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Abstract The representation and processing of uncertain concepts are key issue for
both the study of artificial intelligence with uncertainty and human knowledge pro-
cessing. The intension and extension of a concept can be transformed automatically
in the human cognition process, while it is difficult for computers. A Gaussian cloud
model (GCM) is used to realize the cognitive transformation between intension and
extension of a concept through computer algorithms, including forward Gaussian
cloud transformation (FGCT) algorithms and backward Gaussian cloud transforma-
tion (BGCT) algorithms. A FGCT algorithm can transform a concept’s intension
into extension, and a BGCT algorithm can implement the cognitive transformation
from a concept’s extension to intension. In this paper, the authors perform a thorough
analysis on the existing BGCT algorithms firstly, and find that these BGCT algo-
rithms have some drawbacks. They cannot obtain the stable intension of a concept
sometimes. For this reason, a new backward Gaussian cloud cognitive transformation
algorithm based on sample division is proposed. The effectiveness and convergence
of the proposed method is analyzed in detail, and some comparison experiments on
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obtaining the concept’s intension and applications to image segmentation are con-
ducted to evaluate this method. The results show the stability and performance of our
method.

Keywords Cognitive transformation · Gaussian cloud model · Forward Gaussian
cloud transformation · Backward Gaussian cloud transformation · Mean squared
error · Image segmentation

1 Introduction

Uncertainty computing is an important feature of human cognition process. Uncer-
tainty is a term used in subtly different ways in a number of fields, such as physics,
philosophy, statistics, economics, finance, psychology, sociology, engineering, arti-
ficial intelligence, etc. [1, 16, 19, 33, 51]. In uncertainty knowledge representation
field, there have been many theories and methods developed in the past decades [11,
16, 22, 48]. Probability theory studies the randomness in the way of probability and
statistics and becomes an important branch of mathematics [12, 39]. Fuzzy sets pro-
posed by Zadeh study the fuzzy membership relationship between a set and element
based on fuzzy logic [46, 47]. Considering the relationship between fuzzy set and
probability theory, Hirota introduced the concept of probabilistic sets [10]. Rough
sets proposed by Pawlak deal with vagueness and incompleteness based on knowl-
edge classification and uses upper and lower approximation set to define a rough
concept [28, 29]. There are some uncertain theories, such as interval analysis [25],
gray system [5], set pair analysis [52], extenics [3], etc. The representation and pro-
cessing of uncertain knowledge are key issues, especially the randomness and the
fuzziness hidden in knowledge [16, 34], and many concepts simultaneously contain
randomness and fuzziness.

Human cognition process is based on language, and concept could be considered
as a basic unit of natural language. The cognition of uncertain concepts is easy for
human thinking, and the mutual cognitive transformation between the intension and
the extension of a concept can be conducted automatically in human brain, while it
is very difficult for computer since the uncertain concepts are hard to be precisely
defined. For example, people do not need to know the precise extensions for many
concepts, such as “young,” “tall,” “beautiful,” etc., but it is not affected people’s
understanding for their intensions [18].

Gaussian cloud model (GCM) based on quadratic Gaussian distribution and Gaus-
sian membership function provided a method to realize the bidirectional cognitive
transformation between the intension and the extension of a concept through two
cloud transformations, namely forward Gaussian cloud transformation (FGCT) and
backward Gaussian cloud transformation (BGCT) [16, 18, 35, 36], where FGCT is
used to transform the concept intention into extension, while BGCT transforms the
extension into intension of a concept. Furthermore, GCMwith universality can depict
the transition from Gaussian distribution to heavy-tail distribution (e.g., power-law
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distribution), which reflects the self-similar and scale-free properties in the nature
and human society [17, 44]. Therefore, GCM has been applied to many fields suc-
cessfully, such as intelligent control [15], data mining [38], system evaluation [24],
image segmentation [7, 30, 41], and so on [6, 42, 43, 49, 53].

In GCM, the BGCT algorithm is essentially to obtain the estimates of concept
intension from random sample, so there exists the errors inevitably. At present,
there are two main BGCT algorithms proposed by Liu and Wang respectively [20,
37]. However, they have some defects. In the paper, we mainly study the backward
Gaussian cloud cognitive transformation algorithm based on probability statistics,
analyze the defects of the existing BGCT algorithms, and propose an effective BGCT
algorithm to extract concepts’ intension from sample data, which is a key step for
obtaining the stable concept intension in the cognitive process from extension to
intension. Finally, some comparison experiments on obtaining the concept’s inten-
sion and applications to image segmentation have done to evaluate this method, and
the results show the stability and performance of our method.

The remainder of this paper is organized as follows. Section 2 introduces the def-
inition and the mathematical properties of the GCM. In Section 3, the errors of the
existing BGCT algorithms are analyzed in detail. In Section 4, a new BGCT algo-
rithm is proposed and the reasonableness is also analyzed and proved in detail, while
the some comparative experiments and applications to image segmentation are shown
in Section 5. Final remarks and future perspectives appear in Section 6.

2 Gaussian cloud model

2.1 The definition of GCM

Gaussian distribution can be expressed by two parameters, expectation (denoted as
Ex) and standard variance (σ ), while Gaussian cloud model suggests using three
parameters (Ex, En, He) to depict the distribution of a concept, the three parameters
(Ex, En, He) are also used to represent the intension of the concept. Meanwhile, the
degree of membership of an object x belonging to a concept should not be a precise
value but multiple values with stable tendency within a certain range in view of the
fact that a concept usually has different meanings for different people [16, 23]. For
example, the concept “young” is expressed as (Ex = 25, En = 3, He = 0.3),
wherein Ex = 25 is an expected age about “young,” En is the expected value of
random variable σ and He is the standard variance of σ if the standard variance σ of
a membership degree is not a constant, but a random variable with stable tendency.
En and He are used to express the differences among people’s cognition on the
concept “young.” Therefore, Gaussian cloud model based on Gaussian distribution
and Gaussian membership degree is defined as follows [16].

Definition 1 ([16]) LetU be an universal set described by precise numbers, andC be
the qualitative concept containing three numerical characters (Ex, En, He) related
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to U . If there is a number x ∈ U , which is a random realization of the concept C and
satisfies x = RN(Ex, |y|), where y = RN(En, He), and the membership degree
μ(x) with stable tendency of x on U is

μ(x) = exp

{
− (x − Ex)2

2y2

}
, (2.1)

then the distribution of x on U is a Gaussian cloud, and each x with membership
degree μ(x) is defined as a cloud drop. Where y = RN(En, He) denoted a Gaussian
random number with expectation En and standard variance He.

