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Abstract In this paper, an improved block splitting preconditioner for a class of
complex symmetric indefinite linear systems is proposed. By adopting two iteration
parameters and the relaxation technique, the new preconditioner not only remains the
same computational cost with the block preconditioners but also is much closer to the
original coefficient matrix. The theoretical analysis shows that the corresponding iter-
ation method is convergent under suitable conditions and the preconditioned matrix
can have well-clustered eigenvalues around (0, 1) with a reasonable choice of the
relaxation parameters. An estimate concerning the dimension of the Krylov subspace
for the preconditioned matrix is also obtained. Finally, some numerical experiments
are presented to illustrate the effectiveness of the presented preconditioner.
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1 Introduction

We consider the iterative solution of the large sparse system of linear equations

Ax = b,A ∈ C
n×n and x, b ∈ C

n, (1)

where A = W + iT is a complex symmetric matrix, with W,T ∈ R
n×n being

symmetric matrices and i = √−1 being the imaginary unit. Complex linear sys-
tems of this kind arise from many problems such as electromagnetism problem, the
discretization of different types of Helmholtz equations, structural dynamics, opti-
cal tomography problem, and so on. For more details, readers can consult [1] and
references therein.

Let x = y + iz and b = f + ig, then the complex symmetric linear system
(1) is formally equivalent to the following real block two-by-two system of linear
equations:

¯A x̄ =
[

W −T

T W

] [
y

z

]
=

[
f

g

]
= b̄. (2)

The linear system (2) avoid using complex arithmetic. But meanwhile, the coefficient
matrix here has also become doubled in size, i.e., ¯A ∈ R

2n×2n. In order to solve the
system (1) or (2) efficiently and fast, many methods have been proposed in the past
few years [17, 23]. Among all the candidates, the iterative methods are more attractive
than direct methods for minimal requirement of computer storage and easiest precess
of computer implementation. Recently, many splitting iteration methods based on the
Hermitian and skew-Hermitian splitting (HSS) [2, 3, 5] have been proposed to solve
the complex symmetric linear system (1). When the matrices W,T are symmetric
positive semi-definite with at least one of them being positive definite, Bai et al. [6,
8, 10] introduced the modified Hermitian and skew-Hermitian splitting (MHSS) iter-
ation method and the preconditioned MHSS (PMHSS) iteration method for solving
the system (1). It has been proved in [6] that the MHSS iteration method converges to
the unique solution of (1) unconditionally. Bai et al. also established the convergence
theory for the PMHSS iteration method under suitable conditions in [8] and showed
the h-independent behavior. To further generalize the MHSS and PMHSS iteration
methods, Zheng et al. [29] proposed an accelerated PMHSS (APMHSS) iteration
method for (1) and also analyzed the convergence property. There are also some other
effective iterative methods, such as the skew-normal splitting (SNS) method [7], the
Hermitian normal splitting (HNS) method and its variant simplified HNS (SHNS)
method [24], and so on.

When, however, the matrix W is symmetric indefinite and T is symmetric positive
definite, the MHSS (PMHSS) method and SNS method may be unacceptably slow
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or not applicable due to the fact that the coefficient matrices αI + W and αW +
T 2 are indefinite or singular. And the HNS or SHNS method includes the complex
arithmetics in each inner iteration, which can result in an expensive computational
cost. The similar observation can also be found in [28]. Under these circumstances,
an appropriate preconditioner is needed to circumvent the difficulties [12, 13, 21].

If the matrices W and T are symmetric positive semi-definite, Bai [11] introduced
the rotated block triangular (RBT) preconditioner for the linear system (2). And then
to accelerate the computation of the RBT preconditioner, Lang et al. [18] proposed
the inexact RBT preconditioner. In this paper, we will focus on the case when the
matrix W is symmetric indefinite and T is symmetric positive definite. Since in this
case, the complex linear system (1) is also equivalent to the real block two-by-two
system as follows:

A x =
[

T −W

W T

] [
y

−z

]
=

[
g

f

]
= b; (3)

this real form can be regarded as a special class of generalized saddle point problems.
Based on the preconditioning technique for generalized saddle point problems, Zhang
et al. [27] proposed a block splitting (BS) preconditioner for the system (3). How-
ever, by observing the residual between the original coefficient matrix and the BS
preconditioner, a limitation that the diagonal blocks tend to zero while the nonzero
off-diagonal block becomes unbounded as α approaches 0 needs to overcome.

Inspired by this, by employing the relaxation techniques used in [14, 25], in this
paper, we construct an improved block (IB) splitting preconditioner for the real block
two-by-two system of linear (3). Algorithm 1 below shows that the IB preconditioner
has almost equal computational cost comparing to the BS preconditioner in the inner
iteration. In addition, theoretical analysis shows that the corresponding IB iteration
method will converge to the unique solution of (3) under some suitable conditions,
and the preconditioned matrix has an eigenvalue 1 with algebraic multiplicity at least
n. We will also investigate the structure of the eigenvectors and the impact upon the
corresponding Krylov subspace method in this paper.

The remainder of this work is organized as follows. In Section 2, we present the
new preconditioner based on the deteriorated positive-definite and skew-Hermitian
splitting (DPSS) preconditioning and the relaxation technique. In Section 3, we ana-
lyze the convergence property of the corresponding iteration method. Then in Section
4, we will investigate the eigen info of the preconditioned matrix and the impact
upon the convergence of the corresponding Krylov subspace method. In Section 5,
some numerical experiments are carried out to validate the effectiveness of the new
preconditioner. Finally in Section 6, some conclusions are given.

2 An improved block splitting iteration method and preconditioner

Since the matrix T ∈ R
n×n is symmetric positive definite, the coefficient matrix A

of the system (3) has the following splitting:

A = M + N, (4)
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where M =
[

T −W

W 0

]
and N =

[
0 0
0 T

]
. Then based on the preconditioning tech-

nique proposed in [4, 9, 20], we get the following block splitting preconditioner for
the block two-by-two system (3):

P̄1 = 1

2α
(αI + M)(αI + N). (5)

The factor 1/2 has no effect on the preconditioner and thus we omit it for
convenience. Then the preconditioner P̄1 can be rewritten as

P1 = 1

α
(αI + M)(αI + N)

= 1

α

[
αI + T −W

W αI

] [
αI 0
0 αI + T

]

=
[

αI + T −W(I + 1
α
T )

W αI + T

]
. (6)

The difference between P1 and A is given by

R1 = P1 − A =
[

αI − 1
α
WT

0 αI

]
. (7)

Two important properties about the difference R1 should come to our atten-
tion. First, when α tends to 0+, the weight of the two diagonal blocks in R1 also
approaches 0, while the weight of the nonzero off-diagonal block approaches ∞.
Hence, the choice of α needs to be balanced. On the other hand, as a preconditioner,
we hope it is as close as possible to the coefficient matrix A , that is, the difference
matrix is expected to approach zero sufficiently. With these in mind and motivated
by the idea of the relaxed preconditioners [14, 15, 25, 26], an improved block (IB)
splitting preconditioner can therefore be derived as follows:

PIB = 1

α
C1C2 = 1

α

[
T −W

W αI

] [
αI 0
0 βI + T

]
=

[
T − 1

α
W(βI + T )

W βI + T

]
. (8)

The difference between PIB and A is

RIB = PIB − A =
[
0 (1 − β

α
)W − 1

α
WT

0 βI

]
. (9)

We can find that the (1,1)-block matrix in (7) turns to zero, and two iteration
parameters α and β are introduced.

