
Numer Algor (2017) 76:861–880
DOI 10.1007/s11075-017-0287-z

ORIGINAL PAPER

Reducing and monitoring round-off error propagation
for symplectic implicit Runge-Kutta schemes

Mikel Antoñana1 ·Joseba Makazaga1 ·
Ander Murua1

Received: 1 February 2017 / Accepted: 9 February 2017 / Published online: 21 February 2017
© Springer Science+Business Media New York 2017

Abstract We propose an implementation of symplectic implicit Runge-Kutta
schemes for highly accurate numerical integration of non-stiff Hamiltonian systems
based on fixed point iteration. Provided that the computations are done in a given
floating point arithmetic, the precision of the results is limited by round-off error
propagation. We claim that our implementation with fixed point iteration is near-
optimal with respect to round-off error propagation under the assumption that the
function that evaluates the right-hand side of the differential equations is imple-
mented with machine numbers (of the prescribed floating point arithmetic) as input
and output. In addition, we present a simple procedure to estimate the round-off
error propagation by means of a slightly less precise second numerical integration.
Some numerical experiments are reported to illustrate the round-off error propagation
properties of the proposed implementation.

Keywords Symplectic implicit Runge-Kutta methods · Fixed-point iteration ·
Stopping criterion · Round-off errors

� Mikel Antoñana
Mikel.Antonana@ehu.eus

Joseba Makazaga
Joseba.Makazaga@ehu.eus

Ander Murua
Ander.Murua@ehu.eus

1 Computer Science and Artificial Intelligence Department, UPV/EHU (University of the Basque
Country), Donostia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0287-z&domain=pdf
http://orcid.org/0000-0002-7321-8882
mailto:Mikel.Antonana@ehu.eus
mailto:Joseba.Makazaga@ehu.eus
mailto:Ander.Murua@ehu.eus

862 Numer Algor (2017) 76:861–880

1 Introduction

When numerically integrating an autonomous Hamiltonian system, one typically
monitors the error in the preservation of the Hamiltonian function to check the preci-
sion of the numerical solution. However, severe loss of precision can actually occur
for sufficiently long integration intervals, while displaying a good preservation of
the value of Hamiltonian function. For high-precision numerical integrations, where
round-off errors may dominate truncation errors, it is highly desirable both reducing
and monitoring the propagation of round-off errors.

We propose an implementation of symplectic implicit Runge-Kutta schemes (such
as RK collocation methods with Gaussian nodes) that takes special care in reducing
the propagation of round-off errors. Our implementation is intended to be applied
to non-stiff problems, which motivates us to solve the implicit equations by fixed-
point iteration (see for instance [4, 10] for numerical tests comparing the efficiency
of implementations based on fixed point iterations and simplified Newton).

We work under the assumption that the (user defined) function that evaluates the
right-hand side of the differential equations is implemented in such a way that input
and output arguments are machine numbers of some prescribed floating point arith-
metic. Our actual implementation includes the option of computing, in addition to
the numerical solution, an estimation of the propagated round-off error.

The starting point of our implementation is the work of Hairer et al. [5]. There,
the authors observe that a standard fixed-point implementation of symplectic implicit
RK (applied with compensated summation [6]) exhibits an unexpected systematic
error in energy due to round-off errors, not observed in explicit symplectic methods.
They make the following observations that allow them to understand that unfavorable
error behavior: (a) the implicit Runge-Kutta method whose coefficients b̃i , ãij are
the floating-point representation of the coefficient bi, ai,j of a symplectic Runge-
Kutta method is not symplectic; (b) the error due to the application at each step of
a fixed point iteration with standard stopping criterion (depending on a prescribed
tolerance of the iteration error) tends to have a systematic character. Motivated by
these observations, they modify the standard implementation of fixed point iteration
which allows them to reduce the effect of round-off errors. No systematic error in
energy is observed in the numerical experiments reported in [5]. However, we observe
in some numerical experiments that the stopping criterion for the fixed point iteration
that they propose fails to work properly in some cases. In addition, we claim that
their implementation is still not optimal with respect to round-off error propagation.

In Section 3, we propose alternative modifications of the standard fixed point
implementation of symplectic implicit Runge-Kutta methods, which compare very
favorably with that proposed in [5].

We first define a reference implementation with fixed point iteration where all the
arithmetic operations other than the evaluation of the right-hand side of the system
of differential equations are performed in exact arithmetic, and as many iterations
as needed are performed in each step. Such an implementation, that we call FPIEA
(Fixed Point iteration with Exact Arithmetic) implementation, is based on the fol-
lowing two modifications to the standard implementation with fixed point iterations:
(i) From the one hand, we reformulate each symplectic implicit Runge-Kutta method

Numer Algor (2017) 76:861–880 863

in such a way that its coefficients can be approximated by machine numbers while
still keeping its symplectic character exactly (Section 3.1). (ii) On the other hand, we
propose a modification of the stopping criterion introduced in [5] that is more robust
and is independent of the chosen norm (Section 3.2)

The implementation we present here is based on the FPIEA implementation,
with most multiplications and additions performed (for efficiency reasons) in the
prescribed floating point arithmetic, but some of the operations performed with
special care in order to reduce the effect of round-off errors. In particular, this
includes a somewhat non-standard application of Kahan’s “compensated summation”
algorithm [6, 7, 9], described in detail in Section 3.3.

