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Abstract In this paper, we introduce a generalized viscosity algorithm for finding
a fixed point of an asymptotically nonexpansive mapping in the intermediate sense
which is also a solution to a variational inequality problem of two inverse-strongly
monotone operators in 2-uniformly smooth and uniformly convex Banach spaces.
Strong convergence theorems are given under suitable assumptions imposed on the
parameters. The results obtained in this paper improve and extend many recent ones
in the literature. Three numerical examples are also given to show the efficiency and
implementation of our results.
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1 Introduction

Recently, variational inequality theory has become an important tool for solving
many problems arising in several branches of pure and applied sciences, such as opti-
mal control, mathematical programming, equilibrium problems, and signal recovery
problems. For more details, we refer our readers to [3–16] and the references
contained therein.

In this paper, we introduce a generalized viscosity algorithm for finding a common
element of the set of fixed points of an asymptotically nonexpansive mapping in the
intermediate sense and the set of solutions to variational inequality problems for two
inverse-strongly monotone operators in 2-uniformly smooth and uniformly convex
Banach spaces. Under appropriate conditions imposed on the parameters, we obtain
strong convergence result of the sequence generated by our algorithm. Finally, we
give three numerical examples to show that our iterative scheme is implementable,
efficient and faster than some previously known schemes for solving variational
inequality and fixed point problem in Hilbert spaces. Precisely, in the first and sec-
ond numerical examples, we compare our iterative scheme with algorithm (11) of G.
Cai et al. in [17] and algorithm (6) of Ceng et al. in [9], respectively. We show that
our proposed algorithm is efficient and easy to implement. Also, the third numerical
example gives a convergence result for two- and three-dimensional cases.

2 Definitions and preliminaries

Let C be a nonempty, closed, and convex subset of a real Banach space E and T :
C → C be a mapping. We denote by F(T ) the set of fixed points of T (i.e., F(T ) :=
{x ∈ C : x = T x}). The duality mapping J : E → 2E∗

is defined by

J (x) =
{
x∗ ∈ E∗ : 〈

x, x∗〉 = ‖x‖2 ,
∥∥x∗∥∥ = ‖x‖

}
, ∀x ∈ E.

It is easy to see that if E is a real Hilbert space, then J = I , where I is the iden-
tity mapping on E. When E is smooth, we know from [30] that J is single-valued,
which we shall denote by j . Let {xn} be a sequence in E. In the sequel, we shall use

xn → x(respectively, xn ⇀ x, xn
∗
⇀ x) to denote strong(respectively, weak, weak*)

convergence of the sequence {xn} to x. Now, we recall the following basic concepts
and facts.

A mapping f : C → C is called a strict contraction, if there exists a constant
δ ∈ (0, 1) such that

‖f (x) − f (y)‖ ≤ δ ‖x − y‖ , ∀ x, y ∈ C. (1)

A mapping T : C → C is said to be uniformly L-Lipschitzian if there exists a
constant L > 0 such that

‖T nx − T ny‖ ≤ L‖x − y‖, ∀ x, y ∈ C and n ≥ 1. (2)

A mapping T : C → C is said to be nonexpansive if

‖T x − Ty‖ ≤ ‖x − y‖ , ∀ x, y ∈ C. (3)
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A mapping T : C → C is said to be asymptotically nonexpansive if there exists a
sequence {θn} ⊂ [0, +∞) with limn→∞ θn = 0 such that

∥∥T nx − T ny
∥∥ ≤ (1 + θn) ‖x − y‖ , ∀ n ≥ 1, x, y ∈ C. (4)

A mapping T : C → C is said to be asymptotically nonexpansive in the
intermediate sense ([31, 32]) if T is continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ≤ 0. (5)

It is easy to see that asymptotically nonexpansive mapping in the intermediate
sense properly contains the class of strict contractions, the class of nonexpansive
mappings and the class of asymptotically nonexpansive mappings.

Throughout this paper, we assume that

cn = max

{
0, sup

x,y∈C

(
∥∥T nx − T ny

∥∥ − ‖x − y‖)
}

,

then cn ≥ 0 for all n ∈ N, cn → 0 as n → ∞ and (5) reduces to the relation
∥∥T nx − T ny

∥∥ ≤ ‖x − y‖ + cn (6)

for all x, y ∈ C and n ∈ N.
Now we give two examples of asymptotically nonexpansive mapping in the

intermediate sense.

Example 2.1 ([1]) Let X = R and C = [0, 1]. For all x ∈ C, we define T : C → C

by

T x =
{

1
4

√
1
2 − x +

√
2

2 , if x ∈ [0, 1
2 ],√

x, if x ∈ ( 1
2 , 1].

Then,

(i) T is asymptotically nonexpansive in the intermediate sense.
(ii) T is continuous but not uniformly L-Lipschitzian, and hence T is not asymp-

totically nonexpansive.

Example 2.2 ([2]) Let H = R and C = [− 1
π
, 1

π
] and let |k| < 1. For each x ∈ C,

we define

T x =
{

kx sin 1
x
, if x �= 0,

0, if x = 0.

Then,

(i) T is asymptotically nonexpansive in the intermediate sense.
(ii) T is not Lipschitzian; therefore, T is not asymptotically nonexpansive.

