
Numer Algor (2017) 76:675–694
DOI 10.1007/s11075-017-0276-2

ORIGINAL PAPER

Recursive polynomial interpolation algorithm (RPIA)

Abderrahim Messaoudi1 ·Hassane Sadok2

Received: 23 November 2016 / Accepted: 26 January 2017 / Published online: 17 February 2017
© Springer Science+Business Media New York 2017

Abstract Let x0, x1, · · · , xn be a set of n+1 distinct real numbers (i.e., xi �= xj for
i �= j) and y0, y1, · · · , yn be given real numbers; we know that there exists a unique
polynomial pn(x) of degree n such that pn(xi) = yi for i = 0, 1, · · · , n; pn is
the interpolation polynomial for the set {(xi, yi), i = 0, 1, · · · , n}. The polynomial
pn(x) can be computed by using the Lagrange method or the Newton method. This
paper presents a newmethod for computing interpolation polynomials.We will reformu-
late the interpolation polynomial problem and give a new algorithm for giving the solu-
tion of this problem, the recursive polynomial interpolation algorithm (RPIA). Some
properties of this algorithm will be studied and some examples will also be given.

Keywords Polynomial interpolation · Lagrange method · Newton method ·
Vandermonde matrix · Schur complement · Sylvester identity · Recursive
interpolation algorithm

1 Introduction

In [2], Brezinski proposed two algorithms, called the recursive interpolation algo-
rithm (RIA) and the recursive projection algorithm (RPA); some of their properties

� Abderrahim Messaoudi
abderrahim.messaoudi@gmail.com

Hassane Sadok
sadok@lmpa.univ-littoral.fr

1 Ecole Normale Supérieure, Mohammed V University in Rabat,
Av. Mohammed Belhassan El Ouazzan, B.P. 5118, Takaddoum, Rabat, Morocco

2 L.M.P.A, Université du Littoral Côte d’Opale, 50 rue F. Buisson BP 699, 62228 Calais Cedex,
France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0276-2&domain=pdf
mailto:abderrahim.messaoudi@gmail.com
mailto:sadok@lmpa.univ-littoral.fr

676 Numer Algor (2017) 76:675–694

are studied in [8]. These algorithms have been applied for implementing some vector
sequence transformations, which can be expressed as a ratio of two determinants [2,
3]. They are connected to other methods used in numerical analysis [4]. In [9, 10],
Messaoudi presents a unified approach to the majority of the existing algorithms for
solving systems of linear equations. They are embedded in a general class of algo-
rithms, the RIA where they correspond to particular choices of two parameters. The
RIA contains essentially all possible algorithms with the following property: they
can solve, in exact arithmetic, a linear system starting from an arbitrary point and
in a number of iterations no greater than the number of equations. The majority of
the direct and iterative methods proposed in the literature have this property and fall
therefore into the RIA.

This algorithm (RIA) can be applied for the polynomial interpolation problem. Let
x0, x1, · · · , xn be n + 1 distinct real numbers (i.e., xi �= xj , for i = 0, 1, · · · , n) and
y0, y1, · · · , yn be given real numbers, we know that there exists a unique polynomial
pn(x) of degree n, such that pn(xi) = yi , for i = 0, 1, · · · , n. The polynomial pn(x)

can be computed by using the Lagrange formula [1, 7, 13], it can also be computed
by using the Newton formula [1, 7, 13].

In this paper, we will reformulate the polynomial interpolation problem and give
a new algorithm, the recursive polynomial interpolation algorithm (RPIA), for giv-
ing pn(x). Some of its properties will be studied and some numerical examples
will also be given. The paper is organized as follows. In Section 2, we recall the
Schur complements [12], some of their properties [4, 5] and the Sylvester iden-
tity [11]. In Section 3, we recall the Lagrange interpolation problem, we also give
a new formulation of the polynomial interpolation problem. We show how to con-
struct the RPIA and prove some of its properties. Section 4 is concerned with some
examples.

2 Schur complement and Sylvester’s identity

First, let us recall the definition of the Schur complement [12] and give some of its
properties [4, 5].

Definition 2.1 Let M be a matrix partitioned in four blocks

M =
[

A B

C D

]
, (2.1)

where the submatrix D is assumed to be nonsingular. The Schur complement of D in
M , denoted by (M/D), is defined by

(M/D) = A − BD−1C. (2.2)

Let us now give some properties of the Schur complement. It is easy to show the
following properties.

Numer Algor (2017) 76:675–694 677

Proposition 2.1 Let us assume that the matrix D is nonsingular and M is a square
matrix, then we have

|(M/D)| = |M|
|D| , (2.3)

where |Z| denote the determinant of the square matrix Z.

Proposition 2.2 Let us assume that the matrix D is nonsingular, then we have
([

A B

C D

]
/D

)
=

([
D C

B A

]
/D

)
=

([
B A

D C

]
/D

)
=

([
C D

A B

]
/D

)
. (2.4)

Proposition 2.3 Assuming that the matrix D is nonsingular and E∗ is a given
operator such that E ∗ A is well defined, then

([
E ∗ A E ∗ B

C D

]
/D

)
= E ∗

([
A B

C D

]
/D

)
. (2.5)

Now we will give the Sylvester identity [9], which is a particular case of the
quotient property [11].

Proposition 2.4 (The Sylvester identity) Let M be the matrix defined by (2.1) and K

be the matrix partitioned as follows:

K =
⎡
⎣ E F G

H A B

L C D

⎤
⎦ .

