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Abstract We study the Hermite interpolation problem on the spaces of symmetric
bivariate polynomials. We show that the multipoint Berzolari-Radon sets solve the
problem. We also give a Newton formula for the interpolation polynomial and use
it to prove a continuity property of the interpolation polynomial with respect to the
interpolation points.
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1 Introduction

Let P(R2) be the vector space of all polynomials (of real coefficients) in R
2 and

Pn(R
2) the subspace consisting of all polynomials of degree at most n. The vector

space P(R2) is endowed with the norm

‖p‖∞ = max
j+k≤d

|cjk| with p(x, y) =
∑

j+k≤d

cjkx
j yk.
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For p ∈ P(R2), we shall also denote by p the associated algebraic curve {(x, y) ∈
R
2 : p(x, y) = 0}. Let S and A be the subspaces of P(R2) that consists of all

symmetric polynomials and antisymmetric polynomials respectively,

S = {p ∈ P(R2) : p(x, y) = p(x, −y)},
A = {p ∈ P(R2) : p(x, y) = −p(x, −y)}.

Let us define Sn = S ∩ Pn(R
2) and An = A ∩ Pn(R

2). In [7], it is shown that

dimSn = �n + 3

2
��n + 2

2
� and An = ySn−1.

Also in [7], Carnicer and Godés studied the Lagrange interpolation problem for sym-
metric polynomials. They constructed a Sn-Berzolari-Radon set (BR set for short)
X in the upper half plane that solves the interpolation problem. More precisely, X

consists of dimSn distinct points distributed on lines. The authors also proposed a
Newton formula for the symmetric interpolation polynomial. In [7], it is shown that
the Lagrange interpolation problems for An and Pn(R

2) are direct consequences
from the corresponding problems for Sn.

In this paper, we consider a problem of Hermite interpolation for Sn. More pre-
cisely, the problem means to find a polynomial in Sn which matches, on a set of
distinct points in R × [0, ∞), values of a function, and its partial derivatives. When
no partial derivative appears, our problem reduces to that studied in [7]. Here, we also
deal with the case in which the number of interpolation conditions is equal to dimSn.
Roughly speaking, a univariate Hermite interpolation is the result of the collapsing
of points in a univariate Lagrange interpolation. When n real points coalesce to a sin-
gle point, the derivative up to order n − 1 will arise. Similarly, if we let some points
of a Berzolari-Radon set coalesce along the lines containing them, we will get direc-
tional derivatives with respect to the vectors that are parallel with the lines. Based
on this observation, we introduce in this paper the multipoint Berzolari-Radon sets
(MBR sets for short) whose points are not necessarily distinct. It is proved that the
MBR set solves the Hermite interpolation problem. A Newton formula for interpo-
lation polynomial is also given in this paper. Remark that our method to prove these
results is different from [7]. Indeed, Carnicer an Godés showed that the interpolation
operator corresponding to the Berzolari-Radon set is a bijective map onto the set of
symmetric polynomials Sn. They constructed a symmetric polynomial of the New-
ton form that matches the value of the interpolated function at the BR set. Here, we
prove that the interpolation operator corresponding to the MBR set is injective. Our
Newton formula for the interpolation polynomial at the MBR set is slightly different
from [7]. Our method is as follows. We first construct a precise bivariate polyno-
mial that interpolates (in a Hermite type) a function at points in the MBR set lying
on a line. We then collect interpolation conditions along with these polynomials to
obtain the formula. Moreover, the formula enables us to prove the continuity prop-
erty of Hermite interpolation at MBR sets with respect to the interpolation points. It
is worth pointing out that detemining the limit of multivariate Lagrange and Hermite
interpolants is not an easy problem (see [5, 9]). In a recent work, based on a results
of Bos and Calvi, Calvi and Phung [6] proved that the limit of Lagrange projectors at
Bos configurations on irreducible algebraic curves in C

2 are the Hermite projectors
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introduced by Bos and Calvi [3, 4]. Finally, it can be said that the BR sets are simi-
lar to the Bos configurations [2]. The paper [8] deals with Hermite systems of points
lying on lines and allowing coalescences of points and lines for Hermite problems
and is an interesting precedent of the multipoint Berzolari-Radon sets introduced in
the paper. The Hermite problem for Pd(R2) was studied in [3, 4].

The paper is organized as follows. In Section 2, we recall properties of univariate
Hermite interpolation. Section 3 is devoted to Hermite interpolation on straight lines.
In Section 4, we give a divisibility criterion for Sn which is use to prove the poised-
ness of the interpolation problem. In Section 5, we study Hermite interpolation with
Sn at the MBR sets. Finally, Section 6 contains some examples.

2 Univariate hermite interpolation

Let t1, . . . , tλ be λ distinct real numbers. Let μ1, . . . , μλ be λ positive integers and
d = μ1 + · · · + μλ. The following result is well known.

