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Abstract In this paper, we propose a new modified proximal point algorithm for
finding a common element of the set of common minimizers of a finite family of
convex and lower semi-continuous functions and the set of common fixed points of a
finite family of nonexpansive mappings in complete CAT(0) spaces, and prove some
convergence theorems of the proposed algorithm under suitable conditions. A numer-
ical example is presented to illustrate the proposed method and convergence result.
Our results improve and extend the corresponding results existing in the literature.
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1 Introduction

A metric space (X, d) is said to be a CAT(0) space if it is geodesically connected,
and if every geodesic triangle in X is at least as thin as its comparison triangle in the
Euclidean plane (see more details in [1]). It is well known that any complete, simply
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connected Riemannian manifold having nonpositive sectional curvature is a CAT(0)
space. Other examples include Euclidean spaces, Hilbert spaces, the Hilbert ball [2],
hyperbolic spaces [3], and R-trees [4].

Let X be a CAT(0) space and h : X → (−∞, ∞] be a proper and convex function.
One of the major problems in optimization is to find x ∈ X such that

h(x) = min
u∈X

h(u).

We denote by argminu∈Xh(u) the set of minimizers of h. The proximal point algo-
rithm is an important tool for solving this problem which was initiated by Martinet
[5] in 1970. Recently, many convergence results concerning the proximal point algo-
rithm for solving optimization problems have been extended from the classical linear
spaces such as Hilbert spaces and Banach spaces to the setting of manifolds (see
[6–10]).

In 2013, Bačák [7] considered the minimization problems in complete CAT(0)
spaces to prove the following result.

Theorem 1 Let X be a complete CAT(0) space, and h : X → (−∞, ∞] be a convex
and lower semi-continuous function. Suppose that h has a minimizer. For x1 ∈ X, let
{xn} be a sequence in X defined by

xn+1 = argmin
u∈X

[
h(u) + 1

2λn

d(u, xn)
2
]

, ∀n ≥ 1,

where {λn} is a sequence of positive real numbers such that
∑∞

n=1 λn = ∞. Then,
the sequence {xn} �-converges to a minimizer of h.

Recently, Cholamjiak et al. [11] considered the problem of finding a minimizer of
a convex and lower semi-continuous function and common fixed points of two non-
expansive mappings in complete CAT(0) spaces. To be more precise, they obtained
the following result.

Theorem 2 Let X be a complete CAT(0) space, and h : X → (−∞, ∞] be a convex
and lower semi-continuous function. Let T1 and T2 be nonexpansive mappings on X

such that F = argminu∈Dh(u) ∩ F(T1) ∩ F(T2) is nonempty. Assume that {αn} and
{βn} are sequences such that 0 < a ≤ αn, βn ≤ b < 1 for all n ≥ 1 and for some
a, b, and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and for some λ. For
x1 ∈ X, let {xn} be a sequence in X defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zn = argmin
u∈X

[
h(u) + 1

2λn

d(u, xn)
2
]

,

yn = βnxn ⊕ (1 − βn)T1zn,

xn+1 = αnT1xn ⊕ (1 − αn)T2yn, ∀n ≥ 1.

Then, the sequence {xn} �-converges to a common element of F .
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Motivated by [7] and [11], we present the following question arises:

Question I Can we construct an iterative process for finding common minimizers
of a finite family of convex and lower semi-continuous functions and common fixed
points of a finite family of nonexpansive mappings in CAT(0) spaces?

The aim of this paper is to propose a new modified proximal point algorithm for
finding a common element of the set of common minimizers of a finite family of
convex and lower semi-continuous functions and the set of common fixed points of
a finite family of nonexpansive mappings in a nonempty closed convex subset of a
complete CAT(0) space and prove �-convergence and strong convergence theorems
of the proposed algorithm under suitable conditions. A numerical example to support
our main results is also given. Our results not only give an affirmative answer to
the question I but also generalize the corresponding results of Bačák [7], Ariza-Ruiz
et al. [6], Cholamjiak et al., and many others.

