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Abstract In last few years, many ERKN methods have been investigated for solving
multi-frequency multidimensional second-order ordinary differential equations, and
the numerical efficiency has been checked strongly in scientific computation. But in
the constructions of (especially high-order) new ERKN methods, lots of time and
effort are costed in presenting the practical order conditions firstly and then in adding
some reasonable assumptions to get the coefficient functions finally. In this paper,
a feasible and effective technique is given which makes the construction of ERKN
methods finished in a few seconds or a few minutes, even for high-order integrators.
Moreover, this technique does not need any more information and knowledge except
the classical RKN method. And this paper also gives the theoretical explanation to
guarantee that the ERKN method obtained from this technique has the same order
and the same properties as the underlying RKN method.
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1 Introduction

This paper focuses on numerical integrators solving multi-frequency and multidi-
mensional perturbed oscillatory second-order ordinary differential equations (ODEs){

q ′′(t) + Mq(t) = f
(
q(t), q ′(t)

)
, t ∈ [t0, T ],

q(t0) = q0, q ′(t0) = q ′
0,

(1)

where M ∈ R
d×d is a constant matrix containing implicitly the frequencies of the

problem. ODEs (1) arise in various fields of science and technology, such as applied
mathematics, mechanics, physics, astronomy, molecular biology, and engineering [1–
4]. In the case where the right-hand side of the systems does not depend on the
derivative q ′(t), the systems (1) are{

q ′′(t) + Mq(t) = f
(
q(t)

)
, t ∈ [t0, T ],

q(t0) = q0, q ′(t0) = q ′
0.

(2)

Furthermore, if M is a positive semi-definite symmetric matrix and f (q) =
−∇U(q), then systems (2) become identical to multi-frequency and multidimen-
sional oscillatory Hamiltonian systems{

p′ = −∇qH(p, q), p(t0) = p0,

q ′ = ∇pH(p, q), q(t0) = q0,
(3)

with the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + U(q), (4)

where U(q) is a smooth potential function. For solving the multi-frequency and
multidimensional perturbed oscillatory second-order ordinary differential equations,
RK-type methods [2–21], exponential fitting and trigonometric fitting methods [2–
6, 15, 20–28], multi-step methods [2–5, 8], energy-preserving methods [2–6, 17–19,
29–33], and collocation methods [2–4, 6, 18, 28, 29] have been proposed. These
methods also have been deeply analyzed for Hamiltonian systems [5–7, 19–21, 32–
36]. The ERKN methods [10, 14] are equivalent to the exponentially fitting RKN
(EFRKN) methods [20, 21], but these methods correspond to different ideas and
derivation. The ERKN integrators are proposed based on the variation of constants
formula while the EFRKN methods are derived by applying the exponential fitting
techniques to the multidimensional modified RKNmethods. This paper prefers to the
ERKN methods since the ERKN methods do not depend on the decomposition of M

and then can be widely used in many fields [5, 8–15, 19, 20, 36–38].
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In numerical applications, the efficiency and robustness of these integrators com-
paring with the classical RKN methods can be guaranteed since the ERKN methods
make full use of the special structure of the ODEs (1). But by now, since the lack of
some researches, in the construction of new ERKN method, people have to do the
repetitive work which have been done similarly in constructing RKN method. In this
paper, we will give a technique which makes the construction of ERKN method can
be finished actually in a few seconds or a few minutes, even for high-order methods.
It is greatly save the time and effort. This feasible and effective technique is on the
basis of the special structure of a class of ERKN methods. The theoretical explana-
tion would be presented in the order conditions, the symplectic conditions, and the
symmetric conditions.

The rooted tree theory is most important in the RK-type methods. For the ERKN
method solving the general systems (1), the rooted tree theory is on the basis of the
improved extended Nyström tree set (IEN-T set) called as IEN-T theory [12, 16]. And
for the ERKN method solving the special systems (2), the rooted tree theory is on the
subset of IEN-T set, namely the simplified special extended Nyström tree set (SSEN-
T set) and then the theory is called as SSEN-T theory [10, 11]. Since the coefficient
functions of the interested class of ERKN methods mentioned in this paper are non-
independent, the rooted tree theory for any kind of systems would bases on a subset
of the underlying tree set. And we will conclude that the rooted tree theory for this
special class of ERKN methods is actually on the basis of the Nyström tree (N-T) set
for the general systems (1) and the special Nyström tree (SN-T) set for the special
systems (2).

In this paper, we also present some theorems to guarantee that the special class
of ERKN methods obtained from this technique share the same properties (such as
order, symplectic property, symmetric property) with the underlying RKN methods.
So, in this paper, we provide a feasible and efficient technique to construct some
ERKN methods with special properties which are wanted in scientific computation.

The paper is organized as follows. Section 2 presents this technique and a special
class of ERKN methods. Section 3 shows the feasibility and the effectiveness of the
technique in constructing new ERKN methods. The theoretic explanation is studied
in Sections 4 and 5. Section 4 presents the rooted tree theory for the special class
of ERKN methods. In Section 5, theorems about the symplectic conditions and the
symmetric conditions for the special class of ERKN methods are presented.