In Definition 1, “qualitative concept” is some kind of uncertain concept in natural
language, such as “young,” “beauty,” “maybe,” and so on. “Precise number” is used to
distinguish it with fuzzy number, for example, the “precise number” corresponding to
the concept “young” is {· · · , 17, 17.5, 18, 20, 22.5, 25, 30, · · · }. While each x (x ∈
U ) with membership degree μ is defined as a “cloud drop,” which is different from
“precise number.” For further information, see the reference [16, 18]. The key point
in definition 1 is the second-order relationship, i.e., within the two Gaussian random
numbers y = RN(En, He) and x = RN(Ex, |y|). If He = 0, then the distribution
of x on U will become a Gaussian distribution N(Ex,En). If He = 0, En = 0,
then x will be a constant Ex and μ(x) ≡ 1. When He turns larger, the distribution
of random variable X will show a heavier tail, which can be used in economic and
social researches [8].

2.2 The mathematical properties of GCM

Let U be an universal set, and define random variable X and Y on U , then the
probability density function of random variable Y from definition 1 is

fY (y) = 1√
2πHe

e
− (y−En)2

2He2 . (2.2)

Considering Y = y, the conditional probability density function of Gaussian cloud
random variable X is

fX|Y (x|Y = y) = 1√
2π |y|e

− (x−Ex)2

2y2 . (2.3)

Based on the conditional probability density: fX,Y (x, y) = fX|Y (x|Y = y)fY (y),
the probability density function of Gaussian cloud random variable X is

fX(x) =
∫ +∞

−∞
fX,Y (x, y)dy = 1

2πHe

∫ +∞

−∞
1

|y|e
− (x−Ex)2

2y2
− (y−En)2

2He2 dy. (2.4)

The expected value, variance (second-order central moment), third-order central
moment, and fourth-order central moment of Gaussian cloud random variable X can
be obtained as follows [21, 37].
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(1) EX = Ex;
(2) DX = En2 + He2;
(3) E(X − Ex)3 = 0;
(4) E(X − Ex)4 = 3(3He4 + 6He2En2 + En4).

3 Gaussian cloud transformation algorithm and analysis

A concept is composed of its intension and extension, where the intension refers to
the sum of the essential attributes of a concept reflecting the nature of things, that
is, the content of the concept, while the extension refers to the set of all instances of
the concept. In Gaussian cloud model, the intension of a concept is depicted by the
numerical characteristics (Ex,En,He), and its extension is the set of all the cloud
drops with different membership degrees. Furthermore, the mutual cognitive trans-
formation between intension and extension of a concept is implemented by Gaussian
cloud transformation, including forward Gaussian cloud transformation (FGCT) and
backward Gaussian cloud transformation (BGCT), where FGCT is used to realize the
cognitive transformation from intension to extension of a concept, and BGCT imple-
ments the cognitive transformation from extension to intension. The two Gaussian
cloud transformations also provide a way to simulate the human cognition process
for concepts by computer. Therefore, we can use the numerical characteristics of a
concept to generate cloud drop with different membership degrees by devising FGCT
algorithm. Similarly, BGCT algorithm can be also devised to obtain the intension of
a concept from cloud drops or sample data.

3.1 FGCT algorithm

Based on the Definition 1, the FGCT algorithm, which provides a method to trans-
form a qualitative concept with Ex, En, and He into a number of cloud drops (i.e.,
the extension of concept), can be obtained as follows [16].

Algorithm 1 [16] FGCT

Input: (Ex,En,He) and the number of cloud drops n.
Output: n cloud drops xi and their membership degrees μ(xi), i = 1, 2, · · · , n.

Step1: Generate a Gaussian random number yi with expectation En and standard
variance He, i.e., yi = RN(En, He).
Step2: Generate a Gaussian random number xi with expectation Ex and standard
variance |yi |, i.e., xi = RN(Ex, |yi |).
Step3: Calculate membership degree μ(xi) = exp

{
− (xi−Ex)2

2y2i

}
.

Step4: xi with membership degree μ(xi) is a cloud drop in the domain.
Step5: Repeat step1 to step4 until n cloud drops are generated.

For example, different people have different understanding about the uncertain
concept “young,” so it is very difficult to give a crisp membership degree. If the
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concept “young” is expressed as (Ex = 25, En = 3, He = 0.3), then the “young”
is converted into some cloud drops representing ages about “young” with different
membership degrees by FGCT algorithm. The cloud map is shown in Fig. 1, which
show that each age(cloud drop) x has more than one membership degree.

Cloud drops can be used to describe a commonsense concept extension, while the
numerical characteristics Ex,En,He obtained by BGCT can be used to describe
the commonsense concept intension. Gaussian cloud model just uses FGCT and
BGCT to realize the bidirectional cognitive transformation between the intension and
extension of a qualitative concept.

3.2 BGCT algorithm

Corresponding to the FGCT, BGCT is to get the estimates of (Ex, En, He). So
some methods of statistic inference is often used in BGCT, where the point estimate
is a method to obtain the estimates of unknown parameters using a specific value.
The point estimate method mainly has moment estimation and maximum likelihood
estimation. As the probability density function fX(x) (see (2.4)) of Gaussian cloud
random variable X does not have analytical form, it is difficult to estimate Ex,En,

and He if we use maximum likelihood estimation. Therefore, the moment estimation
is often used in BGCT. There are two main BGCT methods which are used to esti-
mate Ex,En, and He based on the method of moments. One is proposed by Li and
Liu based on the sample variance and the sample first-order absolute central moment
[16, 20]. Another is proposed by Wang according to the sample variance and the
sample fourth-order central moment [37].

3.2.1 The BGCT algorithm based on the sample 1st-order absolute central moment

As this method obtains the estimators (Êx, Ên, Ĥ e) of (Ex, En, He) from random
sample through the single-step directly, the BGCT algorithm based on the sample

Fig. 1 Describe “young” by
GCM
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1st-order absolute central moment is denoted as SBGCT-1stM. The specific steps are
displayed in Algorithm 2.

Algorithm 2 [20] SBGCT-1stM

Input: The random sample X1, X2, · · · , Xn with sample size n from a population.
Output: The estimators (Êx, Ên, Ĥ e) representing a qualitative concept.

Step1: Calculate the sample mean, the sample variance, and the sample first-order
absolute central moment from the random sample X1, X2, · · · , Xn. Namely,

X̄ = 1

n

n∑
i=1

Xi, S2 = 1

n − 1

n∑
i=1

(Xi − X̄)2, M|X − X̄| = 1

n

n∑
i=1

∣∣Xi − X̄
∣∣.

Step2: According to the statistical properties of Gaussian cloud distribution, i.e.,

⎧⎪⎨
⎪⎩
EX = Ex,

E|X − EX| =
√

2
π
En,

DX = He2 + En2.

(3.1)

Equate the sample moments to the corresponding population moments, i.e.,

⎧⎪⎨
⎪⎩
EX = Ex = X̄,

E|X − EX| =
√

2
π
En = M|X − X̄|,

DX = He2 + En2 = S2.