2 Preliminaries and lemmas

Let D be a nonempty subset of a CAT(0) space X. A subset D of X is said to be
convex if D includes every geodesic segment joining any two of its points, that is, for
any x, y ∈ D, we have [x, y] ⊂ D, where [x, y] := {αx ⊕ (1 − α)y : 0 ≤ α ≤ 1} is
the unique geodesic joining x and y.

Let T : D → D be a mapping. An element x ∈ D is called a fixed point of T if
x = T x. The set of all fixed points of T is denoted by F(T ), that is, F(T ) = {x ∈
D : x = T x}.

The notion of the asymptotic center can be introduced in a CAT(0) space X as
follows: Let {xn} be a bounded sequence in X. For x ∈ X, we define a mapping
r (·, {xn}) : X → [0, ∞) by

r (x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X} ,

and the asymptotic center of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known from [12] that in a complete CAT(0) space, the asymptotic center A ({xn})
consists of exactly one point. A sequence {xn} in a CAT(0) space X is said to �-
converge to x ∈ X if x is the unique asymptotic center of every subsequence of {xn}.
In this case, we write �-limn→∞ xn = x and call x the �-limit of {xn}.

We now collect some basic properties of the �-convergence which will be used in
the sequel.

Lemma 1 ([13]) Every bounded sequence in a complete CAT(0) space has a
�-convergent subsequence.



730 Numer Algor (2018) 77:727–740

Lemma 2 ([14]) Let D be a nonempty closed convex subset of a complete CAT(0)
space X. If {xn} is a bounded sequence in D, then the asymptotic center of {xn} is in
D.

Lemma 3 ([15]) Let {xn} be a sequence in a complete CAT(0) space X with
A({xn}) = {x}. If {un} is a subsequence of {xn} with A({un}) = {u} and {d(xn, u)}
converges, then x = u.

Lemma 4 ([15]) Let D be a nonempty closed convex subset of a complete CAT(0)
space X and T : D → D be a nonexpansive mapping, i.e., d(T x, T y) ≤ d(x, y) for
all x, y ∈ D. Let {xn} be a bounded sequence inD such that limn→∞ d(xn, T xn) = 0
and �-limn→∞ xn = x. Then, x is a fixed point of T .

In 2009, Kopecká and Reich [16] defined convex combinations of a finite members
in the Hilbert ball. It can be extended to a CAT(0) space as follows. Let x1, . . . , xn

be points in a CAT(0) space X and γ1, . . . , γn ∈ (0, 1) with
∑n

i=1 γi = 1, we write

γ1x1 ⊕ γ2x2 ⊕ · · · ⊕ γnxn

:= (1 − γn)
(

γ1
1−γn

x1 ⊕ γ2
1−γn

x2 ⊕ · · · ⊕ γn−1
1−γn

xn−1

)
⊕ γnxn. (1)

Using (1), we obtain that

d (γ1x1 ⊕ γ2x2 ⊕ · · · ⊕ γnxn, y) ≤
n∑

i=1

γid(xi, y) for each y ∈ X.

In 2014, Chidume et al. [17] proved the following important lemma.

Lemma 5 Let X be a CAT(0) space and z ∈ X. Let x1, . . . , xN ∈ X and γ1, . . . , γN

be real numbers in [0, 1] such that ∑N
i=1 γi = 1. Then, the following inequality holds

the following:

d (z, γ1x1 ⊕ γ2x2 ⊕ · · · ⊕ γNxN)2 ≤
N∑

i=1

γid(z, xi)
2 −

N∑
i,j=1,i �=j

γiγj d(xi, xj )
2.

Recall that a function h : D → (−∞, ∞] is convex if, for any geodesic l: [0, 1] →
D, the composite function h o l is convex. We say that a function h defined on D is
lower semi-continuous at a point x ∈ D if

h(x) ≤ lim inf
n→∞ h(xn)

for every sequence {xn} in D such that limn→∞ xn = x. A function h is said to be
lower semi-continuous on D if it is lower semi-continuous at any point in D. For any
λ > 0, define the Moreau-Yosida resolvent of h as follows:

Jλx = argmin
u∈D

[
h(u) + 1

2λ
d(u, x)2

]
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and put J0x = x, for all x ∈ D. This definition in metric spaces with no linear
structure first appeared in [18]. The mapping Jλ is well defined for all λ ≥ 0 (see
[18]). If h is a proper convex and lower semi-continuous function, then the set of
fixed points of the resolvent associated with h coincides with the set of minimizers
of h (see [6]). Also, the resolvent Jλ of h is nonexpansive for all λ > 0 (see [19]).