If the matrices A and M are nonsingular, then we have

(K/M) = ((K/A)/(M/A))

=
([

E F

H A

]
/A

)
−

([
F G

A B

]
/A

)
(M/A)−1

([
H A

L C

]
/A

)
.

(2.6)

We will use the Schur complement, its properties and the Sylvester identity for
obtaining the RPIA.

3 Recursive polynomial interpolation algorithm

First we will recall the polynomial interpolation problem and give the Lagrange for-
mula and Newton formula for building the interpolation polynomials. After we will
give another formulation of the polynomial interpolation problem, we will show that
the interpolation polynomials can be expressed as Schur complements and we will
use the properties of the Schur complements and the Sylvester identity for giving the
RPIA. Some properties of the RPIA will also be studied.

678 Numer Algor (2017) 76:675–694

3.1 Polynomial interpolation

Given that n is a nonnegative integer, let Pn denote the set of all real-valued poly-
nomials of degree ≤ n, defined over the set IR of real numbers. For n ≥ 1, let
1, x, x2, · · · , xn ∈ Pn, and suppose that xi , i = 0, 1, · · · , n, are distinct real num-
bers (i.e., xi �= xj , for i �= j) and yi , i = 0, 1, · · · , n, are given real numbers. The
Lagrange interpolation problem, [1, 7, 13], is defined as follows:

Find pn(x) ∈ Pn such that

pn(xi) = yi, i = 0, 1, · · · , n. (3.1)

The Lagrange interpolation polynomial is given by

pn(x) =
n∑

i=0

yiLi(x), (3.2)

with Li(x), for i = 0, 1, · · · , n, the polynomial defined by

Li(x) =
n∏

j=0
j �=i

x − xj

xi − xj

. (3.3)

The set {(xi, yi) : i = 0, 1, · · · , n} is called the set of nodes. The polynomial pn(x) is
called the Lagrange interpolation polynomial for the set {(xi, yi) : i = 0, 1, · · · , n}.
The Lagrange interpolation polynomials are usually better, but they are not conve-
nient if a node is added or dropped from the set {(xi, yi) : i = 0, 1, · · · , n}. For
example, if (xn+1, yn+1) were added to the previous set, and we wished to compute
the Lagrange polynomial of degree n + 1 that interpolated the set {(xi, yi) : i =
0, 1, · · · , n+ 1}, then the polynomials, defined by (3.3), would all have to be recom-
puted. There is another representation of the interpolating polynomial that is very
useful in this context, this is the Newton formula [1, 7, 13], which we now describe.

The Newton formula, for computing the interpolation polynomial pn(x) is given
by

pn(x) = y0 +
n∑

i=1

[x0, x1, · · · , xi]Ni(x),

where Ni(x) are the Newton polynomials defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N0(x) = 1, and for i = 1, · · · , n,

Ni(x) =
i−1∏
j=0

(x − xj),

(3.4)

and [x0, x1, · · · , xi] are the divided differences of x0, x1, · · · , xi , which they are
defined by the following formula⎧⎪⎨
⎪⎩

[xi] = yi, i = 0, 1, · · · , n

[x0, x1, · · · , xi] = [x1, x2, · · · , xi] − [x0, x1, · · · , xi−1]
xi − x0

, i = 1, 2, · · · , n.

Numer Algor (2017) 76:675–694 679

The polynomial interpolation problem can also be solved by using the Vander-
monde system. Let

pn(x) = a0 + a1x + a2x
2 + · · · + anx

n =
n∑

i=0

aix
i, (3.5)

then the relation (3.1) can be written in the matrix-vector form as follows
⎡
⎢⎢⎢⎣
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

...
...

1 xn x2
n · · · xn

n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a0
a1
...

an

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y0
y1
...

yn

⎤
⎥⎥⎥⎦ . (3.6)

The coefficient matrix of (3.6), which we denote by Vn, is called Vandermonde matrix
and is nonsingular if and only if the points xi , for i = 0, 1, · · · , n, are distinct.

Remark 3.1 The real numbers yi , i = 0, 1, · · · , n, can be given as the values of a
real-valued function f , defined on a closed real interval [a, b], at the distinct inter-
polation points xi ∈ [a, b], i = 0, 1, · · · , n, then pn(x), defined by (3.1) is the
interpolation polynomial of degree n for the function f .

3.2 Formulation of the RPIA

Now we give another formulation of the polynomial interpolation problem. As for
the polynomial interpolation problem, we assume that x0, x1, · · · , xn are given dis-
tinct real numbers and y0, y1, · · · , yn are given real numbers. Then the polynomial
interpolation problem can be defined as follows:

Let qi(x), for i = 0, 1, · · · , n, be polynomials of Pn of degree i, we assume that
q0(x) = 1. Let ci , for i = 0, 1, · · · , n, be the functional defined by ci(g(x)) = g(xi)

for any given function g, which is usually called the Dirac functional and represented
by δxi

. Find the polynomial pn(x) ∈ Pn, of degree n, such that

pn(x) =
n∑

i=0

αiqi(x), (3.7)

and for j = 0, 1, · · · , n

cj (pn(x)) = pn(xj) = yj . (3.8)

We will show how to solve this problem. The relation (3.8) can be written
explicitly as follows

⎡
⎢⎢⎢⎣

q0(x0) q1(x0) · · · qn(x0)

q0(x1) q1(x1) · · · qn(x1)
...

