
Numer Algor (2018) 77:559–576
DOI 10.1007/s11075-017-0328-7

ORIGINAL PAPER

RankRev: a Matlab package for computing
the numerical rank and updating/downdating

Tsung-Lin Lee1 ·Tien-Yien Li2 ·Zhonggang
Zeng3

Received: 19 May 2016 / Accepted: 17 April 2017 / Published online: 26 April 2017
© Springer Science+Business Media New York 2017

Abstract The numerical rank determination frequently occurs in matrix computa-
tion when the conventional exact rank of a hidden matrix is desired to be recovered.
This paper presents a Matlab package RANKREV that implements two efficient algo-
rithms for computing the numerical rank and numerical subspaces of a matrix along
with updating/downdating capabilities for making adjustment to the results when a
row or column is inserted/deleted. The package and the underlying algorithms are
accurate, reliable, and much more efficient than the singular value decomposition
when the matrix is of low rank or low nullity.

Keywords Numerical rank · Updating · Downdating · Test suite · Matlab toolbox

1 Introduction

The rank-revealing problem arises widely in scientific computing and engineering
applications, such as signal processing [16, 18], information retrieval [4], numer-
ical polynomial algebra [19], etc. Some of those applications give rise to a large

� Tsung-Lin Lee
leetsung@math.nsysu.edu.tw

Tien-Yien Li
li@math.msu.edu

Zhonggang Zeng
zzeng@neiu.edu

1 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

3 Department of Mathematics, Northeastern Illinois University, Chicago, IL 60625, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0328-7&domain=pdf
http://orcid.org/0000-0002-4131-4140
mailto:leetsung@math.nsysu.edu.tw
mailto:li@math.msu.edu
mailto:zzeng@neiu.edu

560 Numer Algor (2018) 77:559–576

matrix whose rank or nullity is known to be small a priori. Although the Golub-
Reinsch algorithm for the singular value decomposition (SVD) can be applied to
calculate all singular values and hence determine the numerical rank, it becomes
unnecessarily expensive in these situations. Furthermore, it is relatively difficult to
update the SVD when the matrix is altered by inserting or deleting a few rows or
columns. Several alternative methods have been proposed instead in the literature.
Generally, they compute a gap-revealing factorization for estimating the singular
values, such as rank-revealing QR decomposition (RRQR) [1–3], rank-revealing two-
sided orthogonal decompositions (UTV or URV/ULV) [5–7], and rank-revealing LU
decomposition (RRLU) [10].

Adaptive cross approximation (ACA) is capable of computing a low-rank factor-
ization of a large matrix without computing a gap revealing factorization [11, 15].
This method only computes some entries, giving ACA a superior complexity. How-
ever, it is limited with respect to up- and downdating. Two novel rank-revealing
strategies in [12] and [13] deal with large matrices having high rank (low nullity)
and low rank, respectively. Rather than computing a gap-revealing factorization, the
methods compute an orthonormal basis for the numerical subspace of the matrix
directly. The resulting algorithms are quite efficient, and they only output those
numerical subspaces that are usually in demand in applied problems.

After the numerical rank of a matrix has been calculated along with the orthonor-
mal bases of some subspaces, a row or a column is often needed to be inserted into
the matrix. It is desirable to make a minor adjustment to the available computing
results accordingly, avoiding an unnecessary full rank-revealing from scratch. This
process is called updating. It is called downdating if a row/column is deleted. For
many applications, efficient rank updating and downdating algorithms play a very
important role. An algorithm for updating UTV decomposition is proposed by G.
W. Stewart in 1992, but for such a decomposition, the downdating problem seems
somewhat difficult to carry out [7, 17]. The new high rank and low rank revealing
algorithms generate the kernel stacked QR factorization and the USV-plus decompo-
sition, respectively. The updating/downdating algorithms from these factorizations
are quite straightforward. Furthermore, these algorithms are reliable and efficient
as evidenced by the extensive numerical experiments [12, 13]. These rank-revealing
algorithms and their accompanied updating/downdating algorithms are implemented
in package RankRev.

The algorithms are outlined in Section 2. Section 3 shows the usage of three
Matlab functions in RankRev. The numerical experiments will be in Section 4. In
Section 5, we give a description of the test suite appended in this package.

2 Algorithms

The RankRev package includes the implementations of two rank-revealing algo-
rithms as well as their updating and downdating procedures. In this section, we briefly
describe those algorithms. We shall denote matrices by upper case letters such as A,

B, R , and column vectors by lower case boldface letters like u, v , and y. Notation

Numer Algor (2018) 77:559–576 561

(·)∗ stands for the Hermitian of a matrix or a vector, while notation (·)� denotes the
transpose of a matrix or a vector.

We assume the target matrix A is of size m × n with the convention m ≥ n. The
numerical rank of matrix A with respect to threshold θ > 0 is defined as the smallest
rank of all matrices within a 2-norm distance θ of A [8, 9, 14]. Namely,

rankθ (A) = min‖B−A‖2≤θ

{
rank(B)

}
.

In terms of singular value decomposition (SVD), numerical rank is the number of
singular values greater than the given threshold. However, there is no uniform thresh-
old for all applications. The magnitude of threshold is usually assigned to reflect the
noise level the matrices may have encountered in the applications.