2 A special class of ERKN methods and a feasible and effective
technique

In this section, we will first review the traditional RKN method and the ERKN
method solving the general systems (1). And then basing on the traditional RKN
method, we present a feasible and efficient technique to form a special class of ERKN
methods which will make the construction of ERKN methods much easily. More-
over, in Sections 4 and 5, we will prove that this kind of ERKN method shares the
same order, symplectic property and symmetric property with the underlying RKN
method.
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2.1 The RKN method and the ERKN method

The RKN method is firstly introduced by E.J. Nyström in German in 1925 to solve
the second-order differential equations of the form y ′′ = f (t, y, y′). If the function in
the right-hand side has the form f (y, y′)−My, an s-stage traditional RKN method is
defined by the following scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + cihy′
n + h2

s∑
j=1

ᾱij

(
f (Yj , Y

′
j ) − MYj

)
, i = 1, . . . , s,

Y ′
i = y′

n + h

s∑
j=1

αij

(
f (Yj , Y

′
j ) − MYj

)
, i = 1, . . . , s,

yn+1 = yn + hy′
n + h2

s∑
i=1

β̄i

(
f (Yi, Y

′
i ) − MYi

)
,

y′
n+1 = y′

n + h

s∑
i=1

βi

(
f (Yi, Y

′
i ) − MYi

)
,

(5)

with the Butcher tableau given in Table 1.
It is obviously that the RKN method (5) does not make full use of the special

structure generated by the linear term My. If we make full use of the special structure
and construct methods basing on the matrix-variation-of-constants formulas (6) and
(7),

q(t + μh) = φ0(μ
2V )q(t) + μhφ1(μ

2V )q ′(t)

+h2

μ∫
0

(μ − z)φ1((μ − z)2V )f (q(t + hz), q ′(t + hz))dz, (6)

q ′(t + μh) = φ0(μ
2V )q ′(t) − hμMφ1(μ

2V )q(t)

+h

μ∫
0

φ0((μ − z)2V )f (q(t + hz), q ′(t + hz))dz, (7)

Table 1 The Butcher tableau of
the RKN method (5)
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where φi(V ) =
+∞∑
p=0

(−1)p

(2p+i)!V
p with i = 0, 1, we can get the ERKN method. The

ERKN method is specially defined for the systems (1). The one-dimensional ERKN
method is defined in 2009 [10] firstly and then be generalized to the multidimensional
ERKN method in 2010 [14].

Definition 1 An s-stage ERKN method solving the ODEs (1) is defined by the
following scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i V )q0 + ciφ1(c

2
i V )hq ′

0 + h2
s∑

j=1

āij (V )f (Qj ,Q
′
j ), i = 1, . . . , s,

hQ′
i = −ciV φ1(c

2
i V )q0 + ciφ0(c

2
i V )hq ′

0 + h2
s∑

j=1

aij (V )f (Qj ,Q
′
j ), i = 1, . . . , s,

q1 = φ0(V )q0 + φ1(V )hq ′
0 + h2

s∑
i=1

b̄i (V )f (Qi,Q
′
i ),

hq ′
1 = −V φ1(V )q0 + φ0(V )hq ′

0 + h2
s∑

i=1

bi(V )f (Qi,Q
′
i ),

(8)

where the coefficients ci for i = 1, . . . , s are constant, the coefficients āij (V ),
aij (V ), b̄i (V ) and bi(V ) for i, j = 1, . . . , s are functions of V and V = h2M .

The ERKN method (8) solving the systems (1) can be expressed in the Butcher’s
tableau as given in Table 2.

The excellent numerical behaviors of the ERKN method comparing to the RKN
method are guaranteed since the special structure of the systems be preserved by the
ERKN method. But by now, in order to construct ERKN method with special order
or special properties, people have to do almost the same work with that occurs in the
construction of the traditional RKN method.

Table 2 The Butcher tableaus of the ERKN method (8) for the general systems (1)
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2.2 A technique and a special class of ERKN methods

In the construction of new ERKN methods, two steps can finish the construction
in a few seconds or a few minutes. At first, we choose the coefficient functions(
ci, āij (V ), aij (V ), b̄i(V ), bi(V )

)
in the ERKN method (8) as

āij (V ) = γ̄ij φ1((ci − cj )
2V ), aij (V ) = γijφ0((ci − cj )

2V ),

b̄i(V ) = η̄iφ1((1 − ci)
2V ), bi(V ) = ηiφ0((1 − ci)

2V ), (9)

namely, we approximate the integrals in (6) and (7) by the interpolation quadrature
formulas. And then we can set these constant coefficients

(
ci, γ̄ij , γij , η̄i , ηi

)
in (9)

as
(
ci, ᾱij , αij , β̄i , βi

)
for i, j = 1, . . . , s which are coefficients in the traditional

RKN method (5). Thus, we obtain the ERKN method we are interested in.