...
...

...

q0(xn) q1(xn) · · · qn(xn)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α0
α1
...

αn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y0
y1
...

yn

⎤
⎥⎥⎥⎦ . (3.9)

680 Numer Algor (2017) 76:675–694

Denoting by Dn = [qj (xi)]0≤i,j≤n the matrix of linear system (3.9) and assum-
ing that this matrix is nonsingular, then pn(x) exists and is unique. We get from
(3.7)

pn(x) = [
q0(x) q1(x) · · · qn(x)

]
D−1

n

⎡
⎢⎢⎢⎣

y0
y1
...

yn

⎤
⎥⎥⎥⎦ . (3.10)

We see that pn(x) can be expressed as a Schur complement (2.2)

pn(x) = −

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 q0(x) q1(x) · · · qn(x)

y0 q0(x0) q1(x0) · · · qn(x0)
...

...
...

...
...

yn q0(xn) q1(xn) · · · qn(xn)

⎤
⎥⎥⎥⎦ /Dn

⎞
⎟⎟⎟⎠ . (3.11)

For computing pn(x) recursively we need the following.

Definition 3.1 Dn is said to be strongly nonsingular matrix if |Dm| �= 0, for m =
0, · · · , n.

Now we will show that Dn is a strongly nonsingular matrix.

Lemma 3.1 For m = 1, · · · , n, we have

|Dm| = βm

∏
0≤i<j≤m

(xj − xi), (3.12)

where βm =
m∏

i=1

ai and ai is the coefficient of xi in qi(x). Dn is a strongly

nonsingular matrix.

Proof We will show this result by induction. For m = 1, we have q0(x) = 1 and
q1(x) is a polynomial of degree 1, then

|D1| =
∣∣∣∣ 1 q1(x0)

1 q1(x1)

∣∣∣∣ = q1(x1) − q1(x0) = a1(x1 − x0) = β1(x1 − x0),

then the property is true for m = 1. Assume that it is true for 1 < m < n, i.e.

|Dm| = βm

∏
0≤i<j≤m

(xj − xi), βm =
m∏

i=1

ai.

Numer Algor (2017) 76:675–694 681

For m + 1 we consider the following polynomial p(x0, x1, · · · , xm, x) defined by

p(x0, x1, · · · , xm, x) =

∣∣∣∣∣∣∣∣∣∣∣

1 q1(x0) · · · qm(x0) qm+1(x0)

1 q1(x1) · · · qm(x1) qm+1(x1)
...

...
...

...
...

1 q1(xm) · · · qm(xm) qm+1(xm)

1 q1(x) · · · qm(x) qm+1(x)

∣∣∣∣∣∣∣∣∣∣∣
,

we see that p(x0, x1, · · · , xm, x) is a polynomial of degree m+1 and x0, x1, · · · , xm

are the zeros of this polynomial. Then p(x0, x1, · · · , xm, x) can be written as follows

p(x0, x1, · · · , xm, x) = μ

m∏
i=0

(x − xi),

where μ is the coefficient of xm+1 in p(x0, x1, · · · , xm, x). μ is given by

μ = am+1

∣∣∣∣∣∣∣∣∣

1 q1(x0) · · · qm(x0)

1 q1(x1) · · · qm(x1)
...

...
...

...

1 q1(xm) · · · qm(xm)

∣∣∣∣∣∣∣∣∣
= am+1|Dm| = am+1βm

∏
0≤i<j≤m

(xj − xi).

So if we choose x = xm+1 in p(x0, x1, · · · , xm, x), we get

p(x0, x1, · · · , xm, xm+1) = |Dm+1| = βm+1

∏
0≤i<j≤m+1

(xj − xi).

We see that Dm is a nonsingular matrix if and only if x0, x1, · · · , xm are distinct.

We set for m = 0, · · · , n

pm(x) = −

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 q0(x) q1(x) · · · qm(x)

y0 q0(x0) q1(x0) · · · qm(x0)
...

...
...

...
...

ym q0(xm) q1(xm) · · · qm(xm)

⎤
⎥⎥⎥⎦ /Dm

⎞
⎟⎟⎟⎠ , (3.13)

and for m = 0, · · · , n − 1 and for i > m, we define the following auxiliary
polynomials by

gm,i(x) =

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

qi(x) q0(x) q1(x) · · · qm(x)

qi(x0) q0(x0) q1(x0) · · · qm(x0)
...

...
...

...
...

qi(xm) q0(xm) q1(xm) · · · qm(xm)

⎤
⎥⎥⎥⎦ /Dm

⎞
⎟⎟⎟⎠ , (3.14)

with g−1,i (x) = qi(x).

682 Numer Algor (2017) 76:675–694

For computing recursively pm(x) we need the following results.

Lemma 3.2 For m = 1, · · · , n, we have

(Dm/Dm−1) = cm(gm−1,m(x)) = gm−1,m(xm) = |Dm|
|Dm−1| , (3.15)

with D0 = c0(q0(x)) = 1.

Proof As the Schur complement (Dm/Dm−1) is a scalar and using the relation (2.3)
we get

(Dm/Dm−1) = |(Dm/Dm−1)| = |Dm|
|Dm−1| .

Using relations (2.4), (2.5), and (3.14), we have

(Dm/Dm−1) =

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

q0(x0) · · · qm−1(x0) qm(x0)
...

...
...