A mapping A : C → E is called to be accretive if there exists j (x−y) ∈ J (x−y)

such that
〈Ax − Ay, j (x − y)〉 ≥ 0, ∀ x, y ∈ C. (7)
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A mapping A : C → E is called to be α-inverse-strongly accretive if there exists
j (x − y) ∈ J (x − y) and α > 0 such that

〈Ax − Ay, j (x − y)〉 ≥ α ‖Ax − Ay‖2 , ∀ x, y ∈ C. (8)

In a smooth Banach space, an operator A is said to be strongly positive if there
exists a constant γ > 0 with the property

〈Ax,J (x)〉≥γ ‖x‖2, ‖aI −bA‖ = sup
‖x‖≤1

|〈(aI − bA)x, J (x)〉| a∈ [0, 1], b∈ [−1,1],
(9)

where I is the identity mapping and J is the normalized duality mapping.
Let C be a nonempty, closed, and convex subset of a real Hilbert space H and let

A : C → H be a nonlinear mapping. The classical variational inequality is to find an
x∗ ∈ C such that 〈

Ax∗, x − x∗〉 ≥ 0, ∀ x ∈ C. (10)

We denoted by V I (A, C), the set of solutions to (10).
In [9], Ceng et al. studied the following problem of finding (x∗, y∗) ∈ C ×C such

that { 〈λAy∗ + x∗ − y∗, x − x∗〉 ≥ 0, ∀ x ∈ C,

〈μBx∗ + y∗ − x∗, x − y∗〉 ≥ 0, ∀ x ∈ C,
(11)

which is called a general system of variational inequalities, where A, B : C → H

are two mappings, λ > 0 and μ > 0 are two constants. It is easy to see that problem
(11) contains the classical variational inequality (10) as a special case.

For finding a common element in the set of solutions to problem (11) and the set
of fixed points of a nonexpansive mapping T , Ceng et al. [9] introduced the following
algorithm: ⎧⎨

⎩
x1 = u ∈ C,

yn = PC(xn − μBxn),

xn+1 = αnu + βnxn + γnSPC(yn − λAyn).

(12)

Strong convergence theorems were obtained under some suitable conditions on the
parameters.

On the other hand, let C be a nonempty, closed, and convex subset of a real Banach
space E and A, B : C → E be two operators. Recently, Yao et al. [15] studied the
following problem of finding (x∗, y∗) ∈ C × C such that{ 〈Ay∗ + x∗ − y∗, j (x − x∗)〉 ≥ 0, ∀ x ∈ C,

〈Bx∗ + y∗ − x∗, j (x − y∗)〉 ≥ 0, ∀ x ∈ C,
(13)

For solving the problem (13), Yao et al. [15] considered the following iterative
algorithm: ⎧⎨

⎩
u, x0 ∈ C,

yn = QC(xn − Bxn),

xn+1 = αnu + βnxn + γnQC(yn − Ayn), n ≥ 0,

(14)

and obtained strong convergence results under some suitable conditions on the
parameters.

In this paper, we consider the problem of finding (x∗, y∗) ∈ C × C such that{ 〈λAy∗ + x∗ − y∗, j (x − x∗)〉 ≥ 0, ∀ x ∈ C,

〈μBx∗ + y∗ − x∗, j (x − y∗)〉 ≥ 0, ∀ x ∈ C,
(15)
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which is called the system of more general variational inequalities in a real Banach
space. If λ = μ = 1, the problem (15) becomes problem (13).

Now, we recall some useful facts which are necessary for proving our main results.
Let ρE : [0, ∞) → [0, ∞) be the modulus of smoothness of E defined by

ρE(t) := sup

{
1

2
(‖x + y‖ + ‖x − y‖) − 1 : x ∈ S(E), ‖y‖ ≤ t

}
.

A Banach space E is called to be uniformly smooth if
ρE(t)

t
→ 0 as t → 0. Fur-

thermore, Banach space E is said to be q-uniformly smooth, if there exists a fixed
constant c > 0 such that ρE(t) ≤ ctq . It is well known that if E is q-uniformly
smooth, then q ≤ 2 and E is uniformly smooth.

A Banach space E is called to be strictly convex, if x and y are not colinear, then
‖x + y‖ < ‖x‖ + ‖y‖. Let δE(ε) be the modulus of convexity of E defined by

δE(ε) := inf

{
1 − 1

2
‖x + y‖ : ‖x‖ , ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}
,

for all ε ∈ [0, 2]. A Banach space E is said to be uniformly convex if δE(0) = 0, and
δE(ε) > 0 for all 0 < ε ≤ 2. It is known that Lp is uniformly smooth and uniformly
convex Banach space, where p > 1. Precisely, Lp is min {p, 2}-uniformly smooth
and max {p, 2}-uniformly convex for every p > 1.

Let C and D be nonempty subsets of a Banach space E such that C is nonempty,
closed and convex and D ⊂ C. A mapping P : C → D is called to be sunny (see [18,
20]) if P(x+ t (x−P(x))) = P(x), ∀ x ∈ C and t ≥ 0, whenever x+ t (x−P(x)) ∈
C. A mapping P : C → D is called a retraction if Px = x,∀ x ∈ D. Moreover, P

is said to be a sunny nonexpansive retraction from C onto D if P is a retraction from
C onto D, which is also sunny and nonexpansive. A subset D of C is called a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction P from C

onto D (see [33] for more details).
A duality mapping J is said to be weakly sequentially continuous (see [27, 28]),

if for each {xn} ⊂ E with xn ⇀ x, then J (xn)
∗
⇀ J(x). In [27], Gossez and Lami

Dozo showed that a space with a weakly continuous duality mapping satisfies Opial’s
condition. Conversely, we know from [34] that if a space satisfies Opial’s condition
and has a uniformly Gáteaux differentiable norm, then it has a weakly continuous
zero duality mapping.