The following two lemmas are useful for our main results.

Lemma 6 ([19, 20]) Let X be a complete CAT(0) space and h : X → (−∞, ∞] be a
proper convex and lower semi-continuous function. For each x ∈ X and λ > μ > 0,
the following identity holds the following:

Jλx = Jμ

(
λ − μ

λ
Jλx ⊕ μ

λ
x

)
,

where Jλ is a Moreau-Yosida resolvent of h.

Lemma 7 ([21]) Let X be a complete CAT(0) space and h : X → (−∞, ∞] be a
proper convex and lower semi-continuous function. For each x, y ∈ X and λ > 0,
the following inequality holds the following:

1

2λ
d(Jλx, y)2 − 1

2λ
d(x, y)2 + 1

2λ
d(Jλx, x)2 ≤ h(y) − h(Jλx),

where Jλ is a Moreau-Yosida resolvent of h.

3 Main results

In this section, we prove �-convergence and strong convergence theorems for finding
a common solution of the set of a finite family of convex and lower semi-continuous
functions and the set of a finite family of nonexpansive mappings in a nonempty
closed convex subset of a complete CAT(0) space. In order to prove our main results,
the following two lemmas are needed.

Lemma 8 Let D be a nonempty closed convex subset of a complete CAT(0) space X.
Let {hi}Ni=1 be a finite family of proper convex and lower semi-continuous functions
of D into (−∞, ∞] and let {Ti}Ni=1 be a finite family of nonexpansive mappings of D
into itself. Suppose that F = ∩N

i=1argminu∈Dhi(u) ∩ ∩N
i=1 F(Ti) is nonempty. For

x1 ∈ D, let {xn} be a sequence in D defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(i)
n = argmin

u∈D

[
hi(u) + 1

2λ
(i)
n

d(u, xn)
2

]
,

zn = β(0)
n xn ⊕ β(1)

n y(1)
n ⊕ β(2)

n y(2)
n ⊕ · · · ⊕ β(N)

n y(N)
n

wn = γ (0)
n zn ⊕ γ (1)

n T1zn ⊕ γ (2)
n T2zn ⊕ · · · ⊕ γ (N)

n TNzn

xn+1 = αnxn ⊕ (1 − αn)wn, ∀n ≥ 1,

(2)
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where {αn}, {β(i)
n }, and {γ (i)

n } are sequences in [0, 1] such that 0 < a ≤
αn, β

(i)
n , γ

(i)
n ≤ b < 1,

∑N
i=0 β

(i)
n = 1 and

∑N
i=0 γ

(i)
n = 1 for all n ≥ 1, and {λ(i)

n } is
a sequence such that λ(i)

n > 0 for all n ≥ 1, i = 1, 2, . . . , N . Then, limn→∞ d(xn, p)

exists for p ∈ F .

Proof Let p ∈ F . Then, p = Tip for all i = 1, 2, . . . , N and hi(p) ≤ hi(y) for all
y ∈ D and i = 1, 2, . . . , N . It follows that

hi(p) + 1

2λ
(i)
n

d(p, p)2 ≤ hi(y) + 1

2λ
(i)
n

d(y, p)2

for all y ∈ D, i = 1, 2, . . . , N , and hence, p = J
λ

(i)
n

p for all n ≥ 1. Since y
(i)
n =

J
λ

(i)
n

xn for all n ≥ 1 and i = 1, 2, . . . , N , it implies that

d(y(i)
n , p) = d(J

λ
(i)
n

xn, Jλ
(i)
n

p) ≤ d(xn, p). (3)

By (2), we have that

d(xn+1, p) ≤ αnd(xn, p) + (1 − αn)d(wn, p)

≤ αnd(xn, p) + (1 − αn)(γ
(0)
n d(zn, p) + γ (1)

n d(T1zn, p)

+ · · · + γ (N)
n d(TNzn, p))

≤ αnd(xn, p) + (1 − αn)d(zn, p)

≤ αnd(xn, p) + (1 − αn)(β
(0)
n d(xn, p) + β(1)

n d(y(1)
n , p)

+ · · · + β(N)
n d(y(N)

n , p)).