2.1 Rank revealing

The numerical rangeRθ (A) of A is the subspace spanned by the left singular vectors
associated with singular values greater than the threshold θ , and the numerical row
space Rθ (A

∗) of A is the numerical range of A∗. When the numerical rank of a
matrix is known to be small, the rank-revealing method constructs an orthonormal
basis for its numerical range. The algorithm starts with the power iteration on AA∗
to find a unit vector u1 in the numerical range. As shown in [12], by subtracting
matrix u1u∗

1A from A, the new matrix Ã = A − u1u∗
1A has numerical rank one less

than A’s, and the numerical range of Ã is contained in Rθ (A) but orthogonal to u1.
Therefore, we apply the power iteration on ÃÃ∗ to find a unit vector u2 ∈ Rθ (A)

with u2 ⊥ u1. The process can be continued recursively to calculate u3, u4, . . .
until the orthonormal basis {u1, u2, . . . , ur} for Rθ (A) is obtained along with the
numerical rank r . The pseudo-code of the algorithm is given in Fig. 1.

The main component of the algorithm is constituted with the power iteration on
ÃÃ∗. In fact, the matrix Ã is neither computed nor stored since it is not needed in
explicit form. More precisely, after finding u1, u2, . . . ,uk , let U = [u1, u2, . . . ,uk].
The power iteration will be on

(A − UU∗A)(A − UU∗A)∗ = (I − UU∗)AA∗(I − UU∗).

The first iteration vector y1 = (I − UU∗)AA∗(I − UU∗)y0. Since the columns of
U form an orthonormal set, the second iteration vector

y2 = (I − UU∗)AA∗(I − UU∗)y1
= (I − UU∗)AA∗(I − UU∗)(I − UU∗)AA∗(I − UU∗)y0
= (I − UU∗)

[
AA∗(I − UU∗)

] [
AA∗(I − UU∗)

]
y0.

Therefore, this power iteration is equivalent to the power iteration on AA∗(I −UU∗)
combined with projection (I − UU∗) on the final iterate. Such implementation
reduces the number of flops from 8mn + 16mk + 4m to 8mn + 12mk + 3m for com-
puting the second iteration vector. Similarly, the flops are reduced by 8mk + 2m for
computing the third iteration vector. The code for rank-revealing is designed based on

562 Numer Algor (2018) 77:559–576

Fig. 1 Pseudo-code of low rank-revealing algorithm

the above algorithm with this modification that improves the efficiency in computing
time and storage requirement.

As remarked, the algorithm only needs a unit vector in the numerical range and
thus requires smaller number of power iteration steps in comparison with existing
methods that require to compute singular vectors. The stopping criteria derived in
[12]

(
θ

ζj

)2j−1

< εm and ζj +
∣∣ζj − ζj−1

∣∣2
∣∣ζj−1 − ζj−2

∣∣ − ∣∣ζj − ζj−1
∣∣ < εm

ensure the distance between the vector and the numerical range is of order εm.
Assume that r is the numerical rank of the matrix A ∈ R

m×n, and Ip is
the average number of power iteration steps. The total flop count is approxi-
mately the sum of 4mnIp flops in power iteration on AA∗ (k = 0 loop) and
r∑

k=1

[
(4mn + 4mk + m) Ip + 4mk + m

]
flops in power iteration on ÃÃ∗ (k =

1, 2, . . . , r loops), which is 4mnIp(r + 1) + m(Ip + 1)r(2r + 3) in total. Hence, the
complexity of the algorithm is of O(mn) when r and Ip are far less than min{m, n}.

Numer Algor (2018) 77:559–576 563

The high rank-revealing algorithm begins with taking QR factorization of A =
Q

[
R
0

]
. Since matrices A and R share the same numerical kernel Kθ (A), we use the

inverse iteration on R∗R to find a unit vector w1 ∈ Kθ (A). After w1 is obtained,

the row vector τw∗
1 is stacked on top of A to form a new matrix Ã =

[
τw∗

1
A

]
,

where τ = ‖A‖∞. The numerical nullity, namely the dimension of numerical ker-
nel, of this new matrix Ã decreases by one, and any vector in Kθ (Ã) belongs to

Kθ (A) and is orthogonal to w1 [13]. Hence, we update the factorization A = Q
[
R
0

]

to obtain the QR factorization of Ã = Q̃

[
R̃
0

]
, followed by the inverse iteration

on R̃∗R̃ to find a unit vector w2 ∈ Kθ (A) with w2 ⊥ w1. The process can be
recursively continued by stacking row vector τw∗

2 on top of Ã until the numerical
nullity of the new matrix reaches zero. When the recursive process terminates, the
algorithm returns an orthonormal basis {w1, . . . ,wk} for Kθ (A), the numerical rank

r = n − k, and a QR factorization of the kernel stacked matrix
[

τW ∗
A

]
, where

W = [w1,w2, . . . ,wk] ∈ C
n×k . The pseudo-code of the algorithm is shown in Fig. 2.

The computations are all on the order of O(n2) except the first QR factorization of
A which costs O(mn2).

