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Abstract This paper describes two optimal subgradient algorithms for solving struc-
tured large-scale convex constrained optimization. More specifically, the first algo-
rithm is optimal for smooth problems with Lipschitz continuous gradients and for
Lipschitz continuous nonsmooth problems, and the second algorithm is optimal for
Lipschitz continuous nonsmooth problems. In addition, we consider two classes of
problems: (i) a convex objective with a simple closed convex domain, where the
orthogonal projection onto this feasible domain is efficiently available; and (ii) a con-
vex objective with a simple convex functional constraint. If we equip our algorithms
with an appropriate prox-function, then the associated subproblem can be solved
either in a closed form or by a simple iterative scheme, which is especially important
for large-scale problems. We report numerical results for some applications to show
the efficiency of the proposed schemes.
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1 Introduction

Convex optimization has been shown to provide efficient algorithms for computing reli-
able solutions in a broad range of applications. Many applications arising in applied
sciences and engineering such as signal and image processing, machine learning,
statistics, and general inverse problems can be addressed by a convex optimization
problem involving high-dimensional data. In practice, solving a nonsmooth convex
problem is usually more difficult and costly than a smooth one. More precisely, for a
prescribed accuracy parameter ε > 0, the optimal complexity to achieve an ε-solution
of nonsmooth Lipschitz continuous problems is O(ε−2), the superior complexity
O(ε−1/2) for smooth problems with Lipschitz continuous gradients, cf. [41, 42].

Thanks to the low memory requirement and simple structure, first-order methods
have received much attention during the past few decades. Indeed, they deal suc-
cessfully with large-scale problems. In general, convex optimization problems can
be solved by gradient-type algorithms [3, 16, 17], conjugate gradient methods [12,
18], for smooth objectives and by subgradient-type methods [22, 40], proximal gradi-
ent methods [26, 51], smoothing techniques [13, 19, 28, 45], bundle-type algorithms
[37, 38], and primal-dual first-order methods [20, 21, 23] for nonsmooth objec-
tives. Moreover, both classes can be addressed by (zero-order) coordinate descent
methods and derivative-free methods. The current paper only addresses first-order
methods and assumes that first-order black-box information—function values and
subgradients— of the objective function are available.

Historically, subgradient methods were the first numerical schemes proposed to
solve optimization problems with nonsmooth convex objective functions. In practice,
subgradient methods were too slow, especially for badly scaled problems, although
they attain the optimal worst-case complexityO(ε−2). In 1983, Nemirovski & Yudin
in [41] derived optimal worst-case complexity bounds of first-order methods to
achieve an ε-solution for several classes of problems such as Lipschitz continuous
nonsmooth problems and smooth problems with Lipschitz continuous gradients. If
an algorithm attains the optimal worst-case complexity bound for a class of prob-
lems, it is called optimal. The pioneering optimal first-order method dated back to
Nesterov [43] in 1983. This optimal first-order method is interesting both theoreti-
cally and computationally, attracting many researchers to work in the development
of such schemes, see Auslander & Teboulle [9], Beck &Teboulle [14], Devolder et
al. [27], Gonzaga et al. [29, 30], Lan [38], Lan et al. [39], Nesterov [45–47], and
Tseng [53]. Computational comparisons for composite functions show that optimal
Nesterov-type first-order methods are substantially superior to the gradient descent
and subgradient methods, see, e.g., Ahookhosh [1, 2] and Becker et al. [15].

Content In this paper, we first review the OSGA algorithm from Neumaier [48] for
solving such problems and develop a new, simplified version of it. Unlike the original
OSGA, the new algorithm, called OSGA-V, only needs a single solution of the OSGA
subproblem, but it is still optimal for Lipschitz continuous nonsmooth problems.

We then consider structured convex constrained optimization problems fre-
quently observed in applications. We show how to solve the OSGA subproblem for
two classes of convex domains, namely (i) simple convex domains such that the
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orthogonal projection is cheap to compute and (ii) sublevel sets of a convex function
referred as a functional domain. For problems with a simple domain, we first intro-
duce an appropriate prox-function and then show that the solution of the associated
subproblem is obtained by a projection onto the domain followed by solving a one-
dimensional nonlinear equation. It is shown that if an explicit formula for projection
is available, the nonlinear equation can be solved in a closed form in many interesting
cases. We also establish the optimality conditions for a functional domain and find a
closed form solution for some such constraints.

Recently, Nesterov [44] proposed a fast gradient method with optimal complex-
ity for smooth problems with Lipschitz continuous gradients, nonsmooth problems
with bounded variation subgradients, and weakly smooth problems with Hölder con-
tinuous gradients. Similar to OSGA-V and OSGA, this method needs no global
parameters such as Lipschitz or Hölder constants at the cost of applying a back-
tracking line search. Typically, this line search requires several solutions the related
subproblem increasing the total computational cost, whereas OSGA-V and OSGA do
not need such a line search. In addition, the subproblem of Nesterov’s universal gra-
dient method can be solved efficiently only when the nonsmooth part of the objective
is sufficiently simple. For many examples such as isotropic or anisotropic total vari-
ation (cf. Section 5.1), the subproblem of Nesterov’s universal gradient method can
only be solved approximately, at a significant cost; on the other hand, OSGA-V and
OSGA only require first-order information to handle such problems.

Finally, we report numerical results for applications to show the efficiency of the
proposed schemes compared with some state-of-the-art algorithms on both nons-
mooth and smooth constrained problems. Remarkably, the new simplified algorithm
slightly outperforms OSGA (and all other algorithms) on smooth problems with Lip-
schitz continuous gradients for which the latter have provable optimal complexity
O(ε−1/2). Thus suggests that a similar complexity bound can perhaps be proved for
OSGA-V, but we haven’t been able to do so.

The remainder of this paper is organized as follows. In Section 2, we give the basic
idea of the optimal subgradient framework resulting to two algorithms. Sections 3 and 4
describes how to applying these algorithms to the convex problems with simple domains.
We report numerical results and conclusions in Sections 5 and 6, respectively.

Notation and preliminaries Let V be a finite-dimensional vector space endowed
with the norm ‖ · ‖, and let V∗ denotes its dual space, formed by all linear functional
on V where the bilinear pairing 〈g, x〉 denotes the value of the functional g ∈ V∗ at
x ∈ V . The associated dual norm of ‖ · ‖ is defined by

‖g‖∗ = sup
z∈V

{〈g, z〉 : ‖z‖ ≤ 1}.