This implies by (3) that

d(xn+1, p) ≤ d(xn, p).

Hence, the sequence {d(xn, p)} is nonincreasing and bounded below. It follows that
limn→∞ d(xn, p) exists for p ∈ F .

Lemma 9 Let D be a nonempty closed convex subset of a complete CAT(0) space
X. Let {hi}Ni=1 be a finite family of proper convex and lower semi-continuous func-
tions of D into (−∞, ∞] and let {Ti}Ni=1 be a finite family of nonexpansive mappings
of D into itself. Suppose that F = ∩N

i=1argminu∈Dhi(u) ∩ ∩N
i=1 F(Ti) is nonempty.

For x1 ∈ D, let {xn} be a sequence in D defined by (2) where {αn}, {β(i)
n },

and {γ (i)
n } are sequences in [0, 1] such that 0 < a ≤ αn, β

(i)
n , γ

(i)
n ≤ b < 1,∑N

i=0 β
(i)
n = 1 and

∑N
i=0 γ

(i)
n = 1 for all n ≥ 1, and {λ(i)

n } is a sequence such that

λ
(i)
n ≥ λ(i) > 0 for all n ≥ 1, i = 1, 2, . . . , N and some λ(i). Then, we have the

following:
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(i) limn→∞ d(xn, Tixn) = 0 for all i = 1, 2, . . . , N;
(ii) limn→∞ d(xn, Jλ(i)xn) = 0 for all i = 1, 2, . . . , N .

Proof (i): Let p ∈ F . By Lemma 8, we have limn→∞ d(xn, p) exists. Using (2), we
have that

d(xn+1, p)2 ≤ αnd(xn, p)2 + (1 − αn)d(wn, p)2 − αn(1 − αn)d(xn, wn)
2

≤ αnd(xn, p)2 + (1 − αn)

(
γ (0)
n d(zn, p)2 +

N∑
i=1

γ (i)
n d(Tizn, p)2

−
N∑

i=1

γ (0)
n γ (i)

n d(zn, Tizn)
2 −

N∑
i,j=1,i �=j

γ (i)
n γ

(j)
n d(Tizn, Tj zn)

2

⎞
⎠

−αn(1 − αn)d(xn,wn)
2

≤ αnd(xn, p)2 + (1−αn)d(zn, p)2−(1 − αn)

N∑
i=1

γ (0)
n γ (i)

n d(zn, Tizn)
2

−(1 − αn)

N∑
i,j=1,i �=j

γ (i)
n γ

(j)
n d(Tizn, Tj zn)

2 − αn(1 − αn)d(xn,wn)
2

≤ αnd(xn, p)2 + (1 − αn)

(
β(0)

n d(xn, p)2 +
N∑

i=1

β(i)
n d(y(i)

n , p)2

−
N∑

i=1

β(0)
n β(i)

n d(xn, y
(i)
n )2 −

N∑
i,j=1,i �=j

β(i)
n β

(j)
n d(y(i)

n , y
(j)
n )2

⎞
⎠

−(1 − αn)

N∑
i=1

γ (0)
n γ (i)

n d(zn, Tizn)
2

−(1 − αn)

N∑
i,j=1,i �=j

γ (i)
n γ

(j)
n d(Tizn, Tj zn)

2 − αn(1 − αn)d(xn,wn)
2

≤ d(xn, p)2 − (1 − αn)

N∑
i=1

β(0)
n β(i)

n d(xn, y
(i)
n )2

−(1−αn)

N∑
i,j=1,i �=j

β(i)
n β

(j)
n d(y(i)

n , y
(j)
n )2−(1−αn)

N∑
i=1

γ (0)
n γ (i)

n d(zn, Tizn)
2

−(1−αn)

N∑
i,j=1,i �=j

γ (i)
n γ

(j)
n d(Tizn, Tj zn)

2−αn(1 − αn)d(xn,wn)
2.