Remark 2.1 If α → ∞ and β → 0, the difference matrix RIB will approach zero
more sufficiently. Consequently, the preconditioner PIB can be expected to perform
much better for solving the complex symmetric indefinite linear systems.



Numer Algor (2018) 77:451–478 455

Remark 2.2 If we take the iteration parameter β = 0, then the difference between
PIB and A will be

RIB =
[
0 W − 1

α
WT

0 0

]
.

It seems that the difference matrix has three sub-matrices equal to zero, i.e., the IB
preconditioner here is much closer to the coefficient matrix. But unfortunately, the
analysis of the spectrum of the preconditioned matrix and the numerical experiments
in the following sections show that we can not always obtain better numerical results
when we take β = 0.

Remark 2.3 It should be noted that if we take α = β, the IB preconditioner will
reduce to

PIB =
[

T −W(I + 1
α
T )

W αI + T

]
.

The difference between PIB and A will be

RIB =
[
0 − 1

α
WT

0 αI

]
.

The preconditioner here is very likely to the BS preconditioner proposed in [27].

It should come to our attention that the IB preconditioner no longer relates to an
alternating direction iteration method, but it is of no effect on the behavior that PIB

is used as a preconditioner. In fact, the preconditioner PIB can be obtained by the
following splitting of the coefficient matrix A :

A = PIB − RIB =
[

T − 1
α
W(βI + T )

W βI + T

]
−

[
0 (1 − β

α
)W − 1

α
WT

0 βI

]
. (10)

Then an iterative method based on this splitting can be obtained, which is defined as
follows:

The IB iteration method Let α, β be given positive constants. Given an initial guess
x(0), for k = 0, 1, 2, · · · until {x(k)} converges, compute

[
T − 1

α
W(βI + T )

W βI + T

]
x(k+1) =

[
0 (1 − β

α
)W − 1

α
WT

0 βI

]
x(k) + b,

which can also be written as a fixed-point iteration:

x(k+1) = �x(k) + c, (11)

where, � = P−1
IB RIB is the iteration matrix, c = P−1

IB b.
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Theoretically, the IB iteration method converges to the unique solution of the sys-
tem (3) for arbitrary initial guess x(0) if and only if the spectral radius of the iteration
matrix is less than 1, i.e., ρ(�) < 1.

3 Convergence analysis of the iteration method

In this section, we will discuss the convergence properties of the IB iteration method.

Lemma 3.1 Let T ∈ R
n×n be symmetric positive definite and W ∈ R

n×n be sym-
metric indefinite, then the eigenvalues of the matrix WT −1WT are all real and
nonnegative.

Proof Since the matrix T is symmetric positive definite, then according to [16], there
exists a symmetric positive definite matrix X such that T = X2. Therefore, we have

XWT −1WT X−1 = XWT −1WX = XT WT −1WX. (12)

Then the matrix WT −1WT is similar to XWT −1WX. Since W ∈ R
n×n is sym-

metric indefinite and T ∈ R
n×n is symmetric positive definite, then the matrix

XWT −1WX is symmetric positive semi-definite. Therefore, the eigenvalues of the
matrix WT −1WT are all real and nonnegative.

Theorem 3.1 Let T ∈ R
n×n be symmetric positive definite and W ∈ R

n×n be sym-
metric indefinite, α, β be positive constants. Then the iteration matrix � of the IB
iteration method has an eigenvalue 0 with multiplicity n. The remaining n eigenvalues
μ satisfy

μ = αβ + (β − α)a2 + a3

αβ + αa1 + βa2 + a3
, (13)

where a1 = u∗T u

u∗u
, a2 = u∗WT −1Wu

u∗u
, a3 = u∗WT −1WT u

u∗u
.

Proof It is not difficult to obtain that the matrix C1 in (8) has the block-triangular
factorization

C1 =
[

I − 1
α
W

0 I

] [
T + 1

α
W 2 0

0 αI

] [
I 0

1
α
W I

]
. (14)

Then the explicit expression of P−1
IB can be given by

P−1
IB = αC−1

2 C−1
1

=
[

(T + 1
α
W 2)−1 1

α
(T + 1

α
W 2)−1W

−(βI + T )−1W(T + 1
α
W 2)−1 (βI + T )−1[− 1

α
W(T + 1

α
W 2)−1W +I ]

]
.
(15)
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Consequently, we can obtain

P−1
IB RIB =

[
(T + 1

α
W 2)−1 1

α
(T + 1

α
W 2)−1W

−(βI +T )−1W(T + 1
α
W 2)−1 (βI +T )−1[− 1

α
W(T + 1

α
W 2)−1W +I ]

]

×
[
0 (1 − β

α
)W − 1

α
WT

0 βI

]

=
[
0 (T + 1

α
W 2)−1(− 1

α
WT + W)

0 (βI + T )−1[−W(T + 1
α
W 2)−1(W − 1

α
WT ) + βI ]

]

=
[
0 (T + 1

α
W 2)−1(− 1

α
WT + W)

0 (βI + T )−1[−W(T + 1
α
W 2)−1(W − 1

α
WT ) + βI ]

]

=
[
0 S1
0 S2

]
.

Here, S1 = (T + 1
α
W 2)−1(− 1

α
WT + W), S2 = (βI + T )−1[−W(T +

1
α
W 2)−1(W − 1

α
WT ) + βI ]. Therefore, the iteration matrix � = P−1

IB RIB has
eigenvalue 0 with multiplicity n.

On the other hand, we have

S2 = (βI + T )−1[−W(T + 1
α
W 2)−1(W − 1

α
WT ) + βI ]

= (βI + T )−1[(αI + WT −1W)−1WT −1W(T − αI) + βI ]
= (βI + T )−1(αI + WT −1W)−1[αβI + (β − α)WT −1W + WT −1WT ].

Assume that (μ, u) is an eigenpair of S2, then the remaining eigenvalues ofP−1
IB RIB

satisfy the generalized eigenvalue problem:

[αβI + (β − α)WT −1W + WT −1WT ]u = μ(αI + WT −1W)(βI + T )u. (16)

Multiplying the (16) from left by
u∗

u∗u
, we have

αβ + (β − α)a2 + a3 = μ(αβ + αa1 + βa2 + a3). (17)

Thus, the remaining eigenvalues of the iteration matrix � are of the form

μ = αβ + (β − α)a2 + a3

αβ + αa1 + βa2 + a3
.

Since the matrix T is symmetric positive definite, then a1 > 0. By Lemma 3.1, we
can also obtain a2 ≥ 0, a3 ≥ 0. Therefore, the denominator of μ is not equal to 0.