(3.2)

Calculate the estimators Êx, Ên and Ĥ e from (3.2), i.e.,

Êx = X̄, Ên =
√

π

2
× 1

n

n∑
i=1

|Xi − X̄|, Ĥ e =
√

S2 − Ên2.

Calculate the estimates Êx, Ên, and Ĥ e based on SBGCT-1stM algorithm for the
specific sample values x1, x2, · · · , xn. However, in (3.1), the first absolute central

moment E|X −EX| =
√

2
π
En presented by Liu is not completely correct. In fact, by

probability density function of Gaussian cloud X (see (2.4)), we have

E|X − EX| =
∫ +∞

−∞
|x − Ex|fX(x)dx

= 1

2πHe

∫ +∞

−∞

∫ +∞

−∞
|x − Ex| 1

|y|e
− (x−Ex)2

2y2
− (y−En)2

2He2 dxdy, (3.3)
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where, we get

∫ +∞

−∞
|x − Ex| 1

|y|e
− (x−Ex)2

2y2 dx = 2|y|. (3.4)

Thus, from (3.3), E|X − EX| is related with |y|.
If y > 0, then E|X − EX| =

√
2
π
En. This is the result of SBGCT-1stM [20].

However, following the Definition 1, y = RN(En, He) is a non-zero real number.
Namely, y may be a negative value. So if y is a non-zero real number, it means that
the symbol of absolute value of variable y in expression (3.3) can not be removed,
then we can get

E|X − EX| =
√

2

π
En + 2

√
2

π
· 1√

2πHe

∫ +∞

0
ye

− (y+En)2

2He2 dy, (3.5)

where, the expression 1√
2πHe

∫ +∞
0 ye

− (y+En)2

2He2 dy > 0.

Therefore, the (3.5) shows that the SBGCT-1stM algorithm will have a large devi-

ation if using Ên = √
π
2 × 1

n

n∑
i=1

|Xi − X̄| to estimate En. We make a further

analysis of the SBGCT-1stM algorithm. y is actually a Gaussian random num-
ber with expectation En and standard variance He since y = RN(En, He). If
3He ≤ En, then the random number y is a non-negative value with the probabil-
ity 99.7% in terms of the “3He” principle of Gaussian distribution N(En,He2).
In other words, the SBGCT-1stM algorithm will have relatively accurate estimates
for En and He under the condition of 3He ≤ En. However, if 3He > En, then
the probability which the random number y is a negative will gradually increase
with the increasing of the ratio He/En, which will cause that the estimate Ên

is greater than the true value En (see (3.5)); meanwhile, the estimate Ĥ e is less
than the true value He . In addition, through experiment, we also find if the true

value He → 0, the estimate Ĥ e =
√

S2 − Ên2 may be an imaginary number (see
Example 1).

3.2.2 The BGCT based on the sample 4th-order central moment

In 2011, Wang proposed another BGCT algorithm based on the sample variance and
the sample 4th-order central moment [37]. This method is also the single-step to get
the estimators (Êx, Ên, Ĥ e) from sample directly, so we denote it as SBGCT-4thM.
The specific steps of SBCGT-4thM are displayed in Algorithm 3.
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Algorithm 3 [37] SBGCT-4thM

Input: The random sample X1, X2, · · · , Xn with sample size n from a population.
Output: The estimators (Êx, Ên, Ĥ e) representing a qualitative concept.

Step1: Calculate the sample mean, the sample variance, and the sample fourth-
order central moment from the random sample X1, X2, · · · , Xn, namely,

X̄ = 1

n

n∑
i=1

Xi, S2 = 1

n − 1

n∑
i=1

(Xi − X̄)
2
, M4 = 1

n

n∑
i=1

(Xi − X̄)
4
.

Step2: According to the statistical properties of Gaussian cloud distribution, i.e.,⎧⎨
⎩
EX = Ex,

DX = He2 + En2,

E(X − EX)4 = 9He4 + 3En4 + 18En4He4.

(3.6)

Equate the sample moments to the corresponding population moments, i.e.,⎧⎨
⎩
EX = Ex = X̄,

DX = He2 + En2 = S2,

E(X − EX)4 = 9He4 + 3En4 + 18En2He2 = M4.

(3.7)

Calculate the estimators Êx, Ên and Ĥ e from (3.7), i.e.,

Êx = X̄, Ên = 4

√
9
(
S2

)2 − M4

6
, Ĥ e =

√
S2 − Ên2. (3.8)

In SBGCT-4thM, the key issue is to ensure the estimators Ên2 =
√

9(S2)
2−M4
6 ≥ 0

and Ĥ e2 = S2 − Ên2 ≥ 0, which is equivalent to the following inequality, i.e.,

3

(
1

n − 1

n∑
i=1

(Xi − X̄)
2

)2

≤ 1

n

n∑
i=1

(Xi − X̄)
4 ≤ 9

(
1

n − 1

n∑
i=1

(Xi − X̄)
2

)2

.(3.9)

The inequality (3.9) is related with the sample X1, X2, · · · , Xn and the sample

size n. Therefore, 9(S2)2 − M4 < 0 or S2 −
√

(9
(
S2

)2 − M4)/6 < 0 may occur in

some cases, which make the estimates Ên and Ĥ e not be obtained (see Example 1).

Example 1 Let (Ex = 0, En = 1, He) express a concept “near zero,” where He

is changing from 0 to 0.5 with step by 0.01 first, and then from 0.5 to 3 with step
by 0.05. The test sample is generated by FGCT (n = 5000). The estimates Ên and
Ĥ e, which are calculated by SBGCT-1stM and SBGCT-4thM, are shown in Figs. 2
and 3,1 respectively.

1Note: If the estimates Ên and Ĥ e are imaginary numbers, we then denote Ên = −0.5 and Ĥ e = −0.5.



1048 Numer Algor (2017) 76:1039–1070

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

1

1.5

2

He

E
st

im
at

e

Estimate of Ex
Estimate of En
Estimate of He

(a) He is changing with setp by 0.01

0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

He

E
st

im
at

e

Estimate of Ex
Estimate of En
Estimate of He

(b) He is changing with setp by 0.05

Fig. 2 The estimates of Ex, En, He with the changing of He in SBGCT-1stM

Figures 2 and 3 show that the estimate Ĥ e may be an imaginary number in
SBGCT-1stM and SBGCT-4thM if He → 0, see Figs. 2a and 3a; the estimate Ên is
larger than the true value En and the estimate Ĥ e is less than the true value He if
En < 3He in SBGCT-1stM, see Fig. 2b; the inequality (3.9) may not hold for some
sample values, see Fig. 3b.

Therefore, the results of Example 1 show that SBGCT-1stM and SBCGT-4thM
exist some drawbacks. In this work, we propose a new method which can overcome
above drawbacks. The specific contents will be illustrated in Section 4.