Theorem 1 Given a function f for which Dμi−1f (ti) exists for i = 1, . . . , λ. Then
there exists a unique p ∈ Pd−1(R) such that

p(j)(ti) = f (j)(ti), 1 ≤ i ≤ λ, 0 ≤ j ≤ μi − 1.

The polynomial p in Theorem 1 is denoted by H[{(t1; μ1), . . . , (tλ; μλ)}; f ] and
called the Hermite interpolation polynomial.

In studying Hermite interpolation, it is convenient to use interpolation sets in
which elements may be repeated. For example, if A = {1, 1, 3, −2, 1, −7, 1, 3, 3},
then we can write A = {(1; 4), (−2; 1), (3; 3), (−7; 1)}. More generally, any set
A = {s1, . . . , sd} ⊂ R can be identified with {(t1; μ1), . . . , (tλ; μλ)}. Here, the tis
are pairwise distinct and (ti; μi) means that ti is repeated μi-times. Hence, we can
write H[A; f ] instead of H[{(t1; μ1), . . . , (tλ; μλ)}; f ]. In the case where the sis are
pairwise distinct, the interpolation polynomial becomes the ordinary Lagrange inter-
polation polynomial. The Hermite interpolation polynomial can be written into the
Newton form in which the coefficients are the divided differences. Using the conti-
nuity property of the divided difference which follows from the Hermite-Genocchi’s
formula (see [1, Theorem 1.9]), one can prove that the univariate Hermite inter-
polation is continuous with respect to the interpolation points and the interpolated
function (see for instance [1, Theorem 1.4]).

Theorem 2 Let I ⊂ R be an interval and f ∈ Cd−1(I ). Then the map

(t1, . . . , td) ∈ I d 
→ H[{t1, . . . , td}; f ]
is continuous. Moreover, if {tki } is a sequence in I that tends to ti as k → ∞ for
i = 1, . . . , d , and fk converges to f in the standard topology of Cd−1(I ), then

lim
k→∞H[{tk1 , . . . , tkd }; fk] = H[{t1, . . . , td}; f ].
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The following result is stated in [10]. For the sake of completeness, we give the
proof.

Proposition 1 Let t1, . . . , tλ be distinct real numbers in (0, a] and μ1, . . . , μλ pos-
itive integers. Let f be a function defined on (0, a] such that there exists f (μi−1)(ti)

for i = 1, . . . , λ. Let f ∗(t) = f (
√

t) and f̂ the even extension of f , i.e., f (t) =
f̂ (t) = f̂ (−t) for 0 < t ≤ a. Then

H[{(t1;μ1), . . . , (tλ;μλ),(−t1;μ1), . . . ,(−tλ;μλ)};f̂ ](t)=H[{(t21 ;μ1), . . . ,(t
2
λ ;μλ)};f ∗](t2).

Proof Set d =μ1 +· · ·+μλ. Let us define P(t)=H[{(t21 ; μ1), . . . , (t
2
λ; μλ)}; f ∗](t)

and Q(t) = P(t2). Then, Q is an even polynomial of degree at most 2d − 2. Hence,
it suffices to check that

Q(i)(tj ) = f̂ (i)(tj ), Q(i)(−tj ) = f̂ (i)(−tj ), 1 ≤ j ≤ λ, 0 ≤ i ≤ μj − 1.

Since both Q and f̂ are even functions, we need only to prove the equalities for
derivatives at tj . Fix j ∈ {1, . . . , λ}. For i = 0, by definition, we have Q(ti) =
f ∗(t2i ) = f (ti) = f̂ (ti ). Next, we consider the case i > 0. For simplicity, we set
ϕ(t) = t2. By the Faa di Bruno formula [11], we obtain

Q(i)(tj ) = (P ◦ ϕ)(i)(tj )

=
∑ i!

k1! · · · ki !P
(k)(ϕ(tj ))

(
ϕ′(tj )
1!

)k1

· · ·
(

ϕ(i)(tj )

i!

)ki

(1)

where, in the second line, k = k1 + · · · + ki and the sum is over all values of
k1, . . . , ki ∈ N such that k1 + 2k2 + · · · + iki = i. From the interpolation condition,
we have

P (k)(ϕ(tj )) = P (k)(t2j ) = (f ∗)(k)(t2j ) = (f ∗)(k)(ϕ(tj )).

Substituting this into (1), we obtain

Q(i)(tj ) =
∑ i!

k1! · · · ki ! (f
∗)(k)(ϕ(tj ))

(
ϕ′(tj )
1!

)k1

· · ·
(

ϕ(i)(tj )

i!

)ki

= (f ∗ ◦ ϕ)(i)(tj )

= f (i)(tj ).

The proof is complete.

3 Hermite interpolation on straight lines

Let α, β ∈ R such that α2 + β2 > 0. We associate each affine polynomial r(x, y) =
αx + βy − γ with the following differential operator

Dr = −β
∂

∂x
+ α

∂

∂y
.
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Note that the derivative is the directional derivative along the direction vector of the
line r . The higher order of derivatives is defined by

D i
r =

(
−β

∂

∂x
+ α

∂

∂y

)i

=
i∑

l=0

(
i

l

)
(−β)i−lαl ∂i

∂xi−l∂yl
, i ≥ 1.