...

q0(xm−1) · · · qm−1(xm−1) qm(xm−1)

q0(xm) · · · qm−1(xm) qm(xm)

⎤
⎥⎥⎥⎦ /Dm−1

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

qm(xm) q0(xm) · · · qm−1(xm)

qm(x0) q0(x0) · · · qm−1(x0)
...

...
...

...

qm(xm−1) q0(xm−1) · · · qm−1(xm−1)

⎤
⎥⎥⎥⎦ /Dm−1

⎞
⎟⎟⎟⎠

= cm

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

qm(x) q0(x) · · · qm−1(x)

qm(x0) q0(x0) · · · qm−1(x0)
...

...
...

...

qm(xm−1) q0(xm−1) · · · qm−1(xm−1)

⎤
⎥⎥⎥⎦ /Dm−1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

= cm(gm−1,m(x)) = gm−1,m(xm).

Proposition 3.1 For m = 0, · · · , n we have

pm(x) = pm−1(x) + ym − pm−1(xm)

gm−1,m(xm)
gm−1,m(x), (3.16)

with p−1(x) = 0 and gm−1,m(x) is the polynomial defined by (3.14).

Numer Algor (2017) 76:675–694 683

Proof Applying the Sylvester identity to pm(x), we obtain

pm(x) = −

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

0 q0(x) · · · qm−1(x) qm(x)

y0 q0(x0) · · · qm−1(x0) qm(x0)
...

...
...

...
...

ym−1 q0(xm−1) · · · qm−1(xm−1) qm(xm−1)

ym q0(xm) · · · qm−1(xm) qm(xm)

⎤
⎥⎥⎥⎥⎥⎦

/Dm

⎞
⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 q0(x) · · · qm−1(x)

y0 q0(x0) · · · qm−1(x0)
...

...
...

...

ym−1 q0(xm−1) · · · qm−1(xm−1)

⎤
⎥⎥⎥⎦ /Dm−1

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

q0(x) · · · qm−1(x) qm(x)

q0(x0) · · · qm−1(x0) qm(x0)
...

...
...

...

q0(xm−1) · · · qm−1(xm−1) qm(xm−1)

⎤
⎥⎥⎥⎦ /Dm−1

⎞
⎟⎟⎟⎠×(Dm/Dm−1)

−1

×

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

y0 q0(x0) · · · qm−1(x0)
...

...
...

...

ym−1 q0(xm−1) · · · qm−1(xm−1)

ym q0(xm) · · · qm−1(xm)

⎤
⎥⎥⎥⎦ /Dm−1

⎞
⎟⎟⎟⎠ .

Then using the relations (2.4), (2.5), (3.13), (3.14) and the relation (3.15) given by
the lemma 3.2 we get

pm(x) = pm−1(x) + ym − pm−1(xm)

gm−1,m(xm)
gm−1,m(x).

Proposition 3.2 For m = 0, · · · , n − 1, and i > m, we have

gm,i(x) = gm−1,i (x) − gm−1,i (xm)

gm−1,m(xm)
gm−1,m(x), (3.17)

with g−1,i (x) = qi(x).

684 Numer Algor (2017) 76:675–694

Proof Applying the Sylvester identity to gm,i(x), we obtain

gm,i(x) =

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

qi(x) q0(x) · · · qm−1(x) qm(x)

qi(x0) q0(x0) · · · qm−1(x0) qm(x0)
...

...
...

...
...

qi(xm−1) q0(xm−1) · · · qm−1(xm−1) qm(xm−1)

qi(xm) q0(xm) · · · qm−1(xm) qm(xm)

⎤
⎥⎥⎥⎥⎥⎦

/Dm

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

qi(x) q0(x) · · · qm−1(x)

qi(x0) q0(x0) · · · qm−1(x0)
...

...
...

...

qi(xm−1) q0(xm−1) · · · qm−1(xm−1)

⎤
⎥⎥⎥⎦/Dm−1

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

q0(x) · · · qm−1(x) qm(x)

q0(x0) · · · qm−1(x0) qm(x0)
...

...
...

...

q0(xm−1) · · · qm−1(xm−1) qm(xm−1)

⎤
⎥⎥⎥⎦/Dm−1

⎞
⎟⎟⎟⎠×(Dm/Dm−1)

−1

×

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

qi(x0) q0(x0) · · · qm−1(x0)
...

...
...

...

qi(xm−1) q0(xm−1) · · · qm−1(xm−1)

qi(xm) q0(xm) · · · qm−1(xm)

⎤
⎥⎥⎥⎦/Dm−1

⎞
⎟⎟⎟⎠ ,

Then, using the relations (2.4), (2.5) and the relation (3.15) given by the lemma 3.2
we obtain

gm,i(x) = gm−1,i (x) − gm−1,i (xm)

gm−1,m(xm)
gm−1,m(x).

So using the relation (3.17) we can compute gm−1,m(x) recursively as follows.

Algorithm 1

g−1,m(x) = qm(x);
for i = 0, ..., m − 1

gi,m(x) = gi−1,m(x) − gi−1,m(xi)

gi−1,i (xi)
gi−1,i (x);

end i.

Then applying the relation (3.16) and the algorithm 1, we get the RPIA.

Numer Algor (2017) 76:675–694 685

Algorithm 2 the RPIA

p−1(x) = 0;
for m = 0, ..., n

g−1,m(x) = qm(x);
if m > 1
for i = 0, ..., m − 1

gi,m(x) = gi−1,m(x) − gi−1,m(xi)

gi−1,i (xi)
gi−1,i (x);

end i,
end if,

pm(x) = pm−1(x) + ym − pm−1(xm)

gm−1,m(xm)
gm−1,m(x);

end m.