In [13], the way for finding a unit vector in the numerical kernel of Ã =
[

τw∗
A

]

is to use the Gauss-Newton iteration on solving the overdetermined system
[

τx∗
A

]
x =

[
τ

0

]
.

Namely,

xj+1 = xj −
[
2τx∗

j

A

]+ [
τx∗

jxj − τ

Axj

]
.

In fact, it can be shown that this iteration is equivalent to the inverse iteration on Ã∗Ã.
However, the flop count of inverse iteration is smaller than that of Gauss-Newton
iteration. Hence, the inverse iteration is suggested.

2.2 Updating/downdating the USV-plus decomposition

Given a matrix A having numerical rank r with threshold θ > 0 together with two
matrices U and V whose columns form orthonormal bases for numerical range and
numerical row space of A respectively, then the matrix S ≡ U∗AV ∈ C

r×r has
all singular values of A that are greater than θ , and the matrix E ≡ A − USV ∗ ∈
C

m×n contains all other singular values of A. By rearranging, it yields the USV-plus
decomposition of A,

A = U S V ∗ + E, (1)

where USV ∗ and E are the dominant part and noise part of A, respectively. The low
rank-revealing algorithm generates matrices U , S, and V in (1). To update/downdate

564 Numer Algor (2018) 77:559–576

Fig. 2 Pseudo-code of high rank-revealing algorithm

the USV-plus decomposition, we estimate the numerical range or numerical row
space of the new matrix first, followed by one step refinement.

Suppose a USV-plus decomposition of matrix A in (1) is available and a row a∗
is inserted into A forming a new matrix Â ∈ C

(m+1)×n. Let y = a − V V ∗a be the
projection of a on the numerical kernel of A. If ‖y‖2 ≤ θ , then a is close to the
numerical row spaceRθ (A

∗) of A, and the numerical row space of the new matrix is
very close toRθ (A

∗). Thus, the numerical rank of Â does not increase. If ‖y‖2 > θ ,
then the new row a∗ extends the numerical row space by one dimension. In this case,

we take the augmented matrix V̂ =
[

V
y

‖y‖2
]
as an approximation to the numerical

row space of the new matrix Â. A refinement procedure [12] is applied, if needed, to
ensure the accuracy of V̂ .

Let Ǎ be the matrix resulting from deleting one row r∗ in A. The numerical rank
of Ǎ may or may not decrease. Since r is in the row space of A, the numerical row
space Rθ (Ǎ

∗) of Ǎ is close to a subspace contained in the numerical row space of

Numer Algor (2018) 77:559–576 565

A, which is the column space of V in (1). To obtain numerical row space Rθ (Ǎ
∗),

we compute the “skinny” QR factorization of ǍV = Q1R, followed by the “skinny”
LQ factorization of Q∗

1Ǎ = LQ∗
2, where the column space of Q2 contains Rθ (Ǎ

∗).
The smallest singular value σr of L reveals the numerical rank of Ǎ. If σr > θ ,
the numerical rank of Ǎ remains the same and Q1LQ∗

2 is the dominant part of Ǎ.
Otherwise, the numerical rank decreases by one and we shall construct orthogonal

matricesG and G̃ such thatG∗RG̃ =
[

Š 0
0 σr

]
for extracting σr fromR. By removing

the last columns from Q1G and V G̃ respectively, we obtain the numerical range Ǔ

and the numerical row space V̌ of Ǎ, resulting in the dominant part Ǔ ŠV̌ ∗ of Ǎ.
The column updating/downdating can be computed in a similar way.

2.3 Updating/downdating the kernel stacked QR factorization

Given a matrix A having numerical nullity k with respect to the threshold θ > 0,
and a kernel matrix W ∈ C

n×k whose columns form an orthonormal basis for the
numerical kernel of A, then all the singular values of the kernel stacked matrix[

τW ∗
A

]
∈ C

(m+k)×n are greater than θ if τ > θ . The high rank-revealing algorithm

generates a kernel matrix W and the QR factorization of the kernel stacked matrix:

Q

[
R

0

]
=

[
τW ∗
A

]
, where τ > θ, (2)

which we call the kernel stacked QR factorization ofA. For updating/downdating, we
find a new kernel matrix in the first place, followed by applying the QR-updating and
QR-downdating algorithms [9]. These algorithms take O(n2) flops to compute the
QR factorization of the new matrix obtained by inserting/deleting a row (or column).

When the kernel stacked QR factorization (2) of A is available, the updating
and downdating algorithms for high rank revealing in RankRev are outlined as
follows.

Row Updating Let Â be the matrix resulting from inserting a row r∗ into A. If
‖W ∗r‖2 ≤ θ , then r is very close to the numerical row space of A. Hence, the
numerical nullity and the kernel matrix do not change. The QR factorization of the

new kernel stacked matrix

[
τW ∗
Â

]
= Q̃

[
R̃
0

]
can be obtained by updating (2) directly.

If ‖W ∗r‖2 > θ , then r annihilates the numerical kernel by one dimension. Let H

be the Householder transformation with H (W ∗r) = ‖W ∗r‖2 e1. Deleting the first
column of WH ∗ yields the kernel matrix Ŵ of Â. The QR factorization of the new

kernel stacked matrix

[
τŴ ∗
Â

]
can be obtained by downdating the QR factorization

[
τHW ∗

Â

]
= Q̂

[
R̃

0

]
where Q̂ =

[
H

I

]
Q̃.