4 Multi-step backward gaussian cloud transformation algorithm
and its error analysis

According to FGCT, each cloud drop xi is generated by two times Gaussian random,
that is, yi = RN(En, He), xi = RN(Ex, |yi |), and yi is the input to generate xi .
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Fig. 4 The process of cloud drops generated by FGCT

Thus, n cloud drops x1, x2, · · · , xn are obtained by multiple cycles. The detailed pro-
cess of FGCT is shown in Fig. 4. In addition, the FGCT is a cognitive transformation
process from concept’s intension with (Ex,En,He) to a lot of quantitative numbers,
while the BGCT is a cognitive transformation from some sample data into a concept’s
intention with (Ex,En,He), which means that the FGCT and the BGCT are the two
mutually inverse processes. So, based on the features of cloud drops obtained by two
steps, (Ex,En,He) should be estimated from sample data through the multi-step
rather than the single-step. Whereby, we propose a multi-step BGCT algorithm.

4.1 MBGCT-SD algorithm

From Fig. 4, n cloud drops xi = RN(Ex, |yi |) are related with Ex and yi directly,
while yi = RN(En, He) is related with En and He directly, or, to say that n

cloud drops xi are related with En and He indirectly, i = 1, 2, · · · , n. So, the esti-
mate Êx can be obtained by x1, x2, · · · , xn directly, but the estimates Ên and Ĥ e

are not. However, the estimates Ên and Ĥ e can be obtained by a group of values
y1, y2, · · · , ym, where, y1, y2, · · · , ym can be calculated separately by m groups of
sample which are obtained by sample division from x1, x2, · · · , xn. So we call it
multi-step BGCT algorithm based on sample division, denoted as MBGCT-SD. The
specific process of MBGCT-SD is shown in Fig. 5 and the detailed steps are displayed
in Algorithm 4.

In MBGCT-SD,2 expression (4.2) can be described by Theorem 1.

2Note: If r = 1, there is only one sample Xk1 in each group sample, so, Y 2
k = 0 (k = 1, 2, · · · ,m), then

Ên = Ĥ e = 0; If m = 1, there is only one group sample, then Ên2 = ÊY 2 = Y 2
1 , Ĥ e2 = 0(D̂Y 2 = 0).
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Algorithm 4MBGCT-SD

Input: The random sample X1, X2, · · · , Xn with sample size n from a population.
Output: The estimators (Êx, Ên, Ĥ e) representing a qualitative concept.

Step1: Make the sample mean from the random sample X1, X2, · · · , Xn as the
estimator of Ex, i.e.,

Êx = X̄ = 1

n

n∑
i=1

Xi.

Step2: Draw m groups of samples without replacement from X1, X2, · · · , Xn

randomly, denoted as X11, X12, · · · , X1r ; X21, X22, · · · , X2r ; · · · ; Xm1, Xm2,
· · · , Xmr , where, r represents the requited sample size per group. Whereafter,
calculate the sample variance of each group of sample, namely,

Y 2
k = 1

r − 1

r∑
j=1

(Xkj − X̄k)
2
, k = 1, 2, · · · , m. (4.1)

where, X̄k = 1
r

r∑
j=1

Xkj is sample mean of the kth group sample.

Let data set Y 2 = {
Y 2
1 , Y 2

2 , · · · , Y 2
m

}
.

Step3: Calculate the estimators Ên2 and Ĥ e2 from data set Y 2, i.e.,

Ên2 = 1

2

√
4[ÊY 2]2 − 2D̂Y 2, Ĥ e2 = ÊY 2 − Ên2. (4.2)

Where, ÊY 2 = 1
m

m∑
k=1

Y 2
k and D̂Y 2 = 1

m−1

m∑
k=1

(
Y 2

k − ÊY 2
)2

represent the

sample mean and the sample variance of Y 2, respectively.

Theorem 1 Let Y1, Y2, · · · Ym be independent and identically distributed random
sample from the Gaussian population Y ∼ N(En,He2), then the expression (4.2)
can be obtained.

Proof Following the formula (2.2), if Y ∼ N(En,He2), then we have

EY 2 =
∫ +∞

−∞
y2fY (y)dy = He2 + En2. (4.3)

EY 4 =
∫ +∞

−∞
y4fY (y)dy = 3He4 + 6En2He2 + En4.

Thus,
DY 2 = EY 4 − (EY 2)2 = 2He4 + 4En2He2. (4.4)

Equate the sample moments to the corresponding population moments, we then
have {

EY 2 = He2 + En2 = ÊY 2,

DY 2 = 2He4 + 4En2He2 = D̂Y 2.
(4.5)
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Fig. 5 The process of MBGCT-SD

where, ÊY 2 = 1
m

m∑
k=1

Y 2
k and D̂Y 2 = 1

m−1

m∑
k=1

(
Y 2

k − ÊY 2
)2

represent the sample

mean and the sample variance of Y 2, respectively.
From the (4.5), we obtain

2He4 − 4ÊY 2He2 + D̂Y 2 = 0. (4.6)

This is a quadratic equation about He2. We can get the discriminant of root from
(4.6), i.e.,

Δ = 16(ÊY 2)2 − 8D̂Y 2, (4.7)

where,

16(ÊY 2)2 − 8D̂Y 2 = 16(ÊY 2)2 − 8

m − 1

m∑
k=1

(
ÊY 2 − Y 2

k

)2 ≥ 16(ÊY 2)2

− 8

m − 1

m∑
k=1

(ÊY 2)
2 = 8(m − 2)

m − 1
(ÊY 2)2.

Thus, Δ = 16(ÊY 2)2 − 8D̂Y 2 ≥ 0 if m ≥ 2.
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Hence, from the (4.5), we get two groups of solutions, i.e.,

En21 =
√

Δ

4
, He21 = 4ÊY 2 − √

Δ

4
;

En22 = −
√

Δ

4
, He22 = 4ÊY 2 + √

Δ

4
(Discarded).

En22 and He22 are discarded since En22 < 0. Thus, En21 and He21 are the estimators
Ên2 and Ĥ e2 in expression (4.2).

From the expression (4.2), Ên and Ĥ e can be obtained, and Ên > 0, Ĥ e > 0.
So, the MBGCT-SD algorithm can ensure that Ên and Ĥ e will not be imaginary
numbers. We next analyze the mean and mean squared error (MSE) of estimators
Êx, Ên and Ĥ e in detail.

4.2 Evaluation of estimators Êx, Ên, and Ĥe

According to statistical principles [4], the more samples there are, the less the error in
the BGCT algorithm will be. Due to the constraint of sample size, the error exists no
matter what algorithm is used. As the BGCT algorithms are based on the statistical
result of a large number of cloud drops, the performance is determined by the number
of drops. In general, the errors of three parameters will decrease as the number of
cloud drops increasing.