Definition 2 An s-stage special class of ERKN methods solving the ODEs (1) is
defined by the following scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i V )q0 + ciφ1(c

2
i V )hq ′

0 + h2
s∑

j=1

ᾱij φ1((ci − cj )
2V )f (Qj ,Q

′
j ), i = 1, . . . , s,

hQ′
i = −ciV φ1(c

2
i V )q0 + ciφ0(c

2
i V )hq ′

0 + h2
s∑

j=1

αij φ0((ci − cj )
2V )f (Qj ,Q

′
j ), i = 1, . . . , s,

q1 = φ0(V )q0 + φ1(V )hq ′
0 + h2

s∑
i=1

β̄φ1((1 − ci )
2V )f (Qi,Q

′
i ),

hq ′
1 = −V φ1(V )q0 + φ0(V )hq ′

0 + h2
s∑

i=1

βiφ0((1 − ci )
2V )f (Qi,Q

′
i ),

(10)

where V = h2M and the coefficients ci , ᾱij , αij , β̄i and βi for i, j = 1, . . . , s are
constant.

It should be pointed out that the special class of ERKN methods (10) and the
traditional RKN method (5) share the same coefficients. In the case of the special
systems (2), the second equations in (10) and (5) are no longer needed, and then the
Butcher tableaus of these two methods are given in Table 3.

Moreover, it will be proved that the ERKN method obtained from this approach
has the same order, same symplectic property, and same symmetric property, as the
underlying RKN method.

3 Construction of new ERKN methods

Tables 4, 5, 6, 7, 8 and 9 are examples of the constructing of the ERKN methods
from the traditional RKN methods. It can be seen easily that it spends a few seconds
or a few minutes to construct all these new ERKN methods. Actually these ERKN
methods in this section have been studied in papers [5, 10, 16, 34]. While in these
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Table 3 The Butcher tableaus of the RKN method (left) and the corresponding special class of ERKN
methods (right) solving the systems (2)

papers without exception the authors have to firstly give the practical order condi-
tions and then consider some reasonable assumptions to get the coefficient functions
finally, namely in these papers almost the same operation steps with that in the
construction of the classical RKN methods [39, 40] have to do done.

These ERKN methods all show the better numerical behaviors in comparing
with the traditional RKN methods and with some other famous methods. The last
three ERKN methods follow from the famous three symplectic and symmetric RKN
methods.

These ERKN methods are all explicit. Actually from the technique in this paper
any ERKNmethod (explicit or implicit, low order or high order) can be obtained. For
higher order RKN methods, we refer to Hairer & Wanner [41–43], to Albrecht [44],
to Battin [45], to Beentjes & Gerritsen [46] and to Hairer [41, 47]. For symplecitc
or symmetric RKN methods, we refer to Qin Meng-Zhao & Zhu Wen-jie [48], to
Okunbor & Skeel [4, 49–51] and to Calvo & Sanz-Serna [4, 52, 53].

The rooted tree theory in the next section ensures the ERKN method (10) have
the same order with the underlying RKN methods respectively. And the theo-
rems in Section 5 ensure that if the underlying RKN method is symplectic (or/and
symmetric), the ERKN method obtained from this technique is symplectic (or/and
symmetric) too.

4 Rooted tree theory

In this section, we will give the rooted tree theory to guarantee the statement that
the ERKN method (10) and the corresponding RKN method have the same order.
At first, we will review the rooted tree theory for the ERKN integrators (8) [11, 16].

Table 4 A two-stage second-order RKN method (left) and the corresponding ERKN method (right)
solving the systems (1)



768 Numer Algor (2017) 76:761–782

Table 5 A three-stage third-order RKN method (left) and the corresponding ERKN method (right)
solving the systems (1)

And then we present the simplified order conditions for the special class of ERKN
methods (10). We will find that the rooted tree theory for the ERKN method (10)
can actually be derived from the traditional bi-colored rooted tree sets which are
originally presented for the RKN method.

Theorem 1 ([16]) An s-stage ERKN method (8) solving the systems (1) is of order r

if and only if the following conditions are satisfied, for any ∀τ ∈ IEN-T
s∑

i=1
b̄i (V )�i(τ ) = ρ(τ)!

S(τ)γ (τ )
φρ(τ)+1(V ) + O(hr−ρ(τ)), ρ(τ ) ≤ r − 1, (11)

s∑
i=1

bi(V )�i(τ ) = ρ(τ)!
S(τ)γ (τ )

φρ(τ)(V ) + O(hr−ρ(τ)+1), ρ(τ ) ≤ r, (12)

where the mappings ρ(τ), �i(τ), S(τ) and γ (τ) are defined on the IEN-T set.

If we consider the ERKNmethod (8) solving the special systems (2), we can obtain
the order conditions theorem which is first introduced in paper [11]. In this special
case the order conditions are based on the SSEN-T set.

Table 6 A three-stage third-order RKN method (above) and the corresponding ERKN method (below)
solving the systems (1)
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Table 7 A two-stage second-order symplectic and symmetric RKN method (left) and the corresponding
ERKN method (right) solving the special systems (2)

Theorem 2 ([11]) An s-stage ERKN method (8) solving the systems (2) is of order r

if and only if the following conditions are satisfied, for any ∀τ ∈ SSEN-T

s∑
i=1

b̄i (V )�i(τ ) = ρ(τ)!
S(τ)γ (τ )

φρ(τ)+1(V ) + O(hr−ρ(τ)), ρ(τ ) ≤ r − 1, (13)

s∑
i=1

bi(V )�i(τ ) = ρ(τ)!
S(τ)γ (τ )

φρ(τ)(V ) + O(hr−ρ(τ)+1), ρ(τ ) ≤ r, (14)

where the mappings ρ(τ), �i(τ), S(τ) and γ (τ) are defined on the SSEN-T set.