Remark 3.2

1. If we choose qi(x) = xi , for i = 0, 1, · · · , n, Dn will be the Vandermonde
matrix Vn, which is a strongly nonsingular matrix, so using the relations (3.11)
and (2.3), pn(x) can be expressed as a ratio of two determinants

pn(x) = −

∣∣∣∣∣∣∣∣∣

0 1 x · · · xn

y0
... Vn

yn

∣∣∣∣∣∣∣∣∣
|Vn| ,

this ratio is a element of Pn, which is obtained by expanding the numerator with
respect to its first row by using the classical rule for expanding a determinant.

2. If qi(x) = Ni(x), for i = 0, 1, · · · , n, where Ni(x) are the Newton polynomials
defined by (3.4), then Dn = [Nj(xi)]0≤i,j≤n will be a lower triangular matrix
with Ni(xi) �= 0, for i = 0, 1, · · · , n, as diagonal elements, and Dn is a strongly
nonsingular matrix, and

pn(x) = [
1 N1(x) · · · Nn(x)

]
D−1

n

⎡
⎢⎣

α0
...

αn

⎤
⎥⎦ ,

where
[
α0 α1 · · · αn

]T are given by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α0 = y0, and for i = 1, 2, · · · , n,

αi =
⎛
⎝yi −

i−1∑
j=0

Nj(xi)αj

⎞
⎠ /Ni(xi).

(3.18)

686 Numer Algor (2017) 76:675–694

3. If we assume that the polynomials qi(x), for i = 0, 1, · · · , n, are of degree n, and
if we choose qi(x) = Li(x), then the matrix Dn = [Lj (xi)]0≤i,j≤n will be the

identity matrix, and using the relation (3.10), we obtain pn(x) =
n∑

i=0

yiLi(x).

3.3 Some properties of the RPIA

We will give some properties of the RPIA. We will show that apart from a multi-
plicative constant, the polynomials {gi−1,i (x); i = 0, 1, · · · , n}, generated by the
Algorithm 1, are the Newton polynomials, Ni(x) for i = 0, 1, · · · , n, given by the
relation (3.4).

Proposition 3.3 We have

(1) The RPIA is well defined (i.e. no break-down).
(2) cm(gj,i(x)) = gj,i(xm) = 0, for i > j ≥ m.
(3) cm(pi(x)) = cm(pn(x)) = ym, for i = 0, · · · , n and m = 0, · · · , i.
(4) gj,i(x) is a linear combination of the polynomials q0(x), · · · , qj (x), qi(x).
(5) The polynomials g−1,0(x), g0,1(x), · · · , gn−1,n(x) generated by the RPIA are

linearly independent.Proof

(1) The RPIA is well defined (i.e. no break-down) if ci(gi−1,i (x)) = gi−1,i (xi) �=
0, for i = 0, 1, · · · , n. As Dn is a strongly nonsingular matrix and gi−1,i (xi) =
|Di |/|Di−1| �= 0, then the RPIA is well defined because we have no division
by zero.

(2) Using the relation (3.14) and (2.3), we remark that cm(gj,i(x)) can be expressed
as a ratio of two determinants

cm(gj,i(x)) = gj,i(xm) =

∣∣∣∣∣∣∣∣∣

qi(xm) q0(xm) · · · qj (xm)

qi(x0) q0(x0) · · · qj (x0)
...

...
...

...

qi(xj) q0(xj) · · · qj (xj)

∣∣∣∣∣∣∣∣∣
/|Dj |,

and for m = 0, 1, · · · , j , the numerator of this ration will be zero.
(3) If we use the relations (3.13) and (2.3), cm(pi(x)) = pi(xm) can be expressed

as a ratio of two determinants

pi(xm) = −

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 q0(xm) · · · qi(xm)

y0 q0(x0) · · · qi(x0)
...

...
...

...

yi q0(xi) · · · qi(xi)

⎤
⎥⎥⎥⎦ /Di

⎞
⎟⎟⎟⎠

= −

∣∣∣∣∣∣∣∣∣

0 q0(xm) · · · qi(xm)

y0 q0(x0) · · · qi(x0)
...

...
...

...

yi q0(xi) · · · qi(xi)

∣∣∣∣∣∣∣∣∣
/|Di |,

Numer Algor (2017) 76:675–694 687

then for m = 0, 1, · · · , i, expanding the numerator of this ratio with respect to
its first column and permuting the first row with the mth row, we obtain

pi(xm) = −(−1)m−1(−1)mym = (−1)2mym = ym = pn(xm) = cm(pn(x)).

(4) For i =1, 2, · · · , n, and j =0, 1, · · · , i−1, and using the relation (3.17), we get

gj,i(x) = gj−1,i (x) − gj−1,i (xj)

gj−1,j (xj)
gj−1,j (x)

= g−1,i (x) −
j∑

m=0

gm−1,i (xm)

gm−1,m(xm)
gm−1,m(x)

= qi(x) −
j∑

m=0

gm−1,i (xm)

gm−1,m(xm)
gm−1,m(x),

then using again this relation it is easy to see that for m = 0, 1, · · · , j ,
gm−1,m(x), which is a polynomial of degree m, is a combination of
q0(x), · · · , qm(x), and the result follows.