566 Numer Algor (2018) 77:559–576

Row downdating Let Ǎ be the matrix resulting from deleting a row from A.
The algorithm begins with the QR-downdating algorithm on (2) to obtain the QR
factorization [

τW ∗
Ǎ

]
= Q̌

[
Ř

0

]
, (3)

followed by finding a unit singular vector wn of Ř associated with the smallest sin-
gular value σn. If σn > θ , then (3) is already the desired QR factorization. Otherwise,
the numerical nullity of Ǎ increases by one and W̌ = [

wn W
]
is a kernel matrix of

Ǎ. Thus, the new kernel stacked matrix

[
τW̌ ∗
Ǎ

]
has one more row on top of

[
τW ∗
Ǎ

]
.

By applying the QR-updating algorithm on (3), the kernel stacked QR factorization
of new matrix Ǎ can be achieved.

Column updating and downdating procedures can be naturally derived for high
rank cases [12].

3 The usage of RankRev package

The package RANKREV, available on-line at Netlib (http://www.netlib.org/
numeralgo/) as the na46 package, is entirely written in the Matlab programming lan-
guage and distributed as a compressed archive file. After uncompressing the archive
file, the directory RankRev will be created with all the needed files inside. User
should add the directory to the Matlab search path.

The directory consists of the following Matlab functions.

NumericalRank computing the numerical rank of a matrix.
NumericalRankUpdate updating the numerical rank of an

inserted matrix.
NumericalRankDowndate downdating the numerical rank of a

deleted matrix.

These functions are in the form of M-files with generic name function.m, where
function is the name of the function. The syntax description of each function can be
accessed by the Matlab command “help function”.

3.1 NumericalRank

The simple call of NumericalRank for computing the numerical rank of matrix A

by the high rank-revealing algorithm is

>> r = NumericalRank(A);

The full-featured call sequence of NumericalRank is

>> [r,Basis,C] = NumericalRank(A,tol,HL);

http://www.netlib.org/numeralgo/
http://www.netlib.org/numeralgo/

Numer Algor (2018) 77:559–576 567

Beside the numerical rank r and target matrix A, other input/output items are
optional as listed below.

(i) Optional input items

tol: the rank decision threshold. Its default value is
√

n‖A‖1 × eps,
where eps is the machine epsilon.

HL: a string parameter to switch between running high rank-revealing
algorithm (’high rank’) and running low rank-revealing algo-
rithm (’low rank’). The default value is ’high rank’.

(ii) Optional output items

Basis: an orthonormal basis. If HL is set to be ’high rank’, it is a
basis for numerical kernel; otherwise, it is a basis for numerical range.

C: the Matlab cell array containing the data required by updat-
ing/downdating. The details of each cell are listed in Table 1.

Taking matrix

A =

⎡

⎢⎢⎢⎢
⎣

1/3 1/5 1/7
1/3 2/5 3/7
2/3 2/5 2/7
2/3 4/5 6/7
2/3 3/5 4/7

⎤

⎥⎥⎥⎥
⎦

(4)

with exact rank 2 as an example, one can simply call the Matlab command

>> [r,Basis] = NumericalRank(A,1e-12)

Table 1 Matlab cell array C

High rank-revealing algorithm

C{1,1} The numerical rank of A

C{2,1} Matrix whose columns form an orthonormal kernel basis

C{3,1} The Q in the QR decomposition of the kernel stacked matrix

C{4,1} The R in the QR decomposition of the kernel stacked matrix

C{5,1} Scaling factor in the kernel stacked matrix

C{6,1} The rank decision threshold

Low rank-revealing algorithm

C{1,1} The numerical rank of A

C{2,1} The U in the USV+E decomposition of A

C{3,1} The V in the USV+E decomposition of A

C{4,1} The S in the USV+E decomposition of A

C{5,1} The rank decision threshold

568 Numer Algor (2018) 77:559–576

to calculate its numerical rank within threshold 10−12 and an orthonormal basis
for the numerical kernel by using the high rank-revealing algorithm. The screen shall
display

r =

2

Basis =

0.23866718525272

-0.79555728417573

0.55689009892301

The full-featured Matlab command call to compute the numerical rank ofAwithin
threshold 10−8 as well as all data for updating/downdating problems by using the
low rank-revealing algorithm is as follows:

>> [r,Basis,C] = NumericalRank(A,1e-8,’low rank’)

r =

2

Basis =

0.19354591669367 0.36601714380583

0.32864011800731 -0.25184170477646

0.38709183338734 0.73203428761166

0.65728023601462 -0.50368340955292

0.52218603470098 0.11417543902937

C =

[2] ’rank’

[5x2 double] ’U :range’

[3x2 double] ’V : row space’

[2x2 double] ’S’

[1.000000000000000e-008] ’tol’

Here, two columns of Basis form an orthonormal basis for the numerical range.
Note that all data in the cell array C are needed for updating and downdating as
demonstrated in the next subsection.

