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Abstract An error bound for the linear complementarity problem (LCP) when the
involved matrices are QN-matrices with positive diagonal entries is presented by
Dai et al. (Error bounds for the linear complementarity problem of QN-matrices.
Calcolo, 53:647-657, 2016), and there are some limitations to this bound because it
involves a parameter. In this paper, for LCP with the involved matrix A being a QN-
matrix with positive diagonal entries an alternative bound which depends only on the
entries of A is given. Numerical examples are given to show that the new bound is
better than that provided by Dai et al. in some cases.
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1 Introduction

The linear complementarity problem (LCP) is to find a vector x ∈ Rn such that

x ≥ 0, Ax + q ≥ 0, (Ax + q)T x = 0 (1)

or to show that no such vector x exists, where A = [aij ] ∈ Rn×n and q ∈ Rn. We
denote the problem (1) and its solutions by LCP(A, q) and x∗, respectively. For the
LCP(A, q), one of the important problems is to estimate the bound of ||x − x∗||∞
(i.e., error analysis of the solution), since it has widespread applications in many
fields such as finding Nash equilibrium point of a bimatrix game, the contact problem
and the free boundary problem for journal bearing, for details, see [1, 5, 23].

It is well-known that the LCP(A, q) has a unique solution for any q ∈ Rn if and
only if A is a P -matrix [5]. Here a real square matrix A is called a P -matrix if all
its principal minors are positive. When the matrix involved is a P -matrix, Chen and
Xiang gave the following error bound for the LCP(A, q) [4]:

||x − x∗||∞ ≤ max
d∈[0,1]n

||(I − � + �A)−1||∞||r(x)||∞, (2)

where r(x) = min{x, Ax + q}, � = diag(di) and d = [d1, d2, ..., dn]T with
0 ≤ di ≤ 1, and the min operator r(x) denotes the componentwise minimum of two
vectors. It should be pointed out that there exists a big challenge for (2) due to the
difficulty for solving the max problem max

d∈[0,1]n
||(I − � + �A)−1||∞. However, if

the matrix involved belongs to a subclass of P -matrix, such as H -matrices with pos-
itive diagonals [3, 4, 11, 12, 14], B-matrices [10, 24], DB-matrices [6], SB-matrices
[7, 8], BS-matrices [13], MB-matrices [2], B-Nekrasov matrices [15, 20], weakly
chained diagonally dominant B-matrices [21], then many calculable error bounds for
the LCP(A, q) can be derived.

Very recently, another subclass of P -matrices: quasi-Nekrasov (QN-) matrices
are introduced by Kolotilina in [17], and the corresponding error bounds for the
LCP(A, q) are also achieved by Dai et al. in [9]. Here, a matrix A = D + U + L,
where D is a diagonal matrix, L is a strictly lower triangular matrix, and U is a
strictly upper triangular matrix, is called a QN-matrix [17] if its diagonal entries are
nonzero and the matrix

G = M−1M(A) = In − M−1|L||D|−1|U |,
where

M = (|D| − |L|)|D|−1(|D| − |U |) = M(A) + |L||D|−1|U |, (3)

is strictly diagonally dominant by rows [1], where M(A) = [mij ] ∈ Rn,n is the
comparison matrix of A with the entries mii = |aii | and mij = −|aij |, for i �= j and
i, j ∈ N := {1, ..., n}.
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Theorem 1 [9, Theorem 2.4] Suppose that A = [aij ] ∈ Rn,n is a QN-matrix with
positive diagonal entries such that for each i = 1, 2, . . . , n−1, aij �= 0 for some j >

i and for each i = 2, . . . , n, aij �= 0 for some j < i. Let ξ := M−1|L||D|−1|U |e,
where M is given by (3), and let W = diag(w1, ..., wn) with w1 = ξ1 + ε, ε ∈(

0, min

{
1 − ξ1, min

2≤i≤n

[M(A)ξ ]i|ai1|
})

, where [M(A)ξ ]i|ai1| = ∞ when ai1 = 0, and wi :=
ξi for i = 2, ..., n. Then

max
d∈[0,1]n

||(I − � + �A)−1||∞ ≤ max

⎧⎨
⎩

max
i∈N

{wi}
min
i∈N

{li} ,

max
i∈N

{wi}
min
i∈N

{wi}

⎫⎬
⎭ , (4)

where l1 := εa11 and li := aiiξi − ∑
j∈N\{i} |aij |ξj − ε|ai1| for each i ∈ {2, ..., n}.