Proposition 2.3 ([18]) Let C be a closed and convex subset of a smooth Banach
space E. Let D be a nonempty subset of C. Let P : C → D be a retraction and let J
be the normalized duality mapping on E. Then the following are equivalent:

(a) P is sunny and nonexpansive;
(b) ‖Px − Py‖2 ≤ 〈x − y, J (Px − Py)〉 , ∀ x, y ∈ C;
(c) 〈x − Px, J (y − Px)〉 ≤ 0, ∀ x ∈ C, y ∈ D.
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Proposition 2.4 (Theorem 4.1, [19]) Let D be a closed and convex subset of a
reflexive Banach space E with a uniformly Gâteaux differentiable norm. If C is a
nonexpansive retract of D, then it is a sunny nonexpansive retract of D.

Lemma 2.5 ([21]) Assume that {an} is a sequence of nonnegative real numbers
satisfying the following relation:

an+1 ≤ (1 − αn)an + αnσn + δn, n ≥ 0,

where

(i) {αn} is a sequence in [0, 1] and ∑∞
n=1 αn = ∞;

(ii) lim supn→∞ σn ≤ 0;
(iii)

∑∞
n=1 δn < ∞.

Then, limn→∞ an = 0.

Lemma 2.6 ([22]) Let E be a uniformly convex Banach space, C a bounded, closed,
and convex subset of E, and T a self-mapping of C which is asymptotically nonex-
pansive in the intermediate sense. If {xβ}β∈
 is a net in C converging weakly to x

and if limk→∞(lim supβ∈
 ‖xβ − T kxβ‖) = 0, then T x = x.

Lemma 2.7 ([23]) Assume that A is a strongly positive linear bounded operator on
a smooth Banach space E with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then,
‖I − ρA‖ ≤ 1 − ργ .

Lemma 2.8 ([24]) Let E be a real smooth and uniformly convex Banach space and
let r > 0. Then, there exists a strictly increasing, continuous, and convex function
g : [0, 2r] → R such that g(0) = 0 and g(‖x − y‖) ≤ ‖x‖2 − 2 〈x, jy〉 + ‖y‖2, for
all x, y ∈ Br ,where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.9 ([25],Lemma 2.1) In a Banach space E, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2 〈y, j (x + y)〉 , x, y ∈ X,

where j (x + y) ∈ J (x + y).

Lemma 2.10 ([26]) Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space E. Let the mapping A : C → E be a α-inverse-strongly
accretive. Then, the following inequality holds

‖(I − λA)x − (I − λA)y‖2 ≤ ‖x − y‖2 − 2λ(α − K2λ) ‖Ax − Ay‖2 .

In particular, if 0 < λ ≤ α

K2 , then I−λA is nonexpansive, whereK is the 2-uniformly
smoothness constant of E (i.e., K is a positive constant (see [39]) satisfying

‖x + y‖2 ≤ ‖x‖2 + 2 〈y, j (x)〉 + 2 ‖Ky‖2 , x, y ∈ E.

Lemma 2.11 ([26]) Let C be a nonempty, closed, and convex subset of a real 2-
uniformly smooth Banach space E. Assume that C is a sunny nonexpansive retract of
E. Let PC be the sunny nonexpansive retraction from E onto C. Let the mapping A :
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C → E be α-inverse-strongly accretive and let B : C → E be β-inverse-strongly
accretive. Let G : C → C be a mapping defined by

G(x) = PC [PC(x − μBx) − λAPC(x − μBx)] , ∀ x ∈ C.

If 0 < λ ≤ α

K2 and 0 < μ ≤ β

K2 , then G : C → C is nonexpansive, where K is the
2-uniformly smoothness constant of E.

Lemma 2.12 ([26]) Let C be a nonempty, closed, and convex subset of a real 2-
uniformly smooth Banach space E. Assume that C is a sunny nonexpansive retract of
E. Let PC be the sunny nonexpansive retraction fromE ontoC. LetA, B : C → E be
two nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (2)
if and only if x∗ = PC(y∗ − λAy∗), where y∗ = PC(x∗ − μBx∗), that is x∗ = Gx∗,
where G is defined by Lemma 2.11.

Lemma 2.13 ([29]) Let C be a nonempty, bounded, and closed convex subset of a
uniformly convex Banach space E and let T be nonexpansive mapping of C into
itself. If {xn} is a sequence of C such that xn ⇀ x and xn − T xn → 0, then x is a
fixed point of T .

3 Main results

In this section, we give strong convergence analysis of approximation of a fixed point
of an asymptotically nonexpansive mapping in the intermediate sense which is also
a solution to general variational inequality problem (15). Our result in this paper
is more applicable than the previous results on general variational inequality prob-
lem (15) and fixed point problem since our algorithm solves both general variational
inequality problem (15) and fixed point problem at the same time.

