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Abstract By making use of the normal and skew-Hermitian splitting (NSS) method
as the inner solver for the modified Newton method, we establish a class of modified
Newton-NSS method for solving large sparse systems of nonlinear equations with
positive definite Jacobian matrices at the solution points. Under proper conditions,
the local convergence theorem is proved. Furthermore, the successive-overrelaxation
(SOR) technique has been proved quite successfully in accelerating the conver-
gence rate of the NSS or the Hermitian and skew-Hermitian splitting (HSS) iteration
method, so we employ the SOR method in the NSS iteration, and we get a new
method, which is called modified Newton SNSS method. Numerical results are given
to examine its feasibility and effectiveness.
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1 Introduction

Considering the large sparse systems of nonlinear equation:
F(x) =0, (1

where F : D C C" — C" is a continuously differentiable nonlinear mapping defined
on the open convex domain D) in the n-dimensional complex linear space C". This
kind of nonlinear equation in many scientific computing and engineering applica-
tions has a wide range of applications, see [1-3]. The effective method to solve the
nonlinear (1) is the inexact Newton method, see [4—6]:

X1 = Xk + sk, F'(xi)sk = —F (xx) + e, k > 0,

where F’(x;) is Jacobian matrix of F(x) in each step of x; and ry is a residual
yielded by the inner iteration. Every step of iteration for the above method, we can
use classic splitting methods, see [3] or Krylov subspace method, see [7, 8] to solve
Newton equation F’(xi)sy = —F(x;). Recently, based on the use of Hermitian
and skew-Hermitian splitting iteration method [9], Wu et al. [10] have proposed the
modified Newton-HSS method to solve non-Hermitian positive definite systems of
nonlinear equations, and established the local and semilocal convergence theorems.
On the other hand, Bai et al. [11] generalized the Hermitian/skew-Hermitian split-
ting iteration method to the normal/skew-Hermitian splitting (NSS) iteration method,
putting forward the NSS method, and gave out the local convergence theorem. We
remark that, in actual applications, there are situations that a matrix may be more nat-
urally splitted into its normal and skew-Hermitian parts rather than its Hermitian and
skew-Hermitian parts. Particularly, in some special conditions, the NSS iteration out-
performs the Hermitian and skew-Hermitian splitting (HSS) iteration. See [12, 13],
the NSS iteration method succeeds in solving continuous Sylvester equations, and
the NSS iteration method considerably outperforms the HSS iteration method in both
iteration steps and CPU time. Unlike the HSS iteration method, the NSS splitting is
not unique for a given matrix A, we consider a NS splitting, where

N=H+icl,S= Sy —icl,

and c is real number, see [14]. In the text, the symbol || - || denotes the 2-norm of
vector or matrix.

In this paper, we utilize the NSS method as the inner solver of the modified
Newton method, and we construct the modified Newton-NSS method. Under proper
conditions, the local convergence theorem is proved. Moreover, we use successive-
overrelaxation (SOR) method in NSS iteration to accelerate the convergence rate of
the NSS iteration method, then we get a new method, that is the modified New-
ton SNSS method, and numerical results are given to examine their feasibility and
effectiveness.

The paper is organized as follows. In Section 2, we introduce the modified
Newton-NSS method. In Section 3, we display the convergence property of the mod-
ified Newton-NSS method. In Section 4, we employ the method of SOR to accelerate
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the modified Newton-NSS method. In Section 5, numerical results are presented to
confirm the effectiveness of our method. Finally, in Section 6, some brief conclusions
are given.

2 The modified Newton-NSS method

In this section, firstly, we introduce the Normal and skew-Hermitian splitting (NSS)
method. Bai et al. [11] have generalized the Hermitian and skew-Hermitian (HS)
splitting to the Normal/skew-Hermitian (NS) splitting A = N + S, where N € C"*"
is a normal matrix and S € C"*" is a skew-Hermitian matrix, called as the NSS
iteration method.

Given an initial guess xo € C”", compute xx4| for k = 0, 1,2, ... using the
following iteration scheme until {x;} satisfies the stopping criterion:

(@l + N)x; 1 = (el — S)xi + b,

’ 2)
(@l + S)xp41 = (al — N)xk+% + b,

where « is a given positive constant and / denotes the identity matrix. Combining
the two equations of (2) into the form

X1 = T (o) xx + G(@)b, 3)
leads to
k .
Xepr = T@ % x0 + ) T (@) Ga)b, k=0,1.2...., @
j=0

where

T(a) = (al +S)"Yal — N)(al + N) ' (al - ),
and

G(a) = 2a(al + 8) ol + N)~\.