We define x+ = max{x, 0} and x− = max{−x, 0}. If V = R
n, then, for 1 ≤ p ≤ ∞,

‖x‖p =
(

n∑
i=1

|xi |p
)1/p

, ‖x‖1,p =
m∑

i=1

‖xgi
‖p,
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where x = (xg1 , . . . , xgm) ∈ R
n1 × . . . × R

nm in which n1 + . . . + nm = n. For a
function f : V → R = R ∪ {±∞}, we denote by

domf := {x ∈ V|f (x) < +∞}
its effective domain and call f proper if domf �= ∅ and f (x) > −∞ for all x ∈ V .
The vector g ∈ V∗ is called a subgradient of f at x if f (x) ∈ R and

f (y) ≥ f (x) + 〈g, y − x〉 for all y ∈ V.

The set ∂f (x) of all subgradients is called the subdifferential of f at x.
Let us consider a nonempty, closed, and convex subset C of V . The normal cone

NC(x) of C at x is defined by

NC(x) = {p ∈ V | 〈p, x − z〉 ≥ 0∀z ∈ C}. (1)

We call C a simple convex domain if the orthogonal projection

PC(y) := argmin
x∈C

1

2
‖x − y‖2 (2)

of y onto C can be found efficiently for every y ∈ V . Computing the orthogonal
projection is a well-studied topic in convex optimization, and the projection operator
is available for many domains C either in a closed form or by a simple iterative
scheme (cf. Table 5.1 in [2]).

2 Optimal subgradient algorithms

In this section, we review themain idea of the optimal subgradient framework proposed
by Neumaier in [48] for solving the convex constrained minimization problem

min f (x)

s.t. x ∈ C,
(3)

where f : C → R is a proper and convex function defined on a nonempty, closed,
and convex subset C of V . More specifically, we give two subgradient algorithms for
problem (3), where the first one requires double solutions of the subproblem (8) (see
Algorithm 1 originally proposed in [48]) and the second one needs a single solving
of the subproblem (8) (see Algorithm 2). Both algorithms use first-order informa-
tion, i.e., function values and subgradients, to construct a sequence of iterations
{xk}k≥0 ⊆ C whose function values {fk}k≥0 converge to the minimum f̂ := f (̂x)

with the optimal complexity. The algorithms require no information regarding global
parameters such as Lipschitz constants of function values and gradients.

We fix a continuously differentiable prox-function Q : C → R satisfying

Q0 := min
z∈C

Q(z) > 0 (4)

and

Q(z) ≥ Q(x) + 〈gQ(x), z − x〉 + σ

2
‖z − x‖2 for all x, z ∈ C, (5)
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where σ = 1, gQ(x) denotes the gradient of Q at x ∈ C and ‖ · ‖ is a norm defined
on V . At each iteration, the sequence of function values satisfies the bound

0 ≤ f (xb) − f̂ ≤ ηQ(̂x) (6)

on the currently best function value f (xb) with a monotonically decreasing error fac-
tor η that is guaranteed to be convergent to zero by an appropriate step-size selection
strategy (see Procedure 1). Note that x̂ is not known; thus, the error bound is not
fully constructive, but enough to guarantee the convergence of f (xb) to f̂ with a pre-
dictable worst case complexity. To maintain (6), we consider linear relaxations of f

at z,

f (z) ≥ γ + 〈h, z〉 for all z ∈ C, (7)

where γ ∈ R and h ∈ V∗, updated using linear underestimators available from the
subgradients evaluated (see Algorithm 2). Associated to such a linear relaxation is a
maximization problem of the form

E(γb, h) := sup
x∈C

Eγb,h(x), (8)

where

γb := γ − f (xb), Eγb,h(x) := −γb + 〈h, x〉
Q(x)

.

The subproblem (8) implies that

γb + 〈h, z〉 ≥ −E(γb, h)Q(z) for allz ∈ C.

Since Q(z) ≥ Q0 by construction, (7) implies for z = x̂ inequality (6) with the
computable value

η := E(γb, h).

If xb is not optimal, then (6) implies η > 0 and we see that the supremum is positive.
It is easy to see that the function Eγb,h is continuously differentiable, quasi-concave
on C′ := {x ∈ C | Eγb,h(x) > 0}, and has there compact level sets. Therefore,
the supremum is attained, and the set of solutions of (8) is convex. For use in our
algorithms, we assume that some solution u := U(γb, h) ∈ C of (8) is efficiently
computable.

By sufficiently decreasing the error factor η, the convergence to an ε-minimizer
xb is guaranteed by

0 ≤ f (xb) − f̂ ≤ ε,

for any accuracy tolerance ε > 0.
The following result provides the optimality conditions for the subproblem (8).

Proposition 1 [48, Proposition 2.2] Let η = E(γ, h) > 0 and u = U(γ, h). Then

γ + 〈h, u〉 = −ηQ(u), (9)

〈ηgQ(u) + h, z − u〉 ≥ 0 for all z ∈ C, (10)

γ + 〈h, z〉 ≥ η
(1
2
‖z − u‖2 − Q(z)

)
for all z ∈ C. (11)
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If f is a strongly convex function, then we may know μ > 0 such that f − μQ is
convex. In this case, the definition of the subgradient at xb implies

f (z) − μQ(z) ≥ f (xb) − μQ(xb) + 〈gxb
− μgQ(xb), z − xb〉for allz ∈ C, (12)

where gQ(xb) denotes the gradient of Q at xb. This leads to strongly convex
relaxations of the form

f (z) ≥ γ + 〈h, z〉 + μQ(z) for all z ∈ C (13)

with

γ = f (xb) − μQ(xb) − 〈gxb
, xb〉, h = gxb

− μgQ(xb). (14)

In this case, a more general linear relaxation with accumulated information is defined.

Proposition 2 [48, Proposition 3.2] Let x ∈ C, α ∈ [0, 1], and

γ := γ + α(f (x) − μQ(x) − 〈gx, x〉 − γ ), h := h + α(g − h), g = gx − μgQ(x).

If (7) holds and f − μQ is convex, then we have

f (z) ≥ γ + 〈h, z〉 + μQ(z) for all z ∈ C. (15)

We update the parameters α, h, γ , η, and u using the following procedure until a
stopping criterion holds.

For later comparison with the new algorithm OSGA-V, we now display the
original OSGA algorithm proposed by Neumaier [48].
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Since subgradient methods do not generally guarantee the monotonicity of the
sequence of function values {fk}k≥0, OSGA determines the sequence of iterations
{xk}k≥0 in the way that guarantees the monotonicity of the sequence {fk}k≥0 (see
Lines 7 and 9 of Algorithm 1) in which xk is given by the best current point xb (see
Line 10 for the definition of xb).

Proposition 3 Suppose that the sequence {xk}k≥0 is generated by OSGA.