Theorem 3.1 Let C be a nonempty, closed, and convex subset of a 2-uniformly
smooth and uniformly convex Banach space E which admits a weakly sequentially
continuous duality mapping and C a sunny nonexpansive retract of E. Let PC be
the sunny nonexpansive retraction from E to C. Let the mappings A, B : C → E

be α-inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let
T : C → C be an asymptotically nonexpansive mapping in the intermediate sense
with F(T ) ∩ F(G) �= ∅, where G : C → C is a mapping defined by Lemma
2.11. Let f : C → C be a strict contraction with coefficient γ ∈ [0, 1) and
F : C → C be a strongly positive linear bounded operator with the coefficient γ̄

such that 0 < γ < γ̄ θ and 0 < θ ≤ ‖F‖−1. Assume that
∑∞

n=1 cn < ∞, where cn

is defined by (6). Pick any x1 ∈ C. Let {xn} be a sequence generated by

⎧⎨
⎩

zn = PC(xn − μBxn),

yn = PC(zn − λAzn),

xn+1 = PC[αnf (xn) + (I − αnθF )T nyn],
(16)
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where 0 < λ < α

K2 and 0 < μ <
β

K2 , where K is the 2-uniformly smooth con-
stant appeared in [39]. Suppose that {αn} is a real sequence in [0, 1] satisfying the
following conditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii)

∑∞
n=1 |αn+1 − αn| < ∞.

If
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞, then {xn} converges strongly to q ∈ F(T ) ∩
F(G), which is also the solution of the variational inequality:

〈f (q) − θFq, j (p − q)〉 ≤ 0 ∀ p ∈ F(T ) ∩ F(G).

Proof We first show that {xn} is bounded. By condition (i), we may assume,
without loss of generality, that αnθ ≤ ‖F‖−1. It follows from Lemma 2.7
that

‖I − αnθF‖ ≤ 1 − αnγ̄ θ.

Take x∗ ∈ F(T ) ∩ F(G). By Lemma 2.12, we obtain

x∗ = PC[PC(x∗ − μBx∗) − λAPC(x∗ − μBx∗)].
Let y∗ = PC(x∗ − μBx∗), then x∗ = PC(y∗ − λAy∗). It follows from Lemma 2.11
that

∥∥yn − x∗∥∥ = ∥∥Gxn − Gx∗∥∥
≤ ∥∥xn − x∗∥∥ . (17)

Combining (16) and (17), we have

∥∥xn+1 − x∗∥∥ = ∥∥PC [αnf (xn) + (I − αnθF )T nyn] − PCx∗∥∥
≤ ∥∥αn(f (xn) − θFx∗) + (I − αnθF )(T nyn − x∗)

∥∥
≤ αn

∥∥f (xn) − f (x∗)
∥∥ + αn

∥∥f (x∗) − θFx∗∥∥ + (1 − αnγ̄ θ)(
∥∥yn − x∗∥∥ + cn)

≤ αnγ
∥∥xn − x∗∥∥ + αn

∥∥f (x∗) − θFx∗∥∥ + (1 − αnγ̄ θ)
∥∥xn − x∗∥∥ + cn

= [1 − αn(γ̄ θ − γ )] ∥∥xn − x∗∥∥ + αn(γ̄ θ − γ )
‖f (x∗) − θFx∗‖

γ̄ θ − γ
+ cn

≤ max{∥∥xn − x∗∥∥ ,
‖f (x∗) − θFx∗‖

γ̄ θ − γ
} + cn,

By induction, we get

∥∥xn − x∗∥∥ ≤ max
{ ∥∥x1 − x∗∥∥ ,

‖f (x∗) − θFx∗‖
γ̄ θ − γ

}
+

∞∑
n=1

cn,

which implies that {xn} is bounded. By (17), we have that {yn} is also bounded.
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Next, we prove that limn→∞ ‖xn+1 − xn‖ = 0. Indeed, we observe

‖yn+1 − yn‖ = ‖PC(zn+1 − λAzn+1) − PC(zn − λAzn)‖
≤ ‖(I − λA)zn+1 − (I − λA)zn‖
≤ ‖zn+1 − zn‖
= ‖PC(xn+1 − μBxn+1) − PC(xn − μBxn)‖
≤ ‖(I − μB)xn+1 − (I − μB)xn‖
≤ ‖xn+1 − xn‖ . (18)

It follows that

‖xn+1 − xn‖
=

∥∥∥PC [αnf (xn) + (I − αnθF )T nyn] − PC [αn−1f (xn−1) + (I − αn−1θF )T n−1yn−1]
∥∥∥

≤
∥∥∥αnf (xn) + (I − αnθF )T nyn − αn−1f (xn−1) − (I − αn−1θF )T n−1yn−1

∥∥∥
= ‖αn(f (xn)−f (xn−1))+ (αn− αn−1)(f (xn−1)− θFT nyn−1) + (I − αnθF )(T nyn− T nyn−1)

+(I − αn−1θF )(T nyn−1 − T n−1yn−1)‖
≤ αnγ ‖xn − xn−1‖ + |αn − αn−1|

∥∥f (xn−1) − θFT nyn−1
∥∥ + (1 − αnγ̄ θ)(‖yn − yn−1‖ + cn)

+(1 − αn−1γ̄ θ)

∥∥∥T nyn−1 − T n−1yn−1

∥∥∥
≤ [1 − αn(γ̄ θ − γ )] ‖xn − xn−1‖ + |αn − αn−1|M1 + cn +

∥∥∥T nyn−1 − T n−1yn−1

∥∥∥ ,

where

M1 = sup
n≥2

∥∥f (xn−1) − θFT nyn−1
∥∥ .