Here, T («) is the iteration matrix of the NSS method. In fact, splitting A into the
form

A(@) = B(a) = C(a),

with
B(a) = L(041 + N)(xl + 8),
20
Ca) = L(ozl — N)(al —8),
200

also results in (4), and

T(¢) = B(a) ' Cla),
G(@) = B(a) "
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Now, we employ the modified Newton method

= xx — F'(xi) " F (),
{ Yk = X (xx) (xk) )

Xer1 = vk — F' ) " F ().

as the outer iteration and we employ the NSS method as the inner iteration. In other
words, we apply the NSS iteration method to the following linear systems:

F' (xx)dk
F'(xi)hk

—F(x1), (6)
—F(y)- @)

Then, the modified Newton-NS S method for solving nonlinear system F(x) = 0 is
obtained.

The modified Newton-NSS iteration method Let F : D C C" — C” be a contin-
uously differentiable function with the positive-definite Jacobian matrix F’(x) at any
point x € . Given an initial guess xo € D, a positive constant & and two sequence
{372 and {my )2, of positive integers, compute x;41 for k = 0, 1,2, ... until x;
converge (see Algorithm 1).

Algorithm 1 MN-NSS (the modified Newton—-NSS) algorithm

1: Given an initial guess xg, positive constants « and tol, and two positive integer
sequences {lk}p2 o, {milpe -

2: fork=0,1,2,...||F(xp)|| >tol| F(xp)|l do

3: Setdr,0 = hio:=0.

4: forl =0,1,...,I — 1, apply Algorithm NSS to the linear system (6):

(@I + N@i))dy 1= (el = S(x))dy, — F(xe),
(ol + S(x))dy1+1 = (al — N(Xk))dkH% — F(xg),

and obtain dy;, such that ”F(xk) + F )dis, | < ik IF @)l for some g €
[0, 1).
S: Set vk = xx + dk,lk-
: Compute F (yx).

7: form =0,1,...,m; — 1, apply Algorithm NSS to the linear system (7):
(@l + N@)hy ,y 1 = (@l = S hem — F ),
(@l + SGe)hem+1 = (@l = NG)hy , 1= FO),

and obtain i, such that ”F(yk) + F | < 1 1F Ol for some 7 €
[0, 1).

Xip1 = Yk + i my -
9: end for
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Based on the use of the (4), after straightforward operations, we can obtain the
following uniform expressions for dy ;, and hy ;,,

I —1
e, = =Y Tl x)! Gle i) F(xp),
j=0
my—1 '
i, = — Y Tl x1)! G xi) F (),
j=0
where
T(a;x) = (@l +Sx) "l — Nx) (@ + Nx)" ' («l — Sx)),
and

G(a: x) =2a(al + S&x) (ol + N(x)~ L.

Then, the modified Newton-NSS method can be rewritten as

Ir—1
ye=xk— Y T (e x1)! Gles x) F(xp),
Jj=0

1 ®)
mg—
Xt =y — Y Tlx) Gl x)F(y), k=0,1,2...,
j=0
define matrics
1
B(a; x) = Z(al + N@) (el + S(x)),
1
Cla;x) = —(xl — N(x)(al — Sx)).
2a
Then the Jacobian matrix F’(x) can be hold that
F' = B(a; x) — C(a; x),
and
T(a; x) = B(a; x)"'Cle; x), B(a: x) = G(a; )", ©
F') ™' = U =T(;x) " HG(a; x). (10)

Hence, from the (7), we can equivalently express the modified Newton-NSS method
as the following form

vk = xx — (I — T (a; x)")F' (x) " F (xp),
X1 = vk — (I — T(; )™ ) F'(ep) ' F(yr), k=0,1,2...

@ Springer



6 Numer Algor (2018) 77:1-21

3 The local convergence theorem

A nonlinear mapping F : D ¢ C" — C" is Gateaux-(or G-) differentiable at an
interior point x of D if there exists a linear operator J € C**" such that, for any
heC",

1
ling) - |F(x +th) — F(x) —tJh|| = 0.
r—

F :D c C" — C" is said to be G-differentiable on an open set Dy C D if it is
G-differentiable at any point in Dy.

The perturbation lemma plays a fundamental role in the subsequent discussion;
see Lemma 2.3.2 in [3].

Lemma 3.1 Let M, N € C"*" and assume that M is nonsingular, with ”M_1 ” <.
If IM — N|| <6 and d® < 1, then N is also nonsingular, and

®
1—-d&

L E

In the following text, we prove that the modified Newton-NSS method has the
similar local convergence properties as the modified Newton-HSS under similar
conditions.