(i) [48, Theorem 5.2] Suppose also that the dual norm of the subgradient gx

encountered during the iteration remains bounded by the constant c0. Define

c1 := c20

2Q0
, c2 := max

(
eκc1

(1 − λ)(1 − αmax)
,
η0(η0 + μ)

α0

)
, c3 := c2

2λ
.

The algorithm stops after at most

Kμ(α, η) := 1 + κ−1 log
c2α

ε(ε + μ)
+ c3

ε(ε + μ)
+ c3

η(η + μ)

further iterations.
(ii) [48, Theorem 5.3] Suppose also that f has Lipschitz continuous gradients with

the constant L, and set

c4 := max

(
η0 + μ

α2
0

,
e2κL

1 − αmax

)
, c5 := 4c4

λ2
, c6 :=

√
c4

λ
, c7 := c6

λ
.

If μ = 0, the algorithm stops after at most

Kμ(α, η) := 1 + κ−1 log

(
α

√
c4

ε

)
+

√
c5

ε
−

√
c4

η

and if μ > 0, then

Kμ(α, η) := 1 + log(c6α)

κ
+ c7 log

η

ε

√
c5

ε
−

√
c4

η
.
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Theorem 4 [48, Theorem 5.1] Suppose that f − μQ is convex, and write N(ε) for
the total number of iterations needed to reach a point with f (x) ≤ f (̂x) + ε.

(i) Nonsmooth complexity bound
If the points generated by OSGA stay in a bounded region of the interior of

C or if f is Lipschitz continuous in C, then N(ε) = O((ε2 + με)−1). Thus
the asymptotic worst case complexity isO(ε−2) when μ = 0 andO(ε−1) when
μ > 0.

(ii) Smooth complexity bound
If the points are generated by OSGA and f has Lipschitz continuous gra-

dients with Lipschitz constant L, then N(ε) = O(ε−1/2) if μ = 0 and
N(ε) = O(| log ε|√L/μ) if μ > 0.

It is clear that OSGA needs, two function evaluations (Lines 7 and 9), a subgra-
dient (Line 5), and two solutions of the subproblem (8) (Lines 8 and 10). We now
construct a variant OSGA-V of this algorithm that requires only a single solution of
the subproblem (8). The hope is that these modifications result in a gain in efficiency.
Inspection of the proof of the complexity of OSGA in [48] reveals that part of the
argumentation still applies without change, while another part needs to be adapted to
work with the modifications. In the following, we only give the part of the proof that
had to be changed.

Suppose that the solution u of the subproblem (8) is given. We generate the new
point x by a convex combination of xb and u, i.e.,

x := xb + α(u − xb), (16)

where α ∈ [0, 1] is a step-size (see Procedure 1). Then, we update the linear relax-
ation given in Proposition 2. Since our linear relaxations (15) (and relatively the
function Eγ,h) are constructed based on the subgradient information, we keep track
the best point so far leading to

x′
b := argmin

z∈{xb,x}
f (z).

Afterwards, we update the linear relaxation information given in Proposition 2 based
on the new point x ′

b, solve the subproblem (8) to attain the new trial step u′, and
produce the point x ′ as a convex combination of x′

b and u′, i.e.,

x′ := x′
b + α(u − x′

b),

for α ∈ [0, 1]. The new xb is produced in such a way guaranteeing fxb
≤

min{fx′
b
, fx′ }.

The results of our discussion is the following single-projection optimal subgradi-
ent algorithm.
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Note that OSGA-V needs in each iteration a single solution of the subproblem (8)
(Line 7) and a subgradient (Line 5) and two function values (Lines 6 and 8).

To guarantee the existence of a minimizer for OSGA-V and OSGA, we assume
that the upper level set Nf (x0) := {x ∈ C | f (x) ≤ f (x0)} is bounded, for the
starting point x0. Since f is convex, the upper level set Nf (x0) is closed, and V is a
finite-dimensional vector space, Nf (x0) is convex and compact. It follows from the
continuity and properness of the objective function f that it attains its global mini-
mizer on Nf (x0). Therefore, there is at least a minimizer x̂, and the corresponding
minimum is denoted by f̂ .

Proposition 5 In Algorithm 2, the error factors are related by

η − (1 − α)η ≤ α2‖g(x)‖2∗
2(1 − α)(η + μ)Q0

. (17)

Proof We first establish some inequalities needed for the later estimation. By convex-
ity of Q and the definition of h,

αμ
(
Q(u′) − Q(x) + 〈gQ(x), x〉

)
≥ αμ〈gQ(x), u′〉 = 〈h − h + α(g(x) − h), u′〉
= (1 − α)〈h, u′〉 + 〈αg(x) − h, u′〉.

By the definition of x, we have

(1 − α)(xb − x) = −α(u − x).

Hence, (12) (with μ = 0) implies

(1 − α)(f (xb) − f (x)) ≥ (1 − α)〈g(x), xb − x〉 = −α〈g(x), u − x〉.
By the definition of γ , we conclude from these two inequalities that

γ − f (x) + αμQ(u′) = (1 − α)(γ − f (x)) − α〈g(x), x〉
+αμ

(
Q(u′) − Q(x) + 〈gQ(x), x〉

)
≥ (1− α)

(
γ − f (x) + 〈h, u′〉

)
+ α〈g(x), u′ − x〉− 〈h, u′〉

≥ (1− α)
(
γ − f (xb) + 〈h, u′〉

)
+ α〈g(x), u′−u〉− 〈h, u′〉.
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Then, this (9) (with γ b = γ −f (x′
b) in place of γ and h in place of h) andE(γ b, h) =

η + μ give

(η + μ − αμ)Q(u′) = f (x′
b) − γ − 〈h, u′〉 − αμQ(u′)

≤ f (x′
b) − f (x) − α〈g(x), u′ − u〉

−(1 − α)
(
γ − f (xb) + 〈h, u′〉

)
.

(18)

Since E(γb, h) > 0 by Proposition 1, we may use (11) with γb = γ − f (xb) in place
of γ and η + μ = E(γb, h), and find

(η + μ)Q(u′) ≥ f (xb) − γ − 〈h, u′〉 + η + μ

2
‖u′ − u‖2. (19)

Now (18) and (19) imply

(η − (1 − α)η)Q(u′) = (η + μ − αμ)Q(u′) − (1 − α)(η + μ)Q(u′)
≤ f (x′

b) − f (x) − (1 − α)
(
γ − f (xb) + 〈h, u′〉

)
−α〈g(x), u′ − u〉
−(1 − α)

(
f (xb) − γ − 〈h, u′〉 + η + μ

2
‖u′ − u‖2

)
= f (x′

b) − f (x) + S,

where

S := −α〈g(x), u′ − u〉 − (1 − α)(η + μ)

2
‖u′ − u‖2

≤ α‖g(x)‖∗‖u′ − u‖ − (1 − α)(η + μ)

2
‖u′ − u‖2

= α2‖g(x)‖2∗ − (α‖g(x)‖∗ + (1 − α)(η + μ)‖u′ − u‖)2
2(1 − α)(η + μ)

≤ α2‖g(x)‖2∗
2(1 − α)(η + μ)

.