Putting

δn = |αn − αn−1| M1 + cn +
∥∥∥T nyn−1 − T n−1yn−1

∥∥∥ , σn = 0,

we see (by conditions (i), (ii),
∑∞

n=1 cn < ∞ and
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞)
from Lemma 2.5 that

lim
n→∞ ‖xn+1 − xn‖ = 0. (19)

Next, we show that limn→∞ ‖yn − Tyn‖ = 0. It follows from Lemma 2.10 that

∥∥zn − y∗∥∥2 = ∥∥QC(xn − μBxn) − QC(x∗ − μBx∗)
∥∥2

≤ ∥∥xn − x∗ − μ(Bxn − Bx∗)
∥∥2

≤ ∥∥xn − x∗∥∥2 − 2μ(β − K2μ)
∥∥Bxn − Bx∗∥∥2

. (20)
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and
∥∥yn − x∗∥∥2 = ∥∥QC(zn − λAzn) − QC(y∗ − λAy∗)

∥∥2

≤ ∥∥zn − y∗ − λ(Azn − Ay∗)
∥∥2

≤ ∥∥zn − y∗∥∥2 − 2λ(α − K2λ)
∥∥Azn − Ay∗∥∥2

. (21)

Substituting (20) into (21), we obtain

∥∥yn−x∗∥∥2 ≤∥∥xn− x∗∥∥2−2μ(β−K2μ)
∥∥Bxn−Bx∗∥∥2−2λ(α−K2λ)

∥∥Azn−Ay∗∥∥2
.

(22)
Let vn = αnf (xn) + (I − αnθF )T nyn for all n ∈ N. By Lemma 2.9, we have

∥∥xn+1 − x∗∥∥2 = ∥∥PC [αnf (xn) + (I − αnθF )T nyn] − x∗∥∥2

≤ ∥∥vn − x∗∥∥2

= ∥∥αn(f (xn) − θFT nyn) + (T nyn − x∗)
∥∥2

≤ ∥∥T nyn − x∗∥∥2 + 2αn

〈
f (xn) − θFT nyn, j (vn − x∗)

〉

≤ (
∥∥yn − x∗∥∥ + cn)

2 + 2αn

∥∥f (xn) − θFT nyn

∥∥ ∥∥vn − x∗∥∥
≤ ∥∥yn − x∗∥∥2 + cn(2

∥∥yn − x∗∥∥ + cn) + 2αn

∥∥f (xn) − θFT nyn

∥∥ ∥∥vn − x∗∥∥
≤ ∥∥yn − x∗∥∥2 + cnM2 + αnM3, (23)

where

M2 = sup
n≥1

{2 ∥∥yn − x∗∥∥ + cn}, M3 = sup
n≥2

{2 ∥∥f (xn) − θFT nyn

∥∥ ∥∥vn − x∗∥∥}.

Combining (22) and (23), we have

∥∥xn+1 − x∗∥∥2 ≤ ∥∥xn − x∗∥∥2− 2μ(β − K2μ)
∥∥Bxn− Bx∗∥∥2− 2λ(α − K2λ)

∥∥Azn − Ay∗∥∥2

+cnM2 + αnM3,

which implies

2μ(β − K2μ)
∥∥Bxn − Bx∗∥∥2 + 2λ(α − K2λ)

∥∥Azn − Ay∗∥∥2

≤ ∥∥xn − x∗∥∥2 − ∥∥xn+1 − x∗∥∥2 + cnM2 + αnM3

≤ ‖xn − xn+1‖ (
∥∥xn − x∗∥∥ + ∥∥xn+1 − x∗∥∥) + cnM2 + αnM3. (24)

Since 0 < λ < α

K2 , 0 < μ <
β

K2 , limn→∞ cn = 0, limn→∞ αn = 0 and (19), we
obtain by (24)

lim
n→∞

∥∥Bxn − Bx∗∥∥ = 0, lim
n→∞

∥∥Azn − Ay∗∥∥ = 0. (25)



Numer Algor (2017) 76:521–553 531

Let r1 = supn≥0 {‖zn − y∗‖ , ‖xn − x∗‖}. It follows from Proposition 2.3 and
Lemma 2.8 that

∥∥zn − y∗∥∥2

= ∥∥PC(xn − μBxn) − PC(x∗ − μBx∗)
∥∥2

≤ 〈
xn − μBxn − (x∗ − μBx∗), j (zn − y∗)

〉

= 〈
xn − x∗, j (zn − y∗)

〉 + μ
〈
Bx∗ − Bxn, j (zn − y∗)

〉

≤ 1

2
(
∥∥xn − x∗∥∥2 + ∥∥zn − y∗∥∥2 − g1(

∥∥xn−zn− (x∗−y∗)
∥∥) + μ

〈
Bx∗− Bxn, j (zn − y∗)

〉
,

where g1 : [0, ∞) → [0, ∞) is a continuous, strictly increasing and convex function
such that g1(0) = 0. Consequently, we have

∥∥zn − y∗∥∥2 ≤∥∥xn − x∗∥∥2−g1(
∥∥xn−zn − (x∗ − y∗)

∥∥) + 2μ
〈
Bx∗ − Bxn, j (zn − y∗)

〉

≤∥∥xn−x∗∥∥2 − g1(
∥∥xn − zn−(x∗− y∗)

∥∥) + 2μ
∥∥Bxn−Bx∗∥∥∥∥zn−y∗∥∥ . (26)