It is apparent from Theorem 1 that when A = [aij ] ∈ Rn,n is a QN-matrix such
that for some i ∈ {1, 2, . . . , n − 1}, aij = 0 for any j > i or for some i ∈ {2, . . . , n},
aij = 0 for any j < i, Theorem 1 cannot be used to estimate max

d∈[0,1]n
||(I − � +

�A)−1||∞, and that when ε → 0,

l1 := εa11 → 0, and min
i∈N

{li} → 0

which implies that

max

⎧⎨
⎩

max
i∈N

{wi}
min
i∈N

{li} ,

max
i∈N

{wi}
min
i∈N

{wi}

⎫⎬
⎭ → +∞.

These facts show that there are some limitations to the bound (4) in Theorem 1 to
estimate max

d∈[0,1]n
||(I − � + �A)−1||∞ when A is a QN-matrix with positive diago-

nals. So it is interesting to find an alternative bound for LCP(A, q) to overcome these
drawbacks. In this paper we address this problem, and give a new error bound which
only depends on the entries of A. Numerical examples are given to show that the new
bound is better than that in [9] in some cases.

2 New error bounds for LCPs of QN-matrices

We start with some preliminaries and definitions. Let e := (1, ..., 1)T . A matrix is
called a Z-matrix if its off-diagonal elements are nonpositive, and a Z-matrix with
nonnegative inverse is a nonsingular M-matrix. It is well-known that a square matrix
A is called an H -matrix if its comparison matrix M(A) is an M-matrix [1]. Next, six
lemmas which will be used later are listed.

Lemma 1 [17] Let A = [aij ] ∈ Cn,n, n ≥ 2, with aii �= 0, i ∈ N . Then A is a
QN-matrix if and only if

e > M−1|L||D|−1|U |e.
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Lemma 2 [19, Lemma 3] Let γ > 0 and η ≥ 0. Then for any x ∈ [0, 1],
1

1 − x + γ x
≤ 1

min{γ, 1}
and

ηx

1 − x + γ x
≤ η

γ
.

Lemma 2 will be used in the proofs of the following lemma and Theorem 2.

Lemma 3 Let A = [aij ] ∈ Cn,n be a QN-matrix with aii > 0 for all i ∈ N , and
let Ã = I − � + �A = [ãij ] where � = diag(di) with 0 ≤ di ≤ 1. Then Ã is a
QN-matrix.

Proof Since A = D + L + U and note that

ãij =
{

1 − di + diaij , i = j,

diaij , i �= j,

it follows that Ã can be split in the form of Ã = D̃+L̃+Ũ , where D̃ = I −�+�D,
L̃ = �L, and Ũ = �U . Let us denote

ξ̃ := M̃−1|L̃||D̃|−1|Ũ |e, (5)

where

M̃ = (|D̃| − |L̃|)|D̃|−1(|D̃| − |Ũ |). (6)

Then, by Lemma 1, we need only prove the inequality e ≥ ξ̃ holds.
Denote

ṽ := |L̃||D̃|−1|Ũ |e, (7)

where

|L̃||D̃|−1|Ũ |=

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0
0 |ã21||ã11| |ã12| · · · |ã21||ã11| |ã1n|
...

...
. . .

...

0 |ãn1||ã11| |ã12| · · · |ãn1||ã11| |ã1n| + |ãn2||ã22| |ã2n| + · · · + |ãn,n−1|
|ãn−1,n−1| |ãn−1,n|

⎤
⎥⎥⎥⎥⎦ .

Then, we can deduce that

ṽ1 = 0, andṽi =
n∑

j=2

(
i−1∑
k=1

|ãik|
|ãkk| |ãkj |

)
=

i−1∑
k=1

⎛
⎝ |ãik|

|ãkk|
n∑

j=k+1

|ãkj |
⎞
⎠ , i = 2, ..., n. (8)

From (5), (6), and (7), we have

ξ̃ := (|D̃| − |Ũ |)−1|D̃|(|D̃| − |L̃|)−1ṽ.