(20)

If η ≤ (1 − α)η then (17) holds trivially. Now let η > (1 − α)η. Then

(η − (1 − α)η)Q0 ≤ (η − (1 − α)η)Q(u′) ≤ f (x′
b) − f (x) + S. (21)

Since f (x′
b) ≤ f (x), we conclude that (17) holds. Thus, (17) holds generally.

The remainder of the arguments in [48] apply unchanged for OSGA-V in place
of OSGA when no smoothness is assumed. In particular, part (i) of Proposition 3
above remains valid for OSGA-V. As a consequence, we find as in [48] the following
complexity result for OSGA-V.

Theorem 6 Suppose that f −μQ is convex, then if the points generated by OSGA-V
stay in a bounded region of the interior of C, or if f is Lipschitz continuous in C, the
total number of iterations needed to reach a point with f (x) ≤ f (̂x) + ε is at most
O((ε2 + με)−1). Thus the asymptotic worst case complexity is O(ε−2) when μ = 0
and O(ε−1) when μ > 0.
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Thus, OSGA-V attains like OSGA the optimal complexity O
(
ε−2

)
for Lipschitz

continuous nonsmooth f (cf. Nemirovsky & Yudin [41] and Nesterov [42]).
Note that Theorem 4 also asserts that OSGA attains the optimal complexityO

(
ε−1/2

)
for smooth f with Lipschitz continuous gradients. We were not able to prove this for
OSGA-V. But in our numerical experiments, we nevertheless observed that OSGA-V
converged on smooth problems with essentially the same speed as OSGA.

If the subproblem (8) can be solved efficiently, OSGA-V and OSGA are appropri-
ate for solving large-scale problems. Numerical results reported by Ahookhosh [1]
and Ahookhosh & Neumaier [4, 5], for unconstrained problems, and Ahookhosh &
Neumaier [6, 7], for constrained problems, show the promising behavior of OSGA
for practical problems. In general, solving the subproblem (8) is the key factor for
applying OSGA-V and OSGA, especially for large-scale problems, which is not triv-
ial. Therefore, in the next section, we show that by selecting a suitable prox-function,
the subproblem (8) can be solved efficiently for problems with simple domains.

3 Structured convex constrained problems in simple domains

In this section, we consider the convex constrained optimization problem (3), where
C is a simple convex domain, i.e., we call it a simple domain problem. This problem
appears in many applications such as signal and image processing, machine learning,
statistics, and inverse problem (see Sections 5.1 and 5.2).

We here consider the quadratic prox function

Q(z) := 1

2
‖z‖22 + Q0; (22)

see, e.g., [1]. We show that the solution of the subproblem (8) can be found either in
a closed form or by a simple iterative scheme. In particular, we address some convex
domains that a closed form solution for the subproblem (8) can be found.

The next result shows that the solution of the subproblem (8) is given by the
orthogonal projection (2) of y := η−1h on the domain C followed by solving a
one-dimensional nonlinear equation to determine η := E(γb, h).

Theorem 7 Let u be a maximizer of (8) and also let η = Eγ,h(u) > 0. Then

u = û(η) := PC(y), y := −η−1h,

where, η is a solution of the univariate equation

ϕ(η) = 0

with

ϕ(η) := η

(
1

2
‖û(η)‖22 + Q0

)
+ γ + 〈h, û(η)〉. (23)

Proof From Proposition 5.1 in [48], at the maximizer u, we obtain

ηQ(u) = −γ − 〈h, u〉 (24)
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and
〈ηu + h, z − u〉 ≥ 0 for all z ∈ C. (25)

By setting z = u in this variational inequality, it follows that u is a solution of the
minimization problem

inf
z∈C

〈ηu + h, z − u〉.
The first-order optimality condition for this problem is

0 ∈ ηu + h + NC(u). (26)

Since η > 0, u satisfies

u = argmin
z∈C

1

2
‖ηz + h‖22 = argmin

z∈C

1

2
‖z − y‖22 = PC(y) = û(η),

where y = −η−1h giving the result.

Theorem 7 gives a way to compute a solution of the subproblem (8) involving a pro-
jection onto the domain C and solving the one-dimensional nonlinear equation. This
equation can be solved exactly for some projection operators, see Table 1. However,
one can solve this nonlinear equation approximately using zero finding schemes, see,
e.g., Chapter 5 of [50]. We apply the results of Theorem 7 in the next scheme to
solve (8):

To implement Algorithm 3 (SUS), we first need to solve the projection problem (2)
effectively, see Table 5.1 of [2]. If one solves the equation ϕ(η) = 0 approximately,
and an initial interval [a, b] is available such that ϕ(a)ϕ(b) < 0, then a solution can
be computed to an ε-accuracy using the bisection scheme inO(log2((b−a)/ε)) iter-
ations, see, e.g., [50]. However, it is preferable to use a more sophisticated zero finder
like the secant bisection scheme (Algorithm 5.2.6, [50]). If an interval [a, b] with
sign change is available1, one can also use MATLAB’s fzero function combining
the bisection scheme, the inverse quadratic interpolation, and the secant method.

In the following, we investigate special domains C, where the nonlinear equation
ϕ(η) = 0 can be solved explicitly, see Table 1.

The next result shows how to the solution of (8) is given for the simple domain
C = {x ∈ V | Ax = b}.

1Without a sign change, fzero is unreliable; it fails on the simple quadratic x2−0.0001 = 0 with starting
point 0.2.
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Table 1 List of domains C

where ϕ(η) = 0 can be solved
explicitly

Defining constraint c(x) Solution

Ax = b Proposition 8

〈a, x〉 = b Corollary 9

〈a, x〉 ≤ b Proposition 10

x ≥ 0 Proposition 11

‖x‖2 ≤ ξ, ξ > 0 Proposition 12

Proposition 8 If C = {x ∈ V | Ax = b} is an affine set, then the subproblem (8) is
solved by u = PC(−η−1h), where

PC(y) = y − A†(Ay − b). (27)

and

η =
−β2 +

√
β2
2 − 4β1β3

2β1
= −2β3

β2 +
√

β2
2 − 4β1β3

, (28)

with

β1 := 1

2

∥∥∥A†b

∥∥∥2
2
+ Q0, β2 := 〈A†(Ah), A†b〉 + γ, β3 := 1

2

∥∥∥A†(Ah)

∥∥∥2
2
+ 1

2
‖h‖22.
(29)

Proof The projection operator on C is given by (27). This and y = −η−1h give

PC(−η−1h) = −η−1(A†(Ah + ηb) − h).