Let r2 = supn≥0 {‖zn − y∗‖ , ‖yn − x∗‖}. Again by Proposition 2.3 and Lemma
2.8, we have
∥∥yn − x∗∥∥2

=∥∥PC(zn − λAzn) − PC(y∗ − λAy∗)
∥∥2

≤ 〈
zn − λAzn − (y∗ − λAy∗), j (yn − x∗)

〉

= 〈
zn − y∗, j (yn − x∗)

〉 + λ
〈
Ay∗ − Azn, j (yn − x∗)

〉

≤ 1

2
(
∥∥zn−y∗∥∥2+∥∥yn−x∗∥∥2−g2(

∥∥zn−yn+(x∗−y∗)
∥∥)+λ

〈
Ay∗−Azn, j (yn−x∗)

〉
,

where g2 : [0, ∞) → [0, ∞) is a continuous, strictly increasing, and convex function
such that g2(0) = 0. Therefore, we have

∥∥yn − x∗∥∥2 ≤ ∥∥zn − y∗∥∥2−g2(
∥∥zn−yn+(x∗−y∗)

∥∥) + 2λ
〈
Ay∗−Azn, j (yn − x∗)

〉

≤ ∥∥zn − y∗∥∥2 − g2(
∥∥zn−yn + (x∗ − y∗)

∥∥) + 2λ
∥∥Azn−Ay∗∥∥ ∥∥yn−x∗∥∥ . (27)

Substituting (26) into (27), we obtain

∥∥yn − x∗∥∥2 ≤ ∥∥xn − x∗∥∥2 − g1(
∥∥xn − zn − (x∗ − y∗)

∥∥) + 2μ
∥∥Bxn − Bx∗∥∥ ∥∥zn − y∗∥∥

−g2(
∥∥zn − yn + (x∗ − y∗)

∥∥) + 2λ
∥∥Azn − Ay∗∥∥ ∥∥yn − x∗∥∥ . (28)

Substituting (28) into (23), we get

∥∥xn+1 − x∗∥∥2 ≤ ∥∥xn − x∗∥∥2 − g1(
∥∥xn − zn − (x∗ − y∗)

∥∥) + 2μ
∥∥Bxn − Bx∗∥∥ ∥∥zn − y∗∥∥

−g2(
∥∥zn − yn + (x∗ − y∗)

∥∥) + 2λ
∥∥Azn − Ay∗∥∥ ∥∥yn − x∗∥∥ + cnM2 + αnM3.
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This implies that

g1(
∥∥xn − zn − (x∗ − y∗)

∥∥) + g2(
∥∥zn − yn + (x∗ − y∗)

∥∥)

≤ ∥∥xn − x∗∥∥2 − ∥∥xn+1 − x∗∥∥2 + 2μ
∥∥Bxn − Bx∗∥∥ ∥∥zn − y∗∥∥

+2λ
∥∥Azn − Ay∗∥∥ ∥∥yn − x∗∥∥ + cnM2 + αnM3

≤ ‖xn − xn+1‖ (
∥∥xn − x∗∥∥ + ∥∥xn+1 − x∗∥∥) + 2μ

∥∥Bxn − Bx∗∥∥ ∥∥zn − y∗∥∥
+2λ

∥∥Azn − Ay∗∥∥ ∥∥yn − x∗∥∥ + cnM2 + αnM3. (29)

Noticing limn→∞ cn = 0, limn→∞ αn = 0, (19) and (25), we have

lim
n→∞ g1(

∥∥xn − zn − (x∗ − y∗)
∥∥) = 0, lim

n→∞ g2(
∥∥zn − yn + (x∗ − y∗)

∥∥) = 0.

According to the properties of g1 and g2, we obtain

lim
n→∞

∥∥xn − zn − (x∗ − y∗)
∥∥ = 0, lim

n→∞
∥∥zn − yn + (x∗ − y∗)

∥∥ = 0. (30)

This implies that

‖xn − yn‖ ≤ ∥∥xn − zn − (x∗ − y∗)
∥∥ + ∥∥zn − yn + (x∗ − y∗)

∥∥
→ 0 as n → ∞. (31)

By (19) and limn→∞ αn = 0, we have
∥∥xn − T nyn

∥∥ ≤ ‖xn − xn+1‖ + ∥∥xn+1 − T nyn

∥∥
= ‖xn − xn+1‖ + ∥∥PC[αnf (xn) + (I − αnθF )T nyn] − PCT nyn

∥∥
≤ ‖xn − xn+1‖ + αn

∥∥f (xn) − θFT nyn

∥∥
→ 0 as n → ∞. (32)

It follows from (31) and (32) that
∥∥yn − T nyn

∥∥ ≤ ‖yn − xn‖ + ∥∥xn − T nyn

∥∥
→ 0 as n → ∞. (33)

We observe

‖yn − Tyn‖ ≤ ∥∥yn − T nyn

∥∥ +
∥∥∥T nyn − T n+1yn

∥∥∥ +
∥∥∥T n+1yn − Tyn

∥∥∥ .