Let F : D ¢ C" — C" be G-differentiable on an open neighborhood Ny C D
of a point x, € D at which F’(x) is continuous, positive definite, and F(x,) = 0.
Suppose F'(x) = N(x) + S(x). Denote with N (x,, r) an open ball centered at x
with radius » > 0.

Lemma 3.2 If r € (0, yLL) and for all x € N(xy,r) C Ny, assume the following
conditions hold:

Assumption A1l (The Bounded Condition) there exist positive constants § and y
such that

max ([N (e 1SCe)l} < B and [ Fee) ™| <.

Assumption A2 (The Lipschitz Condition) there exist nonnegative constants Lj and
L such that

IN() = Nxo)ll = L llx — x«ll
[S() = Sl < Ly [lx — x|l

@ Springer



Numer Algor (2018) 77:1-21 7

Then F'(x)~! exists for any x € N(xy,r) C Ny. And the following inequalities
hold with L := L 4+ L forall x, y € N(x,, r):

|F'(x) = F'(xo)|| < Llx —xll (11)
/ —1 14
lFol = i 2
L
IF(y)Il < E(IIy—x*II)erZﬁ ly — xll (13)
[y —x =P FO)| = (5 Iy =%l + L e = x ||>
* T 1—yLlx—xd \2 : .
Iy — xill - (14)

Proof The Lipschitz condition directly implies

[F'(x) = F'(x0)|| = IN(x) 4+ S(x) = N(xs) — S| < [N(x) — N(xy)l
+ISG) = Sl
S (Lp+ L) lx — x4l =L Ix — xql .

Hence
[P ) = Flan| = | Frao™ | [F/ e = Feol syLix -zl <1.

By making use of Banach Lemma, F'(x)~! exists, and

14

o] = ==
T—yLlx = %l

Since

F(y) = F(y) = F(xy) — F'(x)(y — x5) + F' (x:)(y — x4)

1
_ /0 (F/(ry 4+ 10y — %)) — F' ()t (v — x0) + F' () (5 — %2),

the bounded condition leads to

IF' o) = ING) + Sl < ING)I + ISG)ll < 28,
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and

EW

IA

1
"/O (F'(x + 1(y — x2)) = F'(x))dt (y — x) | + | F/(x)(y — x|

L 2
< E(Ily = x4l )T+ 2By — x«ll -
Clearly, it holds that

y—xi— F')7VF () = —F' () NF Q) — Fxi) — F/(x)(y — x2))
= —F' ()N F») = F(xs) — F'(x:)(y — x))
+F'(x) TN (F'(x) = F'(x:))(y — x4)

1
= —F'(x)"! /0 (F' (x4 + 1(y — x2)) — F (x:0)dt (y — xx)
+F' (x) TN F' (x) = F'(x:)) (v — x2).

Therefore,

|- ( /0 L F 4 10— x) — FG)] di

[y=xe= Pl Fo)| <
+||F'(x) = F'x) |)) Ily — x4
<—r (£||y—x*||+L||x—x*n> lly —xell.
T 1—yLlx—x \2 0

Lemma 3.3 Under the assumptions Al and A2, suppose r € (0, ro) and define ro :=
minlijiz{rfr}, where

(1)_0[+,3 21'0[9 _
T <\/y(2+1:0)(oe+,3)2+1 1)’

1 —2By[(r + 1HO]"
3yL

’

@ _
ry o=

with u = min{l,, my}, l, = liminfy_, o I, my, = liminfy_, o my, and the constant u

satisfies
N L_ In2By) J
In((r + 1)) |’

where the symbol |e]| is used to denote the smallest integer no less than the
corresponding real number, T € (0, 1;#) a prescribed positive constant and

lo — A
max
reo (N(x,) oo — Al

0 =0(a; xi) = 1T (s x|l < = o (o xy).
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Then, for any x € N(xy,r) C No, t € (0,r) and v > u, it holds that

1T (e; x)|| < (z4+1O <1,
o) = —X (Lt + Blx + DO) < gz w) < 1.
1—yLt

Proof Based on the assumption Al, it holds

|Bla; x) 7t = (T = T(; x)) F'(x) 7!
<1 =T x)ll [F'(x07 (15)
<A+ T x) ) [ F )™t <2y

Here, we use the equality (9) and the fact

T (a5 x|l < o(er; xi) < 1.
Because
Nx)S(x) =N (x:)S(xs) = [N(x) = N(x:)]1S(x) + N () [S(x) — S(xs)]

= [N(x) = NS (x) — SCe)]+-[N (x) = N () 1S (x)

+N () [S(x) — S(x)],
it follows from both assumptions Al and A2 that for all x € N(x,, r) we have
IN@)S(x) = NSl < IN(x) — Nl 1S(x) — Sl