This, together with (24), yields

ηQ(u) + γ + 〈h, u〉 = η
(
1
2

(‖PC

(−η−1h
) ‖22

) + Q0

)
+ γ + 〈h, PC(−η−1h)〉

= 1
2‖A†(Ah + ηb)‖22 + 1

2‖h‖22 − 〈A†(Ah + ηb), h〉 + Q0η
2

+γ η + 〈A†(Ah + ηb) − h, h〉
=

(
1
2‖A†b‖22 + Q0

)
η2 + (〈A†(Ah), A†b〉 + γ )η

+ 1
2‖A†(Ah)‖22 + 1

2‖h‖22= β1η
2 + β2η + β3 = 0,

where β1, β2, and β3 are defined in (29). Since the subproblem (8) is the maximiza-
tion, the bigger root of this equation is selected, which is given by (28).

Note that in (28), the first form of η is numerically stable when β2 ≤ 0 and the
second form when β2 > 0. In the following, the same holds whenever two formulas
for η are given.

The following result shows how to the solution of (8) is given for the simple
domain C = {x ∈ V | aT x = b}.
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Corollary 9 If C = {x ∈ V | aT x = b} is a hyperplane, then the subproblem (8) is
solved by u = PC(−η−1h), where

PC(y) = y −
(

〈a, y〉 − b

‖a‖22

)
a, (30)

and η is given by (28) with

β1 := b

2‖a‖22
+ Q0, β2 := b〈a, h〉

‖a‖22
+ γ, β3 := 1

2

〈a, h〉2
‖a‖22

− 1

2
‖h‖22. (31)

Proof Since the hyperplane C = {x ∈ V | aT x = b} is an affine set, this is a special
case of Proposition 8.

The subsequent result shows how to the solution of (8) is given for the simple domain
C = {x ∈ V | 〈a, x〉 ≤ b}.

Proposition 10 If C = {x ∈ V | 〈a, x〉 ≤ b} is a halfspace, then the subproblem (8)
is solved by u = PC(−η−1h), where

PC(y) = y − (〈a, y〉 − b)+
‖a‖22

a (32)

and η ∈ {η1, η2}, where

η1 = −γ + √
γ 2 + 4Q0β

2Q0
= 2β

γ + √
γ 2 + 4Q0β

, (33)

with β := 1
2‖h‖22 ≥ 0 and η2 is given by (28) with β1, β2, and β3 given in (31). More

specifically, if 〈a, h〉 ≥ η−1
1 b and 〈a, h〉 ≥ η−1

2 b, then η = η1. If 〈a, h〉 ≤ η−1
1 b

and 〈a, h〉 < η−1
2 b, then η = η2. If 〈a, h〉 ≥ η−1

1 b and 〈a, h〉 < η−1
2 b, then η =

max{η1, η2}.

Proof The projection operator on C is given by (32). This gives

PC(−η−1h) = −η−1

(
h + (〈a, h〉 + ηb)−

‖a‖22
a

)
. (34)

If 〈a, h〉 ≥ −ηb, we obtain

PC(−η−1h) = −η−1h,

leading to

ηQ(PC(−η−1h)) + γ + 〈h, PC(−η−1h)〉 = 1
2η−1‖h‖22 + Q0η + γ − η−1‖h‖22

= Q0η
2 + γ η − 1

2‖h‖22 = Q0η
2 + γ η − β = 0.

This identity leads to a solution, say η1. If 〈a, h〉 < −ηb, (30) is valid and η is
computed by (28) where β1, β2, and β3 is defined in (31), say η2. After computing
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η1 and η2, we check whether the inequalities 〈a, h〉 ≥ −η1b and 〈a, h〉 < −η2b

are satisfied. Since the subproblem (8) has a solution, at least one of the conditions
has to be satisfied. If one of them is satisfied, the corresponding η and (34) give the
solution. If both of them hold, the solution with the bigger η is considered.

The next result shows how to the solution of (8) is given for the simple domain
C = {x ∈ R

n | xi ≥ 0i = 1, . . . , n}.

Proposition 11 If C = {x ∈ R
n | xi ≥ 0i = 1, . . . , n} is the nonnegative orthant,

then the subproblem (8) is solved by u = PC(−η−1h), where

PC(y) = y+ (35)

and η is given by

η = −γ + √
γ 2 + 4Q0β

2Q0
= 2β

γ + √
γ 2 + 4Q0β

,

with β := 1
2‖h−‖22 ≥ 0.

Proof The projection operator on C is given by (35) leading to

PC(−η−1h) = −η−1h−.

This and (24) imply

ηQ
(
PC

(−η−1h
))+γ +〈h, PC

(−η−1h
)〉 = 1

2η
−1‖h−‖22 + Q0η + γ − η−1〈h, h−〉

= Q0η
2 + γ η + 1

2‖h−‖22 − 〈h, h−〉
= Q0η

2 + γ η − β = 0,

giving the result.

The following result shows how to the solution of (8) is given for the simple
domain C = {x ∈ R

n | ‖x‖2 ≤ ξ}, for ξ > 0.

Proposition 12 Let C = {x ∈ R
n | ‖x‖2 ≤ ξ} be the Euclidean ball. Then

PC(y) =
{

ξy/‖y‖2 ‖y‖2 > ξ,

y ‖y‖2 ≤ ξ,
(36)

If ‖η−1h‖2 ≤ ξ where η is given by

η = −γ + √
γ 2 + 4Q0β

2Q0
= 2β

γ + √
γ 2 + 4Q0β

,

with β := 1
2‖h‖22 ≥ 0, then u = −η−1h; otherwise, the solution of the subproblem

(8) is given by

u = − ξ

‖h‖2 h, η = −2(γ + ξ‖h‖2)
ξ2 + 2Q0

.
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Proof The projection operator on C is given by (36), leading to

PC(−η−1h) =
{ −ξh/‖h‖2 ‖h‖2 > ηξ,

−η−1h ‖h‖2 ≤ ηξ.