(5) As gm−1,m(x) is a polynomial of degree m, then g−1,0(x), g0,1(x), · · · ,

gn−1,n(x) are linearly independent.

Remark 3.3 From (4) and (5) of Proposition 3.3 we see that the polynomials
{q0(x), · · · , qm(x)} and {g−1,0(x), · · · , gm−1,m(x)} generate the same subspace, and
the process defined by Algorithm 1, used for computing the polynomials gm−1,m(x),
for m = 0, · · · , n, can be interpreted as a process for constructing a new basis of Pn

from the old basis qm(x).
Now we will give some other properties of the RPIA. For m = 0, · · · , n, and for

any real function g(x) we denote by cm ∗ g(x) = cm(g(x)) = g(xm), we also set

Cm = [
c0∗ c1∗ · · · cm∗]

,

Qm(x) = [
q0(x) q1(x) · · · qm(x)

]
,

Sm = Qm(x)[CT
mQm(x)]−1CT

m.

Remark 3.4 It is easy to see that, for m = 0, · · · , n, we have

Dm = CT
mQm(x),

pm(x) = Smpn(x), (3.19)

gm,i(x) = (1 − Sm)qi(x), f or i > m. (3.20)

Proposition 3.4 We have

(1) S2
m = Sm,

(2) SmSi = SiSm = Si , if m ≥ i.

688 Numer Algor (2017) 76:675–694

Proof

(1). We have

S2
m = Qm(x)[CT

mQm(x)]−1CT
mQm(x)[CT

mQm(x)]−1CT
m

= Qm(x)[CT
mQm(x)]−1CT

m.

(2). Let us remark that for i = 0, · · · , m, we have

D−1
m CT

mQi(x) = Em,i = [
e1 e2 · · · ei

]
,

where ej ∈ IRm is the j th element of the canonical basis of IRm. Then we
obtain

SmSi=Qm(x)D−1
m CT

mQi(x)D−1
i CT

i =Qm(x)Em,iD
−1
i CT

i =Qi(x)D−1
i CT

i =Si.

For SiSm, let us remark that

CT
i Qm(x)D−1

m = Ei,m =
⎡
⎣ Ii 0

⎤
⎦ ,

and Ei,mCT
m = CT

i , Then we have

SiSm = Qi(x)D−1
i CT

i Qm(x)D−1
m CT

m = Qi(x)D−1
i CT

i = Si.

Now we set, for m = 0, · · · , n

Gm(x) = [
g−1,0(x) g0,1(x) · · · gm−1,m(x)

]
, (3.21)

D′
m = [ci(gj−1,j (x))]0≤i,j≤m = CT

mGm(x), (3.22)

S′
m = Gm(x)[CT

mGm(x)]−1CT
m = Gm(x)D′−1

m CT
m. (3.23)

Proposition 3.5 D′
n = CT

n Gn(x) is a lower triangular strongly nonsingular matrix
and we have for m = 0, 1, · · · , n

S ′
m = Sm, (3.24)

pm(x) = S′
mpn(x), (3.25)

gm,i(x) = (1 − S′
m)qi(x), f or i > m. (3.26)

Proof Using (2) of Proposition 3.3 we see that D′
n = CT

n Gn(x) is a lower triangular
matrix and using the relation (3.15), D′

n is a strongly nonsingular matrix. (3.24) of
this proposition will be proved by induction. For m = 0 we have S′

0 = S0 because
g−1,0(x) = q0(x). Assume now that (3.24) is true for m − 1, with m ≥ 1, we will

Numer Algor (2017) 76:675–694 689

prove it for m. First les us consider for m = 1, · · · , n, the matrix partitioned as
follows

D′
m = CT

mGm(x) =
⎡
⎣ CT

m−1

cm∗

⎤
⎦[

Gm−1(x) gm−1,m(x)
]

=
⎡
⎣ D′

m−1 0

cm ∗ Gm−1(x) cm(gm−1,m(x))

⎤
⎦ .

Then we get

D′−1
m =

⎡
⎢⎢⎣

D′−1
m−1 0

−cm ∗ Gm−1(x)D′−1
m−1

cm(gm−1,m(x))

1

cm(gm−1,m(x))

⎤
⎥⎥⎦ . (3.27)

We have from (3.23) and (3.27)

S′
m =Gm(x)D′−1

m CT
m

=[
Gm−1(x) gm−1,m(x)

]
⎡
⎢⎢⎣

D′−1
m−1 0

−cm ∗ Gm−1(x)D′−1
m−1

cm(gm−1,m(x))

1

cm(gm−1,m(x))

⎤
⎥⎥⎦

⎡
⎣ CT

m−1

cm∗

⎤
⎦

= [
Gm−1(x) gm−1,m(x)

]
⎡
⎢⎢⎣

D′−1
m−1C

T
m−1

−cm ∗ Gm−1(x)D′−1
m−1C

T
m−1 − cm∗

cm(gm−1,m(x))

⎤
⎥⎥⎦

= S′
m−1 + gm−1,m(x)cm∗

cm(gm−1,m(x))
(1 − S′

m−1).