+[IN@x) = NS el

FIN @IS (x) — Sl
LyLy(lx — x2l)? + B(Ls + L) llx — xl

1
E(Ls + L) (lx — x:l )+ B(Ls + Lp) | x — x4

IA

IA

1 2
= 5L (llx = 217+ BL llx — x«ll (16)

Noticing that the equivalent expression

B(a;x) = %(azl +aF' () + N@)S)),
and

Clo; x) = i(azl —aF'(x) + N(x)S(x)),
straightforwardly lead to the equalities

B(a; x) — Bla; x5) = %(F’(X) — F'(x2)) + %(N(X)S(X) — N(x)S(xs)),

and

1 1
Cla;x) — Cla; xy) = —E(F/(x) — F'(xy) + Z(N(x)S(x) — N(x:)8(x4)).
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From (10) and (16), we can further obtain the estimates

IB(e; x) — Blaz x )l < 4 [ F/(0) = F'(x) | + 55 IN(x)S(x) = N(x) S (x|

2 (17)
< Bl = xl)? + EE2 x — xll
and
L? L(a + B)
IC (e x) — Clas x|l < —(lx = xill ) + ——— llx — x| (18)
4o 20
Hence, by making use of the perturbation lemma, (15) and (17), it follows
1 4ay
|B@:n™| = 5 ; SN
200 — Y (L7(llx — x4l )% + 2(a + B)L [lx — x4l )

hold for all x € N(x,, ), provided r is small enough such that Ly ||x — x| < 2«
and

Y(L2(1x = xel)* + 2 + )L |Ix — x4l ) < 20
Using (8), we immediately give the equality
T(a; x) — T(; x5) = Bla; x) "' Cla; x) — B(ow; x:) " Car; xs)
= B(a; )" ((C(a; x) — Cla; x4)) — (B(a; x)
—B(a; x:)) T (@ x4)).

Based on (17) and (18), we can obtain that

1T ) = T x)ll = |Baio™| 1@ x = Clsxl

+ | B(a; x) — B(os x|l 1T (o; x5l ]
29 (L2(Jlx — x4][ )2 4+ 2@ + B)L |x — x4 )
= 20 — y(L2(Ix — x4l )2 +2(e + B)L llx —xs])

Let us further restrict  so small that Ly |[x — x,|| < 1 and

(L2(x = xall 4+ 26 + AL I — el ) < =22
v ¥ * 2416
Then it holds that
2y (L2(llx — x4l )2 + 2(c + B)L [lx — x4l ) 0
200 — Y (L2(llx — x411 )2 + 2( + B)L lx — x4l ) '
and hence,
T (a; x)|l < IIT(a;zx) - T(gt; X )l + 1T (o5 x4l
2y (L2(|lx—x ] )>+2(@+B) Llx—x4 )
= 2y LA —xs | 20t B LIk —xs]]) +0 (20)
< (r + Do. .

Theorem 3.1 Under the assumptions Al and A2, then for any xo € N(xy,r) and
any sequences {I;}72 ., {mr}72, of positive integers, the iteration sequence {x}32
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generated by the modified Newton-NSS method is well-defined and converges to x.
Moreover, it holds that

. 1
lim sup([lxx — x4l )% < g(ro; u)?,
k— 00

with u = min{ly, my}, I, = liminfy_, o I, my, = liminfy_, o my.

Proof From lemmas 3.2 and 3.3, we have

i = xull = [ = e = (= T 5" F )™ F x|

< o =2 = Fao ' Fa| + | T x| + | Fao™ Fow|

y 3L 2 I
< (llxg — x4l + [ + DT
1—yLllxg — xill 2 *

Y
X
1— yL|lxg — x|
G+ I[(r + 1)o1)yL ,  2ByI(r + 1otk
= (lxx — 1) +
2(1 — y L [lxx — x4l 1— yL|lxg — x|
< 2y
1—yL [lxg — x|
= gllxk — xull 5 L) ok — x4l < g(ros u) llxx — xull < llxk — x4l ,

L 2
(E(”xk — Xl )7+ 2B llxx — x40l )

llxx — xll

(L llxe = x4l + BL(T + DOTY) [lxi — x|

and

et =l = |y =2 = (1 = T 00" F ()™ F ()|

IA

[ = x = Fe P oo + 1 T@ x| + |[Feo " Foo|

Y L
j — + L — —
AT _x*”(2 llye — x«ll ke = xell ) 1y — Xl
k
yl(z+ Do L >
= _ 2 —
l_yLHXk_x*”(zﬂwk Xl )2 428 vk — x4l
y 1+ [(r + Do
1—yL x — xll 2
28y1(r + Do
1—yL|x — xll
_ 2v8Ulm = xll s h) 1+ gl — xsll s )
1—yL|lx — xll 2
k
L lxx — xell + BLT + DO ) llxx — x«ll
2y gUlxk — x«ll 5 Ie) «
S T (L v — x4 BL(T A+ DO e — x|
1—yL |lxk — xll
gUlxk — xull s L) g Ulxk — Xl s mp) I — Xl