Finally, in Section 3.4, we present a simple procedure to estimate the round-off
error propagation as the difference of the actual numerical solution, and a slightly
less precise second numerical solution. These two numerical solutions can be com-
puted either in parallel, or sequentially with a lower computational cost than two
integrations executed in completely independent way.

In Section 4, we show some numerical experiments to asses the performance of
our final implementation. Some concluding remarks are presented in Section 5.

2 Preliminaries

2.1 Numerical integration of ODEs by symplectic IRK schemes

We are mainly interested in the application of symplectic implicit Runge-Kutta (IRK)
methods for the numerical integration of Hamiltonian systems of the form

d

dt
qj = ∂H(p, q)

∂pj
,

d

dt
pj = −∂H(p, q)

∂qj
, j = 1, . . . , d, (1)

where H : R2d → R. Recall that the Hamiltonian function H(q, p) is a conserved
quantity of the system.

More generally, we consider initial value problems of systems of autonomous
ODEs of the form

d

dt
y = f (y), y(t0) = y0, (2)

where f : RD → R
D is a sufficiently smooth map and y0 ∈ R

D . In the case of the
Hamiltonian system (1), D = 2d, y = (q1, . . . , qd, p1, . . . , pd).

For the system of differential equations (2), an s-stage implicit Runge-Kutta
method is determined by an integer s and the real coefficients aij (1 � i, j � s),
bi (1 � i � s). The approximations yn ≈ y(tn) to the solution y(t) of (2) at
t = tn = t0 + nh for n = 1, 2, 3, . . . are computed as

yn+1 = yn + h

s∑

i=1

bi f (Yn,i), (3)

864 Numer Algor (2017) 76:861–880

where the stage vectors Yn,i are implicitly defined at each step by

Yn,i = yn + h

s∑

j=1

aij f (Yn,j), i = 1, . . . , s. (4)

An IRK scheme is symplectic if and only if [10]

biaij + bjaji − bibj = 0, 1 � i, j � s. (5)

In that case, the IRK scheme conserves exactly all quadratic first integrals of the
original system (2), and if the system is Hamiltonian, under certain assumptions [4],
it approximately conserves the value of the Hamiltonian function H(y) over long
time intervals.

2.2 Floating point version of an IRK integrator

Let F ⊂ R be the set of machine numbers of a prescribed floating point system. Let
fl : R −→ F be a map that sends each real number x to a nearest machine number
fl(x) ∈ F.

We assume that instead of the original map f : R
D → R

D , we have a
computational substitute

f̃ : FD → F
D. (6)

Ideally, for each x ∈ F
D , f̃ (x) := fl(f (x)). In practice, the intermediate com-

putations to evaluate f̃ are typically made using the floating point arithmetic
corresponding to F, which will result in some error ||f̃ (x)− fl(f (x))|| caused by the
accumulated effect of several round-off errors.

We aim at efficiently implementing a given symplectic IRK scheme under the
assumption that f : RD → R

D is replaced by (6). Hence, the effect of round-off
errors will be present even in the best possible ideal implementation where exact
arithmetic were used for all the computations except for the evaluations of the map
(6). Our goal is to implement the IRK scheme working at the prescribed floating
point arithmetic, in such a way that the effect of round-off errors is similar in nature
and relatively close in magnitude to that of such ideal implementation.

2.3 Kahan’s compensated summation algorithm

Obtaining the numerical approximation yn ≈ y(tn), (n = 1, 2, . . .) to the solution
y(t) of the initial value problem (2) defined by (3)–(4) requires computing the sums

yn+1 = yn + xn, n = 0, 1, 2, . . . , (7)

where

xn = h

s∑

i=1

bi f (Yn,i).

For an actual implementation that only uses a floating point arithmetic with
machine numbers in F, special care must be taken with the additions (7). It is worth

Numer Algor (2017) 76:861–880 865

mentioning that for sufficiently small step-length h, the components of xn are smaller
in size than those of yn (provided that the components of the solution y(t) of (2)
remain away from zero). The naive recursive algorithm ŷn+1 := fl(ŷn + fl(xn)),
(n = 0, 1, 2, 3 . . .), typically suffers, for large n, a significant loss of precision due
to round-off errors. It is well known that such a round-off error accumulation can be
greatly reduced with the use of Kahan’s compensated summation algorithm [7] (see
also [6], [9]). Given a sequence {y0, x0, x1, . . . , xn, . . .} ⊂ F of machine numbers,
Kahan’s algorithm is aimed to compute the sums yn = y0 + ∑n−1

�=0 x�, (n � 1,) using
a prescribed floating point arithmetic, more precisely than with the naive recursive
algorithm. In Kahan’s algorithm, machine numbers ỹn representing the sums yn are
computed along with additional machine numbers en intended to capture the error
yn − ỹn. The actual algorithm reads as follows:

The sums ỹl + el (which in general do not belong to F) are more precise approx-
imations of the exact sums yl than ỹl ∈ F. In this sense, if y0 �∈ F, the Algorithm 1
should be initialized as ỹ0 := fl(y0) and e0 := fl(y0 − ỹ0) (rather than e0 = 0).

Of course, Algorithm 1 also makes sense for D-vectors of machine numbers
ỹ0, e0, x0, x1, . . . , xn ∈ F

D . In this setting, Algorithm 1 can be interpreted as a family
of maps parametrized by n and D,

Sn,D : F(n+3)D → F
2D,

that given the arguments ỹ0, e0, x0, x1, . . . , xn ∈ F
D , returns ỹn+1, en+1 ∈ F

D such
that ỹn+1 + en+1 is intended to represent the sum (ỹ0 + e0)+x0 +x1 +· · ·+xn (with
some small error).