Of course, D0
r is the identity operator. From now on, we always consider two forms

of r , that is r(x, y) = x − γ or r(x, y) = αx − y − γ . Remark that

Dr =
{

∂
∂y

if r(x, y) = x − γ
∂
∂x

+ α ∂
∂y

if r(x, y) = αx − y − γ.

3.1 Construction of polynomial interpolants

Our construction is inspired from [7]. Let ν1, . . . , νd be positive integers. Let a1, . . . , ad

be d distinct points on r . Let f be a function of class Cνj −1 in a neighborhood of aj

for j = 1, . . . , d . We want to find a precise polynomial P ∈ S such that

D i
r (P )(aj ) = D i

r (f )(aj ), 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1. (2)

Like in the univariate Hermite interpolation, we also identify the set A = {b0, . . . ,bn}
of not necessarily distinct points on the straight line r with {(a1; ν1), . . . , (ad; νd)},
where the aj s are pairwise distinct and ν1, . . . , νd are positive integers with ν1 +
· · · + νd = n + 1. Sometime, we confuse A with the tuple (b0, . . . ,bn). Hence, we
use A in three different meanings throughout this paper: a set of pairs of nodes and
multiplicities, a multipoint set, and a finite sequence of nodes.

Case 1 We consider the case r(x, y) = x −γ with γ ∈ R. Let g(y) be the even exten-
sion of the function f (γ, y) for y > 0, that is

g(y) =
{

f (γ, y) if y > 0,
f (γ,−y) if y < 0.

In this case, we assume that

{aj = (γ, bj ) : j = 1, . . . , d} ⊂ r ∩ (R × (0, ∞)) and ν1 +· · ·+νd = �n

2
�+1.

(3)
We consider the Hermite interpolation scheme

B = {(b1; ν1), . . . , (bd; νd), (−b1; ν1), . . . , (−bd; νd)}.
We have

diH[B; g](bj )

dyi
= dig(bj )

dyi
, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1.

Let us define

Hr [A; f ](x, y) = H[B; g](y), A = {(a1; ν1), . . . , (ad; νd)}. (4)

By Proposition 1, we can write

Hr [A; f ](x, y) = H[{(b21; ν1), . . . , (b
2
d; νd)}; g∗](y2), g∗(y) = g(

√
y). (5)
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Lemma 1 Under the assumptions in (3), we have Hr [A; f ] ∈ Sn and

D i
r (Hr [A; f ])(aj ) = D i

r (f )(aj ), 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1. (6)

Proof The second assertion is trivial since D i
r = ∂

∂y
. It is easy see that

H[{(b21; ν1), . . . , (b
2
d; νd)}; g∗](y2)

is an even polynomial of degree at most 2�n
2 �. Hence, it belongs to Sn. From (5), we

get Hr [A; f ] ∈ Sn, and the proof is complete.

Case 2 We consider the case r(x, y) = αx − y − γ . Assume that

{aj = (aj , αaj − γ ) : j = 1, . . . , d} ⊂ r and ν1 + · · · + νd = n + 1. (7)

It is well-known that the Hermite interpolation polynomial of the function h(x) =
f (x, αx − γ ) at C = {(a1; ν1), . . . , (ad; νd)} also exists uniquely.

Lemma 2 Let the assumptions in (7) hold. Then the polynomialHr [A; f ] defined by
Hr [A; f ](x, y) = H[C; h](x), (8)

belongs to Sn and satisfies the following relations

D i
r (Hr [A; f ])(aj ) = D i

r (f )(aj ), 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1. (9)

Proof Since H[C; g] is a univariate polynomial of degree at most n in x, we have
Hr [A; f ] ∈ Sn. Note that Dr = ∂

∂x
+ α ∂

∂y
. Relation (9) follows directly from the

interpolation conditions,

D i
r (Hr [A; f ])(aj ) = diH[C; h]

dxi
(aj ) = dih

dxi
(aj ) = D i

r (f )(aj ).

3.2 Some properties of polynomial interpolants

In this subsection, we always assume that r is defined in case 1 or case 2. The
following result follows directly from the definition.

Lemma 3 a) The map f 
→ Hr [A; f ], defined on the space of sufficiently differen-
tiable functions on an open set containing A, is linear.
b) If P = Hr [A; f ], then P = Hr [A; P ].

The next result shows a kind of Leibniz’s formula .

Lemma 4 For sufficiently differentiable functions f and g, we have

Hr [A; fg] = Hr [A; fHr [A; g]] .
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Proof From (4) and (8), we see that Hr [A; f ] is identical to a univariate Hermite
interpolation polynomial. Hence, the assertions follows directly from the similar
properties of univariate Hermite interpolation. For convenience to the reader, we
prove the lemma for case 2. We keep the notations given in this case. Let us set
u(x) = g(x, αx − γ ). Then

Hr [A; fg](x, y) = H[C; hu](x), Hr [A; fHr [A; g]] (x, y) = H [C; hH[C; u]] (x).