Iy — 2l + llxe — x4l

=

) 1k — x|l

X

.02 .02
glllxk — xull 5 )7 Mok — 2l < g(ros )™ Ik — Xull < [l — 2l

IA
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We can further prove that {xk},fio C N(x4, r) convergences to x, by induction. When
k =0, we can get ||[xg — x4«|| <7 < rgand

.02
X1 — xall < g(llxo — xall s 10)” llxo — xsll < llxo — x4l <1,

since xg € N(x4,r). Hence x; € N(x4,r). Now, when k = n,suppose that x, €
N(x4, r) and then we can straightforwardly deduce the estimate

. 2
lxn41 — xell < g(llxn — Xl 5 )7 1 — x4l

< g(ro; w)? Xy — x|l < g(ro; w)* ™™ Ixg

— x|l <,

which shows that x, 11 € N(x,, r) for k = n + 1. Moreover, as n — 00, X;4-1 —> Xx.
This completes the proof of Theorem. O

4 The SOR acceleration

From the definition of the NSS iteration, we can obtain the fixed-point equations

(al + N)x = (al + S)y + b,

(@I —8)y = (al —N)x +b. 2D

These two fixed-point equations have the following relationships with the large
sparse non-Hermitian and positive definite system of linear equations, A is nonsin-
gular :

Ax=b,AcC™ beC". (22)

Lemma 4.1 Let A € C"™" be a positive definite matrix, N € C**" be a normal

matrix and S € C"*" be a skew-Hermitian matrix such that A = N + S. If x* € C"
*

is the exact solution of (22), then 7* = [i* j| € C?" is the exact solution of the

linear system

. al +N —(@I -8 ||x| _|b]|_
AO(“)Z:[—(M—N) al + 8 Hy}—[b]:“ (23)

Conversely, it is also established.

Proof Details see Theorem 3.3 in [11]. O
The block Jacobi iteration for the fixed-point (21), or for the block linear system
(1), is

Xer1 = (@I + N)'[(al — S)y +b],
Vi1 = (@ + 87 [(@l — N)xg + b],

or equivalently,
Zk+1) = B(@)zi + c(a),
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where z; = [xk ] and
Vi

B 0 (@I + N)"'al - 9)
| (@I + 8 (al —N) 0 ’

and the block SOR iteration for the fixed-point (21), is

Xep1 = (1 — o)xg + ol + N) ' [(al — S)y +bl,
Yir1 = (1 — @)y + (@l + )" [(@l — N)xg + bl,

with o the relaxation parameter, or equivalently,
Zk+1 = Co(@)zk + Co(@),

where

(1 —w)l w(l +N) Yol —9)

Cole) = [w(l — )@l + )@l =N) (1 —w) +?T()

] , @24
and T (@) is the NSS iteration matrix. There are the convergence theorem of the block
SOR given in [11], as follows:

Theorem 4.1 Let A € C"*" be a positive definite matrix, N € C**" be a normal
matrix and S € C"*" be a skew-Hermitian matrix such that A = N + S.

(@) When all of the eigenvalues of the block Jacobi matrix B are real, the block SOR
matrix Cy,(a) is convergent if and only if 0 < w < 2.

(b) When some of the eigenvalues of the block Jacobi matrix B(«) are complex, the
block SOR matrix C, () is convergent if for some positive number T € (0, 1)
and each eigenvalue u = § + 18 of B(), the point (8, B) lies in the interior of
the ellipse

d(1,7)={(5,B): 8>+ % =1},

and o satisfies

0<w<

. 25

+7 (25)
Conversely, if the block SOR matrix converges, then all eigenvalues of B(a) lie inside
(1, 7) for some t € (0, 1). Moreover, if some w lies on ®(1, t) and if the block
SOR matrix converges, then the (25) holds.