Furthermore, if we denote λ̃ := (|D̃| − |L̃|)−1ṽ, then we can get

ξ̃ := (|D̃| − |Ũ |)−1|D̃|λ̃, (9)
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and

(|D̃| − |L̃|)λ̃ = ṽ. (10)

By (8) and (10), we can obtain the value of λ̃, recursively:

λ̃1 = 0, andλ̃i = ṽi

|ãii | +
i−1∑
j=1

|ãij |
|ãii | λ̃j , i = 2, ..., n. (11)

Moreover, it follows from the equality (9) that

(|D̃| − |Ũ |)ξ̃ = |D̃|λ̃,

this implies the following recursive relations

ξ̃n = λ̃n, andξ̃i = λ̃i +
n∑

j=i+1

|ãij |
|ãii | ξ̃j , i = n − 1, ..., 1. (12)

Let

λ1 = 0, andλi = vi

|aii | +
i−1∑
j=1

|aij |
|aii |λj , i = 2, ..., n, (13)

where

vi =
i−1∑
k=1

⎛
⎝ |aik|

|akk|
n∑

j=k+1

|akj |
⎞
⎠ . (14)

By Lemma 2, we next prove that for each i = 1, 2, ..., n,

λ̃i ≤ λi. (15)

In fact, for i = 1, we have λ̃1 = 0 = λ1. For i = 2,

λ̃2 = ṽ2

|ã22| + |ã21|
|ã22| λ̃1

= 1

|ã22|
( |ã21|

|ã11| |ã12|
)

(by(8))

= d2|a21|
1 − d2 + d2a22

(
d1|a12|

1 − d1 + d1a11

)

≤ |a21|
a22

· |a12|
a11

(by Lemma 2)

= v2

a22
= λ2.
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We now suppose that λ̃i ≤ λi holds for i = 3, 4, . . . , k and k < n. Since

λ̃k+1 = ṽk+1

|ãk+1,k+1| +
k∑

j=1

|ãk+1,j |
|ãk+1,k+1| λ̃j

= 1

|ãk+1,k+1|

⎛
⎝ k∑

l=1

⎛
⎝ |ãk+1,l |

|ãll |
n∑

j=l+1

|ãlj |
⎞
⎠

⎞
⎠ +

k∑
j=1

|ãk+1,j |
|ãk+1,k+1| λ̃j

=
k∑

l=1

⎛
⎝ |ãk+1,l |

|ãk+1,k+1|
n∑

j=l+1

|ãlj |
|ãll |

⎞
⎠ +

k∑
j=1

|ãk+1,j |
|ãk+1,k+1| λ̃j

=
k∑

l=1

⎛
⎝ dk+1|ak+1,l |

1 − dk+1 + dk+1ak+1,k+1

n∑
j=l+1

dl |alj |
1 − dl + dlall

⎞
⎠

+
k∑

j=1

dk+1|ak+1,j |
1 − dk+1 + dk+1ak+1,k+1

λ̃j

≤
k∑

l=1

⎛
⎝ |ak+1,l |

ak+1,k+1

n∑
j=l+1

|alj |
all

⎞
⎠ +

k∑
j=1

|ak+1,j |
ak+1,k+1

· λ̃j

= vk+1

|ak+1,k+1| +
k∑

j=1

|ak+1,j |
|ak+1,k+1| · λj

= λk+1,

by mathematical induction we can conclude that for each i ∈ N , (15) holds.
In terms of the relation (13) and (14), ξ = M−1|L||D|−1|U |e can be obtained

from the following recursive formula as in the proof of Theorem 2.4 in [9],

ξn = λn, andξi = λi +
n∑

j=i+1

|aij |
|aii | ξj , i = n − 1, ..., 1. (16)

By Lemma 2, (12), and (15), we claim that

ξ̃ ≤ ξ, (17)

where ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃n)
T and ξ = (ξ1, ξ2, . . . , ξn)

T . In fact, for i = n,

ξ̃n = λ̃n ≤ λn = ξn.

For i = n − 1,

ξ̃n−1 = λ̃n−1 + |ãn−1,n|
|ãn−1,n−1| · ξ̃n ≤ λn−1 + |an−1,n|

|an−1,n−1| · ξn = ξn−1.
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Similarly, for each i = n − 2, n − 3, . . . , 1, using the recursive relation (12), we can
easily get

ξ̃i = λ̃i +
n∑

j=i+1

|ãij |
|ãii | · ξ̃j ≤ λi +

n∑
j=i+1

|aij |
|aii | · ξj = ξi .