For each 1 ≤ j ≤ d and 0 ≤ i ≤ νj −1, the Leibniz rule and interpolation conditions
imply that

(hH[C; u])(i) (aj ) =
i∑

l=0

(
i

l

)
h(i−l)(aj ) (H[C; u])(l) (aj )=

i∑

l=0

(
i

l

)
h(i−l)(aj )u

(l)(aj )

= (hu)(i)(aj ).

Hence, H[C; hu] = H [C; hH[C; u]], which proves the assertion.

Using Theorem 2, we conclude from (5) and (8) the following result.

Lemma 5 Let K be a closed segment on r ∩(R × (0, ∞)) when r(x, y) = x−γ and
on r when r(x, y) = αx − y − γ . Let f be a bivariate function such that it is of class
Cn in a neighborhood 	 of K . Then the polynomial Hr [A; f ] depends continuously
on the interpolation points A ∈ Kn+1, i.e.,

lim
‖Ak−A‖→0

Hr [Ak; f ] = Hr [A; f ], (10)

where Ak = (
bk
0, . . . ,b

k
n

)
, A = (b0, . . . ,bn) and

‖Ak − A‖ = max{‖bk
i − bi‖ : i = 0, . . . , n}.

Furthermore, if {fk} ⊂ Cn(	) converges to f in Cn(	), then

lim
‖Ak−A‖→0

Hr [Ak; fk] = Hr [A; f ]. (11)

Here ‖ · ‖ is the Euclidean norm in R2.

3.3 Interpolation spaces

Definition 1 Let A = {(a1; ν1), · · · , (ad; νd)} ⊂ r and f be a sufficiently differen-
tiable function. Let P be a bivariate polynomial. We write P ∈ Ir [A; f ] if the
following relation holds

D i
r (P )(aj ) = D i

r (f )(aj ), 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1.

From Section 3.1, we see that the set Ir [A; f ] always contains Hr [A; f ]. The
following result can be regarded as a weak Leibniz property.
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Lemma 6 Let A = {(a1; ν1), · · · , (ad; νd)} ⊂ r . Let P,Q be bivariate polynomials
such that Q(ai ) �= 0 for i = 1, . . . , d and PQ ∈ Ir [A; 0], i.e.,

D i
r (PQ)(aj ) = 0, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1.

Then P ∈ Ir [A; 0], i.e.,
D i

r (P )(aj ) = 0, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1. (12)

Proof Let us fix j ∈ {1, . . . , d}. From the definition of Dr , we see at once that

Dr (PQ)(aj ) = Q(aj )DrP (aj ) + P(aj )DrQ(aj ).

Hence, we can prove by induction that

Dk
r (PQ)(aj ) =

k∑

i=0

(
k

i

)
Dk−i

r P (aj )D
i
rQ(aj ).

The formula is called the Leibniz rule forDr . Since P(aj )Q(aj ) = 0 andQ(aj ) �= 0,
we have P(aj ) = 0. Assume (12) holds up to i < νj − 1; we will prove it for i + 1.
Observe that

0=D i+1
r (PQ)(aj ) = Q(aj )D

i+1
r (P )(aj )+

i+1∑

l=1

(
i+1

l

)
D l

r (Q)(aj )D
i+1−l
r (P )(aj )

= Q(aj )D
i+1
r (P )(aj ).

Hence, we get D i+1
r (P )(aj ) = 0, and the proof is complete.

4 A divisibility criterion

In this section, we give a divisibility criterion for symmetric polynomials.

Lemma 7 Let ν1, . . . , νd be positive integers such that ν1 + · · · + νd = n + 1. Let
a1, . . . , ad be d distinct points on the straight line r with r(x, y) = αx − y − γ . If
P ∈ Sn satisfies the relations

D i
r (P )(aj ) = 0, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1

then P is divisible by R, where R(x, y) = r(x, y)r(x, −y).

Proof The line r can be parameterized globally by ρ(x) = (x, αx − γ ), x ∈ R.
Hence, we can find d distinct real numbers a1, . . . , ad such that ai = (ai, ρ(ai)) for
i = 1, . . . , d . Using the hypothesis and the chain rule, we obtain

di

dxi
P ◦ ρ(aj ) = 0, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1. (13)

Since the polynomial P ◦ ρ is of degree less than or equal to n in one variable,
the uniqueness of univariate Hermite interpolation follows that P ◦ ρ = 0. In other



Numer Algor (2017) 76:709–725 717

words, P restricted on r is identically zero. By the Bezout’ theorem, r divides P . This
enables us to find a polynomial Q such that P(x, y) = r(x, y)Q(x, y). Replacing y

by −y and using the hypothesis P ∈ Sn, we get P(x, y) = r(x,−y)Q(x,−y). It
follows that both r(x, y) and r(x,−y) divide P(x, y). This completes the proof.