3.2 NumericalRankUpdate/NumericalRankDowndate

The full-featured call sequence of NumericalRankUpdate is

>> [r,Basis,C] = NumericalRankUpdate(A,pth,vec,C,RC);

that computes the numerical rank and the orthonormal basis of the updated matrix
obtained by inserting row/column vector vec at the pth row/column of matrix A.
RC is the switch parameter between running row updating algorithm (’row’) and
running column updating algorithm (’column’). The fourth parameter C on the

Numer Algor (2018) 77:559–576 569

right-hand side contains data for updating matrix A; the third argument on the left
contains data for the next updating/downdating computation.

Consider the following two matrices as examples:

A1 =

⎡

⎢⎢⎢⎢
⎣

−1/3 −1/5 −1/7
1/3 1/5 1/7
1/3 2/5 3/7
2/3 2/5 2/7
2/3 4/5 6/7
2/3 3/5 4/7

⎤

⎥⎥⎥⎥
⎦

and

�

A3 =

⎡

⎢⎢⎢⎢
⎣

1/3 1/5 1/7
1/3 2/5 3/7

−1/3 −1/5 −1/7
2/3 2/5 2/7
2/3 4/5 6/7
2/3 3/5 4/7

⎤

⎥⎥⎥⎥
⎦

,
�

where A1 and A3 are constructed by inserting vector
[−1/3 −1/5 −1/7

]� at the
top and into the third row of A in (4), respectively. Hence, both are of rank 2. For
calculating the numerical rank of matrix A1, the user could execute the following
commands if the numerical rank of A has been computed and the output cell C is
obtained as shown in Section 3.1.

>> vec = [-1/3 -1/5 -1/7];

>> pth = 1;

>> [r,Basis,C] = NumericalRankUpdate(A,pth,vec,C,’row’)

r =

2

Basis =

-0.19080645640117 0.33156350765768

0.19080645640117 -0.33156350765768

0.32203931262166 0.25888682554978

0.38161291280233 -0.66312701531536

0.64407862524332 0.51777365109955

0.51284576902283 -0.07267668210790

C =

[2] ’rank’

[6x2 double] ’U : range’

[3x2 double] ’V : row space’

[2x2 double] ’S’

[1.000000000000000e-008] ’tol’

The commands for calculating the numerical rank of A3 are the same as above,
except that pth should be set as 3.

The full-featured call sequence of NumericalRankDowndate is

>> [r,Basis,C] = NumericalRankDowndate(A,pth,C,RC);

that computes the numerical rank and numerical range of the new matrix resulting
from deleting the pth row/column vector of matrix A. RC is the string parameter
to switch between running row downdating algorithm (’row’) and running column
downdating algorithm (’column’). The third parameter C on the right-hand side

570 Numer Algor (2018) 77:559–576

contains data for downdating matrix A; the third argument on the left contains data
for the next downdating/updating computation.

After removing the second row of A, we have a new matrix

A2 =
⎡

⎢
⎣

1/3 1/5 1/7
2/3 2/5 2/7
2/3 4/5 6/7
2/3 3/5 4/7

⎤

⎥
⎦ .

�

With all downdating information of A reserved in Matlab cell array C, the down-
dating calculation for the numerical rank and the numerical range ofA2 can be carried
out by a simple call of NumericalRankDowndate:

>> pth = 2;

>> [r,Basis,C] = NumericalRankDowndate(A,pth,C,’row’)

r =

2

Basis =

-0.20502747002880 -0.36107828740737

-0.41005494005759 -0.72215657481474

-0.69577544637511 0.58607400140091

-0.55291519321635 -0.06804128670691

C =

[2] ’rank’

[4x2 double] ’U : range’

[3x2 double] ’V : row space’

[2x2 double] ’S’

[1.000000000000000e-008] ’tol’

4 The numerical experiments

In this section, we present some numerical results of RankRev package compared with
the Matlab built-in svd function and UTV Tools implemented by Fierro, Hansen and
Hansen[7]. The package UTV Tools is perhaps the only published comprehensive
rank-revealing package with updating/downdating capabilities. All the computations
are performed with Matlab R2013b (Linux 64-bit version), on a 4 cores computer
(Intel Core i7 2600) with 8 Gbyte RAM, running CentOS 7.0/Linux x86 64.

We use the commonly defined distance between two subspaces [9] to measure the
subspace error: Let S1 and S2 be two k-dimensional subspaces in R

n with 0 < k <

n and let columns of matrices W ∈ R
n×k and Z ∈ R

n×(n−k) form orthonormal bases
of S1 and S⊥

2 respectively. Then the distance between S1 and S2 is
∥∥W�Z

∥∥
2.

4.1 The low rank revealing algorithm

The low rank revealing algorithm in NumericalRank.m is to calculate the numer-
ical rank and the numerical range of a matrix whose rank is small. There are two

Numer Algor (2018) 77:559–576 571

existing Matlab functions having the same purpose in the UTV tools: lurv and
lulv. The functions lurv and lulv have several parameters including an option
to switch between the power iteration and Lanczos method for estimating singular
vectors. In the tests, all the other parameters are set as default.