Proof Details see Theorem 3.6 in [11]. O]

Based on the above preparations, we can now establish the SOR acceleration of the
modified Newton-NSS method for solving the system of nonlinear equations F(x) =
0, which uses the modified Newton iteration as the outer iteration and the block SOR
iteration as the inner iteration.
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Algorithm 2 MN-SNSS (the modified Newton—SOR NSS) algorithm

1: Given an initial guess xg, positive constants « and tol, and two positive integer
sequences {[x}22 o, {Mmi)pe-
2: fork =0,1,2,...||F(xp)| >tol|| F(xp)| do
3: Set dk,o = hk,o =0.
forl =0,1,...,I — 1, apply Algorithm NSS to the linear system(5):

(@l + Nxp)dii+1 = (1 — )@l + N@x))di + ol(@l — S(xi)) Dy, j — F(xp)],
(@l + S(x))Dgy1 = (1 — w)(al + S(xx)) Dyp + ol(@d — N(xp))dy,j — F(xi)],

and obtain Dy ;, such that ”F(xk) +F xi)di i || < nk IIF (xi) || for some ny €

[0, 1).
5: Set yx = xk + Dy,
Compute F (yg).
form =0,1,...,m; — 1, apply Algorithm NSS to the linear system(6):

(@l + Nxi)hgi+1 = (1 — o)l + N(p))he + ol(@f — Sx))Hy,j — F(yi)l,
(af + SOx))Hy 41 = (1 — o) (@l + S(xp)Hiy + ol (@ — Nx)hi,j — F ()],

and obtain Hy ,,, such that HF(yk) + F’(xk)Hk,mk

1k € [0, 1).
: Xir1 = Yk + Hi -
9: end for

< Nk IF ()|l for some

S Numerical examples

In this section, we compare our methods with the modified Newton-HSS (MN-HSS)
by the example given in [10], and the numerical results show that the spectral radius
of the MN-NSS iteration matrices are always greater than those of the MN-HSS iter-
ation matrices and the modified Newton-SNSS method is more competitive than the
MN-HSS method. We consider the two-dimensional nonlinear convection-diffusion
equations

—(uxx + uyy) + qiux + qauy = —e", for (x, y) € L,
u(x,y) =0,for (x, y) € 9,

where Q2 = (0, 1) x (0, 1), with 92 its boundary, and ¢, g> are positive constants
used to measure magnitudes of the convective terms. By applying the centered finite
difference scheme on the equidistant discretization grid with the stepsize h = ;1’

+
the system of nonlinear equations F'(x) = 0 is obtained with following form

F(x) = Mx + h*®(x) =0,
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Table 1 The optimal values «
for modified Newton-NSS1 q =600 q =800 g = 1000
method

01 02 04 01 02 04 01 02 04

30 80 80 80 81 83 83 81 84 80
40 83 85 83 84 81 80 82 83 84
50 39 38 42 70 72 73 72 70 170

where N is a prescribed positive integer,

M=T,®1+1QT,,

P(x) = (e, e, e,
with Ty and T, being tridiagonal matrices given by

T, = tridiag(—1, —Rey, 2, —1 + Rey),
T, = tridiag(—1, —Re2, 2, —1 + Rey),

here,Re; = %qjh, j = 1,2, Re = max{Rejq, Rey} is the mesh Reynolds number, ®
the Kronecker product symbol, and n = N x N. Here, we choose the same parameters
as those given in [16]. The positive constant g, = %, the initial guess xo = 0, the
stopping criterion for the outer Newton iteration is set to be

I (xi) ll2 <1076
£ (x0)ll2

and the prescribed tolerances 1y and 7; for controlling the accuracy of the block SOR
iteration are both set to be 7.

In the implementations, we set ¢ = 0.01 for the MN-NSS method denoted as the
MN-NSS1 method and set ¢ = 1.0 for the MN-NSS method denoted as the MN-
NSS2 method. We find that the CPU times of the MN-NSS1 method are less than
these of the MN-NSS2 method. We use the optimal parameters « for the modified
Newton-NSS1 method listed in Table 1, the optimal parameters « for the modified

Table 2 The optimal values o
for modified Newton-NSS2 q =600 q =800 g = 1000
method

or 02 04 01 02 04 01 02 04

30 82 80 80 80 80 80 81 83 80
40 81 84 85 83 82 80 84 82 81
50 41 43 42 70 70 73 70 70 70
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Table 3 The optimal values «
for modified Newton-HSS
method