It should be pointed out that in the study of order conditions for the ERKN
methods (8) [11, 16], if all coefficients are independent, one tree corresponds to one
order condition and there is no redundant at all. But for the special class of ERKN
methods (10), these theories are not satisfied enough since the coefficient functions
are actually dependent and then there will be redundant order conditions. In the fol-
lowing we will present new order condition theories which make all redundant order
conditions disappear. The following two Lemmas will be very important in bringing
in these new order conditions.

Lemma 1 For a given non-negative number m1 and a given number k, assume that

s∑
i=1

Aic
m
i = (B + m − 1)!k!

(B + m + k)! , ∀ 0 < m ≤ m1,

Table 8 Another two-stage second-order symplectic and symmetric RKN method (left) and the corre-
sponding ERKN method (right) solving the special systems (2)
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Table 9 A three-stage fourth-order symplectic and symmetric RKN method [3, 51] where c1 = 1
6 (2 +

3
√
2 + 1

3√2
) (above) and the corresponding ERKN method (below) solving the special systems (2)

where B is a non-negative number. Then, we have

s∑
i=1

Aic
q
i (1 − ci)

2p = (B + q − 1)!(2p + k)!
(B + q + 2p + k)! , ∀ q ≥ 0; ∀ 2p + q ≤ m1.

Proof Using the mathematical induction, we can have that for any q, if 2p +q < m1

∑
i Aic

q
i (1 − ci )

2p = ∑
i Aic

q
i (1 − ci )

2p−2 − 2
∑

i Aic
q+1
i (1 − ci )

2p−2 + ∑
i Aic

q+2
i (1 − ci )

2p−2

= (B + q − 1)!(2p − 2 + k)!
(B + q + 2p − 2 + k)! − 2

(B + q)!(2p − 2 + k)!
(B + q + 2p − 1 + k)! + (B + q + 1)!(2p − 2 + k)!

(B + q + 2p + k)!

= (B + q − 1)!(2p + k)!
(B + q + 2p + k)! .

The proof is finished.

Lemma 2 For any given k > 0,

2m∑
q=0

(−1)q(k + q − 1)!(k + 2m + 1)!
q!(2m − q)!(k − 1)!(k + q + 1)! = 2m + 1. (15)

Proof It can be completed by the mathematical induction for integral m (see the
detail in Appendix ).
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Theorem 3 An s-stage special class of ERKN integrators (10) solving the systems (2)
is of order r if and only if the following conditions are satisfied, for any ∀τ ∈ SN-T

s∑
i=1

β̄i�i(τ ) = 1

ρ(τ) + 1
· 1

γ (τ)
, ρ(τ) ≤ r − 1, (16)

s∑
i=1

βi�i(τ ) = 1

γ (τ)
, ρ(τ) ≤ r, (17)

where the mappings ρ(τ), �i(τ) and γ (τ) are defined on the classical SN-T set [3].

Proof The necessary part follows from Theorem 2, Definition of φ-functions and the
special choice of coefficient functions b̄i (V ) and bi(V ).

The sufficient part will be completed by two steps. At first, we will verify that if
the following scheme

s∑
i=1

β̄i�i(τ ) = 1

ρ(τ) + 1
· 1

S(τ)γ (τ )
, ρ(τ) ≤ r − 1, (18)

s∑
i=1

βi�i(τ ) = 1

S(τ)γ (τ )
, ρ(τ) ≤ r, (19)

is satisfied, an s-stage special class of ERKN integrators (10) is of order r . In fact, in
this case, for any p, if 2p + ρ(τ) ≤ r − 1, we have

s∑
i=1

β̄i c
2p
i �i(τ ) =

s∑
i=1

β̄i�i(τ̂ ) = 1

ρ(τ̂ ) + 1
· 1

S(τ̂ )γ (τ̂ )
= 1

(ρ(τ ) + 2p + 1)(ρ(τ ) + 2p)
· ρ(τ)

S(τ)γ (τ )
, (20)

where τ̂ is an SSEN-T which are obtained from τ by attaching 2p new branches with
a black vertex to the root of τ . And (20) follows from Definition 4.2 in [11], namely

ρ(τ̂ ) = ρ(τ) + 2p, �i(τ̂ ) = c
2p
i �i(τ ), γ (τ̂ ) = ρ(τ) + 2p

ρ(τ)
γ (τ) and S(τ̂ ) = S(τ).

Then from Lemma 1, for k = 1, we have
s∑

i=1
β̄i (1 − ci)

2p�i(τ ) = (ρ(τ) − 1)!(2p + 1)!
(ρ(τ) + 2p + 1)! · ρ(τ)

S(τ)γ (τ )
. (21)

Inserting (21) into the Taylor series of the left side of order conditions (13) in
Theorem 2

s∑
i=1

b̄i (V )�i(τ ) =
∑

2p≤r−ρ(τ)−1

(−1)p
s∑

i=1
β̄i (1 − ci)

2p�i(τ )

(2p + 1)! V p + O(hr−ρ(τ)),

we have
s∑

i=1
b̄i (V )�i(τ ) = ρ(τ)!