The test matrix is of size 3200× 1600 in the form of A = U�V � with numerical
rank k = 10 within θ = 10−8. The singular values in the diagonal of� are distributed
geometrically in two sets: 1 = σ1 ≥ · · · ≥ σ10 = 10−7 and 10−9 = σ11 ≥ · · · ≥
σ1600 = 10−15. The orthogonal matrices U ∈ R

3200×3200 and V ∈ R
1600×1600 are

randomly generated.
In Table 2, the “range error” represents the distance of the computed numerical

range to the exact numerical range.
∥∥I − Ũ�Ũ

∥∥
2 measures the orthogonality of the

columns for the computed numerical range Ũ . The results show that all algorithms
accurately compute numerical ranks and numerical ranges with orthonormal bases,
while RankRev takes less running time.

4.2 The high rank revealing algorithm

The high rank revealing algorithm in NumericalRank.m is to calculate the
numerical rank and the numerical kernel of a matrix whose rank is close to full. For
the same purpose, there are four existing Matlab functions in the UTV tools : hurv,
hurv a, hulv and hulv a. These four functions compute orthogonal decompo-
sitions of the general form A = UT V �, where U and V are orthogonal and T is
triangular. The functions hurv and hulv use the generalized LINPACK condition
estimator for approximating singular vectors, while hurv a and hulv a estimate
singular vector via inverse iteration. All parameters are set as default in the following
experiments.

The test matrix A is of size 3200 × 1600 with numerical rank fixed at k = 1590
within threshold θ = 10−8. The matrix is constructed by setting A = U�V � with
randomly generated orthogonal matrices U ∈ R

3200×3200 and V ∈ R
1600×1600. The

singular values in the diagonal matrix � are distributed geometrically in two sets:
1 = σ1 ≥ · · · ≥ σ1590 = 10−7 and 10−9 = σ1591 ≥ · · · ≥ σ1600 = 10−15. We use
this type of matrix to test the efficiency of algorithms as well as the accuracy and
orthogonality of computed numerical kernel.

Table 2 The numerical results for low rank revealing algorithms

svd RankRev lurv lulv

Power Lanczos Power Lanczos

Time (s) 2.84 0.27 3.67 3.73 3.86 3.69

Computed rank – 10 10 10 10 10

Range error 2.60e−10 2.15e−10 2.60e−10 2.60e−10 2.32e−10 7.32e−10
∥∥I − Ũ�Ũ

∥∥
2 3.23e−15 3.80e−15 3.91e−15 3.87e−15 1.51e−13 1.73e−13

572 Numer Algor (2018) 77:559–576

In Table 3, the “kernel error” represents the distance of the computed numeri-
cal kernel to the exact numerical kernel V (:, 1591 : 1600). On the bottom row of
the table,

∥∥I − K̃�K̃
∥∥
2 measures the orthogonality of matrix K̃ whose columns

are the basis of computed numerical kernel. The results show that hurv miscalcu-
lates numerical rank while other codes compute numerical ranks correctly and their
computed kernel bases are very “orthonormal.”

4.3 The low rank approximation

There are many scientific computing problems where a low rank approximation of
a matrix is of interest. Let U ∈ R

m×r be a matrix whose columns span the numer-
ical range of matrix A ∈ R

m×n with dimension r � n. Then, the matrix UU�A

is a low rank approximation to A which truncates those terms with small singu-
lar values σr+1, . . . , σn from the SVD of A = σ1u1v�

1 + · · · + σnunv�
n such that∥∥A − UU�A

∥∥
2 = σr+1. Although the Golub-Reinsch algorithm is able to compute

the singular value decomposition accurately, computing all singular values and sin-
gular vectors becomes unnecessarily expensive. Moreover, the exact numerical rank
may not be essential while a low rank approximation Ã is desired such that the dis-
tance

∥∥A−Ã
∥∥
2 is close to or less then the prescribed threshold θ . In this situation, the

low rank revealing algorithm in NumericalRank.m can be applied to compute
the numerical range of a low rank approximation.

Here, we consider the test matrices A ∈ R
n×n with no significant gap for

n = 200, 400, 800, 1600. The matrices are constructed by setting A = U�V � with
randomly generated orthogonal matrices U, V ∈ R

n×n. The singular values in the
diagonal matrix � are distributed geometrically 1 = σ1 ≥ · · · ≥ σn = 10−15.
Namely, σj = (10−15/(n−1))j−1 for j = 1, 2, . . . , n.

Table 4 lists the numerical ranks and the gap ratios for the threshold θ = 10−3,
and presents the numerical results for computing the low rank approximation.

∥∥A −
Ũ Ũ�A

∥∥
2 indicates the distance between the test matrix and its low rank approxima-

tion Ũ Ũ�A, where Ũ ∈ R
m×r̃ is the computed numerical range. The results show

that the distances are nearby the threshold 10−3, while the algorithm is limited in
computing the exact numerical rank for matrices which have no significant rank gap.