By condition
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞, (33) and the fact that T is continuous,
we obtain

lim
n→∞ ‖yn − Tyn‖ = 0. (34)

Next, we show that

lim sup
n→∞

〈f (q) − θF (q), j (xn − q)〉 ≤ 0, (35)

where q = PF(T )∩F(G)(f + I − θF )(q). In fact, there exists a subsequence {xni
} of

{xn} such that

lim sup
n→∞

〈f (q) − θF (q), j (xn − q)〉 = lim
i→∞

〈
f (q) − θF (q), j (xni

− q)
〉
.
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Now, we prove that PF(T )∩F(G)(f + I − θF ) is a strict contraction. In fact, for any
x, y ∈ C, it follows from Lemma 2.7 that∥∥PF(T )∩F(G)(f + I − θF )(x) − PF(T )∩F(G)(f + I − θF )(y)

∥∥
≤ ‖f (x) − f (y)‖ + ‖(I − θF )(x) − (I − θF )(y)‖
≤ γ ‖x − y‖ + (1 − γ̄ θ) ‖x − y‖
= [1 − (γ̄ θ − γ )] ‖x − y‖ ,

which implies that PF(T )(f +I −θF ) is a contractive mapping. Banach’s contraction
mapping principle guarantees that PF(T )(f + I − θF ) has a unique fixed point. Say
q ∈ C, that is, q = PF(T )∩F(G)(f + I − θF )(q). Since {xn} is a bounded in C,
without loss of generality, we can assume that xni

⇀ z ∈ C. By (31), we know that
yni

⇀ z ∈ C. From (34), we have that limi→∞
∥∥yni

− T myni

∥∥ = 0 for all m ∈ N.
It follows from Lemma 2.6 that z ∈ F(T ). From Lemma 2.13 and (31), we obtain
that z ∈ F(G). Then, z ∈ F(T ) ∩ F(G). Since E admits a weakly sequentially
continuous duality mapping j and {xn} is bounded, we obtain

lim sup
n→∞

〈f (q) − θF (q), j (xn − q)〉 = lim
i→∞

〈
f (q) − θF (q), j (xni

− q)
〉

= 〈f (q) − θF (q), j (z − q)〉 ≤ 0,

which implies that (35) holds. By (19) and noticing that j is also norm-norm
uniformly continuous on bounded subsets of C , we have that

lim sup
n→∞

〈f (q) − θF (q), j (xn+1 − q)〉 ≤ 0. (36)

Finally, we prove that xn → q as n → ∞. It follows from xn+1 = PCvn and
Proposition 2.3 (c) that

〈PCvn − vn, j (PCvn − q)〉 ≤ 0,

which implies
〈xn+1 − vn, j (xn+1 − q)〉 ≤ 0.

Then, we have

‖xn+1 − q‖2

= 〈xn+1 − vn, j (xn+1 − q)〉 + 〈vn − q, j (xn+1 − q)〉
≤ 〈vn − q, j (xn+1 − q)〉
= 〈

αn(f (xn) − θFq) + [I − αnθF ](T nyn − q), j (xn+1 − q)
〉

= αn 〈f (xn) − f (q), j (xn+1 − q)〉 + αn 〈f (q) − θFq, j (xn+1 − q)〉
+ 〈[I − αnθF ](T nyn − q), j (xn+1 − q)

〉

≤ αnγ ‖xn − q‖ ‖xn+1 − q‖ + (1 − αnγ̄ θ)(‖yn − q‖ + cn) ‖xn+1 − q‖
+αn 〈f (q) − θFq, j (xn+1 − q)〉

≤ [1 − αn(γ̄ θ − γ )] ‖xn − q‖ ‖xn+1 − q‖ + cnM4 + αn 〈f (q) − θFq, j (xn+1 − q)〉
≤ 1 − αn(γ̄ θ − γ )

2
[‖xn − q‖2 + ‖xn+1 − q‖2] + cnM4 + αn 〈f (q) − θFq, j (xn+1 − q)〉

≤ 1

2
‖xn+1 − q‖2 + 1 − αn(γ̄ θ − γ )

2
‖xn − q‖2 + cnM4 + αn 〈f (q) − θFq, j (xn+1 − q)〉 ,
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which implies

‖xn+1 − q‖2 ≤ [1−αn(γ̄ θ −γ )] ‖xn − q‖2 +αn(γ̄ θ −γ )
2 〈f (q) − θFq, j (xn+1 − q)〉

γ̄ θ − γ
+2cnM4,

(37)

where

M4 = sup
n≥1

‖xn+1 − q‖ .

Apply Lemma 2.5 to (37), we have xn → q as n → ∞. This completes the proof.

The following results can be easily deduced from Theorem 3.1. We omit the
details.

Corollary 3.2 Let C be a nonempty, closed, and convex subset of a 2-uniformly
smooth and uniformly convex Banach space E which admits a weakly sequentially
continuous duality mapping and C a sunny nonexpansive retract of E. Let PC be the
sunny nonexpansive retraction from E to C. Let the mappings A, B : C → E be
α-inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let T :
C → C be an asymptotically nonexpansive mapping in the intermediate sense with
F(T ) ∩ F(G) �= ∅, where G : C → C is a mapping defined by Lemma 2.11.
Let f : C → C be a strict contraction with coefficient γ ∈ [0, 1). Assume that∑∞

n=1 cn < ∞, where cn is defined by (6). Pick any x1 ∈ C. Let {xn} be a sequence
generated by ⎧⎨

⎩
zn = PC(xn − μBxn),

yn = PC(zn − λAzn),

xn+1 = αnf (xn) + (1 − αn)T
nyn,

(38)

where 0 < λ < α

K2 and 0 < μ <
β

K2 . Suppose that {αn} is a real sequence in [0, 1]
satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii)

∑∞
n=1 |αn+1 − αn| < ∞.