S(τ)γ (τ )
φρ(τ)+1(V ) + O(hr−ρ(τ)).

Similarly from (19), we can get (14). So, we complete the first step of the proof.



772 Numer Algor (2017) 76:761–782

And in the next step, we will prove that for the special ERKN integrator (10),
any tri-colored SSEN-T is redundant. With the disappear of meagre vertex, order
conditions (18) and (19) are exactly order conditions (16) and (17) respectively.

Let u be a tri-colored SSEN-T as sketched in Fig. 1 and the rooted trees t (SSEN-
Ts) are introduced with the encircled parts are assumed to be identical respectively.
Here we will verify that order conditions (18) and (19) written from tree u can be
implied by others written from some same order SSEN-Ts with less meagre vertices
than u’s. In fact, since Definition 4.2 in [11] gives �i(u) = (−1)m

2m+1�i(τ2)ᾱjk(cj −
ck)

2m�k(τ1) and �i(t) = �i(τ2)c
2m−q
j ᾱjkc

q
k �k(τ1), we have

�i(u) = (−1)m

2m + 1

2m∑
q=0

(−1)q(2m)!
q!(2m − q)!�i(t).

If order conditions for trees t are true, then the left-hand side of the order condition
(18) for tree u is

∑
β̄i�i(u) = (−1)m

2m + 1

2m∑
q=0

(−1)q(2m)!
q!(2m − q)!

1

ρ(t) + 1
· 1

S(t)γ (t)
.

Definition 4.2 in [11] also gives that ρ(u) = ρ(t), S(u) = (−1)mS(t) and (2m)!
γ (t)

=
(ρ(τ1)+q−1)!

(ρ(τ1)−1)!
(ρ(τ1)+2m+1)!
(ρ(τ1)+q+1)!

1
γ (u)

. From Lemma 2, we have

2m∑
q=0

(−1)q (2m)!
q!(2m − q)!

1

γ (t)
=

2m∑
q=0

(−1)q

q!(2m − q)!
(ρ(τ1) + q − 1)!

(ρ(τ1) − 1)!
(ρ(τ1) + 2m + 1)!
(ρ(τ1) + q + 1)!

1

γ (u)
= (2m + 1)

1

γ (u)
,

Fig. 1 Trees in Theorem 3
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And then

∑
β̄i�i(u) = 1

ρ(u) + 1

1

S(u)γ (u)
.

Thus, by now, an SSEN-T with meagre vertices can be implied by some same order
SSEN-Ts which all have less meagre vertices. Using the result repeatedly, the meagre
vertices disappear, and any tri-colored rooted tree can by implied by bi-colored rooted
trees. We then get the result. The proof is complete.

If we consider the special class of ERKN integrators (10) solving the general
systems (1), we can obtain the following theorem.

Theorem 4 An s-stage special class of ERKN integrators (10) solving the general
systems (1) is of order r if and only if the following conditions are satisfied, for any
∀τ ∈ N-T

s∑
i=1

β̄i�i(τ ) = 1

ρ(τ) + 1
· 1

γ (τ)
, ρ(τ) ≤ r − 1, (22)

s∑
i=1

βi�i(τ ) = 1

γ (τ)
, ρ(τ) ≤ r, (23)

where the mappings ρ(τ), �i(τ) and γ (τ) are defined on the classical N-T set [3].

Proof From Theorem 3, we just need to prove that any tri-colored IEN-T as sketched
in Fig. 2, denoted by u, is redundant.

Fig. 2 Trees in Theorem 4
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Let some rooted trees t sketched in Fig. 2 are introduced with the encircled parts
are assumed to be identical respectively. And then we can complete the proof if the
following result are verified

�i(u) = (−1)m

2m + 1

2m∑
q=0

(−1)q(2m)!
q!(2m − q)!�i(t).

In fact, from Definition 4.2 in [16] �i(u) = (−1)m

2m+1�i(τ2)αjk(cj − ck)
2m�k(τ1)

and �i(t) = �i(τ2)c
2m−q
j αjkc

q
k �k(τ1), we can obtain the result. So the proof is

complete.

Theorems mentioned in this section tell us that the ERKNmethod (10) and the cor-
responding RKN method share the same order conditions which can be derived from
the same rooted tree set solving the systems (1) (or (2)). And then these theorems
ensure that the construction of the r-th order ERKN method (10) can be obtained
much easily. Moreover, no more information and knowledge is needed except the
classical ones.

5 Properties of the ERKN method

Symmetric methods and symplectic methods play a central role in the structuring-
preserving integration of differential equations. In this section, we will show that the
ERKN method (10) and the underlying RKN method have the same properties, such
as symplectic and symmetric.