Therefore, we can conclude that (17) holds.
Now, it follows from the fact that A is a QN-matrix, Lemma 1, and (17) that

e > M−1|L||D|−1|U |e = ξ ≥ ξ̃ ,

consequently, Ã = I − � + �D is a QN-matrix. The proof is completed.

Lemma 4 [20, Lemma 3] Let A = [aij ] ∈ Cn,n be a matrix with aii > 0 for i ∈ N

and let Ã = I − � + �A = [ãij ] where � = diag(di) with 0 ≤ di ≤ 1. Then

zi(Ã) ≤ ηi(A),

and
zi(Ã)

ãii

≤ ηi(A)

min{aii , 1} ,

where z1(Ã) = η1(A) = 1, zi(Ã) =
i−1∑
j=1

|ãij |
|ãjj |zj (Ã) + 1, and

ηi(A) =
i−1∑
j=1

|aij |
min{|ajj |, 1}ηj (A) + 1, i = 2, 3, . . . , n.

Lemma 5 [17, Theorem 3.3] Let A = [aij ] ∈ Cn,n, n ≥ 2, be a QN-matrix. Then

||A−1||∞ ≤ max
i∈N

{M−1e}i
{M−1M(A)e}i . (18)

When the matrix A is a Nekrasov matrix, Kolotilina in [17] gave the following
result which shows that the bound (18) is sharper than that of Theorem 2 in [18].

Lemma 6 [17, Theorem 3.4] Let A = [aij ] ∈ Cn,n, n ≥ 2, be a Nekrasov matrix.
Then

max
i∈N

{M−1e}i
{M−1M(A)e}i ≤ max

i∈N

zi(A)

|aii | − hi(A)
,

where

h1(A) =
∑
j �=1

|a1j |, hi(A) =
i−1∑
j=1

|aij |
|ajj |hj (A) +

n∑
j=i+1

|aij |, i = 2, 3, . . . , n.

By Lemmas 2, 3, 4 and 5, we give the following bound for max
d∈[0,1]n

||(I − � +
�A)−1||∞ when A is a QN-matrix.
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Theorem 2 Let A = [aij ] ∈ Rn,n be a QN-matrix with aii > 0 for all i ∈ N , and
let Ã = I − � + �A where � = diag(di) with 0 ≤ di ≤ 1. Then

max
d∈[0,1]n

||(I − � + �A)−1||∞ ≤ max
i∈N

βi

{e − ξ}i , (19)

where ξ = M−1|L||D|−1|U |e, and

βn = αn = ηn(A)

min{ann, 1} , and βi = αi +
n∑

j=i+1

|aij |
|aii | · βj , i = n − 1, ..., 1

with αi = ηi (A)
min{aii ,1} for all i ∈ N and ηi(A) is defined in Lemma 4.

Proof Let Ã = I − � + �A = [ãij ]. By Lemmas 3 and 5, we have that Ã is a
QN-matrix, and that

||(I − � + �A)−1||∞ ≤ max
i∈N

{
M̃−1e

}
i{

M̃−1M(Ã)e
}

i

. (20)

Denote z(Ã) = (z1(Ã), z2(Ã), ..., zn(Ã))T . It follows from the fact |D̃|(|D̃| −
|L̃|)−1e = z(Ã) and (6) that

M̃−1e = (|D̃| − |Ũ |)−1|D̃|(|D̃| − |L̃|)−1e = (|D̃| − |Ũ |)−1z(Ã),

and

M̃−1M(Ã)e = (In − M̃−1|L̃||D̃|−1|Ũ |)e = e − ξ̃ ,

which imply that

||(I − � + �A)−1||∞ ≤ max
i∈N

{
(|D̃| − |Ũ |)−1z(Ã)

}
i{

e − ξ̃
}

i

. (21)

If we denote y = (|D̃| − |Ũ |)−1z(Ã) = (y1, y2, ..., yn)
T , then we get that

(|D̃| − |Ũ |)y = z(Ã),

i.e., ⎡
⎢⎢⎢⎣

|ã11| −|ã12| · · · −|ã1n|
0 |ã22| · · · −|ã2n|
...