The proof of this theorem is completed.

Theorem 3.2 Suppose the conditions of Theorem 3.1 are satisfied. If a1 < a2, then
the IB iteration method for the linear system (3) is convergent for β >

α(a2−a1)−2a3
2(α+a2)

.
If a1 > a2, then the IB iteration method is convergent for ∀α, β > 0.
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Proof From Theorem 3.1, we have

ρ(�) < 1 ⇔ |μ| < 1 ⇔ | αβ + (β − α)a2 + a3

αβ + αa1 + βa2 + a3
| < 1. (18)

After simply computation, (18) can be reduced to{
βa2 − αa2 < αa1 + βa2,

2αβ + 2a3 + 2βa2 > α(a2 − a1).
(19)

(i) The first inequality of (19) is equivalent to a1 > −a2. Since a1 > 0, a2 ≥ 0,
then this inequality holds true for ∀α, β > 0.

(ii) For the second inequality of (19), if a1 < a2, this inequality holds true for
β >

α(a2−a1)−2a3
2(α+a2)

; If a1 > a2, then the inequality holds true for ∀α, β > 0.

Therefore, if a1 < a2, the IB iteration method for the linear system (3) is conver-
gent for β >

α(a2−a1)−2a3
2(α+a2)

; if a1 > a2, then the IB iteration method is convergent for
∀α, β > 0.

The proof of this theorem is completed.

From (10) and (11), we can find that the system A x = b is equivalent to the linear
system

(I − �)x =
(
P−1

IB A
)

x = P−1
IB b = c. (20)

This equivalent system can be solved by Krylov subspace methods ( such as GMRES
method ). Therefore, the matrix PIB can be seen as a left preconditioner for Krylov
subspace methods, that is, the Krylov subspace methods are used to accelerate the
convergence behavior of the IB iteration method.

4 Eigen information of the preconditioned matrix

In this section, we will analyze the spectral property of the preconditioned matrix
P−1

IB A , since the convergence behavior relates closely to the eigenvalue distribution
of the preconditioned matrix. Based on Theorem 3.1, the following theorem describes
the eigenvalue distribution of the preconditioned matrix P−1

IB A .

Theorem 4.1 Let the preconditioner PIB be defined in (8), α, β be real positive
constants. T ∈ R

n×n is symmetric positive definite and W ∈ R
n×n is symmetric

indefinite. Then the preconditioned matrix P−1
IB A has an eigenvalue 1 with multi-

plicity at least n. The remaining nonunit eigenvalues λ of P−1
IB A are of the form

α(a1+a2)
αβ+αa1+βa2+a3

, and these nonunit eigenvalues satisfy

0 < λ <
α(a1 + a2)

αa1 + βa2
.

Specially, if the parameters satisfy α = β, then

0 < λ < 1.
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Proof Since P−1
IB A = I − P−1

IB RIB , then from (16), the preconditioned matrix
P−1

IB A has the form

P−1
IB A =

[
In −S1
0 In − S2

]
. (21)

Therefore, P−1
IB A has an eigenvalue 1 with multiplicity at least n. The remaining n

nonunit eigenvalues λ are the same with those of the matrix In − S2. Thus,

λ = 1 − αβ + (β − α)a2 + a3

αβ + αa1 + βa2 + a3
= α(a1 + a2)

αβ + αa1 + βa2 + a3
<

α(a1 + a2)

αa1 + βa2
. (22)

Since a1 > 0, a2 ≥ 0 and a3 ≥ 0, then

0 < λ <
α(a1 + a2)

αa1 + βa2
.

It can be easily obtained that if α = β, then 0 < λ < 1.
The proof of this theorem is completed.

Remark 4.1 Let 0 < α0 < +∞, 0 < β0 < +∞, it follows that

(i) if the parameters α → 0, β → β0, then λ → 0;
(ii) if the parameters α → +∞, β → +∞, then λ → 0;
(iii) if the parameters α → α0, β → +∞, then λ → 0;
(iv) if the parameters α → +∞, β → β0, then λ → a1+a2

β0+a1
, and the interval

(0, α(a1+a2)
αa1+βa2

) → (0, 1).

The convergence rate of the corresponding Krylov subspace methods not only
depends on the eigenvalue distribution of the preconditioned matrix but also relies on
the structure of the corresponding linearly independent eigenvectors.

Theorem 4.2 Let the preconditioner PIB be defined in (8), α, β be real positive
constants. Then the preconditioned matrix P−1

IB A has n+ i+j linearly independent
eigenvectors which comprise

(a) n eigenvectors of the form

[
p

(1)
l

0

]
(l = 1, 2, · · · , n) that are associated

with the eigenvalue 1, where p
(1)
l (l = 1, 2, · · · , n) are arbitrary linearly

independent;

(b) i (1 ≤ i ≤ n) eigenvectors of the form

[
p

(2)
l

q
(2)
l

]
(1 ≤ l ≤ i) that are

associated with the eigenvalue 1, where p
(2)
l are arbitrary vectors, q(2)

l satisfy

(T + WT −1W)q
(2)
l = (αI + WT −1W)(βI + T )q

(2)
l ,and (T − αI)q

(2)
l = 0;
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(c) j (1 ≤ j ≤ n) eigenvectors of the form

[
p

(3)
l

q
(3)
l

]
(1 ≤ l ≤ j) that correspond

to the nonunit eigenvalues, where q
(3)
l �= 0, (T + WT −1W)q

(3)
l = λ(αI +

WT −1W)(βI + T )q
(3)
l , and p

(3)
l = (αT + W 2)−1W(T − αI)

λ − 1
q

(3)
l .

Proof Let λ be an eigenvalue of the preconditioned matrix P−1
IB A and

[
p

q

]
is the

corresponding eigenvector. Then from (21), we have

[
In −S1
0 In − S2

] [
p

q

]
= λ

[
p

q

]
, (23)

since

In−S2 = In−(βI +T )−1(αI +WT −1W)−1[αβI +(β−α)WT −1W +WT −1WT ]
= α(βI + T )−1(αI + WT −1W)−1(T + WT −1W),

(24)
then (23) can be rewritten as

{
(1 − λ)p = −(αT + W 2)−1W(T − αI)q,

α(T + WT −1W)q = λ(αI + WT −1W)(βI + T )q.
(25)

From Lemma 3.1, we know that the matrix WT −1W is symmetric positive semidef-
inite. Then the matrices T + WT −1W , αI + WT −1W , and βI + T are symmetric
positive definite for α, β > 0.

(i) When q = 0, it follows from the first equation of (25) that λ = 1. Otherwise,

we will obtain p = 0, which contradicts with

[
p

q

]
being a nonzero eigenvec-

tor. Therefore, there are n eigenvectors of the form

[
p

(1)
l

0

]
correspond to the

eigenvalue 1, where p
(1)
l (l = 1, 2, · · · , n) are arbitrary linearly independent.