An estimator is a function of the sample, while an estimate is the realized value of
an estimator (that is, a number) that is obtained when a sample is actually taken. Nota-
tionally, when a sample is taken, an estimator is a function of the random variables
X1, X2, · · · , Xn, while an estimate is function of the realized values x1, x2, · · · , xn.
So the estimators Êx, Ên, and Ĥ e are three functions about random variables and
they will have different estimates for different sample values. These estimates will be
biased for the true value. But when these estimators are reused many times, we expect
that the mean of these estimates will equal to the true value of unknown parameters.
In addition, we need to calculate the mean squared error (MSE) of estimator in order
to reflect the differences between the estimator and the true value. Thus, we next
analyze the mean and MSE of estimators Êx, Ên, and Ĥ e. Firstly, we present the
following definition and inequalities.

Definition 2 ([4]) The mean squared error (MSE) of an estimator θ̂ of a parameter θ

is the function of θ defined by MSE(θ̂) = E(θ̂ − θ)2.

MSE has at least two advantages over other distance measures [4]: First, it is quiet
tractable analytically and, second, it has the interpretation

MSE(θ̂ ) = E(θ̂ − θ)2 = Dθ̂ + (Eθ̂ − θ)2,

where, Dθ̂ is the variance of estimator θ̂ , and Eθ̂ − θ is the bias of estimator θ̂ . If
Eθ̂ − θ = 0, then θ̂ is unbiased estimator of θ . The unbiasedness [4] is an important
requirement for an estimator.
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Theorem 2 ([4] (Hölder’s Inequality)) Let X be an any random variable, then

E |X| ≤ {E|X|p}1/p, 1 < p < ∞.

Theorem 3 ([4] (Liapounov’s Inequality)) Let X be an any random variable, then

{E|X|r}1/r ≤ {E|X|s}1/s, 1 < r < s < ∞.

Theorem 4 ([4] (Jensen’s Inequality)) For any random variable X, if g(x) is a
convex function, then

Eg(X) ≥ g(EX),

and if g(x) is a concave function, then

Eg(X) ≤ g(EX).

Equality holds if and only if, for every line a + bx that is tangent to g(x) at x =
EX,P (g(x) = a + bX) = 1.

The mean and the MSE of estimators Êx, Ên and Ĥ e will have the next
conclusions.

Theorem 5 Let X1, X2, · · · , Xn be a random sample from a population. Then the
mean of estimator Êx is

E(Êx) = Ex,

and its MSE satisfies

MSE(Êx) = E(Êx − Ex)2 = 1

n
(He2 + En2). (4.8)

Proof From the step 1 of MBGCT-SD, we have

E(Êx) = 1

n
E

n∑
i=1

Xi = 1

n

n∑
i=1

EXi,

MSE(Êx) = D(Êx) + (E(Êx) − Ex)2 = 1

n2

n∑
i=1

DXi + (E(Êx) − Ex)2.

Considering the statistical properties of Gaussian cloud model, we get

EX = Ex, DX = He2 + En2.

Thus, E(Êx) = Ex,MSE(Êx) = 1
n
(He2 + En2).

Theorem 6 The mean of estimator Ên2 is

E(Ên2) =
√

r

n
DY 2 + En4, (4.9)
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and its MSE is

MSE(Ên2) = E(Ên2−En2)2 = r

n
DY 2 + 2En4 − 2En2

√
r

n
DY 2 + En4.(4.10)

where, DY 2 = 2He2(He2 + 2En2).

Proof From Definition 2, we have

MSE(Ên2) = E(Ên2 − En2)2 = E(Ên4) − 2En2 · E(Ên2) + En4. (4.11)

So, we need compute E(Ên4) and E(Ên2). Following the expression (4.2), Ên4 =
(ÊY 2)2 − 1

2 D̂Y 2. Thus,

E(Ên4) = E(ÊY 2)2 − 1

2
E(D̂Y 2).

Since, ÊY 2 = 1
m

m∑
k=1

Y 2
k , D̂Y 2 = 1

m−1

m∑
k=1

(
Y 2

k − ÊY 2
)2
. Then

E(ÊY 2)2 = D(ÊY 2) + E(ÊY 2))2 = D

(
1

m

m∑
k=1

Y 2
k

)
+

(
E(

1

m

m∑
k=1

Y 2
k )

)2

= 1

m
DY 2 + (EY 2)2,

3E(D̂Y 2) = E

(
1

m − 1

m∑
k=1

(
Y 2

k − ÊY 2
)2) = DY 2.

Therefore, from the (4.5) and n = m · r , we get

E(Ên4) = 1

m
DY 2 + (EY 2)

2 − 1

2
DY 2 = r

n
DY 2 + En4. (4.12)

In addition, by Theorem 3, we have {E(Ên2)}1/2 ≤ {E(Ên4)}1/4 =(
r
n
DY 2 + En4

)1/4
, i.e.,

E(Ên2) ≤
√

r

n
DY 2 + En4. (4.13)

On the other hand, as g(x) = √
x is a convex function, from Theorem 4 and the

expression (4.12), we have

E(Ên2) = 1

2
E

√
4(ÊY 2)

2 − 2D̂Y 2 ≥ 1

2

√
E(4(ÊY 2)

2 − 2D̂Y 2) = 1

2

√
E(4Ên4).

So,

E(Ên2) ≥
√

r

n
DY 2 + En4. (4.14)

3The sample variance is unbiased estimate of variance.
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Thus, following the expressions (4.13) and (4.14), we have E(Ên2) =√
r
n
DY 2 + En4.

Finally, applying E(Ên2) and E(Ên4) into the expression (4.11), we obtain
MSE(Ên2).

Theorem 7 If the estimator Ên is non-negative, then the mean of estimator Ên is

E(Ên) = [E(Ên2)]1/2 =
( r

n
DY 2 + En4

)1/4
, (4.15)

and its MSE is

MSE(Ên) =
√

r

n
DY 2 + En4 − 2En ·

( r

n
DY 2 + En4

)1/4 + En2. (4.16)

Proof If the estimator Ên is non-negative, then from Theorem 2, we have E(Ên) ≤
[E(Ên2)]1/2. As g(x) = x2 is a concave function, from Theorem 4, we get E(Ên2) ≤
[E(Ên)]2, that is, E(Ên) ≥ [E(Ên2)]1/2. Thus, from Theorem 6, we obtain the
expression (4.15).

In addition, the MSE of estimator Ên is

MSE(Ên) = E(Ên − En)2 = E(Ên2) − 2En · E(Ên) + En2. (4.17)

Applying E(Ên) and E(Ên2) into the expression (4.17), we obtain MSE(Ên).