We first assume that ‖h‖2 ≤ ηξ implying PC(−η−1h) = −η−1h. Substituting this
into (24) yields

ηQ(PC(−η−1h)) + γ + 〈h, PC(−η−1h)〉 = 1
2η−1‖h‖22 + Q0η + γ − η−1‖h‖22

= Q0η
2 + γ η − 1

2‖h‖22 = Q0η
2 + γ η − β = 0,

giving the result. If this η satisfies ‖h‖2 ≤ ηξ , then u = −η−1h; otherwise, we
assume that ‖h‖2 > ηξ . Substituting PC(−η−1h) = −ξh/‖h‖2 into (24) yields

η

(
1

2
ξ2 + Q0

)
+ γ − ξ‖h‖2 = 0,

implying

η = −2(γ + ξ‖h‖2)
ξ2 + 2Q0

and u = −ξh/‖h‖2. This completes the proof.

To solve bound-constrained problems with OSGA-V and OSGA, we developed
an algorithm that can find the global solution of the subproblem (8) by solving a
sequence of one-dimensional rational optimization problems, see Algorithm 3 in [6].
Notice that the constraint C := {x ∈ V | ‖x‖∞ ≤ ξ} is a special case of bound-
constrained problems with x = −ξ1 and x = ξ1, where 1 is a n-dimensional vector
with all elements equal to unity.

4 Solving structured problems with a functional constraint

In this section, we consider the structured convex constrained problem (3) with the
domain

C := {x ∈ V|φ(x) ≤ ξ}. (37)
The aim of this section is to find a solution of the subproblem (8) directly by using
the KKT optimality conditions, especially when no efficient method for finding the
projection onto C is known.

In the reminder of this section, we assume that the functional constraint satisfies
the Cottle constraint qualification, see [10], i.e.,
(H1) for all x ∈ C, either φ(x) < 0 or 0 �∈ ∂φ(x).

The next result gives the optimality conditions for solving the problem (8) with
the domain (37).

Theorem 13 Let (H1) hold for the problem (3), with C satisfying (37). Then, for a
real constant ξ , the supremum

sup
φ(x)≤ξ

−γ − 〈h, x〉
Q(x)

(38)
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is attained, and every maximizer u satisfies either

u = −η−1h, φ(u) < ξ (39)

or
1

μ

−ηu − h

Q(u)
∈ ∂φ(u), μ > 0, φ(u) = ξ, (40)

where η := Eγb,h(u).

Proof Let us define the function

Eγ,h : C → R, Eγ,h(x) := −γ + 〈h, x〉
Q(x)

.

Since this function is differentiable, by differentiating both sides of the equality
Eγ,h(x)Q(x) = −γ − 〈h, x〉 with respect to x, we obtain

∇Eγ,h(x) = −Eγ,h(x)x − h

Q(x)
. (41)

In view of the KKT optimality conditions for inequality constrained nonsmooth
problems, see [10], we have the optimality conditions⎧⎪⎪⎨

⎪⎪⎩
0 ∈ ∇Eγ,h(u) + μ∂φ(u),

φ(u) ≤ ξ,

μ ≥ 0,
μ(φ(u) − ξ) = 0,

(42)

for (38). Now, by substituting (41) into (42), setting η := −(γ + 〈h, u〉)/Q(u), and
distinguishing between μ = 0 and μ > 0, we obtain either (39) or (40).

Theorem 13 gives the optimality conditions for a general function φ, however, in
view of Theorem 7, it is especially useful when the projection onto C = {x | φ(x) ≤
ξ} is not efficiently available.

We here need the following result, where the proof is given in Proposition 2.1.17
of [2].

Proposition 14 (see, e.g., [5]) Let φ : V → R, φ(x) = ‖x‖. Then the subdifferential
of φ is

∂φ(x) =
{ {g|‖g‖∗ ≤ 1} ifx = 0,

{g|‖g‖∗ = 1, 〈g, x〉 = ‖x‖} ifx �= 0.
Moreover, if ‖ · ‖ is self-dual, then

∂φ(x) =
{ {g|‖g‖∗ ≤ 1} ifx = 0,

x/‖x‖ ifx �= 0.

To conclude this section, we derive the solution of the subproblem (8) for some
φ such as ‖ · ‖1,2 that appear in many applications. In 2004, Yuan and Lin in [54]
proposed an interesting regularizer called grouped LASSO for the linear regression.
Later Kim et al. in [33] proposed a constrained ridge regression model

min 1
2‖y − Ax‖22

s.t. ‖x‖1,2 ≤ ξ,
(43)
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in which ξ is a nonnegative real constant and ‖x‖1,2 is a so-called the l1,2 group
norm. We consider this constraint in the next result.

Proposition 15 Let V be a real finite-dimensional vector space with the induced
norm φ(·) = ‖ · ‖1,2. Then the subproblem (8) is solved by

ugi
= −η−1hgi

for alli = 1, . . . , m, (44)

and

η = −γ + √
γ 2 + 4Q0β

2Q0
= −2β

γ + √
γ 2 − 4Q0β

, μ = 0,

where β := ∑m
i=1 ‖hgi

‖22 − 1
2‖h‖22, if φ(u) < ξ ; otherwise, it is solved by

ui = ρihgi
, ρi =

‖hgi
‖2 − μ

(
1
2ξ

2 + Q0

)
η‖hgi

‖2 for alli = 1, . . . , m,

and

η = −γ + 〈h, u〉
1
2ξ

2 + Q0
= −2(γ + ∑n

i=1 τ 2i ‖hgi
‖22)∑n

i=1 τ 2i ‖hgi
‖22 + 2Q0

, μ = 2(
∑m

i=1 ‖hgi
‖2 + ηξ)

m(
∑m

i=1 τ 2i ‖hgi
‖22 + 2Q0)

.

Proof Since η > 0 and ξ > 0, u = 0 if hgi
= 0, for i = 1, . . . , m, satisfying (44).

Let us consider u �= 0. In view of Proposition 14, we get

∂φ(ugi
) =

{
ugi

‖ugi
‖2

}
for all i = 1, . . . , m,

leading to

∂φ(u) =
{(

ug1

‖ug1‖2
, . . . ,

ugm

‖ugm‖2
)}

.

We apply Theorem 13 leading to two cases: (i) (39) holds; (ii) (40) holds.

Case (i). The condition (39) holds. Then, we have ugi
= −η−1hgi

for i = 1, . . . , n.
By substituting u = (ug1 , . . . , ugn) into the identity Eγ,h(u) = η, we get

η = −γ + ∑m
i=1 ‖hgi

‖22η−1

1
2‖h‖22η−2 + Q0

,

implying

Q0η
2 + γ η + 1

2
‖h‖22 −

m∑
i=1

‖hgi
‖22 = 0.

