random variable,
a coupled time fractional deterministic system of PDEs is obtained. For the resulting
system of time fractional PDEs, we apply the the Scheme II. We put N = 128,
τ = 0.01, K = 2, M = 3 and T = 1. Figure 5 presents the mean of approximate
solution of this problem for different values of α and σ . Figure 5 shows that for small
values of α, for example α = 0.1, we can get satisfactory results for the amplitude of
σ up to σ = 0.65, while for large values of α, for example α = 0.8, the solutions can
be obtained even up to noise amplitude σ = 9. Figure 6 shows the pathwise solutions
of this test problem for α = 0.5 and σ = 0.05, 0.25, 0.55, 0.7.

Fig. 5 Plots of the mean of approximate solution with different values of α and σ for test problem 4
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Fig. 6 Pathwise solutions of test problem 4 with α = 0.5 and different values of σ

7 Conclusion

In this paper, we proposed two semi-implicit Fourier pseudospectral schemes for
the solution of generalized time fractional Burgers type equations. We presented the
consistency, stability, and convergence analysis of schemes, under some assumptions.
During the computation, we used the fast Fourier transform (FFT). We compared our
numerical results with analytical solutions and a recently reported result. We showed
that the proposed schemes are more efficient in accuracy and computing time. Also,
we have illustrated that the order of accuracy of the introduced schemes are in good
agreement with the obtained theoretical ones. Finally, we reported the performance
of the proposed schemes on solution of stochastic time fractional Burgers equation
driven by Brownian motions.

Appendix

For fixed T > 0, we consider e = {ei, i ≥ 1}, as an orthonormal basis of L2([0, T ]),
to be the trigonometric functions

e1(t) = 1√
T

, ei(t) =
√

2

T
cos(

(i − 1)πt

T
), i = 2, 3, . . . , 0 ≤ t ≤ T .
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Also define the independent standard Gaussian random variables ξi =
∫ T

0 ei(s)dB.

Theorem A.1 ([28], Theorem 2.1) The Brownian motion {B(t); 0 ≤ t ≤ T } has the
Fourier expansion

B(t) =
∞∑
i=1

ξi

∫ t

0
ei(s)ds, 0 ≤ t ≤ T , (A.1)

which converges in the mean-square sense for all t ≤ T , i.e.,

E

(
B(t) −

n∑
i=1

ξi

∫ t

0
ei(s)ds

)2

� T

πn
,

where E is the expectation operator.

Now, consider the countable set of multi-indices

J = {γ = (γi), i � 1, γi ∈ {0, 1, 2, . . .}} ,

with length |γ | := ∑
i

γi < ∞. Define the collection � = {ξγ , γ ∈ J} of random
variables such that

ξγ =
1√
γ !

∏
i

Hγi
(ξi),

where Hγi
(ξi) = (−1)γi e

ξ2
i
2 dγi

dξ
γi
i

e− ξ2
i
2 is the Hermite polynomial of order γi and

γ ! = ∏
i

γi !. For more details about the above definition references, [21, 27] are use-

ful. Now, we can introduce polynomial chaos expansion method which separates the
stochastic from the deterministic part of a random field. This expansion at first was
introduced by Cameron and Martin [4] and generalized by Lototsky and Rozovsky
in [27]. Suppose W = (�,F, P, {Ft }0�t�T ) be a probability space, where Ft is the
σ -algebra generated by the random variables (ξi; i ∈ N) and denote by L2(W;H)

the separable Hilbert space of FT measurable square integrable H -valued random
variables, where H is a Hilbert space.

Theorem A.2 ([21], Theorem 1) If u ∈ L2(W;H) and uγ = E[uξγ ] ∈ H then

u =
∑
γ∈J

uγ ξγ . (A.2)

More information about properties of polynomial chaos expansion method can be
found in [38]. To make any use of (A.2) as a numerical scheme for the calculation of
the solution, we need to truncate it into a finite sum. As is seen, the sum over γ ∈ J

is a doubly-infinite sum, so as a truncation of this multi-index set we consider the
following finite set

Jf := {(γi) ∈ J : 1 � i � M, |γ | � K }.
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The set Jf is finite with (M+K)!
M!K! elements and the truncated solution of (A.2) is

denoted by

uf =
∑
γ∈Jf

ufγ ξγ . (A.3)
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