(ii) When q �= 0 and satisfies the second equation of (25), we will discuss the
eigenvectors as follows:

First, we consider the case if α is the eigenvalue of the matrix T , which
means the matrix T − αI is singular. When q ∈ ker(T − αI), then we can
obtain (λ − 1)p = 0 from the first equation of (25), where ker(·) denotes the
null space of the corresponding matrix. Once λ = 1, there will be i (0 ≤ i ≤
n) linearly independent eigenvectors of the form

[
p

(2)
l

q
(2)
l

]
(l = 1, 2, · · · , i)

that are associated with the eigenvalue 1, where p
(2)
l are arbitrary vectors, and
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q
(2)
l satisfy α(T + WT −1W)q

(2)
l = (αI + WT −1W)(βI + T )q

(2)
l ,and (T −

αI)q
(2)
l = 0. Otherwise, when (T − αI)q �= 0, we can obtain that λ �= 1 and

p �= 0.
Next, if α is not the eigenvalue of the symmetric positive definite matrix T ,

the matrix T −αI is nonsingular, then it follows from the first equation of (25)

that λ �= 1 and p = (αT + W 2)−1W(T − αI)

λ − 1
q �= 0.

Therefore, in summery, there will be j (0 ≤ j ≤ n) linearly independent

eigenvectors of the form

[
p

(3)
l

q
(3)
l

]
(l = 1, 2, · · · , j) that correspond to eigen-

values λ �= 1, where q
(3)
l �= 0, (T +WT −1W)q

(3)
l = λ(αI +WT −1W)(βI +

T )q
(3)
l , and p

(3)
l = (αT + W 2)−1W(T − αI)

λ − 1
q

(3)
l .

Finally, we validate the linear independence of these n+ i + j eigenvectors.
Let k(1) = [k(1)

1 , k
(1)
2 , · · · , k

(1)
n ]T , k(2) = [k(2)

1 , k
(2)
2 , · · · , k

(2)
i ]T and k(3) =

[k(3)
1 , k

(3)
2 , · · · , k

(3)
j ]T be three vectors with 0 ≤ i, j ≤ n. It is left to show that

[
p

(1)
1 · · · p

(1)
n

0 · · · 0

]⎡
⎢⎢⎣

k
(1)
1
.
.
.

k
(1)
n

⎤
⎥⎥⎦+

[
p

(2)
1 · · · p

(2)
i

q
(2)
1 · · · q

(2)
i

]⎡
⎢⎢⎣

k
(2)
1
.
.
.

k
(2)
i

⎤
⎥⎥⎦+

[
p

(3)
1 · · · p

(3)
j

q
(3)
1 · · · q

(3)
j

]⎡
⎢⎢⎣

k
(3)
1
.
.
.

k
(3)
j

⎤
⎥⎥⎦ = 0

(26)

holds if and only if the coefficient vectors k(1), k(2), and k(3) are zero. Here
[(p(1)

s )T , 0]T (s = 1, . . . , n) denotes the sth eigenvector that corresponds to
the eigenvalue 1 for the case (a), while [(p(2)

t )T , (q
(2)
t )T ]T (t = 1, . . . , i)

is the t th eigenvector associated with the eigenvalue 1 for the case (b), and
[(p(3)

h )T , (q
(3)
h )T ]T is the hth eigenvector associated with the nonunit eigen-

values for h = 1, . . . , j . By multiplying P−1
IB A on both sides of (26), we

have

[
p

(1)
1 · · · p

(1)
n

0 · · · 0

] ⎡
⎢⎢⎣

k
(1)
1
.
.
.

k
(1)
n

⎤
⎥⎥⎦+

[
p

(2)
1 · · · p

(2)
i

q
(2)
1 · · · q

(2)
i

] ⎡
⎢⎢⎣

k
(2)
1
.
.
.

k
(2)
i

⎤
⎥⎥⎦

[
p

(3)
1 · · · p

(3)
j

q
(3)
1 · · · q

(3)
j

] ⎡
⎢⎢⎣

λ1k
(3)
1

.

.

.

λj k
(3)
j

⎤
⎥⎥⎦ = 0

(27)

Subtracting (27) from (26), we obtain

[
p

(3)
1 · · · p

(3)
j

q
(3)
1 · · · q

(3)
j

]⎡
⎢⎢⎣

(λ1 − 1)k(3)
1

...

(λj − 1)k(3)
j

⎤
⎥⎥⎦ = 0.
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Since λh �= 1 (h = 1, . . . , j) and the column vectors of

[
p

(3)
1 · · · p

(3)
j

q
(3)
1 · · · q

(3)
j

]

are linearly independent, then we have k
(3)
h = 0 (h = 1, . . . , j). Since the

vectors q
(2)
t (t = 1, . . . , i) are also linearly independent, then we have k

(2)
t = 0

(t = 1, . . . , i). Thus, the (27) reduces to

[
p

(1)
1 · · · p

(1)
n

0 · · · 0

] ⎡
⎢⎣

k
(1)
1
...

k
(1)
n

⎤
⎥⎦ = 0.

[
p

(1)
1 · · · p

(1)
n

0 · · · 0

]
are also linearly independent, then k

(1)
s = 0 (s = 1, . . . , n).

Therefore, the n + i + j eigenvectors are linearly independent.

The proof of this theorem is completed.

The idea of preconditioning is trying to improve the spectral properties, such that
the total number of iterations required to solve the system to within some tolerance
will be indeed decreased. The iterative method employed will terminate when the
degree of the minimal polynomial, or the dimension of the corresponding Krylov sub-
space, is achieved [23]. The next theorem provides detailed analysis to the dimension
of the Krylov subspace K (P−1

IB A , b).

Theorem 4.3 Let the preconditionerPIB be defined in (8), then the dimension of the
Krylov subspace K (P−1

IB A , b) is at most n + 1. Specially, once the matrix In − S2
has k (1 ≤ k ≤ n) distinct eigenvalues θi (1 ≤ i ≤ k), of respective multiplicity mi ,

where
k∑

i=1
mi = n, the dimension of the Krylov subspace K (P−1

IB A , b) is at most

k + 1.

Proof From (21), the preconditioned matrix P−1
IB A is a block upper triangular

matrix of the following form:

P−1
IB A =

[
In −S1
0 In − S2

]
.

Assume λi (i = 1, · · · , n) be the eigenvalues of the matrix In − S2, then they are
also the nonunit eigenvalues of the preconditioned matrix P−1

IB A . According to the
eigenvalue distribution described in Theorem 3.1, the characteristic polynomial of
the preconditioned matrix P−1

IB A is

det(P−1
IB A − λI) = (λ − 1)n

n∏
i=1

(λ − λi).
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Expanding the polynomial (P−1
IB A −I )

n∏
i=1

(P−1
IB A −λiI ) of degree n+1, we have

�(P−1
IB A ) = (P−1

IB A −I )

n∏
i=1

(P−1
IB A −λiI ) =

⎡
⎢⎢⎢⎢⎣
0 −S1

n∏
i=1

((1 − λi)I − S2)

0 −S2

n∏
i=1

((1 − λi)I − S2)

⎤
⎥⎥⎥⎥⎦ .