3 Proposed implementation of symplectic IRK schemes

3.1 Symplectic schemes with machine number coefficients

If the coefficients bi, aij determining a symplectic IRK are replaced by machine
numbers b̃i , ãij ∈ F that approximate them (say, b̃i := fl(bi), ãij := fl(aij)), then
the resulting IRK scheme typically fails to satisfy the symplecticity conditions (5).
This results in a method that does not conserve quadratic first integrals and exhibits
a linear drift in the value of the Hamiltonian function [5].

866 Numer Algor (2017) 76:861–880

Motivated by that, we recast the definition of a step of the IRK method as follows:

Yn,i = yn +
s∑

j=1

μij Ln,j , Ln,i = hbif (Yn,i), i = 1, . . . , s, (8)

yn+1 = yn +
s∑

i=1

Ln,i, (9)

where
μij = aij /bj , 1 � i, j � s.

Condition (5) now becomes,

μij + μji − 1 = 0, 1 � i, j � s.

The main advantage of the proposed formulation over the standard one is that the
absence of multiplications in the alternative symplecticity condition makes possible
(see Appendix A for the particular case of the 12th order Gauss collocation IRK
method) to find machine number approximations μ̃ij of μij = aij /bj satisfying
exactly the symplecticity condition

μ̃ij + μ̃ji − 1 = 0, 1 � i, j � s. (10)

3.2 Iterative solution of the nonlinear Runge-Kutta equations

The fixed point iteration can be used to approximately compute the solution of the
implicit equations (8) as follows: For k = 1, 2, . . . obtain the approximations Y

[k]
n,i ,

L
[k]
n,i of Yn,i , Ln,i (i = 1, . . . , s) as

L
[k]
n,i = hbi f (Y

[k−1]
n,i), Y

[k]
n,i = yn +

s∑

j=1

μij L
[k]
n,j i = 1, . . . , s. (11)

The iteration may be initialized simply with Y
[0]
i = yn, or by some other procedure

that uses the stage values of the previous steps [4]. If the step-length h is suffi-
ciently small, these iterations converge to a fixed point that is solution of the algebraic
equations (8).

The situation is different for an actual computational version of these iterations,
where f is replaced in (11) by its computational substitute (6). The kth iteration then
reads as follows: For i = 1, . . . , s,

f
[k]
n,i = f̃ (fl(Y [k−1]

n,i)), L
[k]
n,i = hbi f

[k]
n,i , Y

[k]
n,i = yn +

s∑

j=1

μij L
[k]
n,j . (12)

In this case, either a fixed point of (12) is reached in a finite number of iterations,
or the iteration fails (mathematically speaking) to converge. In the former case, how-
ever (provided that h is small enough for the original iteration (11) to converge),
after a finite number of iterations, a computationally acceptable approximation to
the fixed point of (11) is typically achieved, and the successive iterates remain close
to it. According to our experience and the numerical experiments reported in [5], a

Numer Algor (2017) 76:861–880 867

computational fixed point is reached for most steps in a numerical integration with
sufficiently small step-length h.

In standard implementations of implicit Runge-Kutta methods, one considers

�[k] = (Y
[k]
n,1 − Y

[k−1]
n,1 , . . . , Y [k]

n,s − Y [k−1]
n,s) ∈ F

sd ,

(for notational simplicity, we avoid reflecting the dependence of n on �[k]), and
stops the iteration provided that ||�[k]|| � tol, with a prescribed vector norm || ·
|| and iteration error tolerance tol. If the chosen value of tol is too small, then the
iteration may never end when the computational sequence does not arrive to a fixed
point in a finite number of steps. If tol is not small enough, the iteration will stop
too early, which will result in an iteration error of larger magnitude than round-off
errors. Furthermore, as observed in [5], such iteration errors tend to accumulate in a
systematic way.

The remedy proposed in [5] is to stop the iteration either if �[k] = 0 (that is,
if a fixed point is reached) or if ||�[k]|| � ||�[k−1]||. The underlying idea is that
(provided that h is small enough for the original iteration (11) to converge), typically
||�[k]|| < ||�[k−1]||whenever the iteration error is substantially larger than round-off
errors, and thus ||�[k]|| � ||�[k−1]|| may indicate that round-off errors are already
significant.

We have observed that Hairer’s strategy works well in general, but in some cases,
it stops the iteration too early. Indeed, it works fine for the initial value problem
on a simplified model of the outer solar system (OSS) reported in [5] with a step-
size h of 500/3 days, but it goes wrong with h = 1000/3. Actually, we have run
Hairer’s fortran code and observed that the computed numerical solution exhibits an
error in energy that is considerably larger than round-off errors. The evolution of
relative error in energy is displayed on the left of Fig. 1, which shows a linear growth
pattern. We have checked that, for instance, at the first step,

‖�[1]‖ > ‖�[2]‖ > · · · > ‖�[12]‖ = 3.91 × 10−14 ≤ ‖�[13]‖ = 4.35 × 10−14

which causes the iteration to stop at the 13th iteration, which happens to be too early,
since subsequently, ‖�[13]‖ > ‖�[14]‖ > ‖�[15]‖ > ‖�[16]‖ = 0.