Theorem 8 The mean of estimator Ĥ e is

E(Ĥ e) =
(

He2 + En2 −
√

r

n
DY 2 + En4

)1/2

, (4.18)

and its MSE is

MSE(Ĥ e) = 2He2 + En2 −
√

r

n
DY 2 + En4

−2He

(
He2 + En2 −

√
r

n
DY 2 + En4

)1/2

. (4.19)

Proof From the expression (4.2), we have E(Ĥ e) = E
√
ÊY 2 − Ên2. Since g(x) =√

x is a convex function, from Theorem 4, we get

E(Ĥ e) = E

√
ÊY 2 − Ên2 ≥

√
E(ÊY 2 − Ên2) =

√
EY 2 − E(Ên2).

Furthermore, according to the Theorem 2, we have

E(Ĥ e) = E

√
ÊY 2 − Ên2 ≤

[
E

(√
ÊY 2 − Ên2

)2
]1/2

=
√
EY 2 − E(Ên2).
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So, we obtain

E(Ĥ e) =
√
EY 2 − E(Ên2). (4.20)

By the expressions (4.5) and (4.9), we get

E(Ĥ e) =
(

He2 + En2 −
√

r

n
DY 2 + En4

)1/2

.

In addition, we have

MSE(Ĥ e) = E(Ĥ e − He)2 = E(Ĥ e2) − 2He · E(Ĥ e) + He2,

where, Ĥ e2 = ÊY 2 − Ên2. Namely,

MSE(Ĥ e) = EY 2 − E(Ên2) − 2He · E(Ĥ e) + He2. (4.21)

Finally, applying EY 2, E(Ên2) and E(Ĥ e) into the expression (4.21), the expres-
sion (4.19) can be got.

From Theorems 5, 7, and 8, the following conclusions can be derived:

• Since E(Êx) = Ex, lim
n→∞E(Ên) = En and lim

n→∞E(Ĥ e) = He, the estimator

Êx is the unbiased estimator, and the estimators Ên and He are the asymptotic
unbiased estimators of En and He, respectively.

• Since lim
n→∞MSE(Êx) = 0, lim

n→∞MSE(Ên) = 0 and lim
n→∞MSE(Ĥ e) = 0, the

MSE of the estimators Êx, Ên and He converge to 0, respectively.
• Since lim

n→∞D(Êx) = lim
n→∞MSE(Êx) = 0, lim

n→∞D(Ên) = lim
n→∞MSE(Ên) −

(E(Ên) − En)2 = 0 and lim
n→∞D(Ĥ e) = lim

n→∞MSE(Ĥ e) − (E(Ĥ e) − He)2 =
0, Êx, Ên and Ĥ e are all the consistent estimators.

5 Experiments

Generally, a concept’s intension can be mapped into many extension sets with sta-
ble distribution. Thus, in order to obtain the stable intension of a concept, we give
out the numerical characteristics (Ex, En, He) representing a concept’s intension in
advance, and then use the FGCT algorithm to generate the test sample. Finally, using
the SBGCT-1stM, SBGCT-4thM, andMBGCT-SD algorithms to obtain the estimates
representing the concept’s intension so as to compare the stability of them. Applica-
tions of MBGCT-SD in image segmentation are also done to evaluate its validity and
performance. The experiment hardware environment adopts a computer with Intel(R)
Core(TM)2 Quad CPUT Q8300 @2.5 GHz and 2G memory.

5.1 Comparison of three BGCT algorithms

Based on the analysis for SBGCT-1stM and SBGCT-4thM, we give out Ex,En, and
He values according to the proportion He/En: (i) 3He ≤ En; (ii) 3He > En. In
MBGCT-SD, the estimates Ên and Ĥ e are related with m, so we use an iterative
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method to find the satisfactory solution m and the estimates Ên and Ĥ e. The specific
steps are displayed in Algorithm 5.

Algorithm 5 The iterative process ofm value and the estimates (Ên,Ĥ e) in MBGCT-SD

Input: The random sample Sample = {X1, X2, · · · , Xn}, the sample size n and the
initial value m = 2.

Output: The estimates (Ên, Ĥ e) and the satisfied solution m.
Begin m = 2;
[initial En, initial He]=MBGCT-SD(Sample, n, m);
while(1) do

m = m+1;
if (mod(n, m)== 0)
[Ên, Ĥ e]=MBGCT-SD(Sample, n, m);

end if
temp;
if (abs(Ên-En)≤temp && abs(Ĥ e-He)≤temp)

/*En, He can be replaced by initial En and initial He respectively if
the true values En, He are unknown*/

output(m, Ên, Ĥ e);
break;

else if
initial En = Ên; initial He = Ĥ e;

end if
end while
End

5.1.1 The sample size n is fixed

Calculate the estimates Êx, Ên, and Ĥ e, their mean and average absolute errors

(AAE, where, AAE(θ̂) = 1
T

T∑
i=1

|θ − θ̂i |), and their MSE (T = 50 times), where we

set n = 5000.

(i) 3He ≤ En

Let (Ex = 25, En = 3, He = 0.1) and determine the satisfactory solutions
m = 10 based on Algorithm 5. The results are shown in Fig. 6.4 The mean, AAE,
and MSE of Êx, Ên, and Ĥ e are shown in Table 1.

The experiment results indicate that the estimate Ĥ e is an imaginary number
sometimes in SBGCT-1stTM and SBGCT-4thM (see the right figure in Fig. 6). We

4Note: if the estimates Ên and Ĥ e are imaginary numbers respectively, we set Ên = −0.2 and Ĥ e =
−0.2.
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Fig. 6 The estimates Ên and Ĥ e if En = 3,He = 0.1

can see that Ĥ e be an imaginary number has appeared 25 times in 50 experiments
for SBGCT-1stM and SBGCT-4thM. The results are consistent with the theoretical
analysis in Section 3.2. However, this situation does not appear in MBGCT-SD. In
Table 1, the mean, AAE, and MSE of Ĥ e are received by excluding these imaginary
numbers in SBGCT-1stM and SBGCT-4thM. From Table 1, AAE(Ĥ e) andMSE(Ĥ e)
is larger in SBGCT-1stM and SBGCT-4thM than in MBGCT-SD, while the three
BGCT algorithms can make a good estimate for En.

(ii) 3He > En

Let (Ex = 25, En = 1, He = 0.8) and determine the satisfactory solutions
m = 1000 based on Algorithm 5. The results are shown in Fig. 7. The mean, AAE,
and MSE of Êx, Ên, and Ĥ e are shown in Table 2.