Since λi are the eigenvalues of matrix In −S2, by the Cayley-Hamilton theorem, then

n∏
i=1

((1 − λi)I − S2) = 0.

Therefore, the degree of the minimal polynomial of P−1
IB A is at most n + 1. Con-

sequently, the dimension of the corresponding Krylov subspace K (P−1
IB A , b) is at

most n + 1.
Once the matrix In − S2 has k (1 ≤ k ≤ n) distinct eigenvalues θi (1 ≤

i ≤ k) of respective multiplicity mi . We write the characteristic polynomial of the
preconditioned matrix P−1

IB A as

(P−1
IB A − I )n−1

k∏
i=1

(P−1
IB A − θiI )mi−1

︸ ︷︷ ︸
(P−1

IB A − I )

k∏
i=1

(P−1
IB A − θiI )

︸ ︷︷ ︸
.

Let 	(P−1
IB A ) = (P−1

IB A − I )

k∏
i=1

(P−1
IB A − θiI ), then

	 =

⎡
⎢⎢⎢⎢⎢⎣
0 −S1

k∏
i=1

((1 − θi)I − S2)

0 −S2

k∏
i=1

((1 − θi)I − S2)

⎤
⎥⎥⎥⎥⎥⎦

.

Since
k∏

i=1

((1 − θi)I − S2) = 0, then 	(P−1
IB A ) is a zero matrix. Therefore, in this

case, the dimension of the Krylov subspace K (P−1
VDPSSA , b) is at most k + 1.

The proof of this theorem is completed.

Remark 4.2 Theorem 4.2 indicates that although the linear system (3) becomes dou-
bled in size, the iteration steps will not increase compared with the original linear
system (1), i.e., the iteration steps will not exceed n + 1 when the IB-preconditioned
GMRES method is used for solving the system (3). Sometimes, the termination will
even occur in at most k + 1 (1 ≤ k ≤ n) steps.
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Now we shall touch upon some computational aspects of the preconditioner PIB .
When applying the preconditioner PIB within a Krylov subspace method, a linear
system PIBz = r needs to be solved at each step, where z = [zT

1 , zT
2 ]T , r =

[rT
1 , rT

2 ]T , z1, z2, r1, r2 ∈ R
n. If n is large, then computing z = P−1

IB r directly is
impractical for memory reason. Thus, we avert such ostensibly “feasible” approach.
Based on the matrix factorization (8) and (15), we have

[
z1
z2

]
= α

[ 1
α
I 0
0 (βI + T )−1

] [
I 0

− 1
α
W I

] [
(T + 1

α
W 2)−1 0
0 1

α
I

] [
I 1

α
W

0 I

] [
r1
r2

]
.

(28)

Hence, the following implementing process about the preconditioner PIB can be
derived:

Algorithm 1 For a given r = [rT
1 , rT

2 ]T , compute z = [zT
1 , zT

2 ]T by (28) from the
following steps:

(i) compute d1 = r1 + 1
α
Wr2;

(ii) solve (T + 1
α
W 2)z1 = d1;

(iii) compute d2 = r2 − Wz1, solve (βI + T )z2 = d2.

Remark 4.3 From Algorithm 1, we can find the IB preconditioner only needs real
arithmetic in actual implementation. Meanwhile, suppose all matrices and vectors
involved are dense, then in step (i), it requires O(n2) flops. In step (ii), we need to
solve a linear system of size n, which requiresO(n3) flops, and in step (iii), it requires
O(n2 + n3) flops. Therefore, solving the linear system PIBz = r needs O(n2 + n3)

flops. In practical, the involved matrices are generally sparse, then the total cost will
be reduced.

For DPSS preconditioner P1, we can also derive the computational process in
Algorithm 2:

Algorithm 2 For a given r = [rT
1 , rT

2 ]T , compute z = [zT
1 , zT

2 ]T from the following
steps:

(i) compute d1 = r1 + 1
α
Wr2;

(ii) solve (αI + T + 1
α
W 2)z1 = d1;

(iii) compute d2 = r2 − Wz1, solve (αI + T )z2 = d2.

From Algorithm 1 and Algorithm 2, we can find that the IB preconditioner has
almost equal computational cost comparing to the BS preconditioner [27] and DPSS
preconditioner P1 in the inner iteration. Here we should mention that it is not neces-
sary to compute the inverse of the matrices involved directly, especially the inverse of
the matrices T + 1

α
W 2 and αI +T + 1

α
W 2, since the cost could be very expensive. For
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each of these two algorithms, we only need to solve two symmetric positive definite
subsystems (with the coefficient matrices T + 1

α
W 2 and βI + T for the precondi-

tioner PIB , αI + T + 1
α
W 2 and αI + T for the preconditioner P1), respectively.

Therefore, in inexact manner, we can employ the conjugate gradient (CG) method
to solve the two sub-linear systems, or they can be solved exactly with the sparse
Cholesky factorization.

5 Numerical experiments

In this section, we carry out some numerical experiments of complex symmet-
ric linear systems to validate the effectiveness of the IB preconditioner PIB . For
comparison, we also choose the HSS preconditioner and DPSS preconditioner P1
coupled with GMRES(30) [22]. Both of them are induced by alternating direction
splitting iterative methods. The HSS preconditioner is defined as

PHSS = 1

α
(αI + H)(αI + S) =

[
αI + T −(I + 1

α
T )W

(I + 1
α
T )W αI + T

]
,
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Fig. 1 The eigenvalue distributions of original matrix A and preconditioned matrices P−1
HSSA , P−1

1 A ,

and P−1
IB A for the Example 5.1
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here, H = (A +A T )/2, S = (A −A T )/2. All runs are implemented using double
precision float point arithmetic in MATLAB (version R2015a). In actual computa-
tions, we set the initial guess to be x0 = zeros(2n, 1) and the stopping criterion
||ri ||2||r0||2 ≤ 10−6, where ri = b − A xi . The iteration steps, CPU time, and the relative

Table 1 Iter, CPU, and RES for the preconditioned GMRES(30) method in Example 5.1

Preconditioner k 10 20 30 40 50

m2 162 322 642 1282 2562

HSS
(α=0.01)

Iter 6 6 12 26 81

CPU 0.0144 0.0748 0.5524 9.4723 87.0941

RES 4.4e − 08 9.6e − 08 3.4e − 07 2.5e − 07 8.9e − 07

DPSS
(α=0.01)

Iter 6 6 12 5 81

CPU 0.0143 0.0665 0.5459 5.3561 85.9648

RES 4.5e − 08 1.0e − 07 3.4e − 07 2.8e − 07 9.2e − 07

IB
(α=0.01,β=1)

Iter 3 2 3 6 8

CPU 0.0093 0.0376 0.2135 1.4186 9.8164

RES 1.7e − 10 3.6e − 07 6.3e − 08 2.8e − 06 1.1e − 07

IB
(α=0.01,β=0.1)

Iter 3 3 3 4 8

CPU 0.0110 0.0358 0.1988 1.1969 10.2638

RES 1.6e − 09 1.6e − 10 5.8e − 07 2.8e − 07 9.7e − 07

IB
(α=0.01,β=0.01)