5.1 The symplectic conditions

In the study of the symplectic conditions for numerical integrators for Hamiltonian
systems, the systems must be written as (2) with the matrix M is symmetric. The
theory for symplectic methods can be traced back to 1988 and 1989. Pioneering work
on symplectic integration is due to de Vogelaere (1956), Ruth (1983), and Feng Kang
(1985). Books on the now well-developed subject are Sanz-Serna & Calvo (1994)
and Leimkuhler & Reich (2004). Readers are referred to [32, 33, 35, 39, 52–57] et al.

Definition 3 A numerical one-step method q1 = �h(q0) is called symplectic if the
Jacobian matrix �′

h satisfies

�′T
h J�′

h = J

with J =
(

0 I

−I 0

)
where I is the identity matrix.

For standard ERKNmethod, X.Wu, B.Wang & J. Xia in paper [20] have presented
the symplectic conditions as follows.
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Theorem 5 ([20]) Consider the system (2) where M is a symmetric matrix. Then, the
s-stage ERKN integrator (8) is symplectic if its coefficients satisfy

bi(V )φ0(V ) + V b̄i(V )φ1(V ) = diφ0(c
2
i V ), i = 1, 2, . . . , s, (24)

bi(V )φ1(V ) − b̄i (V )φ0(V ) = cidiφ1(c
2
i V ), i = 1, 2, . . . , s, (25)

b̄j (V )bi(V ) + dj āji(V ) = b̄i (V )bj (V ) + di āij (V ), i, j = 1, 2, . . . , s, (26)

where di ∈ R.

If the ERKN method have special structure, these symplectic conditions can be
simplified. Before this, we will give the following properties of the unconditionally
convergent matrix-valued functions φi(V ).

Lemma 3 The matrix-valued functions φ0(V ) and φ1(V ) satisfy

cjφ1(c
2
jV )φ0(c

2
i V ) − ciφ0(c

2
jV )φ1(c

2
i V ) = (cj − ci)φ1((cj − ci)

2V ), (27)

φ0(c
2
jV )φ0(c

2
i V ) + cj ciV φ1(c

2
jV )φ1(c

2
i V ) = φ0((cj − ci)

2V ). (28)

Proof By definitions of φ-functions, we have

cjφ1(c
2
jV )φ0(c

2
i V ) − ciφ0(c

2
jV )φ1(c

2
i V ) =

∞∑
k=0

(−1)kV kc2k+1
j

(2k + 1)!
∞∑

k=0

(−1)kV kc2ki

(2k)!

−
∞∑

k=0

(−1)kV kc2k+1
i

(2k + 1)!
∞∑

k=0

(−1)kV kc2kj

(2k)! .

It follows from the Cauchy product (
∞∑

n=0
an)(

∞∑
n=0

bn) =
∞∑

n=0

( n∑
k=0

akbn−k

)
that

cjφ1(c
2
jV )φ0(c

2
i V ) − ciφ0(c

2
jV )φ1(c

2
i V )

=
∞∑

n=0

( n∑
k=0

(−1)kV kc2k+1
j

(2k + 1)!
(−1)n−kV n−kc2n−2k

i

(2n − 2k)!
)

−
∞∑

n=0

( n∑
k=0

(−1)n−kV n−kc2n−2k+1
i

(2n − 2k + 1)!
(−1)kV kc2kj

(2k)!
)

=
∞∑

n=0

(−1)nV n
( 2n+1∑

i=0

ci
j

i!
(−ci)

2n+1−i

(2n + 1 − i)!
)
.
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Because of
n∑

i=0

n!
i!(n−i)!a

ibn−i = (a+b)n, we have the first identity. Similarly, we can

obtain the second identity. This proof is complete.

Theorem 6 Consider the system (2) where M is a symmetric matrix. Then, the s-
stage special class of ERKN integrator (10) is symplectic if its coefficients satisfy

β̄i = βi(1 − ci), i = 1, 2, . . . , s, (29)

βi(β̄j − ᾱij ) = βj (β̄i − ᾱj i), i, j = 1, 2, . . . , s. (30)

Proof Under the conditions (29), from the (28), we have

bi(V )φ0(c
2
i V ) + V b̄i(V )φ1(V ) = βi

(
φ0((1 − ci)

2V )φ0(V ) + V (1 − ci)φ1((1 − ci)
2V )φ1(V )

)
= βiφ0(c

2
i V ),

and from the (27), we have

bi(V )φ1(V ) − b̄i (V )φ0(V ) = βi

(
φ0((1 − ci)

2V )φ1(V ) − (1 − ci)φ1((1 − ci)
2V )φ0(V )

)
= βiciφ1(c

2
i V ).

Under the conditions (29) and (30) , we have βiβj (ci − cj ) = βiᾱij − βj ᾱji , and
then from the (27), we have

b̄j (V )bi(V ) − b̄i (V )bj (V ) = β̄j φ1((1 − cj )
2V )βiφ0((1 − ci)

2V )

−β̄iφ1((1 − ci)
2V )βjφ0((1 − cj )

2V )

= βiβj

(
(1 − cj )φ1((1 − cj )

2V )φ0((1 − ci)
2V )

−(1 − ci)φ1((1 − ci)
2V )φ0((1 − cj )

2V )
)

= βiβj (ci − cj )φ1((ci − cj )
2V )

= βiᾱij φ1((ci − cj )
2V ) − βj ᾱjiφ1((ci − cj )

2V )

= βiāij (V ) − βj āji(V ).