According to the analysis in Section 3.2, in SBGCT-1stM, Ên will be larger than
its true value En, simultaneously, Ĥ e will be less than the true value He when
3He > En. The experiment results indicate that Ên is larger than 1 and Ĥ e is less

Table 1 The mean, AAE, and MSE if Ex = 25, En = 3,He = 0.1

Estimate Mean, AAE, MSE SBGCT-1stM SBGCT-4thM MBGCT-SD

Êx Mean (Êx) 25.0052 25.0052 25.0052

AAE (Êx) 0.0357 0.0357 0.0357

MSE (Êx) 0.0019 0.0019 0.0019

Ên Mean (Ên) 2.9996 2.9982 2.9983

AAE (Ên) 0.0258 0.0257 0.0231

MSE( Ên) 0.9849×10−3 0.9674×10−3 0.7652 × 10−3

Ĥ e Mean (Ĥ e) 0.2300 0.2363 0.0944

AAE (Ĥ e) 0.1396 0.1363 0.0186

MSE (Ĥ e) 0.0259 0.0247 0.6361 × 10−3
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Fig. 7 The estimates Ên and Ĥ e when En = 1,He = 0.8

than 0.8 (shown in Fig. 7). The SBGCT-4thM and MBGCT-SD have no large differ-
ence for Ĥ e and Ên, but the AAE(Ên), MSE(Ên), AAE(Ĥ e) and MSE(Ĥ e) are all
smaller in MBGCT-SD from Table 2.

Overall, the above experimental results show that the MBGCT-SD is superior to
other two BGCT algorithms, and it has better stability than others as well.

5.1.2 The sample size n is changing

Similar to the Section 5.1.1, comparing the mean and MSE of the estimates Ên and
Ĥ e with the increasing of sample sizes n (n is changing from 1000 to 20000 by step
1000) according to the above proportion He/En.

(i) 3He ≤ En

Let (Ex = 25, En = 3, He = 0.1). The estimated mean (Mean(Ên), Mean(Ĥ e))
and MSE (MSE(Ên), MSE(Ĥ e)) with the changing of sample size n are shown in
Fig. 8.

Table 2 The mean and MSE if Ex = 25, En = 1,He = 0.8

Estimate Mean, AAE, MSE SBGCT-1stM SBGCT-4thM MBGCT-SD

Êx Mean (Êx) 24.9997 24.9997 24.9997

AAE (Êx) 0.0147 0.0147 0.0147

MSE (Êx) 0.3160×10−3 0.3160×10−3 0.3160×10−3

Ên Mean (Ên) 1.0806 0.9887 0.9929

AAE (Ên) 0.0806 0.0516 0.0327

MSE (Ên) 0.0068 0.0041 0.0016

Ĥ e Mean (Ĥ e) 0.6875 0.8084 0.8083

AAE (Ĥ e) 0.1125 0.0648 0.0449

MSE (Ĥ e) 0.0131 0.0060 0.0029
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Fig. 8 The means and MSEs of Ên and Ĥ e when En = 3,He = 0.1

Figure 8 shows that the estimated mean Mean(Ĥ e) in SBGCT-1stM and SBGCT-
4thM is larger than the true value 0.1, but Mean(Ĥ e) is always close to the true
value 0.1 in MBGCT-SD during the sample size n increasing from 1000 to 20,000
with the step 1000. Simultaneously, MSE(Ĥ e) approaches 0 faster in MBGCT-SD
than in SBGCT-1stM and SBGCT-4thM. There is no significant differences about
the estimated mean Mean(Ên) and MSE(Ên) in three BGCT algorithms with the
increasing of sample size n.

(ii) 3He > En

Let (Ex = 25, En = 1, He = 0.8). The estimated mean (Mean(Ên), Mean(Ĥ e))
and MSE (MSE(Ên), MSE(Ĥ e)) with the changing of sample size n are shown in
Fig. 9.

Figure 9 shows that the estimate mean Mean(Ên) is always larger than 1 and
Mean(Ĥ e) is always smaller than 0.8 with the increasing of sample size n in the
SBGCT-1stM, so MSE(Ên) and MSE(Ĥ e) do not approach 0. In SBGCT-4thM and
MBGCT-SD, there are no significant differences about the estimated Mean (Ên)
and Mean (Ĥ e), but MSE (Ên) and MSE (Ĥ e) are smaller in MBGCT-SD than in
SBGCT-4thM.

In summary, compared with the SBGCT-1stM and SBGCT-4thM, the advantages
of MBGCT-SD are reflected in the following two aspects: (1) theMBGCT-SD always
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Fig. 9 The means and MSEs of Ên and Ĥ e when En = 1,He = 0.8

gets better estimates than the other two BGCT algorithms whatever the ratio He/En

is. It shows that the MBGCT-SD has stronger adaptability than the other two BGCT
algorithms; (2) the experiment results indicate that the estimated Mean (Ên) and
Mean (Ĥ e) are closer to their true values, and MSE (Ên) and MSE (Ĥ e) tend to zero
faster than the other two BGCT algorithms when the sample size n is increasing,
which shows that the MBGCT-SD has better convergence. Since the three BGCT
algorithms make use of the same method to estimate the parameter Ex, that is, Êx

is equal to the sample mean X̄. Thus, there is no comparative analysis for Ex in the
paper. The three BGCT algorithms have the same time complexity, i.e., O(n).

5.2 Image segmentation based on MBGCT-SD

Image segmentation is an important issue of automatic image processing, and the
basis of image analysis and understanding [50]. The basic task of image segmentation
is to partition an image into non-overlapping regions according to the features of
image so as to extract the object regions of interest [31]. The following two examples
will illustrate the effectiveness of MBGCT-SD algorithm in image segmentation.

Example 2 Qin and Wu have applied the SBGCT-1stM and the SBGCT-4thM into
the image segmentation, which are denoted as SBGCT-1stM-based method and
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SBGCT-4thM-based method respectively. In the paper, the MBGCT-SD algorithm
is applied to the image segmentation, and its validity and effectiveness are shown
by comparing with some classical image segmentation methods, such as the Otsu
method [27], the type-2 fuzzy set method [32], the SBGCT-1stM-based method [30],
and the SBGCT-4thM-based method [41]. The segmentation results are shown in
Figs. 10 and 11.

Figure 10 shows the segmentation results of comparing with the Otsu method, the
type-2 fuzzy set method and the SBGCT-1stM-based method, wherein Fig. 10a rep-
resents the original images, and Fig. 10b represents the manually sketched images.
Figure 11 shows the segmentation results of comparing with the Otsu method, the
type-2 fuzzy set method, and the SBGCT-4thM-based method, wherein Fig. 11a rep-
resents the original images, which are named Block, Gearwheel, Potatoes, Fluocel,
Rice, and Pcb from left to right, respectively, and Fig. 11b represents the manually
sketched images.

In order to further assess the performance of the segmentation results, we consider
the following index of misclassification error (ME) as empirical discrepancy criteria,
proposed by Yasnoff et al. [45], which measures the disparity between the segmented
and a reference image (manually sketched image) [2, 30, 41]. It should be mentioned
that the reference image required for calculating the empirical discrepancy measure
is obtained by manual segmentation. The misclassification error is given as

ME = 1 − |BR ∩ BS | + |FR ∩ FS |
|BR| + |FR| , (5.1)

where BR and FR represent the background and foreground pixels of the reference
image, respectively. BS and FS refer to corresponding pixels of the segmented image,
while | · | denotes the cardinality of a set.