Lemma 8 Let ν1, . . . , νd be positive integers such that ν1 + · · · + νd = �n
2 � + 1. Let

a1, . . . , ad be d distinct points on r ∩ (R × (0, ∞)) with r(x, y) = x − γ . If P ∈ Sn

satisfies the relations

D i
r (P )(aj ) = 0, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1,

then P is divisible by r .

Proof We write aj = (γ, bj ), bj > 0 for j = 1, . . . , d . The hypothesis gives

di

dyi
P (γ, y)

∣∣∣
y=bj

= 0, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1. (14)

Since P(γ, −y) = P(γ, y), we get

di

dyi
P (γ, y)

∣∣∣
y=−bj

= 0, 1 ≤ j ≤ d, 0 ≤ i ≤ νj − 1. (15)

The number of interpolation conditions in (14) and (15) equals to

2(ν1 + · · · + νd) = 2�n

2
� + 2 ≥ n + 1.

The uniqueness of univariate Hermite interpolation follows that P(γ, y) = 0 for
every y ∈ R. Hence, r divides P , and the proof is complete.

5 Bivariate Hermite interpolation schemes

Let n,m be natural numbers with m ≤ n. For each l = 0, . . . , m, let

Rl(x, y) =
{

rl(x, y) = x − γl if kl = 1,
rl(x, y)rl(x, −y), rl(x, y) = αlx − y − βl if kl = 2

be a curve of degree kl ∈ {1, 2} with ∑m
l=0 kl = n + 1. We define the integers nl by

the relation

n0 = n, nl = n −
l−1∑

i=0

ki, l = 1, . . . , m. (16)

For each l = 0, . . . , m, let Al be a set of not necessarily distinct points on rl \ (R0 ∪
· · · ∪ Rl−1) such that Al ⊂ R × (0, ∞) with

#Al = �klnl

2
� + 1 = dimSnl

− dimSnl−kl
, l = 0, . . . , m.

Here R0 ∪ · · · ∪ Rl−1 is taken to be empty set when l = 0. We say that

X = A0 ∪ · · · ∪ Am

is a multipoint Berzolari-Radon set (MBR set for short) for Sn with lines r0, . . . , rm.
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Theorem 3 Let X be a MBR set for Sn with lines r0, . . . , rm. Then, for any suffi-
ciently differentiable function f defined on an open set containing X, the symmetric
interpolation problem

P ∈ Irl [Al; f ], l = 0, . . . , m, (17)

has a unique solution P ∈ Sn. Moreover,

P = P0 + · · · + Pm, (18)

where

P0 = Hr0 [A0; f ], Pl = R0 · · · Rl−1Hrl

[
Al; f − P0 − · · · − Pl−1

R0 · · · Rl−1

]
, l = 1, . . . , m.

(19)

Proof We first show that the interpolation problem has a unique solution in Sn. We
learn some ideas of Bos and Calvi [4]. Since the number of interpolation conditions
equals

∑m
l=0 #Al = dimSn, it is sufficient to prove that if P ∈ Sn satisfies the

following relation

P ∈ Irl [Al; 0], l = 0, . . . , m, (20)

then P = 0. Using Lemmas 7 and 8, we conclude from (20) for l = 0 that R0 divides
P . Hence, we can find a polynomial Q1 ∈ Sn−k0 = Sn1 such that P = R0Q1. It
follows that R0Q1 ∈ Irl [Al; 0], l = 1, . . . , m. Since R0 does not vanish on ∪m

l=1Al ,
Lemma 6 gives

Q1 ∈ Irl [Al; 0], l = 1, . . . , m. (21)

Similarly, from (21) we deduce that Q1 is divisible by R1. Hence, Q1 = R1Q2 with
Q2 ∈ Sn2 . We continue in this fashion to obtain

P = R0 · · · RmQm+1, Qm+1 ∈ S .

Since degP ≤ n and
∑m

l=0 degRl = n + 1, we conclude from the last relation that
P = 0.

Evidently, the polynomial P given in (18) belongs to Sn. It is sufficient to show
that

Hri [Ai; P ] = Hri [Ai; f ], i = 0, . . . , m.

Remark that Pl vanishes on Ri for i < l. Hence Hri [Ai; Pl] = 0 for i < l. This
enables us to write

Hri [Ai; P ] =
m∑

l=0

Hri [Ai; Pl] =
i∑

l=0

Hri [Ai; Pl]. (22)
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For i = 0, Using Lemma 3, we haveHr0 [A0; P ] = Hr0 [A0; P0] = P0 = Hr0 [A0; f ].
Now, assume that 1 ≤ i ≤ m. For simplicity, we set �i = R0 · · · Ri−1 and �i =
P0 + · · · + Pi−1. Lemma 4 gives

Hri [Ai; Pi] = Hri

[
Ai; �iHri [Ai; f − �i

�i

]
]

= Hri

[
Ai; �i

f − �i

�i

]

= Hri [Ai; f − �i]

= Hri [Ai; f ] − Hri [Ai; �i] .