By using the bigger root of this equation, we get

η = −γ + √
γ 2 + 4Q0β

2Q0
,

where β := ∑m
i=1 ‖hgi

‖22 − 1
2‖h‖22.
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Case (ii). The condition (40) holds. Then, we have

−ηugi
− hgi

1
2‖u‖22 + Q0

= −μ
ugi

‖ugi
‖2 for all i = 1, . . . , m.

Since φ(u) = ‖u‖ = ξ , we equivalently get(
1

2
‖u‖22 + Q0

)(
− η

1
2‖u‖22 + Q0

+ μ

‖ugi
‖2

)
ugi

= hgi
,

implying ugi
= τihgi

. If hgi
= 0, then ugi

= 0. Now let hgi
�= 0.

Substituting ugi
= τihgi

into the previous identity, it follows that

(
1

2

m∑
i=1

τ 2i ‖hgi
‖22 + Q0

)(
− η

1
2

∑m
i=1 τ 2i ‖hgi

‖22 + Q0
+ μ

τi‖hgi
‖2

)
τihgi

= hgi
,

giving

−ητi‖hgi
‖2 +μ

(
1

2

m∑
i=1

τ 2i ‖hgi
‖22 + Q0

)
= ‖hgi

‖2for all i = 1, . . . , m.

Applying a summation from both sides, together with
∑m

i=1 τi‖hgi
‖2 =

ξ , yields

− ηξ + mμ

(
1

2

m∑
i=1

τ 2i ‖hgi
‖22 + Q0

)
=

m∑
i=1

‖hgi
‖2, (45)

implying

μ = 2(
∑m

i=1 ‖hgi
‖2 + ηξ)

m(
∑m

i=1 τ 2i ‖hgi
‖22 + 2Q0)

.

By substituting this into (45), we have

τi = − 1

mη‖hgi
‖2

(
m‖hgi

‖2 −
m∑

i=1

‖hgi
‖2 − ηξ

)
,

leading to

u = (τihg1 , . . . , τmhgm).

By substituting this into Eγ,h(u) = η, we get

η = −γ + 〈h, u〉
1
2ξ

2 + Q0
= −2(γ + ∑n

i=1 τ 2i ‖hgi
‖22)∑n

i=1 τ 2i ‖hgi
‖22 + 2Q0

,

giving the result.
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5 Numerical experiments and applications

This section discusses numerical results and comparisons of OSGA and OSGA-V
with some state-of-the-art first-order solvers on some image deblurring and ridge
regression problems. For image deblurring problem, we consider a �1 data fidelity
regularized with isotropic total variation that both part of the objective are nons-
mooth. Therefore, we compare with DRPD-1, DRPD-2 (Douglas-Rachford primal-
dual schemes proposed by Boţ & Hendrich [20]), and ADMM (alternating direction
method of multipliers [25]). In this case, we used the algorithms provided by the
respective authors. Since the ridge regression has a smooth convex objective, we
compared with PGA (gradient projection algorithm), SPG-A (the spectral gradient
projection [18] with the Amini et al. nonmonotone term [8]), NESCO (Nesterov’s
composite optimal algorithm [47]), and NESUN (Nesterov’s universal gradient algo-
rithm [44]). We used the default parameter values reported in the corresponding papers
or packages. In our comparisons, we did not consider the popular forward-backward
solver FISTA since it is not designed to handle constrained problems of the form (3).

The codes of OSGA and OSGA-V are written in MATLAB, where they use the
parameters

δ = 0.9, αmax = 0.7, κ = κ ′ = 0.5.

and the prox-function (22) with Q0 = 1
2‖x0‖2 + ε, where ε is the machine precision.

All numerical experiments were executed on a PC Intel Core i7-3770 CPU 3.40GHz
8 GB RAM.

5.1 Image deblurring with nonnegativity constraints

Inverse problems are appearing in many fields of applied sciences and engineering.
This is particularly happen when researchers use digital images to record and analyze
results from experiments in many fields such as astronomy, medical sciences, biol-
ogy, geophysics, and physics. In these cases, observing blurred and noisy images is
a common phenomenon happening frequently because of environmental effects and
imperfections in the imaging system.

The process of reconstructing or estimating a true image from a degraded observa-
tion is known as the image restoration, also called deblurring or deconvolution. Image
restoration is addressed by considering a constraint satisfaction problem of the form

Ax = b, x ∈ C,

where C is a convex domain C that is commonly a box or the nonnegative orthant.
This is an ill-posed problem, cf. Neumaier [49], and can be handled by solving the
regularized �1 problem

min ‖Ax − b‖1 + λ‖x‖IT V

s.t. x ∈ C,
(46)

where ‖ · ‖IT V is called isotropic total variation (cf. [24]) given by

‖x‖IT V = ∑m−1
i

∑n−1
j

√
(xi+1,j − xi,j )2 + (xi,j+1 − xi,j )2

+ ∑m−1
i |xi+1,n − xi,n| + ∑n−1

j |xm,j+1 − xm,j |,
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for x ∈ R
m×n. Since both ‖Ax − b‖1 and ‖x‖IT V are nonsmooth the Nesterov-type

optimal methods like NESCO cannot be applied. In addition, the associated sub-
problem of the universal gradient method NESUN can be only solved approximately
with an iterative scheme which is costly. Therefore, we will not consider them in our
comparison.

In many applications, the variable x describes physical quantities, which is mean-
ingful if each component of x is restricted to be nonnegative. This constraint is
referred as the nonnegativity constraint; it is especially useful for restoring blurred
and noisy images, see [11, 31, 32].

We also consider the restoration of the 1024 × 1024 blurred/noisy Titan image
using (46). The true image is available in http://photojournal.jpl.nasa.gov/Help/
ImageGallery.html.

The blurred/noisy image is constructed from the 7 × 7 Gaussian kernel with stan-
dard deviation 5 and salt-and-pepper impulsive noise with the level 50%. To recover
the image, we use DRPD-1, DRPD-2, ADMM, OSGA-V, and OSGA. The algo-
rithms are stopped after 100 iterations, and three different regularization parameters
are considered. The results of implementation are reported in Table 2 and Fig. 1.

The comparison concerning the quality of the recovered image is made via the
so-called peak signal-to-noise ratio (PSNR) defined by

PSNR = 20 log10

( √
mn

‖x − xc‖F

)
(47)

and the improvement in signal-to-noise ratio (ISNR) defined by

ISNR = 20 log10

(‖y − xc‖F

‖x − xc‖F

)
, (48)

where ‖ · ‖F is the Frobenius norm, xc denotes the m × n clean image, y is the
observed image, and pixel values are in [0, 1].