Motivated by that, we propose an alternative more stringent stopping criterion:
Denote as �

[k]
j the j th component (1 � j � sD) of �[k] ∈ R

sD . The fixed point

Fig. 1 Evolution of relative error in energy for the outer solar system problem (OSS) with the original
unperturbed initial values in [5] and doubled step-size (h = 1000/3 days). a Hairer’s stopping criterion. b
New stopping criterion

http://www.unige.ch/~hairer/preprints/code.tar

868 Numer Algor (2017) 76:861–880

iteration (12) is performed for k = 1, 2, . . . until either �[k] = 0 or the following
condition is fulfilled for two consecutive iterations:

∀j ∈ {1, . . . , sD}, min
(
{|�[1]

j |, · · · , |�[k−1]
j |} /{0}

)
� |�[k]

j |. (13)

If K is the first positive integer such that (13) does hold for both k = K − 1 and
k = K , then we compute the approximation yn+1 ≈ y(tn+1) as

yn+1 = yn +
s∑

i=1

L
[K]
n,i .

The iteration typically stops with �
[K]
j = 0 for all j . However, when the itera-

tion stops with �
[K]
j �= 0 for some j , that is, when no computational fixed point is

achieved, we still have to decide if this has been due to the effect of small round-off
errors, or because the step-size is not small enough for the convergence of the itera-
tion (11). Here is the only point where our implementation depends on a norm-based
standard criterion (with rather loose absolute and relative error tolerances) to decide
if �[K] ∈ F

sD is small enough.
We have repeated the experiment of OSS with h = 1000/3 by replacing Hairer’s

stopping criterion by our new one. The evolution of the resulting energy errors are
displayed on the right of Fig. 1.

3.3 Machine precision implementation of new algorithm

Sections 3.1 and 3.2 completely determine the FPIEA (Fixed Point Iteration with
Exact Arithmetic) implementation referred to in the Introduction. We next describe
in detail our machine precision implementation of the algorithm described (for exact
arithmetic) in previous subsection.

Consider appropriate approximations b̃i ∈ F of bi (i = 1, . . . , s), and let μ̃ij ∈
F (i, j = 1, . . . , s) be approximations of μij satisfying exactly the symplecticity
condition (10).

Given yn ∈ R
D , we consider ỹ0 = fl(y0) and e0 = fl(yn − ỹn). For each n =

0, 1, 2, . . ., we initialize Y
[0]
n,i = yn, and successively compute for k = 1, 2, . . .

f
[k]
n,i = f̃ (Y

[k−1]
n,i), L

[k]
n,i = fl(h b̃i f

[k]
n,i),

Z
[k]
n,i = en+ ∑s

j=1 μ̃ij L
[k]
n,j , Y

[k]
n,i = fl

(
ỹn + Z

[k]
n,i

) (14)

until the iteration is stopped at k = K according to the criteria described in
Section 3.2. Hence, K is the highest index k such that f [k]

n,i has been computed.

In our actual implementation, one can optionally initialize Y
[0]
n,i by interpolating

from the stage values of previous step, which improves the efficiency of the algo-
rithm. Nevertheless, in all the numerical results reported in Section 4 below, the
simpler initialization Y

[0]
n,i = yn is employed.

In (14), we evaluate each Z
[k]
n,i ∈ F

D as

Z
[k]
n,i = (· · · ((en + μ̃i,1L

[k]
n,1) + μ̃i,2L

[k]
n,2) + · · · + μ̃i,s−1L

[k]
n,s−1) + μ̃i,sL

[k]
n,s

Numer Algor (2017) 76:861–880 869

where each multiplication and addition is performed in the prescribed floating point
arithmetic.

We then compute ỹn+1, en+1 ∈ F
D such that ỹn+1 + en+1 ≈ y(tn+1) as follows:

– compute for i = 1, . . . , s the vectors

En,i = h b̃i f
[K]
n,i − L

[K]
n,i . (15)

δn = en +
s∑

i=1

En,i .

– finally, compute

(ỹn+1, en+1) = Ss,D(ỹn, δn, L
[K]
n,1 , . . . , L[K]

n,s). (16)

If the FMA (fused-multiply-add) instruction is available, it should be used to compute
(15) (with precomputed coefficients hb̃i). The order in which the terms defining Zn

and δn are actually computed in the floating point arithmetic is not relevant, as the
corresponding round-off errors of the small corrections Zn and δn will have a very
marginal effect in the computation of ỹn+1 and en+1.

3.4 Round-off error estimation

We estimate the round-off error propagation of our numerical solution ỹn + en ≈
y(tn) (n = 1, 2, . . .) by computing its difference with a slightly less precise secondary
numerical solution ŷn + ên ≈ y(tn) obtained with a modified version of the machine
precision algorithm described in previous section. In this modified version of the
algorithm, the components of each L

[K]
n,i in (16) are rounded to a machine number

with a shorter mantissa. We next give some more details.
Let p be the number of binary digits of our floating point arithmetic. Given an

integer r � 0 and a machine number x, we define flp−r (x) := fl(2rx + x) − 2rx.
This is essentially equivalent to rounding x to a floating point number with p − r

significant binary digits.
We determine the algorithm for the secondary integration by fixing a positive inte-

ger r < p and modifying (16) in the implementation of the algorithm described in
previous subsection as follows:

(ŷn+1, ên+1) = Ss,D(ŷn, δn, flp−r (L
[K]
n,1), . . . , flp−r (L

[K]
n,s)).