Combining the last relation with (22), we finally get

Hri [Ai; P ] = Hri [Ai; Pi] + Hri [Ai; �i] = Hri [Ai; f ] ,

and the proof is complete.

Definition 2 The polynomial P in Theorem 3 is called the Hermite interpolation
polynomial of f at X. We write

P = H [{(A0, r0), . . . , (Am, rm)}; f ] .

Remark that the Newton formula for P given in Theorem 3 does depend on the ordering
of the sets Al and the lines rl .

From the Newton formula in Theorem 3, we obtain an algorithm to compute the
polynomial H [{(A0, r0), . . . , (Am, rm)}; f ]:
Step 1. Compute P0 = Hr0 [A0; f ] by using (5) and (8);
Step 2. Compute Pl = R0 · · · Rl−1Hrl

[
Al; f −P0−···−Pl−1

R0···Rl−1

]
for l = 1, . . . , m respec-

tively by using (5) and (8);
Step 3. Compute the sum H [{(A0, r0), . . . , (Am, rm)}; f ] = P0 + · · · + Pm.
The following result shows that the polynomial H [{(A0, r0), . . . , (Am, rm)}; f ]
depends continuously on the interpolation points. Here, we let the points of the Al

move on the segment on rl but the lines rl , l = 0, . . . , m, are fixed.

Theorem 4 Let Kl be a closed segment on
(
rl \ ∪l−1

i=0Ri

)
∩ (R × (0, ∞)). Then, for

any sufficiently differentiable function f defined on an open set containing ∪m
l=0Kl ,

the following mapping is continuous

K
s0
0 × · · · × Ksm

m → Sn

(A0, . . . ,Am) 
→ H [{(A0, r0), . . . , (Am, rm)}; f ] ,

where ∪m
l=0Al is regarded as a MBR set with respect to rl , l = 0, . . . , m. Here sl =

#Al = � klnl

2 � + 1.
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Proof Note that we work with tuples of points Al rather than sets of points. The
convergence of tuples is understood as in Lemma 5. Assume that Ak

l ,Al ⊂ Kl such
that limk→∞ ‖Ak

l − Al‖ = 0 for l = 0, . . . , m. We will show that

lim
k→∞ H

[
{(Ak

0, r0), . . . , (A
k
m, rm)}; f

]
= H [{(A0, r0), . . . , (Am, rm)}; f ] .

By Theorem 3, we can write

H
[
{(Ak

0, r0), . . . , (A
k
m, rm)}; f

]
= P k

0 + · · · + P k
m,

where

P k
0 = Hr0 [Ak

0; f ], P k
l = R0 · · · Rl−1Hrl

[
Ak

l ;
f − P k

0 − · · · − P k
l−1

R0 · · · Rl−1

]
, l = 1, . . . , m.

Using Lemma 5, we can easily prove by induction that

lim
k→∞ P k

0 = Hr0[A0; f ] = P0

and

lim
k→∞ P k

l = R0 · · · Rl−1Hrl

[
Al; f − P0 − · · · − Pl−1

R0 · · · Rl−1

]
= Pl, l = 1, . . . , m.

It follows that

lim
k→∞ H

[
{(Ak

0, r0), . . . , (A
k
m, rm)}; f

]
= P0 + · · · + Pm

= H [{(A0, r0), . . . , (Am, rm)}; f ] .

Remark 1 Examining the proof of Theorem 3 (resp. Theorem 4), we see that the
conclusions still hold when we take Al (resp. Kl) on rl \ ∪l−1

i=0Ri in the case where
rl(x, y) = αlx − y − γl .

Next, we study interpolation with antisymmetric polynomials. For bivariate
smooth functions f and g at a ∈ r with r(x, y) = αx +βy −γ , we recall the Leibniz
rule for Dr = −β ∂

∂x
+ α ∂

∂y
,

Dk
r (fg)(a) =

k∑

i=0

(
k

i

)
Dk−i

r (f )(a)D i
r (g)(a).

Assume that a = (b, c) ∈ r with c > 0 and f is sufficiently smooth (with respect
to Dr ) at a. Set h(x, y) = f (x,y)

y
. Then, for k ≥ 1, the Leibniz rule for Dr implies

Dk
r (f )(a) = cDk

r (h)(a) + kαDk−1
r (h)(a). Hence

Dk
r (h)(a) = 1

c
Dk

r (f )(a) − kα

c
Dk−1

r (h)(a). (23)
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Lemma 9 Let f, p be bivariate functions that are ν-times differentiable (with respect
to Dr ) at a ∈ r with a = (b, c), c > 0. Let q(x, y) = yp(x, y) and h(x, y) = f (x,y)

y
.

If
Dk

r q(a) = Dk
r f (a), k = 0, . . . , ν,

then
Dk

r p(a) = Dk
r h(a), k = 0, . . . , ν.