For Sm, if we set

um = CT
m−1qm(x) = [c0(qm(x)) c1(qm(x)) · · · cm−1(qm(x))]T ,

and
vT
m = cm ∗ Qm−1(x) = [cm(q0(x)) cm(q1(x)) · · · cm(qm−1(x))],

then we get

D−1
m = [CT

mQm(x)]−1 =
⎡
⎣ Dm−1 um

vT
m cm(qm(x))

⎤
⎦

−1

=
⎡
⎣ D−1

m−1 + D−1
m−1um(Dm/Dm−1)

−1vT
mD−1

m−1 −D−1
m−1um(Dm/Dm−1)

−1

−(Dm/Dm−1)
−1vT

mD−1
m−1 (Dm/Dm−1)

−1

⎤
⎦ ,

690 Numer Algor (2017) 76:675–694

then using (3.15), (3.20), (3.27) and the fact that S′
m−1 = Sm−1, we get

Sm = Qm(x)D−1
m CT

m = [
Qm−1(x) qm(x)

]
D−1

m

⎡
⎣ CT

m−1

cm∗

⎤
⎦

= Sm−1 + (Dm/Dm−1)
−1(1 − Sm−1)qm(x)cm ∗ (1 − Sm−1)

= S′
m−1 + gm−1,m(x)cm∗

cm(gm−1,m(x))
(1 − S′

m−1)

= S′
m.

Equations (3.25) and (3.26) of the proposition follow from (3.19), (3.20) and (3.24).

Remark 3.5 From (4) of Proposition 3.3, gi−1,i (x) is a polynomial of degree i, and
from (2) of the same proposition gi−1,i (xm) = 0, for m = 0, 1, · · · , i − 1, so

gi−1,i (x) = μi

i−1∏
j=0

(x − xj) = μiNi(x).

Then if we set Yn = [
y0 y1 · · · yn

]T , and using the relation (3.25), we get

pn(x) = S′
npn(x)

= Gn(x)D′−1
n Yn

=
n∑

i=0

αigi−1,i (x),

where D′
n is a lower triangular matrix and α = [

α0 α1 · · · αn

]T is the solution of
the system D′

nα = Yn.

4 Some examples

Example 4.1 For this example we choose n = 4 and qm(x) = xm, for m = 0, · · · , 4.
The set {(xm, ym) : m = 0, 1, · · · , 4} is chosen as follows

m : 0 1 2 3 4
xm : −2 −1 0 1

2 1
ym : 1 1

2 −2 0 3
4

Numer Algor (2017) 76:675–694 691

Polynomials gm−1,m(x) and pm(x)obtained by applying Algorithm 2 are given as
follows, we drop the intermediate calculations. For gm−1,m(x)

g−1,0(x) = 1;
g0,1(x) = x + 2;
g1,2(x) = (x + 2)(x + 1);
g2,3(x) = (x + 2)(x + 1)x;
g3,4(x) = (x + 2)(x + 1)x(x − 1

2);

and for pm(x)

p0(x) = y0 = 1;
p1(x) = − 1

2x;
p2(x) = −x2 − 7

2x − 2;
p3(x) = 32

15x
3 + 27

5 x2 + 23
30x − 2;

p4(x) = − 37
20x

4 − 299
120x

3 + 179
40 x2 + 157

60 x − 2;

The matrix D′
4 = [ci(gj−1,j (x))]0≤i,j≤4, which is a lower triangular matrix, is as

follows

D′
4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
1 2 2 0 0
1 5

2
15
4

15
8 0

1 3 6 6 3

⎤
⎥⎥⎥⎥⎦ ,

if we set

p4(x) =
4∑

m=0

αmgm−1,m(x), and Y4 = [
y0 y1 y2 y3 y4

]T
,

then we get

D′−1
4 Y4 =

⎡
⎢⎢⎢⎢⎣

α0
α1
α2
α3
α4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
− 1

2−1
32
15

− 37
20

⎤
⎥⎥⎥⎥⎦ .

We see that the polynomials gm−1,m(x), for m = 0, 1, · · · , n, obtained by applying
Algorithm 2, are exactly the Newton polynomials Nm(x).

Example 4.2 For this example, we choose n = 5 and the polynomials qm(x), for
m = 0, 1, · · · , 5, will be the Hermite polynomials [6].

692 Numer Algor (2017) 76:675–694

The set {(xm, ym) : m = 0, 1, · · · , 5} and the polynomials qm(x) are given in the
following

m xm ym qm(x)

0 −1 −2 1
1 − 1

2 1 x

2 1
2 0 x2 − 1

3 1 − 2
3 x3 − 3x

4 5
2

3
4 x4 − 6x2 + 3

5 3 2 x5 − 10x3 + 15x

Then applying Algorithm 2, we get for gm−1,m(x)

g−1,0(x) = 1;
g0,1(x) = x + 1;
g1,2(x) = (x + 1)(x + 1

2);
g2,3(x) = (x + 1)(x + 1

2)(x − 1
2);

g3,4(x) = (x + 1)(x + 1
2)(x − 1

2)(x − 1);
g3,4(x) = (x + 1)(x + 1

2)(x − 1
2)(x − 1)(x − 5

2);
and for pm(x)

p0(x) = y0 = −2;

p1(x) = 6x + 4;

p2(x) = − 14
3 x2 − x + 5

3 ;

p3(x) = 20
9 x3 − 22

9 x2 − 14
9 x + 10

9 ;

p4(x) = − 191
378x

4 + 20
9 x3 − 2741

1512x
2 − 14

9 x + 1489
1512 ;

p5(x) = 79
945x

5 − 5
7x

4 + 1601
756 x3 − 391

252x
2 − 5801

3780x + 235
252 .