This implies by 0 < a ≤ αn, β
(i)
n , γ

(i)
n ≤ b < 1 that

d(xn, p)2−d(xn+1, p)2 ≥ a2(1−b)

N∑
i=1

d(xn, y
(i)
n )2+a2(1−b)

N∑
i,j=1,i �=j

d(y(i)
n , y

(j)
n )2
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+a2(1 − b)

N∑
i=1

d(zn, Tizn)
2 + a2(1 − b)

N∑
i,j=1,i �=j

d(Tizn, Tj zn)
2

+a(1 − b)d(xn, wn)
2.

Since limn→∞ d(xn, p) exists and a, b ∈ (0, 1), it implies that limn→∞ d(xn, wn)

=0 and

lim
n→∞ d(xn, y

(i)
n ) = 0, lim

n→∞ d(zn, Tizn) = 0, (4)

for all i = 1, 2, . . . , N, and

lim
n→∞ d(y(i)

n , y
(j)
n ) = 0, lim

n→∞ d(Tizn, Tj zn) = 0, (5)

for all i, j = 1, . . . , N , and i �= j. From nonexpansiveness of Ti , we have, for each
i = 1, 2, . . . , N ,

d(xn, Tixn) ≤ d(xn, zn) + d(zn, Tizn) + d(Tizn, Tixn)

≤ 2d(xn, zn) + d(zn, Tizn)

≤ 2(β(1)
n d(xn, y

(1)
n ) + · · · + β(N)

n d(xn, y
(N)
n )) + d(zn, Tizn).

This implies by (4) that limn→∞ d(xn, Tixn) = 0 for all i = 1, 2, . . . , N.

(ii): Since λ
(i)
n ≥ λ(i) > 0, by Lemma 6 and nonexpansiveness of Jλ(i) , we have

d(xn, Jλ(i)xn) ≤ d(xn, y
(i)
n ) + d(y(i)

n , Jλ(i)xn)

= d(xn, y
(i)
n ) + d(J

λ
(i)
n

xn, Jλ(i)xn)

= d(xn, y
(i)
n ) + d

(
Jλ(i)

(
λ

(i)
n − λ(i)

λ
(i)
n

J
λ

(i)
n

xn ⊕ λ(i)

λ
(i)
n

xn

)
, Jλ(i)xn

)

≤ d(xn, y
(i)
n ) + d

((
λ

(i)
n − λ(i)

λ
(i)
n

)
J

λ
(i)
n

xn ⊕ λ(i)

λ
(i)
n

xn, xn

)

= d(xn, y
(i)
n ) +

(
1 − λ(i)

λ
(i)
n

)
d(J

λ
(i)
n

xn, xn)

= d(xn, y
(i)
n ) +

(
1 − λ(i)

λ
(i)
n

)
d(y(i)

n , xn)

=
(

2 − λ(i)

λ
(i)
n

)
d(y(i)

n , xn).

Thus, by (4), we obtain that limn→∞ d(xn, Jλ(i)xn) = 0.

We now get the �-convergence theorem in complete CAT(0) spaces.

Theorem 3 Let D be a nonempty closed convex subset of a complete CAT(0) space
X. Let {hi}Ni=1 be a finite family of proper convex and lower semi-continuous func-
tions of D into (−∞, ∞] and let {Ti}Ni=1 be a finite family of nonexpansive mappings
of D into itself. Suppose that F = ∩N

i=1argminu∈Dhi(u) ∩ ∩N
i=1 F(Ti) is nonempty.
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For x1 ∈ D, let {xn} be a sequence in D defined by (2) where {αn}, {β(i)
n }, and {γ (i)

n }
are sequences in [0, 1] such that 0 < a ≤ αn, β

(i)
n , γ

(i)
n ≤ b < 1,

∑N
i=0 β

(i)
n = 1 and∑N

i=0 γ
(i)
n = 1 for all n ≥ 1, and {λ(i)

n } is a sequence such that λ(i)
n ≥ λ(i) > 0 for all

n ≥ 1, i = 1, 2, . . . , N and some λ(i). Then, {xn} �-converges to an element of F .