The proposed round-off error estimation can thus be obtained as the difference of
the primary numerical solution and the secondary numerical solution obtained with
a relatively small value of r (say, r = 3). These two numerical solutions can be
computed in parallel in a completely independent way.

In addition, we have implemented a sequential version with lower CPU require-
ments than two integrations executed sequentially in completely independent way.
The key to do that is the following: At each step, the stage values Yn,i (i = 1, . . . , s)
of both primary and secondary integration will typically be very close to each other
(as far as the estimated round-off error does not grow too much). Thus, the number
of iterations of each step of the secondary integration can be reduced by using the

870 Numer Algor (2017) 76:861–880

final stage values Yn,i (i = 1, . . . , s) of the primary integration as initial values Y
[0]
n,i

of the secondary integration.

4 Numerical experiments

We next report some numerical experiments to asses our implementation of the 6-
stage Gauss collocation method of order 12 in the 64-bit IEEE double precision
floating point arithmetic.

4.1 Test problems

We consider two different Hamiltonian problems corresponding to a double pen-
dulum and the simulation of the outer solar system (considered in [4] and [5])
respectively. In all the cases, we consider a time-step h that is small enough for
round-off errors to dominate over truncation errors.

4.1.1 The double pendulum (DP) problem

We consider the planar double pendulum problem: a double bob pendulum with
masses m1 and m2 attached by rigid massless rods of lengths l1 and l2. This is a non-
separable Hamiltonian system with two degrees of freedom, for which no explicit
symplectic Runge-Kutta-type method is available, and hence Gauss collocation
methods are a natural choice [8].

The configuration of the pendulum is described by two angles q = (φ, θ) (see
Fig. 2): while φ is the angle of the first bob, the second bob’s angle is defined by
ψ = φ + θ . We denote the corresponding momenta as p = (pφ, pθ).

Its Hamiltonian function H(q, p) is

− l1
2 (m1 + m2) pθ

2 + l2
2 m2 (pθ − pφ)2 + 2 l1 l2 m2 pθ (pθ − pφ) cos(θ)

l1
2 l2

2 m2 (−2 m1 − m2 + m2 cos(2θ))

−g cos(φ) (l1 (m1 + m2) + l2 m2 cos(θ)) + g l2 m2 sin(θ) sin(φ), (17)

and we consider following parameters values

g = 9.8
m

sec2
, l1 = 1.0 m , l2 = 1.0 m , m1 = 1.0 kg , m2 = 1.0 kg.

We take two initial values from [2], the first one of non-chaotic character, and the
second one exhibiting chaotic behavior:

– Non-chaotic case (NCDP): q(0) = (1.1, −1.1) and p(0) = (2.7746, 2.7746).
We have integrated over Tend = 212 seconds with step-size h = 2−7. The
numerical results will be sampled once every m = 210 steps.

– Chaotic case (CDP): q(0) = (0, 0) and p(0) = (3.873, 3.873). We have inte-
grated over Tend = 28 seconds with step-size h = 2−7. We sample the numerical
results once every m = 28 steps.

Numer Algor (2017) 76:861–880 871

1

2

1

2

(1, 1) = (1 sin , − 1 cos)

(2, 2) = (1 sin + 2 sin ,− 1 cos − 2 cos)

Fig. 2 Double pendulum

Both initial value problems (NCDP and CDP) will be used to test the evolution of the
global errors as well as to check the performance of the round-off error estimators.
For the long term evolution of the errors in energy, only the NCDP problem will be
considered.

4.1.2 Simulation of the outer solar system

We consider a simplified model of the outer solar system (sun, the four outer plan-
ets, and Pluto) under mutual gravitational (non-relativistic) interactions. This is a
Hamiltonian system with 18-degrees of freedom (qi, pi ∈ R

3, i = 0, · · · , 5) and
Hamiltonian function is

H(q, p) = 1

2

N∑

i=0

‖pi‖2
mi

− G

N∑

0≤i<j≤N

mimj

‖qi − qj‖ . (18)

We have considered the initial values and the values of the constant parameters (Gmi ,
i = 0, . . . , 5) taken from [4, page 14]. We have integrated over Tend = 107 days,
with step-size h = 500/3 and the numerical results are sampled once every m = 120
steps.

Observe that (18) is a separable Hamiltonian, i.e., of the form H(p, q) = T (p) +
U(q). It is well known that the efficiency of standard fixed point iteration can be
improved for Hamiltonians systems with separable Hamiltonian by considering a par-
titioned version of the fixed point iteration [4]. Nevertheless, as in [5], here we report
the numerical results obtained with the standard non-partitioned fixed-point iteration.

872 Numer Algor (2017) 76:861–880

(We have actually checked that similar results are obtained with the partitioned ver-
sion of the fixed point iteration, the main difference being that less iterations are
performed at each step.)

4.2 Comparison of different sources of error in energy

The error of a numerical solution ỹn + en ≈ y(tn) (n = 1, 2, . . .) computed with
our double precision (DP) implementation of symplectic IRK schemes is a combined
result of different kinds of errors:

1. The truncation error: The error due to replacing y(tn), n = 1, 2, 3, . . . (where
y(t) is the solution of the initial value problem (2)) by the numerical approxima-
tions yn defined by (9)–(8) (with exact coefficients bi, μij).