So, from Theorem 5, we complete the proof.

With the technique in this paper, symplectic ERKN methods (for example sixth-
order symplectic ERKN method [38]) can be obtained easily.
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5.2 The symmetric conditions

Numerical experiments indicate that symmetric methods applied to integrable and
near-integrable reversible systems share similar properties to symplectic methods
applied to (near-)integrable Hamiltonian systems: linear error growth, long-time
near-conservation of first integrals, existence of invariant tori. The study of sym-
metric methods has its origin in the development of extrapolation methods (Gragg
1965, Stetter 1973), because the global error admits an asymptotic expansion in
even powers of h. The notion of time-reversible methods is more common in the
Computational Physics literature (Buneman 1967).

Definition 4 A numerical one-step method q1 = �h(q0) is called symmetric or
time-reversible, if it satisfies

�h ◦ �−h = id or equivalently �h = �−1
−h.

Theorem 7 An s-stage standard ERKN integrator (8) for the systems (1) is symmetric
if its coefficients satisfy

ci = 1 − cs+1−i , i = 1, 2, . . . , s, (31)

bi(V ) = V φ1(V )b̄s+1−i (V ) + φ0(V )bs+1−i (V ), i = 1, 2, . . . , s, (32)

āij (V ) = φ0(c
2
s+1−iV )b̄j (V ) − cs+1−iφ1(c

2
s+1−iV )bj (V )

+ās+1−i,s+1−j (V ), i, j = 1, 2, . . . , s, (33)

aij (V ) = cs+1−iV φ1(c
2
s+1−iV )b̄j (V ) + φ0(c

2
s+1−iV )bj (V )

−as+1−i,s+1−j (V ), i, j = 1, 2, . . . , s. (34)

Proof Exchanging
(
q1, q

′
1

)
↔

(
q0, q

′
0

)
and h ↔ −h in (8) gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q∗
i = φ0(c

2
i V )q1 − ciφ1(c

2
i V )hq ′

1 + h2
s∑

j=1

āij (V )f (Q∗
j , Q

′∗
j ),

Q′∗
i = cihMφ1(c

2
i V )q1 + φ0(c

2
i V )q ′

1 − h

s∑
j=1

aij (V )f (Q∗
j , Q

′∗
j ),

q0 = φ0(V )q1 − φ1(V )hq ′
1 + h2

s∑
i=1

b̄i (V )f (Q∗
i , Q

′∗
i ),

q ′
0 = hMφ1(V )q1 + φ0(V )q ′

1 − h

s∑
i=1

bi(V )f (Q∗
i , Q

′∗
i ).

(35)
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From the last two equation in (35) and Lemma 3, we obtain

q1 = φ0(V )q0 + φ1(V )hq ′
0 + h2

s∑
i=1

(
φ1(V )bi(V ) − φ0(V )b̄i (V )

)
f (Q∗

i ,Q
′∗
i ),

q ′
1 = −hMφ1(V )q0 + φ0(V )q ′

0 + h

s∑
i=1

(
V φ1(V )b̄i (V ) + φ0(V )bi(V )

)
f (Q∗

i ,Q
′∗
i ).

(36)

Inserting (36) into the first two equations in (35), and from Lemma 3, we obtain

Q∗
i = φ0((1 − ci)

2V )q0 + h(1 − ci)φ1((1 − ci)
2V )hq ′

0

+ h2
s∑

j=1

(
φ0(c

2
i V )

(
φ1(V )bj (V ) − φ0(V )b̄j (V )

)

− ciφ1(c
2
i V )

(
V φ1(V )b̄j (V ) + φ0(V )bj (V )

) + āij (V )
)
f (Q∗

j , Q
′∗
j ),

Q′∗
i = −(1 − ci)hMφ1((1 − ci)

2V )q0 + φ0((1 − ci)
2V )q ′

0

+ h

s∑
j=1

(
ciV φ1(c

2
i V )

(
φ1(V )bj (V ) − φ0(V )b̄j (V )

)

+ φ0(c
2
i V )

(
V φ1(V )b̄j (V ) + φ0(V )bj (V )

) − aij (V )
)
f (Q∗

j , Q
′∗
j ).

(37)
Replacing all indices i and j in (36) and (37) by s +1− i and s +1− j , respectively,
we can see that the symmetric conditions for standard ERKN integrator (8) for the
systems (1) are (31) – (34) and

b̄i (V ) = φ1(V )bs+1−i (V ) − φ0(V )b̄s+1−i (V ). (38)

And since (38) is implied by (32), we complete the proof.

Theorem 8 ([5]) An s-stage standard ERKN integrator (8) for the systems (2) is
symmetric if its coefficients satisfy the conditions (31) – (33).

For the special class of ERKN method (10) in this paper, we have following
simplified symmetric conditions.