Proof Lemma 8 shows that limn→∞ d(xn, p) exists for all p ∈ F and Lemma 9
also implies that limn→∞ d(xn, Tixn) = 0 and limn→∞ d(xn, Jλ(i)xn) = 0 for all
i = 1, 2, . . . , N .

Next, we show that ω�(xn) ⊂ F . Let u ∈ ω�(xn). Then, there exists a subse-
quence {un} of {xn} such that A({un}) = {u}. From Lemmas 1 and 4, there exists
a subsequence {vn} of {un} such that �-limn→∞ vn = v for some v ∈ F . So, by
Lemma 3, we have u = v. This shows that ω�(xn) ⊂ F . Finally, we show that
the sequence {xn} �-converges to a point in F . To this end, it suffices to show
that ω�(xn) consists of exactly one point. Let {un} be a subsequence of {xn} with
A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ω�(xn) ⊂ F and {d(xn, u)} con-
verges, by Lemma 3, we have x = u. Hence, ω�(xn) = {x}. This completes the
proof.

Next, we establish strong convergence theorems in complete CAT(0) spaces.

Theorem 4 Let D be a nonempty closed convex subset of a complete CAT(0) space
X. Let {hi}Ni=1 be a finite family of proper convex and lower semi-continuous func-
tions of D into (−∞, ∞] and let {Ti}Ni=1 be a finite family of nonexpansive mappings
of D into itself. Suppose that F = ∩N

i=1argminu∈Dhi(u) ∩ ∩N
i=1 F(Ti) is nonempty.

For x1 ∈ D, let {xn} be a sequence in D defined by (2) where {αn}, {β(i)
n }, and {γ (i)

n }
are sequences in [0, 1] such that 0 < a ≤ αn, β

(i)
n , γ

(i)
n ≤ b < 1,

∑N
i=0 β

(i)
n = 1

and
∑N

i=0 γ
(i)
n = 1 for all n ≥ 1, and {λ(i)

n } is a sequence such that λ
(i)
n ≥ λ(i) > 0

for all n ≥ 1, i = 1, 2, . . . , N and some λ(i). Then, the sequence {xn} con-
verges strongly to a point in F if and only if lim infn→∞ dist(xn,F) = 0, where
dist(x,F) = inf{d(x, z) : z ∈ F}.

Proof The necessity is obvious and then we prove only the sufficiency. Suppose that
lim infn→∞ dist(xn,F) = 0. Let ε > 0 be arbitrarily chosen. So, there exists a
positive integer m0 such that

dist(xn,F) <
ε

4
, ∀n ≥ m0.

In particular, inf{d(xm0, p) : p ∈ F} < ε
4 . Thus, there must exist q ∈ F such that

d(xm0 , q) < ε
2 . Then, for all m, n ≥ m0, we have

d(xn+m, xn) ≤ d(xn+m, q) + d(q, xn)

≤ 2d(xm0, q)

< ε.
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Hence, {xn} is a Cauchy sequence in C. Since C is a closed subset in a complete
CAT(0) space, it is complete. This implies that {xn} converges to some point p∗ in
C. Since F is closed and limn→∞ dist(xn,F) = 0, we have p∗ ∈ F . This completes
the proof.

Theorem 5 Let D be a nonempty closed convex subset of a complete CAT(0) space
X. Let {hi}Ni=1 be a finite family of proper convex and lower semi-continuous func-
tions of D into (−∞, ∞] and let {Ti}Ni=1 be a finite family of nonexpansive mappings
of D into itself. Suppose that F = ∩N

i=1argminu∈Dhi(u) ∩ ∩N
i=1 F(Ti) is nonempty.

For x1 ∈ D, let {xn} be a sequence in D defined by (2) where {αn}, {β(i)
n }, and {γ (i)

n }
are sequences in [0, 1] such that 0 < a ≤ αn, β

(i)
n , γ

(i)
n ≤ b < 1,

∑N
i=0 β

(i)
n = 1 and∑N

i=0 γ
(i)
n = 1 for all n ≥ 1, and {λ(i)

n } is a sequence such that λ
(i)
n ≥ λ(i) > 0 for

all n ≥ 1, i = 1, 2, . . . , N and some λ(i). If there exists a nondecreasing function
g : [0, ∞) → [0, ∞) with g(0) = 0 and g(r) > 0 for all r > 0 such that

g(dist(x,F)) ≤ d(x, Tix)

or

g(dist (x,F)) ≤ d(x, Jλ(i)x)

for some i = 1, 2, . . . , N and for all x ∈ D, then the sequence {xn} converges
strongly to an element of F .