Proof The proof is by induction on k. The assertion is trivial for k = 0 since cp(a) =
q(a) = f (a) = ch(a). Assuming the assertion to hold for k −1 < ν, we will prove it
for k. Using Leibniz’s rule for q(x, y) = yp(x, y) and the induction hypothesis, we
obtain

Dk
r f (a) = Dk

r q(a) = cDk
r (p)(a) + kαDk−1

r (p)(a) = cDk
r (p)(a) + kαDk−1

r (h)(a).

From the last relation and (23) it follows that

Dk
r (p)(a) = 1

c
Dk

r (f )(a) − kα

c
Dk−1

r (h)(a) = Dk
r (h)(a),

which establishes the desired relation.

Lemma 9 shows that the antisymmetric Hermite interpolation problem for An+1
does reduce to the symmetric Hermite interpolation problem for Sn. Theorem 3 imme-
dately implies the following result.

Corollary 1 Let X ⊂ R × (0, ∞) be a MBR set for Sn with lines r0, . . . , rm. Then
for any sufficiently differentiable function f defined on an open set containing X, the
antisymmetric interpolation problem

P ∈ Irl [Al; f ], l = 0, . . . , m,

has a unique solution P ∈ An+1. Moreover,

P(x, y) = y (P0(x, y) + · · · + Pm(x, y)) ,

where

P0 = Hr0 [A0;h], Pl = R0 · · ·Rl−1Hrl

[
Al; h − P0 − · · · − Pl−1

R0 · · ·Rl−1

]
, l = 1, . . . , m

and h(x, y) = f (x,y)
y

.

Note that the continuity property for Hermite interpolation with antisymmetric
polynomials also holds as in Theorem 4.

Finally, we analyze the general symmetric interpolation problem that is similar to
[7, Section 3]. We reuse notations and convention given in [7]. Let us denote by T the
transformation T (x, y) = (x, −y). For each bijective affine transformation U of R2,
we set T U = U−1T U . A bivariate function f is said to be symmetric with respect to
T U if

f (T U(ξ, η)) = f (ξ, η).



722 Numer Algor (2017) 76:709–725

We write f ∈ S (T U ). Note that if f ∈ S (T U ) then f ◦ U−1 is a symmetric
function.

Let r be a straight line and a ∈ r . Let q ∈ S (T U ) and g be a suitably defined
function. Assume that the following relation holds

D i
r (q)(a) = D i

r (g)(a), i = 0, . . . , ν. (24)

Let ρ : R→R
2 be a linear parameterization of r such that ρ(0) = a. It means that

two coordinate functions of ρ are one-degree polynomials. It is not difficult to see
that there exists a non-zero constant C(r, ρ) depending only on r and ρ such that, for
any suitably defined function f ,

D i
r (f )(a) = Ci(r, ρ)(f ◦ ρ)(i)(0), i ≥ 0.

Hence, relation (24) reduces to

(q ◦ ρ)(i)(0) = (g ◦ ρ)(i)(0), i = 0, . . . , ν. (25)

Observe that ρ̃ := U ◦ ρ is a linear parameterization of the line r̃ := r ◦ U−1 and
b = U(a) = ρ̃(0) is on r̃ . For 0 ≤ i ≤ ν, we have

D i
r̃ (q ◦ U−1)(b) = Ci(r̃, ρ̃)(q ◦ U−1 ◦ ρ̃)(i)(0) = Ci(r̃, ρ̃)(q ◦ ρ)(i)(0).

Similarly

D i
r̃ (g ◦ U−1)(b) = Ci(r̃, ρ̃)(g ◦ ρ)(i)(0).

Combining the last two equations with (25), we obtain

D i
r̃ (q ◦ U−1)(b) = D i

r̃ (g ◦ U−1)(b), 0 ≤ i ≤ ν. (26)

Note that q ◦ U−1 ∈ S and relation (26) is similar to the Hermite interpolation
condition for S . Consequently, the above arguments enable us to transform a general
symmetric interpolation problem into a symmetric interpolation problem in S .

6 Some examples

In this section, we construct a MBR set of degree 3 and compute a Hermite inter-
polation polynomial. We also give an example concerning the continuity property of
interpolation polynomials.

Example 1 Let r0(x, y) = x − 1, r1(x, y) = x − 2 and r2(x, y) = x + y. Then
k0 = k1 = 1, k2 = 2 and n = 3. We also have n0 = 3, n1 = 2 and n2 = 1. By
definition, R0(x, y) = x − 1, R1(x, y) = x − 2 and R2(x, y) = x2 − y2. Let us take
A0 = {(1, 1), (1, 2)}, A1 = {(2, 1), (2, 1)} and A2 = {(−1, 1), (−1, 1)}. Note that
the two points in A1 are identical and so are in A2. The MBR set ∪2

l=0Al is illustrated
in Fig. 1. We will use Theorem 3 to find

P = H [{(A0, r0), (A1, r1), (A2, r2)}; f ] , f (x, y) = x + x2y2 + xy4.
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C

g

D

h

Fig. 1 The MBR set in Example 1

The interpolation conditions are

P(1, 1) = f (1, 1), P (1, 2) = f (1, 2), P (2, 1) = f (2, 1),
∂P (2, 1)

∂y
= ∂f (2, 1)

∂y
,

P (−1, 1) = f (−1, 1), (
∂

∂x
− ∂

∂y
)P (−1, 1) = (

∂

∂x
− ∂

∂y
)f (−1, 1).