Table 3 The numerical results for high rank revealing algorithms

svd RankRev UTVtools

hurv hurv a hulv hulv a

Time (s) 2.83 1.85 4.73 3.51 (–) 3.24

Computed rank – 1590 1590 1590 (1600) 1590

Kernel error 1.19e−10 5.31e−08 2.61e−4 1.11e−10 (–) 3.26e-10
∥∥I − K̃�K̃

∥∥
2 7.68e−15 6.66e−15 1.17e−15 1.34e−15 (–) 1.00e−15

Data in parentheses indicate incorrect computation

Numer Algor (2018) 77:559–576 573

This experiment can be replicated by running the Matlab script Demo Nogap.m in
the testsuite directory.

5 The test suite

The test suite in package RANKREV contains a series of Matlab functions, in the
format of M-files, that generate test matrices and their corresponding thresholds for
testing rank identification and accuracy of computed subspaces. The matrices in this
series are of size 2n × n and have low rank or low nullity. Analogical to the test
matrices in Chan and Hansen [3], the singular values are distributed geometrically in
two sets: 1 = σ1 ≥ · · · ≥ σr and σr+1 ≥ · · · ≥ σn = 10−15.

If matrix A is of numerical rank r within threshold θ > 0, then there is a “noise”
matrix E with ‖E‖2 ≤ θ where A − E has exact rank r . Relative perturbation
‖E‖2 / ‖A‖2 is often referred to as the noise level. Usually, we regard the magnitude
of relative perturbation near machine precision, say 10−12, as a low noise level, rel-
ative perturbation near 1.0, say 10−3, a high noise level, and the median noise level
is around 10−8. The generic file name is in the format xxnois.m – the first letter
x indicates a high/low rank matrix it will generate; the second letter indicates the
high/median/low noise level that the matrix is contaminated with.

The full-featured call sequence of Matlab function xxnois is

>> [A,tol,Y] = xxnois(n);

Besides test matrix A and default threshold tol, all other items are optional.
The input n determines the size of 2n×n test matrix. The output Y represents
the orthogonal complement of numerical kernel (for hxnois.m) or the orthogo-
nal complement of numerical range (for lxnois.m). When the algorithm finishes
computing the numerical rank, users can call the Matlab command norm(Z’*Y)
to evaluate the subspace error, where Z is the computed numerical kernel/range. The
detailed description of each function can be accessed by the Matlab command “
help xxnois ”.

The test suite also contains Matlab functions that generate matrices for test-
ing updating/ downdating algorithms. All circumstances of inserting/deleting rows
or columns are included. Users can take the scripts Demo Update.m and
Demo Downdate.m as templates for testing other updating/downdating algo-
rithms. Similarly, the Matlab script Demo Rank.m, demonstrating the usage of
calling xxnois and NumericalRank, can serve as a template for testing other
rank-revealing algorithms.

In many rank-revealing problems in scientific or industrial applications, the matri-
ces encountered may not have large gaps between significant larger and very small
singular values, or the matrices are modeled by empirical data. In these cases, the
exact numerical rank may not be essential. The test suite has two Matlab functions
to generate such matrices: imagemx transfers a graphics file to an image matrix,
and cranfield outputs a term-by-document matrix from the standard document
collection CRANFIELD at Cornell SMART system. The entry of an image matrix

574 Numer Algor (2018) 77:559–576

represents the level of color intensity at a certain pixel, and each entry of the term-
by-document matrix represents the frequency of a term appears in a document. These
entries are empirical data.

Rather than testing the correctness of computed numerical ranks for these empir-
ical matrices, we test the accuracy of the computed low-rank approximations, which
seems to be essential in the application. For example, the first test in the script
Demo Cranfield.m intends to find a low-rank approximation to the term-by-
document matrix by truncating those singular values less than 12% of the largest
singular value σ1. Therefore, the threshold is set to be 0.12 × σ1. The accuracy of
the approximation is evaluated by estimating how close the removed noise level is
to 12%. In Demo Imagemx.m, the similar demonstration is applied to image matri-
ces, and the resolution comparison between the original image and the low-rank
approximation image will be illustrated on Matlab figures.

The test suite also includes a Matlab function syl gen that generates the
Sylvester matrices with large rank gaps. Given polynomials f and g of positive
degree n, write them in the form

f = a0x
n + a1x

n−1 + · · · + an, a0 = 0,

g = b0x
n + b1x

n−1 + · · · + bn, b0 = 0.

Then the Sylvester matrix of f and g is

n columns
︷ ︸︸ ︷

n columns
︷ ︸︸ ︷

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0

a1 a0
... a1

. . .

...
. . . a0

an a1

an

...

. . .

an

b0

b1 b0
... b1

. . .

...
. . . b0

bn b1

bn

...

. . .

bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that the rank of the Sylvester matrix is 2n−d if and only if the greatest common
divisor (GCD) of f and g is of degree d. These matrices arise in numerical GCD
computation, multiple roots computation [19], etc.