Proof From Lemma 8, we know that limn→∞ d(xn, p) exists for all p ∈ F . This
implies that limn→∞ dist(xn,F) exists. By Lemma 9, we have

lim
n→∞ d(xn, Tixn) = 0

and

lim
n→∞ d(xn, Jλ(i)xn) = 0.

By the hypothesis, we see that

lim
n→∞ g (dist(xn,F)) ≤ lim

n→∞ d(xn, Tixn) = 0

or

lim
n→∞ g (dist(xn,F)) ≤ lim

n→∞ d(xn, Jλ(i)xn) = 0.

So, we have

lim
n→∞ g (dist(xn,F)) = 0.

Using the property of g, it follows that limn→∞ dist(xn,F) = 0. It implies by
Theorem 4 that {xn} converges strongly to a point in F . This completes the proof.

Recall that a mapping T : D → D is said to be semi-compact if for any sequence
{xn} in D such that limn→∞ d(xn, T xn) = 0, there exists a subsequence {xni

} of {xn}
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such that {xni
} converges strongly to p ∈ D. Now, we prove a strong convergence

theorem in complete CAT(0) spaces.

Theorem 6 Let D be a nonempty closed convex subset of a complete CAT(0) space
X. Let {hi}Ni=1 be a finite family of proper convex and lower semi-continuous func-
tions of D into (−∞, ∞] and let {Ti}Ni=1 be a finite family of nonexpansive mappings
of D into itself. Suppose that F = ∩N

i=1argminu∈Dhi(u) ∩ ∩N
i=1 F(Ti) is nonempty.

For x1 ∈ D, let {xn} be a sequence in D defined by (2) where {αn}, {β(i)
n }, and {γ (i)

n }
are sequences in [0, 1] such that 0 < a ≤ αn, β

(i)
n , γ

(i)
n ≤ b < 1,

∑N
i=0 β

(i)
n = 1

and
∑N

i=0 γ
(i)
n = 1 for all n ≥ 1, and {λ(i)

n } is a sequence such that λ
(i)
n ≥ λ(i) > 0

for all n ≥ 1, i = 1, 2, . . . , N and some λ(i). If Jλ(i) or Ti is semi-compact for some
i = 1, 2, . . . , N , then the sequence {xn} converges strongly to an element of F .

Proof Without loss of generality, we can assume T1 is semi-compact. By Lemma
9, we have limn→∞ d(xn, T1xn) = 0. So, by semi-compactness of T1, there exists
a subsequence {xnk

} of {xn} such that xnk
→ q ∈ D as k → ∞. Since

limn→∞ d(xn, Tixn) = 0 and limn→∞ d(xn, Jλ(i)xn) = 0 for all i = 1, 2, . . . , N , we
have d(q, Tiq) = 0 and d(q, Jλ(i)q) = 0 for all i = 1, 2, . . . , N . This shows that
q ∈ F . In other cases, we can prove the strong convergence of {xn} to an element of
F . This completes the proof.

Remark 1 (i) Theorems 3 and 6 generalizes the results of Cholamjiak et al. [11]
from common fixed points of two nonexpansive mapping to common fixed
points of a finite family of nonexpansive mappings, and from a minimize of a
convex and lower semi-continuous function to common minimizers of a finite
family of convex and lower semi-continuous functions.

(ii) Theorems 3 and 6 extend the main result in Bačák [7], and the corresponding
results in Ariza-Ruiz et al. [6] and Cholamjiak et al. [11]. In fact, we construct
a new modified proximal point algorithm for solving the constrained convex
minimization problem for a finite family of convex and lower semi-continuous
functions as well as the fixed point problem for a finite family of nonexpansive
mappings in complete CAT(0) spaces.

(iii) In Hilbert spaces, if we set αx ⊕ (1 − α)y := αx + (1 − α)y, then Theorems
3—6 can be applied to these spaces.