We have P = P0 + P1 + P2, where

P0=Hr0 [A0; f ], P1=R0Hr1 [A1; f − P0

R0
], P2=R0R1Hr2 [A2; f − P0 − P1

R0R1
].

From (5), we obtain

Hr0 [A0; f ](x, y) = H[{1, 4}; f (1,
√

y)](y2) = 6y2 − 3.

We set f1(x, y) = f (x,y)−P0(x,y)
R0(x,y)

= x+x2y2+xy4−6y2+3
x−1 . Then f1(2, y) = 2y4−2y2+

5. Using relation (5) again, we get

Hr1[A1; f ](x, y) = H[{1, 1}; f1(2,
√

y)](y2) = 2y2 + 3.

We define f2 = f −P0−P1
R0R1

. Then f2(x, −x) = x5+x4−2x3−4x2−2x+6
(x−1)(x−2) . From (8) it

follows that

Hr2 [A; f2](x, y) = H[{−1, −1}; f2(−x, x)](x) = x + 2.

Combining above computations, we finally get

P(x, y) = 6y2 − 3 + (x − 1)(2y2 + 3) + (x − 1)(x − 2)(x + 2)

= x3 − x2 + 2xy2 − x + 4y2 − 2.

Example 2 Let r0(x, y) = x, r1(x, y) = x − y + 1. We have k0 = 1, k1 = 2
and n = 2. By definition, we get n0 = 2 and n1 = 1. Obviously, R0(x, y) = x,
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R1(x, y) = (x + 1)2 − y2. Let us take A0(ε) = {(0, √1 + ε), (0,
√
1 − ε)} ⊂ r0,

A1(δ) = {(δ, 1+δ), (δ, 1+δ)} ⊂ r1 \R0 with ε, δ > 0 (see Fig. 2). We first compute

P = H [{(A0(ε), r0), (A1(δ), r1)} ; f ] with f (x, y) = y4.

Note that

P(0,
√
1 + ε) = f (0,

√
1 + ε), P (0,

√
1 − ε) = f (0,

√
1 − ε), ,

P (δ, 1 + δ) = f (δ, 1 + δ), (
∂

∂x
+ ∂

∂y
)P (δ, 1 + δ) = (

∂

∂x
+ ∂

∂y
)f (δ, 1 + δ).

By Theorem 3, we can write H [{(A0(ε), r0), (A1(δ), r1)} ; f ] = P0 + P1, where

P0 = Hr0 [A0(ε); f ], P1 = R0Hr1 [A1(δ); f − P0

R0
].

From (5), we see that

Hr0[A0(ε); f ](x, y) = H[{1 − ε, 1 + ε}; f (0,
√

y)](y2) = 2y2 − 1 + ε2.

Let us set f1(x, y) = f (x,y)−P0(x,y)
R0(x,y)

. Then g(x) := f1(x, x+1) = x3+4x2+4x− ε2

x
.

From (8), it follows that

Hr1[A1(δ); f − P0

R0
](x, y) = H[{δ, δ}; g(x)](x)

= (δ3 + 4δ2 + 4δ − ε2

δ
) + (3δ2 + 8δ + 4 + ε2

δ2
)(x − δ)

= −(2δ3 + 4δ2 + 2ε2

δ
) + (3δ2 + 8δ + 4 + ε2

δ2
)x.

4 3 2 1 1 2 3 4

2

1

1

2

3

4

0

f

A

B

C

Fig. 2 The MBR set in Example 2
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Combining above computations, we finally get

H [{(A0(ε), r0), (A1(δ), r1)} ; f ] (x, y) = P0(x, y) + P1(x, y)

= 2y2 − 1 + ε2 − (2δ3 + 4δ2 + 2ε2

δ
)x

+ (3δ2 + 8δ + 4 + ε2

δ2
)x2.

We see that A0(ε) → (1, 0) as ε → 0 and A1(δ) → (1, 0) as δ → 0. If ε = √
δ then

ε2

δ2
→ ∞ as δ → 0+. Hence, there does not exist

lim
δ→0+ H

[{
(A0(

√
δ), r0), (A1(δ), r1)

}
; f

]
.

On the other hand, it is easily seen that

lim
δ→0+ H [{(A0(tδ), r0), (A1(δ), r1)} ; f ] = 2y2 + (t2 + 4)x2 − 1, t > 0.

It follows when all interpolation points tend to a unique point, the limit of the Hermite
interpolation could not exist. In some case, when the limit exists, it depends on the
speed of the coalescence. Remark that the coalescences of points as in this example
were considered in [8].
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