Iter 3 3 4 6 8

CPU 0.0092 0.0496 0.1982 1.3776 8.9928

RES 2.1e − 10 1.0e − 10 2.9e − 04 1.0e − 08 1.0e − 07

DPSS
(α=0.001)

Iter 4 4 5 8 94

CPU 0.0203 0.0678 0.4367 9.4248 108.3084

RES 1.8e − 08 1.6e − 09 3.6e − 07 9.6e − 07 6.1e − 07

IB
(α=0.001,β=1)

Iter 2 2 2 3 8

CPU 0.0089 0.0271 0.1563 1.0293 5.0648

RES 2.1e − 07 3.4e − 09 1.2e − 07 2.2e − 07 1.6e − 07

IB
(α=0.001,β=0.1)

Iter 2 2 3 5 4

CPU 0.0096 0.0286 0.1564 1.0058 5.0438

RES 1.4e − 11 3.3e − 08 5.3e − 10 9.6e − 09 9.3e − 08

IB
(α=0.001,β=0.01)

Iter 3 2 3 4 4

CPU 0.0091 0.0270 0.1583 1.0091 4.9531

RES 1.5e − 11 3.0e − 07 4.5e − 09 8.8e − 09 8.6e − 07

IB
(α=0.01,β=0)

Iter 4 3 4 7 10

CPU 0.1169 0.1919 2.8705 100.6862 1.8579

RES 4.3e − 12 1.8e − 07 7.1e − 07 2.2e − 09 8.0e − 07
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residual error are denoted by Iter, CPU (in seconds) and RES, respectively. The max-
imum number of iteration steps allowed is set to 1000. The symbol “–” in these tables
indicates that the corresponding method fails to reach the required accuracy within
the prescribed number of restarts. The sub-linear systems arising from the application
of the preconditioners are solved by direct methods. In MATLAB, this corresponds
to computing the Cholesky or LU factorization in combination with AMD or column
AMD reordering.

Example 5.1 We consider the following complex symmetric linear system [27]

[(Tm ⊗ Im + Im ⊗ Tm − k2h2(Im ⊗ Im)) + iσ2(Im ⊗ Im)]x = b,

where Tm = tridiag(−1, 2 − 1) is a tridiagonal matrix with order m and k denoting
the wavenumber. We choose the matrices W = Tm ⊗ Im + Im ⊗Tm − k2h2(Im ⊗ Im)

and T = σ2(Im ⊗ Im), where h = 1
m+1 and σ2 = 10−4. T is symmetric positive

definite. In actual implementations, we set the right-hand side b = A ∗ones(2m2, 1).
Fig. 1 demonstrates the eigenvalue distributions of the original coefficient matrix A ,
the HSS preconditioned matrix P−1

HSSA , the DPSS preconditioned matrix P−1
1 A ,

and the new preconditioned matrix P−1
IB A for m = 32, α = 0.1, β = 1, and
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α = 0.1, β = 0.1. The numerical results for different choice of α, β, k, and m are
listed in Table 1.

From Fig. 1 and Table 1, some conclusions can be obtained. In Fig. 1, we find that
the eigenvalue distribution of the new preconditioned matrix P−1

IB A is much better
than that of the other preconditioned matrices. Moreover, the preconditioned matrix
P−1

IB A has at least 1024 = 322 eigenvalues 1, and the nonunit eigenvalues are also
well distributed. This phenomenon confirms the theoretical analysis in Section 3.

Table 1 shows that by choosing different parameters, the IB preconditioner is
superior to the DPSS and HSS preconditioners in terms of CPU time, iteration steps,
and relative residual error, which confirms that the new preconditioner can virtually
improve the convergence behavior of the GMRES(30). Additionally, if we choose
suitable α and β, the numerical results of IB preconditioner are expected to be much
better than the BS preconditioner (see the case of α = β = 0.01). With the size of
problem increasing, the iteration steps of IB preconditioner remain stable and compu-
tational costs are inexpensive ( in most cases, the CPU times are less than 11 seconds
, while those of the DPSS and HSS preconditioners go beyond 80 seconds ). Besides,
we can find that the IB preconditioner is more insensitive to the parameters α and
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β than the DPSS and HSS preconditioners. As a consequence, our proposed pre-
conditioner is more effective and practical for solving the complex symmetric linear
system (3). But we can also observe from the last row of Table 1 that if we choose
β = 0, the numerical results will not always be absolutely excellent; see the CPU
time when k = 40, m = 128.

Example 5.2 We consider the following complex symmetric linear system [8, 24]

[(−ω2M + K) + i(ωCV + CH)]x = b.

where M and K are the inertia and stiffness matrices and CV and CH are the
viscous and hysteretic damping matrices, respectively. ω is the driving circular
frequency. K = Im ⊗ Vm + Vm ⊗ Im, Vm = h−2tridiag(−1, 2, −1) ∈ R

m×m is
a tridiagonal matrix, h = 1

m+1 , CV = 1
2M, CH = μK with μ being a damping

coefficient.
We choose the matrices W = h2(−ω2M + K) and T = h2(ωCV + CH) and set

ω = 2π and μ = 0.02. For M = 5Im2 , 10Im2 , 20Im2 , 30Im2 , 40Im2 , 50Im2 , 70Im2 ,
90Im2 , and 100Im2 , we can easily show that the matrix W is symmetric indefinite and

real

im
ag

in
ar

y

-6

-4

-2

0

2

4

6

No preconditioner

real

im
ag

in
ar

y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

HSS preconditioner

real

im
ag

in
ar

y

10
-17

-5

-4

-3

-2

-1

0

1

2

3

4

5

DPSS preconditioner

real

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2

im
ag

in
ar

y

10
-16

-6

-4

-2

0

2

4

6

New preconditioner

Fig. 4 The eigenvalue distributions of original matrix A and preconditioned matrices P−1
HSSA , P−1

1 A ,

and P−1
IB A for the Example 5.2 with M = 70Im2



470 Numer Algor (2018) 77:451–478

Ta
bl
e
2

It
er
,C

PU
,a
nd

R
E
S
fo
r
th
e
pr
ec
on
di
tio

ne
d
G
M
R
E
S(
30
)
m
et
ho
d
in

E
xa
m
pl
e
5.
2
w
ith

α
=

0.
01

,
β

=
0.
1

M
→

5I
m
2

10
I m

2
20

I m
2

30
I m

2
40

I m
2

50
I m

2
70

I m
2

90
I m

2
10
0I

m
2

H
SS

(α
=0

.0
1)

It
er

15
14

18
19

19
25

13
27

25

C
PU

0.
34
56

0.
39
47

0.
54
51

0.
48
73

0.
40
32

0.
59
17

0.
95
93

1.
32
82

1.
76
56

R
E
S

6.
7e

−
07

5.
2e

−
08

4.
5e

−
07

6.
8e

−
07

9.
7e

−
07

5.
5e

−
07

9.
6e

−
07

7.
9e

−
07

8.
3e

−
07

D
PS

S
(α

=0
.0
1)