2. The iteration error: In practice, a finite number K of fixed point iterations (11)
are applied, and the solution Ln,i, Yn,i (i = 1, . . . , s) of (8) are replaced by
approximationsL

[K]
n,i , Y

[K]
n,i . Then, in the FPIEA implementation, the correspond-

ing numerical solution yn+1 is computed at each step as

yn+1 = yn +
s∑

i=1

L
[K]
n,i .

3. The error due to replacing the original map f : RD → R
D by its computational

substitute f̃ : FD → F
D . This has a double effect: From the one hand, in most

steps, a computational fixed point is achieved in a finite number K of iterations,
which causes an unavoidable iteration error. On the other hand, replacing f by
f̃ adds the effect of some round-off errors.

4. The error due to the application of a different IRK scheme. In our case, we apply
the scheme (9)–(8) with bi replaced by b̃i ∈ F (i = 1, . . . , s) and each μij

replace by double precision approximation μ̃ij ∈ F satisfying condition (10).
5. The error due to using inexact arithmetic for the operations (other than the

evaluation of f̃) in the machine precision implementation of the algorithm.

We have simulated, for the double pendulum (the non-chaotic case, NCDP) and
the outer solar system (OSS) respectively, the effect that each of the first four of such
sources of errors has in the values of the energy (which of course is conserved in the
exact solution) as follows:

A. In order to estimate the truncation error, we have applied our algorithm fully
implemented in quadruple precision.

B. For the iteration error, we have applied the quadruple precision version of the
algorithm modified so that the fixed point process in the nth step is stopped
at the Kth iteration provided that Y

[K]
n,i and Y

[K−1]
n,i coincide when rounded to

double precision.
C. In addition, we have estimated the effect (in the evolution of the energy) of

the error due to replacing f by f̃ , by considering the quadruple precision
implementation of our algorithm with the double precision version of f̃ .

Numer Algor (2017) 76:861–880 873

D. Finally, we have simulated the error due to the application of a RK scheme with
double precision coefficients by applying our quadruple precision implementa-
tion with double precision coefficients b̃i , μ̃ij .

We next plot (Fig. 3), for each of the considered initial value problems, the evo-
lutions of the energy errors corresponding to the items A–D in previous list. In both

Fig. 3 We plot the evolution of energy error in logarithmic scale of the next algorithms implementations:
A-algorithm as estimation of truncation error (red), B-algorithm as estimation of iteration error (green),
C-algorithm as estimation of the effect of replacing the exact f by its double precision version f̃ function
(black), and D-algorithm as estimation of the effect of using double precision coefficients (blue)

874 Numer Algor (2017) 76:861–880

cases, we have chosen a step-size h such that truncation errors are smaller than round-
off errors. We observe that the effect of using double precision coefficients (b̃i , μ̃ij)
is also negligible compared to the propagation of round-off errors. The iteration error
is similar in size to round-off errors.

4.3 Statistical analysis of errors

In order to make a more robust comparison of the numerical errors due to round-
off errors, we adopt (as in [5]) an statistical approach. We have considered for each
of the three initial value problem, P = 1000 perturbed initial values by randomly
perturbing each component of the initial values with a relative error of sizeO(10−6).

We will compare three different fixed point implementations of the 6-stage Gauss
collocation method. In all of them, the same computational substitute f̃ : FD → F

D

is used instead of the original map f : RD → R
D defining the ODE (2):

1. The FPIEA (fixed point iteration with exact arithmetic) implementation, where
the techniques described in Sections 3.1 and 3.2 are applied to implement a
fixed point iteration with all arithmetic operations (other than those used when
evaluating f̃) performed in exact arithmetic.

2. Our double precision version (coded in C) of the algorithm implemented in
FPIEA. We will refer to it as DP (double precision).

3. The algorithm proposed in [5], implemented in Hairer’s Fortran code.

From the one hand, we want to check if the propagation of round-off errors in our DP
implementation are qualitatively similar and close in magnitude to its exact arithmetic
counterpart FPIEA. On the other hand, we want to see how our DP implementation
compares with Hairer’s code.

In Table 1, we display the percentage of steps that reach a computational fixed-
point and the average number of fixed-point iterations per step in each of the referred
three implementations when applied to two different initial value problems.

4.3.1 Distribution of energy jumps

The local error in energy H(yn) − H(yn−1) due to round-off errors, is “expected”
to behave, for a good implementation free from biased errors, like an independent

Table 1 Percentage of steps that reach a computational fixed-point and the number of fixed-point
iterations per step for the computations of non-chaotic double pendulum (NCDP), chaotic double pen-
dulum (CDP), and the outer solar system (OSS) problems. In columns, we compare three different
implementations: FPIEA, DP (double precision) and Hairer’s Fortran code

FPIEA DP (%) Hairer (%)

% # % # % #

NCDP 98.7 8.5 98.8 8.6 98.5 8.6

CDP 98.9 8.5 98.9 8.6 98.4 8.6

OSS 97.7 14.4 97.4 14.2 87.5 14.1

http://www.unige.ch/~hairer/preprints/code.tar

Numer Algor (2017) 76:861–880 875

random variable. Then, provided that the numerical results are sampled everym steps,
with a large enough sampling frequencym, an energy jumpH(ykm)−H(ymk−m)will
behave as an independent variable with an approximately Gaussian distribution with
mean μ (ideally μ = 0) and standard deviation σ . So that the accumulated difference
in energy,

H(ykm) − H(y0) (19)
at the sampled times tmk = kmh would behave like a Gaussian random walk

with standard deviation k
1
2 σ = (tmk/(mh))1/2σ . This is sometimes referred to as

Brouwer’s law in the scientific literature [3], from the original work on the accumu-
lation of round-off errors in the numerical integration of Kepler’s problem done by
Brouwer in [1].