Finally, we give the numerical example to support our main theorem in a four-
dimensional space of real numbers.

Example 1 Let X = R
4 with the Euclidean norm and D = {x =

(x(1), x(2), x(3), x(4)) ∈ R
4 : −50 ≤ x(1), x(2), x(3), x(4) ≤ 50}. For each x =

(x(1), x(2), x(3), x(4)) ∈ D, we define mappings T1 and T2 on D as follows:

T1x =
(

x(1) + 2

3
,
x(2) − 2

3
,
x(3) − 4

3
,
x(4) + 12

5

)
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Table 1 Numerical results of Example 1 for the algorithm (6)

Number xn = (x
(1)
n , x

(2)
n , x

(3)
n , x

(4)
n )t ‖xn − xn−1‖2

1 (−2.5000000, 4.6000000, 3.8000000,−5.9000000) –

2 (0.1948474, −0.1430572, −1.2589906, −0.9740996) 8.92282e+00

3 (0.6858928, −0.8304900, −1.9042613, 1.3402575) 2.54682e+00

4 (0.8644453, −0.9556049, −1.9876400, 2.3146571) 1.00197e+00

5 (0.9421135, −0.9854949, −1.9984688, 2.7173304) 4.11326e−01
.
.
.

.

.

.
.
.
.

16 (0.9999964,−0.9999993, −2.0000000, 2.9999832) 2.44635e−05

17 (0.9999985, −0.9999997, −2.0000000, 2.9999931) 1.01041e−05

18 (0.9999994, −0.9999999, −2.0000000, 2.9999971) 4.17329e−06

and

T2x =
(

x(1) + 9

10
,
−x(2) − 5

4
,

3x(3) − 10

8
,

5x(4) + 3

6

)
.

For each x ∈ D, we define h1, h2 : D → (−∞, ∞] by

h1(x) = 1

2
‖A1x − b1‖2, h2(x) = 1

2
‖A2x − b2‖2,

where

A1 =

⎛
⎜⎜⎝

1 −3 6 −1
4 −4 −3 −2
3 5 −4 1

−1 −1 −5 0

⎞
⎟⎟⎠ and b1 =

⎛
⎜⎜⎝

−11
8
9
10

⎞
⎟⎟⎠ ,

A2 =

⎛
⎜⎜⎝

−1 0 2 3
4 −5 1 3

−1 3 −4 −2
3 0 1 −4

⎞
⎟⎟⎠ and b2 =

⎛
⎜⎜⎝

4
16
−2
−11

⎞
⎟⎟⎠ .

We can check that T1 and T2 are nonexpansive and h1 and h2 are proper convex
and lower semi-continuous. For i = 1, 2, we know by [22] that

J1(i)x = argmin
u∈D

[
hi(u) + 1

2
‖u − x‖2

]

= proxhi
x

= (I + At
iAi)

−1(x + At
ibi).



Numer Algor (2018) 77:727–740 739

Fig. 1 The error plotting of ‖xn − xn−1‖2 in Table 1

Then, the algorithm (2) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(1)
n = (I + At

1A1)
−1(xn + At

1b1),

y(2)
n = (I + At

2A2)
−1(xn + At

2b2),

zn = β(0)
n xn + β(1)

n y(1)
n + β(2)

n y(2)
n ,

wn = γ (0)
n zn + γ (1)

n T1zn + γ (2)
n T2zn,

xn+1 = αnxn + (1 − αn)wn, ∀n ≥ 1.

(6)

We choose β
(0)
n = 1

9 , β
(1)
n = 4

9 , β
(2)
n = 4

9 , γ
(0)
n = γ

(1)
n = γ

(2)
n = 1

3 , and αn =
25n−1
625n

. It can be observed that all the assumptions of Theorems 3 and 6 are satisfied.
Using the algorithm (6) with the initial point x1 = (−2.5, 4.6, 3.8, −5.9)t , we have
numerical results in Table 1 and Fig. 1.

Remark 2 Table 1 and Fig. 1 show that the sequence {xn} converges to a unique point
(1, −1, −2, 3)t which is a common element of the set of common fixed points of T1
and T2 and the set of common minimizers of h1 and h2.
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