It
er

17
14

14
14

15
15

16
17

19

C
PU

0.
32
72

0.
33
88

0.
28
10

0.
28
43

0.
29
39

0.
30
89

0.
34
09

0.
33
61

0.
47
21

R
E
S

5.
0e

−
07

6.
8e

−
07

6.
4e

−
07

6.
2e

−
07

3.
6e

−
07

5.
6e

−
07

7.
2e

−
07

8.
7e

−
07

5.
3e

−
07

IB
(α

=0
.0
1,

β
=0

.1
)

It
er

7
7

9
9

10
12

13
14

16

C
PU

0.
15
43

0.
15
24

0.
21
58

0.
22
71

0.
22
14

0.
23
95

0.
26
45

0.
31
01

0.
34
28

R
E
S

7.
2e

−
7

5.
5e

−
07

7.
5e

−
07

7.
2e

−
07

5.
9e

−
07

2.
6e

−
07

6.
1e

−
07

8.
1e

−
07

5.
4e

−
07



Numer Algor (2018) 77:451–478 471

Ta
bl
e
3

It
er
,C

PU
,a
nd

R
E
S
fo
r
th
e
pr
ec
on
di
tio

ne
d
G
M
R
E
S(
30
)
m
et
ho
d
in

E
xa
m
pl
e
5.
2
w
ith

α
=

0.
1,

β
=

0.
01

M
→

5I
m
2

10
I m

2
20

I m
2

30
I m

2
40

I m
2

50
I m

2
70

I m
2

90
I m

2
10
0I

m
2

H
SS

(α
=0

.1
)

It
er

17
12

8
6

8
10

13
17

19

C
PU

0.
46
37

0.
30
00

0.
18
49

0.
24
02

0.
18
81

0.
25
96

0.
28
80

0.
43
81

0.
40
03

R
E
S

4.
8e

−
07

9.
2e

−
08

2.
7e

−
07

8.
2e

−
07

6.
1e

−
07

7.
3e

−
07

8.
0e

−
07

6.
8e

−
07

6.
5e

−
07

D
PS

S
(α

=0
.1

)
It
er

18
14

10
9

10
10

10
11

11

C
PU

0.
36
03

0.
39
31

0.
28
84

0.
20
13

0.
22
38

0.
25
60

0.
21
80

0.
25
55

0.
23
28

R
E
S

8.
1e

−
07

7.
1e

−
07

5.
3e

−
07

7.
5e

−
07

2.
7e

−
07

5.
3e

−
07

9.
9e

−
07

7.
2e

−
07

7.
4e

−
07

IB
(α

=0
.1

,β
=0

.0
1)

It
er

9
7

7
6

7
8

9
10

10

C
PU

0.
17
08

0.
18
52

0.
16
33

0.
15
96

0.
15
69

0.
19
18

0.
17
52

0.
19
51

0.
32
55

R
E
S

4.
2e

−
07

6.
2e

−
07

3.
2e

−
07

1.
0e

−
06

4.
4e

−
07

3.
5e

−
07

2.
5e

−
07

4.
3e

−
07

5.
8e

−
07



472 Numer Algor (2018) 77:451–478

Ta
bl
e
4

It
er
,C

PU
,a
nd

R
E
S
fo
r
th
e
pr
ec
on
di
tio

ne
d
G
M
R
E
S(
30
)
m
et
ho
d
in

E
xa
m
pl
e
5.
2
w
ith

α
=

0.
1,

β
=

0.
00
1

M
→

5I
m
2

10
I m

2
20

I m
2

30
I m

2
40

I m
2

50
I m

2
70

I m
2

90
I m

2
10
0I

m
2

H
SS

(α
=0

.1
)

It
er

17
12

8
6

8
10

13
17

19

C
PU

0.
36
58

0.
30
41

0.
53
28

0.
17
51

0.
18
57

0.
25
26

0.
29
21

0.
37
27

0.
40
12

R
E
S

4.
8e

−
07

9.
2e

−
08

2.
7e

−
07

8.
2e

−
07

6.
1e

−
07

7.
3e

−
07

8.
0e

−
07

6.
8e

−
07

6.
5e

−
07

D
PS

S
(α

=0
.1

)
It
er

18
14

10
9

10
10

10
11

11

C
PU

0.
46
37

0.
27
36

0.
20
59

0.
19
00

0.
28
92

0.
23
07

0.
21
83

0.
23
24

0.
23
07

R
E
S

8.
1e

−
07

7.
1e

−
07

5.
3e

−
07

7.
5e

−
07

2.
7e

−
07

5.
3e

−
07

9.
9e

−
07

7.
2e

−
07

7.
4e

−
07

IB
(α

=0
.1

,β
=0

.0
01

)
It
er

13
11

9
8

8
8

9
10

10

C
PU

0.
28
33

0.
22
28

0.
18
68

0.
17
29

0.
18
35

0.
20
05

0.
18
99

0.
19
93

0.
21
33

R
E
S

9.
1e

−
07

7.
3e

−
07

6.
5e

−
07

4.
0e

−
06

3.
3e

−
07

7.
9e

−
07

4.
6e

−
07

3.
6e

−
07

8.
0e

−
07



Numer Algor (2018) 77:451–478 473

Ta
bl
e
5

It
er
,C

PU
,a
nd

R
E
S
fo
r
th
e
pr
ec
on
di
tio

ne
d
G
M
R
E
S(
30
)
m
et
ho
d
in

E
xa
m
pl
e
5.
2
w
ith

α
=

0.
1,

β
=

10
−5

M
→

5I
m
2

10
I m

2
20

I m
2

30
I m

2
40

I m
2

50
I m

2
70

I m
2

90
I m

2
10
0I

m
2

H
SS

(α
=0

.1
)

It
er

17
12

8
6

8
10

13
17

19

C
PU

0.
45
25

0.
34
73

0.
31
87

0.
19
56

0.
20
27

0.
22
09

0.
30
96

0.
32
86

0.
39
72

R
E
S

4.
8e

−
07

9.
2e

−
08

2.
7e

−
07

8.
2e

−
07

6.
1e

−
07

7.
3e

−
07

8.
0e

−
07

6.
8e

−
07

6.
5e

−
07

D
PS

S
(α

=0
.1

)
It
er

18
14

10
9

10
10

10
11

11

C
PU

0.
37
19

0.
32
48

0.
20
71

0.
22
94

0.
20
96

0.
31
30

0.
21
81

0.
33
91

0.
23
30

R
E
S

8.
1e

−
07

7.
1e

−
07

5.
3e

−
07

7.
5e

−
07

2.
7e

−
07

5.
3e

−
07

9.
9e

−
07

7.
2e

−
07

7.
4e

−
07

IB
(α

=0
.1

,β
=1

0−
5
)

It
er

14
11

9
8

8
8

9
10

10

C
PU

0.
27
11

0.
22
88

0.
18
37

0.
18
22

0.
17
74

0.
20
85

0.
19
89

0.
20
55

0.
27
22

R
E
S

4.
1e

−
07

7.
9e

−
07

6.
9e

−
07

4.
2e

−
06

3.
3e

−
07

8.
0e

−
07

4.
6e

−
07

3.
7e

−
07

8.
0e

−
07



474 Numer Algor (2018) 77:451–478

real

im
ag

in
ar

y

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

No preconditioner

real

im
ag

in
ar

y

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

HSS preconditioner

real

im
ag

in
ar

y

10
-17

-8

-6

-4

-2

0

2

4

6

8

DPSS preconditioner

real

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2

im
ag

in
ar

y

10
-15

-1.5

-1

-0.5

0

0.5

1

1.5

DPSS preconditioner and New preconditioner

Fig. 5 The eigenvalue distributions of original matrix A and preconditioned matrices P−1
HSSA , P−1

1 A ,

and P−1
IB A for the Example 5.3 with m = 32

the matrix T is symmetric positive definite. In this example, we set m = 32 and the
right-hand side b = A ∗ ones(2m2, 1).