...
. . .

...

0 0 · · · |ãnn|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1
y2
...

yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

z1(Ã)

z2(Ã)
...

zn(Ã)

⎤
⎥⎥⎥⎦ ,

which yields the following recursive formula

yn = zn(Ã)

|ãnn| , andyi = zi(Ã)

|ãii | +
n∑

j=i+1

|ãij |
|ãii | · yj , i = n − 1, . . . , 1. (22)
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Next, we prove that for each i ∈ N ,{
(|D̃| − |Ũ |)−1z(Ã)

}
i
= yi ≤ βi. (23)

In fact, for i = n,

yn = zn(Ã)

|ãnn| ≤ ηn(A)

min{ann, 1} = βn.

For i = n − 1,

yn−1 = zn−1(Ã)

|ãn−1,n−1| + |ãn−1,n|
|ãn−1,n−1| · yn

≤ ηn−1(A)

min{an−1,n−1, 1} + |an−1,n|
|an−1,n−1| · βn(by Lemmas 2 and 4)

= βn−1.

Similarly, for each i = n − 2, n − 3, . . . , 1, we have by (22) that

yi = zi(Ã)

|ãii | +
n∑

j=i+1

|ãij |
|ãii | · yj

≤ ηi(A)

min{aii, 1} +
n∑

j=i+1

|aij |
|aii | · βj

= βi.

Therefore, we can conclude that yi ≤ βi holds for each i ∈ N .
Now, from (17), (21), and (23), we obtain

||(I − � + �A)−1||∞ ≤ max
i∈N

{
(|D̃| − |Ũ |)−1z(Ã)

}
i{

e − ξ̃
}
i

≤ βi

{e − ξ}i . (24)

This completes the proof.

Remark here that the value of ξ = M−1|L||D|−1|U |e in Theorem 2 can be easily
obtained by the expression (14) and the recursive formula (13) and (16) instead of
calculating M−1(also see [9]), so the form of the bound (19) in Theorem 2 only
involves the entries of A. Furthermore, when 0 < aii ≤ 1 for all i ∈ N , then

min {aii, 1} = aii, andηi(A) = zi(A), (25)

which yields the following result.

Corollary 1 Let A = [aij ] ∈ Rn,n be a QN-matrix with 0 < aii ≤ 1 for all i ∈ N ,
and let Ã = I − � + �A where � = diag(di) with 0 ≤ di ≤ 1. Then

max
d∈[0,1]n

||(I − � + �A)−1||∞ ≤ max
i∈N

β̃i

{e − ξ}i , (26)
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where ξ = M−1|L||D|−1|U |e, and

β̃n = zn(A)

ann

, and β̃i = zi(A)

aii

+
n∑

j=i+1

|aij |
aii

· β̃j , i = n − 1, ..., 1

with zi(A) is defined in Lemma 4.

Since the class of QN-matrices contains the class of Nekrasov matrices [17], the
bounds (19) and (26) can also be used to estimate the bound of max

d∈[0,1]n
||(I − � +

�A)−1||∞ when A is a Nekrasov matrix. Here, a matrix A = [aij ] ∈ Cn,n is called
a Nekrasov matrix [16, 22] if for each i ∈ N ,

|aii | > hi(A).

And for a Nekrasov matrix, Li et al. in [20] gave the following bound which only
depends on the entries of the involved matrix.

Theorem 3 [20, Theorem 2] LetA = [aij ] ∈ Rn,n be a Nekrasov matrix with aii > 0
for i ∈ N , and let Ã = I − � + �A where � = diag(di) with 0 ≤ di ≤ 1. Then

max
d∈[0,1]n

||Ã−1||∞ ≤ max
i∈N

ηi(A)

min
{
aii − hi(A), 1

} , (27)

where ηi(A) is defined in Lemma 4.

The following theorem claims that for a Nekrasov matrix all whose diagonal
entries belong to the interval (0, 1], the bound (26) in Corollary 1 is in general tighter
than the bound (27) in Theorem 3.

Theorem 4 Let A = [aij ] ∈ Rn,n be a Nekrasov matrix with 0 < aii ≤ 1 for all
i ∈ N . Then

max
i∈N

β̃i

{e − ξ}i ≤ max
i∈N

ηi(A)

min
{
aii − hi(A), 1

} ,

where ξ and β̃i are defined in Corollary 1.