Theorem 9 An s-stage special class of ERKN integrator (10) for the systems (1) is
symmetric if its coefficients satisfy

ci = 1 − cs+1−i , i = 1, 2, . . . , s, (39)

β̄i = βi(1 − ci), i = 1, 2, . . . , s, (40)

βi = βs+1−i , i = 1, 2, . . . , s, (41)

ᾱij = βj (ci − cj ) + ᾱs+1−i,s+1−j , i, j = 1, 2, . . . , s, (42)

αij = βj − αs+1−i,s+1−j , i, j = 1, 2, . . . , s (43)
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Proof Under the conditions (39) – (41), we have

V φ1(V )b̄s+1−i (V ) + φ0(V )bs+1−i (V ) = V φ1(V )β̄s+1−iφ1(c
2
i V ) + φ0(V )βs+1−iφ0(c

2
i V )

= βi

(
ciV φ1(V )φ1(c

2
i V ) + φ0(V )φ0(c

2
i V )

)
,

and then from the (28), we can obtain the conditions (32). Under the conditions (39)
– (40) , we have

φ0(c
2
s+1−iV )b̄j (V ) − cs+1−iφ1(c

2
s+1−iV )bj (V ) + ās+1−i,s+1−j (V )

= φ0((1 − ci)
2V )β̄jφ1((1 − cj )

2V ) − (1 − ci)φ1((1 − ci)
2V )βjφ0((1 − cj )

2V )

+ᾱs+1−i,s+1−jφ1((cj − ci)
2V )

=
(
(1 − cj )φ0((1 − ci)

2V )φ1((1 − cj )
2V )

−(1 − ci)φ1((1 − ci)
2V )φ0((1 − cj )

2V )
)
βj + ᾱs+1−i,s+1−jφ1((cj − ci)

2V ),

and then from the (27), we can get

φ0(c
2
s+1−iV )b̄j (V ) cs+1−iφ1(c

2
s+1−iV )bj (V ) + ās+1−i,s+1−j (V )

=
(
βj (ci − cj ) + ᾱs+1−i,s+1−j

)
φ1((cj − ci)

2V ),

at last, we obtain the conditions (33) from the conditions (42). Similarly, from
Lemma 3 and the conditions (43), we can obtain the conditions (34). The proof is
complete.

Theorem 10 An s-stage special class of ERKN integrator (10) for the systems (2) is
symmetric if its coefficients satisfy the conditions (39) – (42).

These symplectic and symmetric conditions in the theorems have the same form
with those for the classical RKN methods [3, 55].

6 Conclusion

In this paper, we give a feasible and effective technique to constructing ERKN meth-
ods. With this technique in numerical applications the the normal engineers can easily
obtain the ERKN method (10) with the properties what they want in a few minutes or
seconds. In fact, the ERKN method shares the same order, same symplectic property,
and same symmetric property with the underlying RKN method.

The rooted tree thleory for the special kind of ERKN method (10) are also inter-
esting. It is that for the special method the rooted tree theory is actually the classical
bi-colored special Nyström rooted tree theory.
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Appendix: The proof of Lemma 2

At first, it is trivial for m = 1, and we prove this theorem using the mathematical
induction. In fact,

2(m+1)∑
q=0

(2m + 2 − q)(2m + 1 − q)(−1)q (k + q − 1)!(k + 2(m + 1) + 1)!
q!(2(m + 1) − q)!(k − 1)!(k + q + 1)!

= (k + 2m + 3)(k + 2m + 2)
2m∑
q=0

(−1)q (k + q − 1)!(k + 2m + 1)!
q!(2m − q)!(k − 1)!(k + q + 1)! , (44)

2(m+1)∑
q=0

q(2m + 2 − q)(−1)q (k + q − 1)!(k + 2(m + 1) + 1)!
q!(2(m + 1) − q)!(k − 1)!(k + q + 1)!

= −(k + 2m + 3)k
2m+1∑
q=1

(−1)q−1((k + 1) + (q − 1) − 1)!((k + 1) + 2m + 1)!
(q − 1)!(2m − (q − 1))!((k + 1) − 1)!((k + 1) + (q − 1) + 1)! , (45)

2(m+1)∑
q=0

q(q − 1)(−1)q (k + q − 1)!(k + 2(m + 1) + 1)!
q!(2(m + 1) − q)!(k − 1)!(k + q + 1)!

= (k + 1)k
2m+2∑
q=2

(−1)q−1((k + 2) + (q − 2) − 1)!((k + 2) + 2m + 1)!
(q − 2)!(2m − (q − 2))!((k + 2) − 1)!((k + 2) + (q − 2) + 1)! . (46)

Then, from following identity

(2m + 2 − q)(2m + 1 − q) + 2q(2m + 2 − q) + q(q − 1) = (2m + 2)(2m + 1),

the sum of (44), (45) and (46) is given as

(2m + 2)(2m + 1)
2(m+1)∑

q=0

(−1)q(k + q − 1)!(k + 2(m + 1) + 1)!
q!(2(m + 1) − q)!(k − 1)!(k + q + 1)!

=
(
(k + 2m + 3)(k + 2m + 2) − 2(k + 2m + 3)k + (k + 1)k

)
· (2m + 1)

= (2m + 3)(2m + 2)(2m + 1).

Then, we complete the proof.
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