Figure 12 shows the ME values of our method and other methods. Figure 12a
shows the ME values of our method and other methods, including the Otsu method,
the type-2 fuzzy set method, and the SBGCT-1stM method, wherein Img1, Img2, and
Img3 appeared in Fig. 12a refer to the first image, the second image, and the third
image appeared in Fig. 10a, respectively. Figure 12b shows the ME values of our
method and other methods, including the Otsu method, the type-2 fuzzy set method,
and the SBGCT-4thM method. In Fig. 12a, b, “Mean” and “SD” represent the mean
and standard deviation (SD) of the ME values respectively.

Figure 12a, b shows that the ME values of our method are generally lower for
most images, and ME values’ mean and SD are also smaller than other methods. The
results validate the proposed method can segment objects in image effectively.

Example 3 The pulse coupled neural network (PCNN) is a novel neural network
model to simulate the synchronous phenomenon in the visual cortex system of the
mammals [13]. It has been widely applied into the field of image processing and pat-
tern recognition [26, 40]. Wei proposed a new method based on the simplified model
of PCNN (S-PCNN) to segment the images automatically [40]. We use MBGCT-
SD to segment the images taken from the literature [40] and compare it with the
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(a) Original images

(b) Manually sketched images

(c) Type-2 fuzzy set method

(d) Otsu method

(e) SBGCT-1stM-based method

(f) The proposed method

Fig. 10 Segmentation of different images by our method and other methods: Otsu, type-2 fuzzy set, and
SBGCT-1stM-based, respectively
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(a) Original images

(b) Manually sketched images

(c) Type-2 fuzzy set method

(d) Otsu method

(e) SBGCT-4thM-based method

(f) The proposed method

Fig. 11 Segmentation of different images by our method and other methods: Otsu, type-2 fuzzy set, and
SBGCT-4thM-based, respectively

Otsu method [27], the GMM method [9], the K-means method [14], and the S-
PCNN method [40]. The results are presented in Fig. 13, wherein the original images
are shown in Fig. 13a, and the results of the Otsu method, the GMM method, the
K-means method, and the proposed method are shown in Fig. 13b–f.

From Fig. 13, the proposed method can get better segmentation results than other
methods. For example, for the first image of Fig. 13a, our method performs better seg-
mentation for “face,” “eyes,” “hair,” and “fingers,” while other methods separate the
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Fig. 12 ME values of our method and other methods: Otsu, type-2 fuzzy set, SBGCT-1stM-based, and
SBGCT-4thM-based, respectively

image “girl” overly. For the second image of Fig. 13a, our method separates the blood
cells from its background clearly and the number of cells based on our segmentation
result can be counted easily, while the other methods are not. For the third image of
Fig. 13a, every single cell is distinctly separated from each other in the segmentation
result by our method, while some cells is difficult to be identified in other methods.
This is mainly because our method has some advantages in expressing the uncer-
tain information for the transition region between background and foreground, which
reflects the superiority of Gaussian cloud model using three numerical characteristics
(Ex,En,He) to express a uncertain concept.

Example 4 Cai proposed a two-stage segmentation method based on the Mumford-
Shah model(T-SSMMSM) [54], where the first stage is to find a smooth solution
g to convex variant of the Mumford-Shah model, and then in the second stage the
segmentation is done by the obtained thresholding g. Li introduced a two-stage model
for multi-channel image segmentation (T-SMMCIS) [55], where the first stage is
to acquire a smooth solution u from convex variational model related to minimal
surface property and different data fidelity terms, and then in the second stage the
smoothed image u is segmented by thresholding. Now, we compare our method with
the literatures [54, 55]. The results are presented in Figs. 14, 15, and 16.

Figure 14a, d gives the clean and the noisy images (Gaussian noise with zero mean
and variance 0.03 [54]). The corresponding segmentation results of T-SSMMSMwith
four-phase noisy image are given in Fig. 14b, e. The proposed method results are
shown in Fig.14c, f. In contrast, there is almost no difference between T-SSMMSM
and our method for clean image and noisy image. Figure 15 shows the results of the T-
SSMMSM with three-phase image [54] (Fig. 15b) and our method (Fig. 15c) for the
given image (Fig. 15a). By contrast, our method gives the relatively clear boundaries
than the T-SSMMSM for the original image. Figure 16 shows the results of the T-
SMMCIS with two-phase segmentation [55] (Fig. 16b, c) and our method (Fig. 16d)
for the given image (Fig. 16a). Comparatively, our method also gets better segmenta-
tion result than the T-SMMCIS with two-phase segmentation. In above segmentation
results, we consider the situation of segmenting the gray image into parts: foreground
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(a) Original images

(b) Otsu method

(c) GMM method

(d) K-means method

(e) S-PCNN method

(f) The proposed method

Fig. 13 Segmentation of different images by our method and other methods: Otsu, GMM, K-means, and
S-PCNN, respectively
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(a) Clean image (b) Four phases of g [54] (c) The proposed method

(d) Given noisy image (e) Fourth phase [54] (f) The proposed method

Fig. 14 Segmentation of different images by our method and T-SSMMSM with four-phase noisy image
[54]

(a) Given image (b) Three phases from g [54] (c)The proposed method

Fig. 15 Segmentation of different images by our method and T-SSMMSM with three-phase image [54]

(a) Given image (b) T-SMMCIS [55] ( u f 2
2) (c) T-SMMCIS [55] ( 1) (d) The proposed method

Fig. 16 Segmentation of different images by our method and T-SMMCIS with two-phase segmentation
[55]



1068 Numer Algor (2017) 76:1039–1070

(object) and background regions. The proposed method can get better segmentation
results.

6 Conclusions and prospects

In this paper, the backward Gaussian cloud transformation (BGCT) algorithm is stud-
ied. The limitations of two existing BGCT algorithms proposed in literatures [20,
37] are analyzed in detail respectively, and a novel BGCT algorithm (MBGCT-SD)
is proposed. The convergence of MBGCT-SD is analyzed in detail. Several compara-
tive experiments and its applications to image segmentation are given. Experimental
results presented here have demonstrated that the MBGCT-SD algorithm is able
to obtain better estimates for entropy En and hyper entropy He whatever the
ratio He/En is, while other two methods are not. Meanwhile, we compare the T-
SSMMSM [54], the T-SMMCIS with two-phase segmentation [55], and the proposed
method through the gray image segmentation. The segmentation results show the
performance of the proposed method.

It is easy to know the uncertain concept for human thinking, and the mutual trans-
formation between the intension and the extension of a concept can be conducted
automatically in human brain. Forward cloud transformation and backward cloud
transformation in cloud model provide a way to realize the transformation between
intension and extension of a concept through computer algorithm. Therefore, a inter-
esting aspect worthy of investigation is to research the bidirectional cognitive process
based on cloud transformation and human cognition in the future work.
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