In this sense, we want to check in which extent the (scaled) energy jumps,

(H(ykm) − H(ymk−m))/H(y0) (20)

due to round-off errors after m steps approximately obey a Gaussian distribution in
our double precision (DP) implementation.

If [0, Tend] is the integration interval, and P perturbed initial values are con-
sidered, we have a total number of KP samples of energy jumps, where K =
Tend/(mh). In Fig. 4, we plot the histograms of KP samples of energy jumps
obtained with our DP implementation against the normal distributionN(μ, δ) (where
μ and σ are the average and standard deviation of the samples respectively). For
both initial value problems, non-chaotic double pendulum (NCDP), and the outer
solar system (OSS), such histograms fits perfectly well to their corresponding normal
distributions N(μ, δ).

4.3.2 Evolution of mean and standard deviation of errors

We next plot (Fig. 5) the evolution of the mean and standard deviation of the errors
in energy of the FPIEA, DP, and Hairer’s implementations for the NCDP and OSS
problems respectively.

Fig. 4 Histograms of KP samples of energy jumps of the DP implementation against the normal distri-
bution N(μ, δ) for two problems (NCDP and OSS). The horizontal axis is multiplied by 1015 and vertical
axis indicates the frequency

876 Numer Algor (2017) 76:861–880

Fig. 5 Evolution of mean (μ) and standard deviation (σ) of errors in energy (left) and detail of the evolu-
tion of mean errors in energy (right), for DP implementation (blue), FPIEA implementation (orange), and
Hairer’s implementation (green). Non-Chaotic case (a, b), and outer solar system case (c, d)

Recall that FPIEA represents the best possible fixed point implementation of the
IRK scheme provided that the double precision version f̃ of the original f is used.
We stress that we have made the stopping criterion of the FPIEA implementation
even more stringent than in the DP implementation: we stop the fixed point iteration
if either �[k] = 0 or (13) is fulfilled during ten consecutive iterations. This way, we

Fig. 6 Evolution of mean (μ) and standard deviation (σ) of errors in energy of a IRK implementation
with simplified Newton iterations

Numer Algor (2017) 76:861–880 877

try to avoid the persistence of iteration errors in the case of steps where no compu-
tational fixed point is obtained. (Observe that whenever �[k] = 0, there is no point
in performing more fixed point iterations, as in that case a computational fixed point
has been achieved.)

The numerical tests in Fig. 5 seen to confirm that our DP implementation is
near optimal (that is, close to the FPIEA implementation), both with respect to the
standard deviation and the mean of the errors in energy.

Fig. 7 Evolutions of Mean (left) and standard deviation (right) of global errors in positions of DP imple-
mentation (blue), FPIEA implementation (orange) and Hairer’s implementation (green): NCDP (a, b),
CDP (c, d), and OSS (e, f)

878 Numer Algor (2017) 76:861–880

We believe that some small linear drift of the mean energy error may be unavoid-
able for the fixed point implementations of IRK schemes in some cases (such as the
NCDP example). This is consistent with the observation that the simulated iteration
error displaying in Fig. 1 is close in magnitude to the effect of round-off errors.

This is not of course inherent to the symplectic IRK scheme itself. In Fig. 6,
we display the results obtained for the NCDP example with a preliminary

Fig. 8 Left: estimation of the round-off error with the original unperturbed initial values. We compare the
evolution of our error estimation (orange) with the evolution of the global error (blue). Right: evolution
of the mean error in positions (blue) of the application of our DP algorithm to P = 1000 perturbed initial
value problems, together with the evolution of the mean of the estimated errors in positions (orange)

Numer Algor (2017) 76:861–880 879

implementation of a simplified Newton implementation of the same IRK scheme as
above. No linear drift of the mean energy error seems to appear.

To end with the present subsection, we plot (Fig. 7) the evolution of the (mean and
standard deviation of) errors in position of the FPIEA, DP, and Hairer’s implementa-
tions for the NCDP, CDP and OSS problems respectively. The displayed results seem
to confirm our claim of the DP implementation being a close-to-optimal fixed point
implementation of the symplectic IRK scheme.

4.4 Round-off error estimation

In order to assess the quality of the error estimation technique proposed in
Section 3.4, we represent, in Fig. 8, for each of the three considered initial value
problems (with the original unperturbed initial values), the evolution of the global
errors in position of our DP implementation, together with the evolution of the esti-
mations produced by using our technique applied with r = 3. In addition, we present
for each of the three considered examples, the evolution of the mean error in posi-
tions of the application of our DP algorithm to P = 1000 perturbed initial value
problems, together with the evolution of the mean of the estimated errors in posi-
tions. We believe that the results indicate that the proposed round-off error estimation
procedure is useful for the purpose of assessing the propagation of round-off errors.

5 Concluding remarks

Symplectic implicit Runge-Kutta schemes (such as RK collocation methods with
Gaussian nodes) are very appropriate for the accurate numerical integration of
general Hamiltonian systems. For non-stiff problems, implementations based on
fixed-point iterations seem to be more efficient than those based on Newton method
or some of its variants.

We propose an implementation that takes special care in reducing the propagation
of round-off errors, and includes the option of computing, in addition to the numerical
solution, an estimation of the propagated round-off error. We claim that our imple-
mentation with fixed point iterations is near optimal, in the sense that the propagation
of round-off errors is essentially no worse than the best possible implementation with
fixed point iteration. Our claim seems to be confirmed by our numerical experiments.