Table 4 The optimal values «
for modified Newton-SNSS
method

Table 5 The optimal values @
for modified Newton-SNSS
method

Table6 n=0.1, N =30

@ Springer

g =600 g =800 g = 1000
N
0.1 02 04 0.1 02 04 0.1 02 04
30 3.1 29 36 35 33 35 37 38 44
40 3.1 28 34 34 33 35 4.1 36 3.7
50 20 2.1 28 30 26 29 32 30 28
=600 =800 = 1000
N q q q
0.1 02 04 0.1 02 04 0.1 02 04
30 34 34 41 34 35 40 34 34 41
40 32 31 44 32 32 43 32 31 44
50 35 31 30 35 33 3.1 35 3.0 31
N g =600 g =800 g = 1000
0.1 02 04 0.1 02 04 0.1 02 04
30 0.84 085 090 084 0.85 090 0.84 0.85 0.90
40 088 0.85 091 088 0.85 091 0.88 0.85 091
50 090 089 089 090 089 0.89 090 0.89 0.89
q Method Error estimates CPU times (s) Outer IT Inner IT
MN-NSS1 4.5366 x 10~7  7.962517 3 49
600 MN-NSS2 4.3356 x 10~7 8.477883 3 52
MN-HSS 3.6278 x 1077 4.614020 3 49
MN-SNSS 1.18761 x 1077 1.64416 3 20
MN-NSS1 3.6964 x 10~7 9.867488 3 56
200 MN-NSS2 4.2752 x 10~7  10.301429 3 58
MN-HSS 4.9047 x 10~7 523838 3 53
MN-SNSS 6.3317 x 1077 1.682617 3 20
MN-NSS1 4.9425 x 10~7  11.831364 3 62
1000 MN-NSS2 5.4973 x 1077 12.184616 3 63
MN-HSS 5.7774 x 1077 5.866053 3 59
MN-SNSS 2.6900 x 10~% 1.662240 3 20
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Table7 n=0.1, N =40
q Method

Error estimates CPU times (s) Outer IT Inner IT

MN-NSS1
MN-NSS2
MN-HSS
MN-SNSS
MN-NSS1
MN-NSS2
MN-HSS
MN-SNSS
MN-NSS1
1000 MN-NSS2
MN-HSS

MN-SNSS

600

800

42093 x 1077 25.663544 3 60
4.1633 x 1077 27.860602 3 65
3.3513 x 1077 10.016936 3 45
1.4016 x 1077 6.537703 3 24
3.6975 x 1077 26.982290 3 59
5.8142 x 1077 27381107 3 59
5.1506 x 1077 12.579769 3 53
6.4947 x 1078 6.327009 3 23
6.3443 x 1077 28.999633 3 58
43558 x 1077 31.478180 3 64
7.1399 x 1077 13.614789 3 59
8.6677 x 10~% 5.834393 3 22

Newton-NSS2 method listed in Table 2, the optimal parameters o for the modified
Newton-HSS method listed in Table 3, and the optimal parameters « for the modified
Newton-SNSS method listed in Table 4, which yield the smallest value of CPU time.
Here, we set Hermitian matrix H as normal matrix N and we adopt the experimentally
optimal parameters w for the Newton-SNSS method, listed in Table 5.

The results which are shown in Tables 6, 7, 8, 9, 10, 11, and 12 indicate that
the modified Newton-SNSS methods outperforms the modified Newton-HSS in the
sense of number of inner iterations and CPU time. From the numerical results, we
observe that the CPU time for the MN-HSS method is about 2.5 times in average

Table8 1 =0.1, N =50
q Method

Error estimates CPU times (s) Outer IT Inner IT

MN-NSS1
MN-NSS2
MN-HSS
MN-SNSS
MN-NSS1
MN-NSS2
MN-HSS
MN-SNSS
MN-NSS1
1000 MN-NSS2
MN-HSS

MN-SNSS

600

800

49212 x 1077 59.413742 3 49
4.8010 x 1077 70.931500 3 57
4.1182 x 1077 27.491654 3 49
1.2404 x 1077 19.592829 3 30
3.3001 x 1077 65.153644 3 61
4.8254 x 1077 75445771 3 67
3.9851 x 1077 28.32209 3 53
1.4468 x 1077 17.939034 3 27
42091 x 1077 74.805796 3 67
5.0247 x 1077 76.746795 3 67
3.6745 x 1077 33731306 3 59
8.5513 x 1078 17.487255 3 26
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Table9 1 =0.2, N =30
q Method  Error estimates  CPU times (s) Outer IT Inner IT

MN-NSS1 8.2935 x 1077 8.309378
MN-NSS2 5.9674 x 1077 8.869997
MN-HSS 4.7251 x 1077 4.375032
MN-SNSS 4.2602 x 1077 1.756669
MN-NSS1 7.0054 x 1077 9.394007 54
MN-NSS2 8.4335 x 1077 10.011003 55

4 52
4
4
4
4
4
MN-HSS 8.8260 x 10~7 4912147 4 50
4
4
4
4
4

53
44
19

600

800

MN-SNSS 6.7665 x 1077 1.965945 20
MN-NSS1 9.5585 x 1077 11.148087 60
MN-NSS2 9.7813 x 1077 11.510977 61
MN-HSS 5.713169 x 107 5.713169 58
MN-SNSS 2.24780 x 10~7  1.660845 18

1000

of that for the MN-SNSS method. In the tables, the Outer IT and Inner IT mean
the number of outer iterations and inner iterations. From the tables ,we can observe
that the error estimates and CPU time in MN-SNSS method are smaller. Also, in
Fig. 1, the results show that the spectral radius of the MN-NSS1 iteration matrices
are always greater than those of the MN-HSS iteration matrices, therefore, for the
MN-NSS iteration method, an initial point has a wider scope.