Proof Similarly to the proof of (22) in Theorem 2, we can get that for each i ∈ N ,

β̃i = {
(|D| − |U |)−1z(A)

}
i
. (28)
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Then, by (25), (28) and Lemma 6, we obtain

max
i∈N

β̃i

{e − ξ}i = max
i∈N

{
(|D| − |U |)−1z(A)

}
i

{e − ξ}i
= max

i∈N

{
M−1e

}
i{

M−1M(A)e
}
i

≤ max
i∈N

zi(A)

aii − hi(A)

= max
i∈N

ηi(A)

min
{
aii − hi(A), 1

} .

The conclusion follows.

3 Numerical examples

Next examples are given to show that the bounds in Theorem 2 and Corollary 1 can
improve the bounds in Theorem 1 ((2.20) of [9]) and Theorem 3 ((9) of [20]) .

Example 1 Consider the following matrix

A =

⎡
⎢⎢⎣

1 − 1
4 − 1

4 − 1
4

5
7 1 3

7
1
7

0 − 1
2 10 − 1

8
− 1

3 0 0 20

⎤
⎥⎥⎦ .

It is easy to verify that A is a QN-matrix but not a Nekrasov matrix with a22 =
1 < h2(A) = 31

28 . Note that A satisfies the hypothesis of Theorem 1, by (14) and
the recursive formula (13) and (16) we have ξ = (0.1573, 0.5613, 0.0555, 0.0125)T ,
and the diagonal matrix W of Theorem 1 is

W = diag(0.1573 + ε, 0.5613, 0.0555, 0.0125)

with ε ∈ (0, 0.5927). Hence, by Theorem 1 we can get the bound (4) involved with
ε ∈ (0, 0.5927) for max

d∈[0,1]4
||(I − � + �A)−1||∞, which is drawn in Fig. 1. Fur-

thermore, by Theorem 2, we can obtain that the bound (19) for max
d∈[0,1]4

||(I − � +
�A)−1||∞ is 6.1723, which is smaller than the bound (4) as shown in Fig. 1.

Example 2 Consider the following matrix

A =

⎡
⎢⎢⎣

1 − 3
5 − 1

5 0
− 1

4 1 − 1
4 − 1

2− 1
5 − 2

5 1 − 2
5−1 0 0 1

⎤
⎥⎥⎦ .
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Fig. 1 The bounds in Theorems 1 and 2

Observe that A is a Nekrasov matrix and then a QN-matrix which satisfies
the hypothesis of Theorem 1. By (14) and the recursive formula (13) and (16)
we have ξ = (0.6610, 0.8150, 0.8600, 0.8000)T . Then, by Theorem 1 we can
get the bound (4) involved with ε ∈ (0, 0.1390) and W = diag(0.6610 +
ε, 0.8150, 0.8600, 0.8000) for max

d∈[0,1]4
||(I − � + �A)−1||∞, which is drawn in

Fig. 2. Moreover, the bound (26) of Corollary 1 is

max
i∈N

β̃i

{e − ξ}i = 17.8571
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0
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1000

1500
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50
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200
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Fig. 2 The bounds in Corollary 1, Theorems 1 and 3
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while the bound (27) of Theorem 3 in [20] for Nekrasov matrices is

max
i∈N

ηi(A)

min
{
aii − hi(A), 1

} = 28.3333.

From Fig. 2, it is easy to see that the bound (26) in Corollary 1 is smaller than those
in Theorems 1 and 3.

Example 3 Consider the following QN-matrix

A =

⎡
⎢⎢⎣

3 1 1 1
0 20 0 −2

−1 0 10 −2
−1 −2 0 4

⎤
⎥⎥⎦ .

It is easy to see that A is a QN-matrix but not a Nekrasov matrix with h1(A) =
3 = a11. Since a21 = 0, which does not satisfy the hypothesis of Theorem 1, we
cannot use the bound (4) in Theorem 1 to estimate max

d∈[0,1]4
||(I − � + �A)−1||∞.

However, by Theorem 2, we have

max
d∈[0,1]4

||(I − � + �A)−1||∞ ≤ 5.7143.
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