A key point in our implementation has been the introduction of a new stopping
criterion for the fixed point iteration. We believe that such a stopping criterion could
be also useful in other contexts.

According to our numerical experiments, it seems that, in some cases, some small
linear drift of the mean energy error may be unavoidable for the fixed point imple-
mentations of IRK schemes. Whenever avoiding any drift of energy error becomes
critical it might be preferable to use some Newton based iteration instead.

The C code of our implicit Runge-Kutta implementation with fixed point iterations
can be downloaded from IRK-FixedPoint Github software repository or go to the
next url: https://github.com/mikelehu/IRK-FixedPoint.

<https://github.com/mikelehu/IRK-FixedPoint>
https://github.com/mikelehu/IRK-FixedPoint

880 Numer Algor (2017) 76:861–880

Acknowledgments M. Antoñana, J. Makazaga, and A. Murua have been partially supported by projects
MTM2013-46553-C3-2-P from Spanish Ministry of Economy and Trade, by project MTM2016-76329-R
“IMAGEARTH” from Spanish Ministry of Economy and Competitiveness and as part of the Consolidated
Research Group IT649-13 by the Basque Government.

Appendix A: Computation of coefficients for 12th order Gauss
collocation method

We next illustrate, by considering in detail the case of the 6th stage Gauss collocation
method for the 64-bit IEEE double precision floating point arithmetic, how to deter-
mine appropriate machine number coefficients μij , 1 � i, j � s, that approximate
the real numbers aij /bj of a given symplectic integration.

For all i = 1, . . . , s, μi,i = 1/2. For 1 � j < i � s, μij := fl(aij /bj), which
satisfy 1/2 < |μij | < 2, which implies that μji := 1−μij is a machine number. This
results in machine number coefficients μij that satisfy the symplecticity conditions
(10).

Given h, the coefficients hbi = h × bi are precomputed as follows: for i =
2, . . . , s − 1, hbi := fl(h × bi), and

hb1 := hbs := (h −
s−1∑

i=2

hbi)/2.

References

1. Brouwer, D.: On the accumulation of errors in numerical integration. Astron. J. 46, 149–153 (1937).
doi:10.1086/105423

2. Dumitru, N.D.: Fast detection of chaotic or regular behavior of double pendulum system: applica-
tion of the fast norm vector indicator method SEECCM III (South East European Conferentce on
Computational Mechanics). doi:10.13140/2.1.5033.2969 (2013)

3. Grazier, K., Newman, W., Hyman, J.M., Sharp, P.W., Goldstein, D.J.: Achieving Brouwer’s
law with high-order stormer multistep methods. ANZIAM J. 46, 786–804 (2005). doi:10.21914/
anziamj.v46i0.990

4. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving
algorithms for ordinary differential equations, vol. 31 Springer Science & Business Media.
doi:10.1007/3-540-30666-8 (2006)

5. Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit runge–kutta
methods. BIT Numer. Math. 48(2), 231–243 (2008). doi:10.1007/s10543-008-0170-3

6. Higham, N.J.: Accuracy and stability of numerical algorithms. Siam. doi:10.1137/1.9780898718027
(2002)

7. Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)
8. McLachlan, R.I., Atela, P.: The accuracy of symplectic integrators. Nonlinearity 5(2), 541 (1992).

http://iopscience.iop.org/article/10.1088/0951-7715/5/2/011/meta
9. Muller, J., Brisebarre, N., De Dinechin, F., Jeannerod, C., Lefevre, V., Melquiond, G., Revol, N.,

Stehlé, D., Torres, S.: Handbook of floating-point arithmetic. Springer Science & Business Media.
doi:10.1007/978-0-8176-4705-6 (2009)

10. Sanz Serna, J., Calvo, M.: Numerical Hamiltonian problems. Chapman and Hall (1994)

http://dx.doi.org/10.1086/105423
http://dx.doi.org/10.13140/2.1.5033.2969
http://dx.doi.org/10.21914/anziamj.v46i0.990
http://dx.doi.org/10.21914/anziamj.v46i0.990
http://dx.doi.org/10.1007/3-540-30666-8
http://dx.doi.org/10.1007/s10543-008-0170-3
http://dx.doi.org/10.1137/1.9780898718027
http://iopscience.iop.org/article/10.1088/0951-7715/5/2/011/meta
http://dx.doi.org/10.1007/978-0-8176-4705-6

	Reducing and monitoring round-off error propagation for symplectic implicit Runge-Kutta schemes
	Abstract
	Introduction
	Preliminaries
	Numerical integration of ODEs by symplectic IRK schemes
	Floating point version of an IRK integrator
	Kahan's compensated summation algorithm

	Proposed implementation of symplectic IRK schemes
	Symplectic schemes with machine number coefficients
	Iterative solution of the nonlinear Runge-Kutta equations
	Machine precision implementation of new algorithm
	Round-off error estimation

	Numerical experiments
	Test problems
	The double pendulum (DP) problem
	Simulation of the outer solar system

	Comparison of different sources of error in energy
	Statistical analysis of errors
	Distribution of energy jumps
	Evolution of mean and standard deviation of errors

	Round-off error estimation

	Concluding remarks
	Acknowledgments
	Appendix A: Computation of coefficients for 12th order Gauss collocation method
	References