The function syl gen is designed to generate the Sylvester matrix of two poly-
nomials whose degrees are the same. And, the user can assign the degree of their
GCD or impose perturbation to the coefficients. All input items are as follows:

n: the degree of polynomials.
d: the degree of numerical GCD (default: d = 10).

err: the perturbation of coefficients (default: err = 0.0).

syl gen outputs the following items

Numer Algor (2018) 77:559–576 575

Table 4 The results for computing the low rank approximation

Matrix sizes

200 × 200 400 × 400 800 × 800 1600 × 1600

numerical rank (r) 40 80 160 320

σr 1.14895e−03 1.07170e−03 1.03519e−03 1.01743e−03

σr+1 9.65883e−04 9.82836e−04 9.91392e−04 9.95689e−04

gap ratio (σr/σr+1) 1.18953 1.09042 1.04418 1.02184

computed rank (r̃) 39,40,41 79,80,81 157 ∼ 162 316 ∼ 322
∥∥I − Ũ�Ũ

∥∥
2 1.77e−15 2.51e−15 4.17e−15 6.14e−15

∥∥A − Ũ Ũ�A
∥∥
2 9.76e−04 1.09e−03 1.01e−03 1.02e−03

r is the numerical rank within θ = 10−3. Ũ ∈ R
m×r̃ is the computed numerical range

A: the 2n-by-2n Sylvester matrix.
Y: the orthogonal complement of the numerical kernel.

tol: the suggested threshold.

If the imposed perturbation err is smaller than 10−3, the output matrix
A will have a significant rank gap within the threshold tol. The script
Demo Sylvester.m demonstrates the call of Matlab functions syl gen and
NumericalRank.

Acknowledgements The authors are grateful to the anonymous referees for their comments and
suggestions.

Research of Tsung-Lin Lee was supported in part by the Taiwan MOST Grant 105-2115-M-110-
005. Research of Tien-Yien Li was supported in part by NSF under Grant DMS 11-15587. Research of
Zhonggang Zeng was supported in part by NSF under Grant DMS 1620337.

References

1. Bischof, C.H., Quintana-Orti, G.: Algorithm 782: Codes for rank-revealing QR factorizations of dense
matrices. ACM Trans. Math. Software 24, 254–257 (1998)

2. Chan, T.R.: Rank revealing QR factorizations. Linear Algebra Appl. 88/89, 67–82 (1987)
3. Chan, T.R., Hansen, P.C.: Low-rank revealing QR factorizations. Numer. Linear Algebra Appl. 1,

33–44 (1994)
4. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent

semantic analysis. J. Amer. Soc. Inform. Sci. 41, 391–407 (1990)
5. Fierro, R.D., Bunch, J.R.: Bounding the subspaces from rank revealing two-sided orthogonal

decompositions. SIAM J. Matrix Anal. Appl. 16(3), 743–759 (1995)
6. Fierro, R.D., Hansen, P.C.: Low-rank revealing UTV decompositions. Numer. Algorithms 15, 37–55

(1997)
7. Fierro, R.D., Hansen, P.C., Hansen, P.S.K.: UTV tools: MATLAB templates for rank-revealing UTV

decompositions. Numer. Algorithms 20, 165–194 (1999)
8. Golub, G.H., Klema, V., Stewart, G.W.: Rank degeneracy and least squares problems. Tech. rep. TR

456. University of Maryland, Baltimore (1976)
9. Golub, G.H., Van Loan, C.F. Matrix Computations, 4th edn. Johns Hopkins University Press,

Baltimore (2013)

576 Numer Algor (2018) 77:559–576

10. Hwang, T.M., Lin, W.W., Yang, E.K.: Rank-revealing LU Factorization. Linear Algebra Appl. 175,
115–141 (1992)

11. Kurz, S., Rain, O., Rjasanow, S.: The adaptive cross approximation technique for the 3D boundary
element method. IEEE Trans. Magnetics 38(2), 421–424 (2002)

12. Lee, T.L., Li, T.Y., Zeng, Z.: A rank-revealing method with updating, downdating, and applications.
Part II. SIAM J. Matrix Anal. Appl. 31, 503–525 (2009)

13. Li, T.Y., Zeng, Z.: A rank-revealing method with updating, downdating, and applications. SIAM J.
Matrix Anal. Appl. 26, 918–946 (2005)

14. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxford Ser. (2)
11, 50–59 (1960)

15. Rjasanow, S.: Adaptive cross approximation of dense matrices. In: International Association Bound-
ary Element Methods Conference, IABEM, pp. 28–30 (2002)

16. Stewart, G.W.: An updating algorithm for subspace tracking. IEEE Trans. Signal Processing 40, 1535–
1541 (1992)

17. Stewart, G.W.: Updating a rank-revealing ULV decompositions. SIAM J. Matrix Anal. Appl. 14,
494–499 (1993)

18. Vaccaro, R.: SVD and Signal Processing, II, Algorithms, Applications, and Architectures. Elsevier,
Amsterdam (1991)

19. Zeng, Z.: Computing multiple roots of inexact polynomials. Math. Comp. 74, 869–903 (2005)

	RankRev: a Matlab package for computing the numerical rank and updating/downdating
	Abstract
	Introduction*-.4pt
	Algorithms
	Rank revealing
	Updating/downdating the USV-plus decomposition
	Updating/downdating the kernel stacked QR factorization
	Row Updating
	Row downdating

	The usage of RankRev package
	NumericalRank
	NumericalRankUpdate/NumericalRankDowndate

	The numerical experiments
	The low rank revealing algorithm
	The high rank revealing algorithm
	The low rank approximation

	The test suite
	Acknowledgements
	References