For this example the matrix D′
5 = [ci(gj−1,j (x))]0≤i,j≤5, is as follows

D′
5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1

2 0 0 0 0
1 3

2
3
2 0 0 0

1 2 3 3
2 0 0

1 7
2

21
2 21 63

2 0
1 4 14 35 70 35

⎤
⎥⎥⎥⎥⎥⎥⎦

,

if we set

p5(x) =
5∑

m=0

αmgm−1,m(x), and Y5 = [
y0 y1 y2 y3 y4 y5

]T
,

Numer Algor (2017) 76:675–694 693

then we get

D′−1
5 Y5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

α0
α1
α2
α3
α4
α5

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
6

− 14
3

20
9

− 191
378
79
945

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We see that the polynomials gm−1,m(x), for m = 0, 1, · · · , 5, obtained by applying
Algorithm 2, are exactly the Newton polynomials Nm(x).

Example 4.3 For this example, we choose n = 4 and the polynomials qm(x), for
m = 0, 1, · · · , 4, will be the Chebychev polynomials of the second kind [6].

The set {(xm, ym) : m = 0, 1, · · · , 5} and the polynomials qm(x) are given as
follows

m xm ym qm(x)

0 −3 −1 1
1 − 3

2 1 2x
2 1

2 − 2
3 4x2 − 1

3 1 1
3 8x3 − 4x

4 2 3
4 16x4 − 12x2 + 1

Then applying Algorithm 2, we get for gm−1,m(x)

g−1,0(x) = 1;
g0,1(x) = 2(x + 3);
g1,2(x) = 4(x + 3)(x + 3

2);
g2,3(x) = 8(x + 3)(x + 3

2)(x − 1
2);

g3,4(x) = 16(x + 3)(x + 3
2)(x − 1

2)(x − 1);
and for pm(x)

p0(x) = y0 = −1;

p1(x) = 4
3x + 3;

p2(x) = − 13
21x

2 − 61
42x + 3

14 ;

p3(x) = 46
105x

3 + 17
15x

2 − 7
15x − 27

35 ;

p4(x) = − 67
315x

4 − 1
5x

3 + 271
180x

2 − 103
210x − 5

4 ;
For this example the matrix D′

4 = [ci(gj−1,j (x))]0≤i,j≤4, is as follows

D′
4 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 3 0 0 0
1 7 28 0 0
1 8 40 40 0
1 10 70 210 420

⎤
⎥⎥⎥⎥⎦ ,

694 Numer Algor (2017) 76:675–694

if we set

p4(x) =
5∑

m=0

αmgm−1,m(x), and Y5 = [
y0 y1 y2 y3 y4

]T
,

then we get

D′−1
4 Y4 =

⎡
⎢⎢⎢⎢⎣

α0
α1
α2
α3
α4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1
2
3

− 13
84

23
420

− 67
5040

⎤
⎥⎥⎥⎥⎦ .

We see that apart from a multiplicative constant, the polynomials gm−1,m(x), for
m = 0, 1, · · · , 5, obtained by applying Algorithm 2, are the Newton polynomials
Nm(x).

Application of the RPIA to the Hermite polynomial interpolation is under investi-
gation.

Acknowledgments We are grateful to Professor C. Brezinski for his help and encouragement. We would
like to thank the referee for his helpful comments and valuable suggestions.

References

1. Atteia, M., Pradel, M.: Eléments d’analyse numérique, CEPADUES-Editions (1990)
2. Brezinski, C.: Recursive interpolation, extrapolation and projection. J. Comput. Appl. Math. 9, 369–

376 (1983)
3. Brezinski, C.: Some determinantal identities in a vector space, with applications. In: Werner, H.,

Bunger, H.J. (eds.) Padé Approximation and its Applications, Bad-Honnef, 1983, Lecture Notes in
Mathematics, vol. 1071, pp. 1-11. Springer, Berlin (1984)

4. Brezinski, C.: Other manifestations of the Schur complement. Linear Algebra Appl. 111, 231–247
(1988)

5. Cottle, R.W.: Manifestations of the Schur complement. Linear Algebra Appl. 8, 189–211 (1974)
6. Gautschi, W.: Orthogonal polynomials computation and approximation. Oxford University Press

(2004)
7. Golub, G.H., Ortega, J.M.: Scientific computing and differential equations, an introduction to

numerical methods, Academic Press (1992)
8. Messaoudi, A.: Some properties of the recursive projection and interpolation algorithms. IMA J.

Numer. Anal. 15, 307–318 (1995)
9. Messaoudi, A.: Recursive interpolation Algorithm : a forMalism for linear equations-I: Direct

methods. J. Comp. Appl. Math. 76, 13–30 (1996)
10. Messaoudi, A.: Recursive interpolation Algorithm : a forMalism for linear equations-II: Iterative

methods. J. Comp. Appl. Math. 76, 31–53 (1996)
11. Ouellette, D.V.: Schur complements and statistics. Linear Algebra Appl. 36, 187–295 (1981)
12. Schur, I.: Potenzreihn im innern des einheitskreises. J. Reine. Angew. Math. 147, 205–232 (1917)
13. Süli, E., Mayers, D.: An introduction to numerical analysis. Cambridge University Press (2003)

	Recursive polynomial interpolation algorithm (RPIA)
	Abstract
	Introduction
	Schur complement and Sylvester's identity
	Recursive polynomial interpolation algorithm
	Polynomial interpolation
	Formulation of the RPIA
	Some properties of the RPIA

	Some examples
	Acknowledgments
	References