Table 6 Iter, CPU, and RES for the preconditioned GMRES(30) method in Example 5.3 with α = 1, β =
0.001

Preconditioner m 16 32 64 128

HSS
(α=1)

Iter 490 408 – –

CPU 1.9356 61.1594 – –

RES 1.0e − 06 1.0e − 06 – –

DPSS
(α=1)

Iter 44 50 78 108

CPU 0.1639 0.9870 8.1601 59.4973

RES 8.5e − 08 8.8e − 07 9.6e − 07 9.9e − 07

IB
(α=1,β=0.001)

Iter 43 49 75 100

CPU 0.1537 0.9650 7.7582 54.9888

RES 9.6e − 7 8.7e − 07 9.5e − 07 1.0e − 06
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Table 7 Iter, CPU, and RES for the preconditioned GMRES(30) method in Example 5.3 with α =
10, β = 0.001

Preconditioner m 16 32 64 128

HSS
(α=10)

Iter 276 595 – –

CPU 1.1183 11.7187 – –

RES 9.7e − 07 9.9e − 07 – –

DPSS
(α=10)

Iter 25 39 74 139

CPU 0.0921 0.8323 8.0476 76.2899

RES 5.3e − 08 9.7e − 07 9.5e − 07 9.6e − 07

IB
(α=10,β=0.001)

Iter 22 38 70 130

CPU 0.0835 0.8254 7.7649 73.0925

RES 5.5e − 7 9.2e − 07 9.9e − 07 9.7e − 07

Eigenvalue distributions of the original matrix A , HSS preconditioned matrix
P−1

HSSA , DPSS preconditioned matrix P−1
1 A , and new preconditioned matrix

P−1
IB A for M = 5Im2 , M = 50Im2 , and M = 70Im2 are displayed in Figs. 2, 3, and

4. In these figures, we only test α = 0.1, β = 0.001. Numerical results with differ-
ent α and β are listed in Tables 2, 3, 4, and 5. The conclusion obtained from these
figures and tables is similar to that of Example 5.1. The performance of the IB pre-
conditioned GMRES(30) is better than that of its two counterparts. Furthermore, we
can also observe that the iteration steps of the GMRES(30) are stable with the inertia
matrix M for the new preconditioner PIB .

Example 5.3 We consider the following complex symmetric linear system [6, 19]

[(K − (3 − √
3)ω2Im2) + i(K + (3 + √

3)τ 2Im2)]x = b,

Table 8 Iter, CPU, and RES for the preconditioned GMRES(30) method in Example 5.3 with α =
100, β = 0.001

Preconditioner m 16 32 64 128

HSS
(α=100)

Iter 49 139 318 –

CPU 0.2062 2.7704 32.9252 –

RES 1.0e − 06 9.9e − 07 9.9e − 07 –

DPSS
(α=100)

Iter 13 26 43 71

CPU 0.0530 0.5359 4.5402 39.6449

RES 9.9e − 08 7.2e − 07 9.7e − 07 9.6e − 07

IB
(α=100,β=0.001)

Iter 13 24 38 66

CPU 0.0431 0.4687 3.1354 34.2463

RES 4.2e − 7 6.7e − 07 9.5e − 07 9.4e − 07
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Table 9 Iter, CPU, and RES for the preconditioned GMRES(30) method in Example 5.3 with α =
1000, β = 0.001

Preconditioner m 16 32 64 128

HSS
(α=1000)

Iter 11 20 42 –

CPU 0.0530 0.4319 4.4682 –

RES 4.4e − 07 7.9e − 07 8.9e − 07 –

DPSS
(α=1000)

Iter 12 15 23 37

CPU 0.0473 0.2995 2.4310 21.5431

RES 5.3e − 08 4.4e − 07 7.2e − 07 7.8e − 07

IB
(α=1000,β=0.001)

Iter 9 13 21 35

CPU 0.0356 0.2691 1.2315 12.5431

RES 1.8e − 7 6.7e − 07 9.5e − 07 9.1e − 07

where K = Im ⊗ Vm + Vm ⊗ Im, ω = 10π, τ = 2π , h = 1
m+1 , N = m2 and Vm =

h−2tridiag(−1, 2, −1) ∈ R
m×m is a tridiagonal matrix. We choose the symmetric

indefinite matrixW = K−(3−√
3)ω2Im2 and the symmetric positive definite matrix

T = K + (3 + √
3)ω2Im2 .

Figure 5 shows the eigenvalue distributions of the original matrix A , the HSS pre-
conditioned matrix P−1

HSSA and the preconditioned matrices P−1
1 A and P−1

IB A
with m = 32, α = 100, and β = 0.001. Numerical results for different α, β, and m

are listed in Tables 6, 7, 8, and 9.
From Tables 6, 7, 8, and 9, we can see that the HSS preconditioned GMRES(30)

sometimes does not converge for m ≥ 64, and the IB preconditioner returns better
numerical results than the HSS and DPSS preconditioners in terms of the iteration
steps, CPU time, and relative residual error. Moreover, we also find the numerical
results for the IB preconditioner PIB in Table 9 (when α = 1000, β = 0.001)
are much better than the other cases. This result echoes the conclusion obtained in
Section 2 that when α → ∞ and β → 0, the preconditioner PIB is much closer
to the coefficient matrix A , then the rate of convergence will be rapid, i.e., the
GMRES(30) will terminate within a small number of steps.

6 Conclusion

To solve a class of complex symmetric indefinite linear systems, an improved block
splitting preconditioner is proposed in this paper. By adopting two iteration param-
eters and the relaxation technique, the new preconditioner not only remains the
same computational cost with the block preconditioner but also is much closer to
the original coefficient matrix. Theoretical analysis proves that the corresponding
iteration method is convergent under suitable conditions and the preconditioned
matrix has a well-clustered eigenvalue distribution with a reasonable choice of the



Numer Algor (2018) 77:451–478 477

relaxation parameters. Numerical experiments are presented to illustrate the pre-
sented preconditioner is competitive with other existing block preconditioners.
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