Table 10 n =0.2, N =40
q Method Error estimates CPU times (s) Outer IT Inner IT

MN-NSS1 3.9359 x 10~7 22.023706 4 53
600 MN-NSS2 6.1254 x 1077 25.924621 4 57
MN-HSS  6.7542 x 1077 10.687251 4 45
MN-SNSS 3.5661 x 1077 6.585178 4 22
MN-NSS1 6.3431 x 10~7 27.390020 4 59
200 MN-NSS2 8.1484 x 10~7 28.807108 4 59
MN-HSS 9.1259 x 10~7 12.417761 4 51
MN-SNSS 5.1312 x 1077 6.203906 4 20
MN-NSS1 9.2658 x 10~7 29.955763 4 61
1000 MN-NSS2 9.9294 x 10~7 33.518957 4 65
MN-HSS 3.5042 x 1078 17.221869 5 67
MN-SNSS 2.5770 x 1077 6.174436 4 20
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Table11 n=0.2, N =50

Method

Error estimates

CPU times (s) Outer IT Inner IT

600

800

MN-NSS1
MN-NSS2
MN-HSS

MN-SNSS
MN-NSS1
MN-NSS2
MN-HSS

MN-SNSS
MN-NSS1
MN-NSS2

1000

MN-HSS
MN-SNSS

3.9898 x 1077
8.3841 x 1077
6.9440 x 1077
9.4305 x 1078
6.5147 x 1077
9.7837 x 1077
8.6441 x 1077
4.0200 x 1073
9.5523 x 1077
9.3257 x 1077
8.4289 x 1077
3.4427 x 1078

58.13681
64.960205
26.0821781
20.738478
65.140163
67.908378
28.675378
20.407093
69.602890
72911546
32.395389
6.174436

4
4
4
4
4
4
4
4
4
4
4
4

48
55
46
29
61
62
50
28
61
63
56
27

Table 12 n =0.4, N =30

Method

Error estimates

CPU times (s)

Outer IT Inner IT

600

800

MN-NSS1
MN-NSS2
MN-HSS

MN-SNSS
MN-NSS1
MN-NSS2
MN-HSS

MN-SNSS
MN-NSS1
MN-NSS2

1000

MN-HSS
MN-SNSS

7.2568 x 1077
4.1958 x 1077
3.8186 x 1077
9.2850 x 1078
3.0281 x 1077
3.8171 x 1077
4.9190 x 1077
1.4485 x 1077
4.8887 x 1077
4.9682 x 1077
6.7426 x 1077
3.0810 x 1078

8.598955
9.536475
4.155098
2.474202
10.837617
10.611237
5.284114
2.326768
11.779672
12.476918
5.435648
2.136836

7
7
.
6
7
7
7
6
7
7
7
6

51
55
47
25
60
58
52
24
60
63
56
23

0991

0991

0983

0988

0.987

0.986 L

T

T I T T T
16 18 2 22 24

iteration number

(a) N =30,=0.1,q=600

T
1 12 14

Fig. 1 Spectral radius

26 28 3

0.99%

0995

0994

0992
1

18 2

teratior

22

number

24 26 28 3

(b) N =40, = 0.1,4=600
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6 Conclusions

We employ normal/skew-Hermitian splitting iteration method as inner iteration and
the modified Newton method as outer iteration, we propose the modified Newton-
NSS method, and Newton-NSS method is a competitive method for solving large
sparse nonlinear systems with non-Hermitian positive definite Jacobian matrices.
We have proved our method has local convergence property. In fact, we consider
SOR method to accelerate the Newton-NSS method, and our numerical results have
demonstrated the feasibility and effectiveness.

However, the NS splitting is not unique for a given matrix, it is an interesting
topic in our future study. And according to the practical choice of the relaxion param-
eter w in the SOR acceleration scheme, the technique proposed in [15] may be
adopted in actual applications. Furthermore, we could develope a class of new inexact
preconditioners for solving the block two-by-two linear systems to (24), see [17-25].
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