The results of Table 2 shows that OSGA-V and OSGA produce comparable or bet-
ter results than the others with respect to final function values; on the other hand, they

Table 2 Results summary for image deblurring with L1ITV; each method was stopped after 100 iterations

λ DRPD-1 DRPD-2 ADMM OSGA OSGA-V

fb 3 × 10−2 2.62581e+5 2.63318e+5 2.75685e+5 2.63044e+5 2.63024e+5

PSNR 30.88 32.88 14.20 34.97 36.44

Time 26.53 17.09 17.35 19.44 18.14

fb 7 × 10−2 2.62248e+5 2.64435e+5 2.67511e+5 2.62375e+5 2.623259e+5

PSNR 35.05 31.60 25.50 40.88 41.37

Time 26.14 17.17 16.96 19.02 18.03

fb 1 × 10−1 2.63555e+5 2.66710e+5 2.73446e+5 2.63458e+5 2.63431e+5

PSNR 39.84 31.58 39.83 41.33 41.77

Time 27.78 17.87 17.94 20.59 18.80

http://photojournal.jpl.nasa.gov/Help/ ImageGallery.html
http://photojournal.jpl.nasa.gov/Help/ ImageGallery.html
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Fig. 1 A comparison among DRPD-1, DRPD-2, ADMM, OSGA-V, and OSGA for deblurring the 1024×
1024 Titan image with λ = 10−1. The blurred/noisy image was constructed by the 7 × 7 Gaussian kernel
with standard deviation 5 and salt-and-pepper impulsive noise with the level 50 %. The algorithms were
stopped after 100 iterations. Subfigures a and b display the clean and blurred/noisy images and recovered
image by OSGA, respectively. Subfigures c and d show the recovered images by OSGA and OSGA-V,
respectively. Subfigures e and f illustrate the relative error of function values δk (51) versus iterations and
ISNR (48) versus iterations, respectively

outperform the others in the sense of PSNR. Again, OSGA-V needs less time than
OSGA. Subfigures (a), (b), (c), and (f) of Fig. 1 display the clean image, blurred/noisy
image, recoverd image by OSGA, and recovered imege by OSGA-V for λ = 10−1,
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respectively. Subfigures (e) and (f) of Fig. 1 show that OSGA-V and OSGA attain
the best function values and ISNR for λ = 10−1.

5.2 Ridge regression

We here consider a �2-constrained least squares of the form (50) (so-called ridge
regression, cf. [36]) and report some numerical results.

Let A : Rn → R
m be an ill-conditioned or a singular linear operator and y ∈ R

m

be a vector of observations. The linear inverse problem is the quest of finding x ∈ R
n

such that

y = Ax + ν, (49)

with an unknown but small additive noise ν ∈ R
m. The problem is solvable if

one knows additional qualitative information about x. This qualitative information
is encoded in a constraint on x, under which the Euclidean norm of ν is minimized.
If the qualitative information consists of a bound ξ on the Euclidean norm of x, the
constrained optimization problem resulting takes the form

min
1

2
‖y − Ax‖22

s.t. ‖x‖2 ≤ ξ,
(50)

in which ξ is a nonnegative real constant. This problem often occurs in the fields of
applied sciences and engineering, see [33, 52].

The problem is generated by

[A,z,x] = i laplace(n),y = z + 0.1 ∗ rand,

where n = 5000 is the problem dimension and i laplace.m is an ill-posed test
problem generator using the inverse Laplace transformation from Regularization
Tools MATLAB package (see [35]), which is available in http://www.imm.dtu.dk/
∼pcha/Regutools/.

Since (50) is smooth and the projection onto C = {x ∈ R
n | ‖x‖ ≤ ξ} is available.

We employ PGA, SPG-A, NESCO, NESUN, OSGA-V, and OSGA (see Proposition

Table 3 Result summary of function values for the ridge regression; the values improve uniformly from
the left to the right

ξ PGA SPG-A NESCO NESUN OSGA OSGA-V

10 5.6234e-3 3.3007e-5 1.9145e-5 7.5211e-6 5.0749e-6 4.7653e-6

102 5.5816e-3 4.0555e-5 2.4331e-5 7.3372e-6 5.3821e-6 5.3808e-6

103 1.2031e-2 7.4762e-5 5.1284e-5 1.8230e-5 1.1402e-5 1.1219e-5

104 9.9266e-3 4.4910e-5 4.1212e-5 1.3725e-5 9.2309e-6 8.6053e-6

105 1.8227e-2 1.3232e-4 7.9612e-5 2.7936e-5 1.8227e-5 1.6849e-5

106 1.2533e-2 6.7878e-5 3.7444e-5 1.5768e-5 1.4334e-5 1.0897e-5

http://www.imm.dtu.dk/~pcha/Regutools/
http://www.imm.dtu.dk/~pcha/Regutools/
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Fig. 2 A comparison among PGA, SPG-A, NESCO, NESUN, OSGA-V, and OSGA for solving the
problem (50) based on the relative error of function values δk (51). Each algorithmwas stopped after 60 seconds
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12) to solve this minimization problem. The parameters of SPG-A are the same as
those reported in the associated papers, but SPG-A uses

γk :=
{

γ0/2 if k = 1,
(γk−1 + γk−2)/2 if k ≥ 2.

All algorithms were stopped after 60-s running time.
In Table 3, we consider ξ = 10, 102, 103, 104, 105, 106 and report the best attained

function values and the running time. The results imply that OSGA-V and OSGA
attain the better function values; however, OSGA-V get the best results. To see
the results of implementation in more details, we demonstrate the relative error of
function values

δk := fk − f̂

f0 − f̂
(51)

in Fig. 2, where f̂ denotes the minimum and f0 shows the function value on an initial
point x0. From Fig. 2, it is clear that OSGA-V and OSGA outperform the others.
Remarkably OSGA-V performs best, although the proved complexity of OSGA and
the others for this smooth problem is superior to that proved for OSGA-V.

6 Final remarks

In this paper, two optimal subgradient methods, OSGA and OSGA-V, were discussed
for solving structured convex constrained optimization; the second being a simplified
version of the first needing less work. Finding a solution of the subproblem is inves-
tigated in the presence of some convex constraints. Two types of convex constraints
were considered, namely, simple convex domains, in which the orthogonal projection
onto the domains is effectively available, and functional constraints, defined as the
sublevel sets of simple convex functions. In each case , practically interesting exam-
ples were discussed for which the subproblem can be solved efficiently. Numerical
results and comparisons with some state-of-the-art algorithms were reported showing
that OSGA and OSGA-V are efficient and reliable for solving convex optimization
problems in applications.
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