If
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞. Then, {xn} converges strongly to q ∈ F(T ) ∩
F(G), which is also the solution of the variational inequality:

〈f (q) − q, j (p − q)〉 ≤ 0 ∀p ∈ F(T ) ∩ F(G).

Corollary 3.3 Let C be a nonempty, closed, and convex subset of a 2-uniformly
smooth and uniformly convex Banach space E which admits a weakly sequentially
continuous duality mapping and C a sunny nonexpansive retract of E. Let PC be the
sunny nonexpansive retraction from E to C. Let the mappings A, B : C → E be
α-inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let T :
C → C be an asymptotically nonexpansive mapping with F(T ) ∩ F(G) �= ∅, where
G : C → C is a mapping defined by Lemma 2.11. Let f : C → C be a strict
contraction with coefficient γ ∈ [0, 1) and F : C → C be a strongly positive linear
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bounded operator with the coefficient γ̄ such that 0 < γ < γ̄ θ and 0 < θ ≤ ‖F‖−1.
Pick any x1 ∈ C. Let {xn} be a sequence generated by

⎧⎨
⎩

zn = PC(xn − μBxn),

yn = PC(zn − λAzn),

xn+1 = PC[αnf (xn) + (I − αnθF )T nyn],
(39)

where 0 < λ < α

K2 and 0 < μ <
β

K2 . Suppose that {αn} is a real sequence in [0, 1]
satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii)

∑∞
n=1 |αn+1 − αn| < ∞.

If
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞. Then, {xn} converges strongly to q ∈ F(T ) ∩
F(G), which is also the solution of the variational inequality:

〈f (q) − θFq, j (p − q)〉 ≤ 0 ∀p ∈ F(T ) ∩ F(G).

Corollary 3.4 LetC be a nonempty, closed, and convex subset of a real Hilbert space
H . Let the mappings A, B : C → H be α-inverse-strongly accretive and β-inverse-
strongly accretive, respectively. Let T : C → C be an asymptotically nonexpansive
mapping with F(T ) ∩ F(G) �= ∅, where G : C → C is a mapping defined by
Lemma 2.11. Let f : C → C be a strict contraction with coefficient γ ∈ [0, 1) and
F : C → C be a strongly positive linear bounded operator with the coefficient γ̄

such that 0 < γ < γ̄ θ and 0 < θ ≤ ‖F‖−1. Pick any x1 ∈ C. Let {xn} be a sequence
generated by

⎧⎨
⎩

zn = PC(xn − μBxn),

yn = PC(zn − λAzn),

xn+1 = PC[αnf (xn) + (I − αnθF )T nyn],
(40)

where 0 < λ < 2α and 0 < μ < 2β. Suppose that {αn} is a real sequence in [0, 1]
satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii)

∑∞
n=1 |αn+1 − αn| < ∞.

If
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞. Then, {xn} converges strongly to q ∈ F(T ) ∩
F(G), which is also the solution of the variational inequality:

〈f (q) − θFq, p − q〉 ≤ 0 ∀p ∈ F(T ) ∩ F(G).

Remark 3.5 Theorem 3.1 improves and extends Theorem 3.3 of Cai et al. [17] in the
following aspects:

(i) From asymptotically nonexpansive mapping to asymptotically nonexpansive
mapping in the intermediate sense.

(ii) We add a strongly positive linear bounded operator in our iterative algorithm.
(iii) The assumption of {αn} of Theorem 3.1 is different from Theorem 3.3 of Cai

et al. [17].
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According to the proof of Theorem 3.1, we know that {yn} is bounded.
We now give some examples of mappings that satisfy the condition∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞ of Theorem 3.1.

Example 3.6 Let T : C → C be a strict contraction with a constant β ∈ (0, 1) and
let {xn} be a bounded sequence in C, then

∥∥∥T n+1xn − T nxn

∥∥∥ ≤ βn ‖T xn − xn‖ ≤ βnK1,

where K1 is a constant such that K1 = supn≥1 ‖T xn − xn‖. Then, we have

∞∑
n=1

∥∥∥T n+1xn − T nxn

∥∥∥ ≤
∞∑

n=1

βnK1 < ∞.

Example 3.7 Let C be a nonempty, closed, and convex subset of a Banach space.
Define mapping T : C → C as T nx = (1 + 2

n
)x for any x ∈ C. It is easy to see that

T is asymptotically nonexpansive mapping in the intermediate sense. Let {xn} be a
bounded sequence in C, we observe

∥∥∥T n+1xn − T nxn

∥∥∥ = 2

n(n + 1)
‖xn‖ ≤ 2

n2
‖xn‖ ≤ 2

n2
K2,

where K2 is a constant such that K2 = supn≥1 ‖xn‖. Hence, we obtain

∞∑
n=1

∥∥∥T n+1xn − T nxn

∥∥∥ ≤
∞∑

n=1

2

n2
K2 < ∞.

Example 3.8 Define a mapping T : R → R as T nx = x + 1
n

for all x ∈ R. Then, for
any x, y ∈ R, we have

|T nx − T ny| = |x + 1

n
− y − 1

n
| = |x − y|.

So T is asymptotically nonexpansive mapping in the intermediate sense. Moreover,
for all x ∈ R, we obtain

|T n+1x − T nx| = |x + 1

n + 1
− x − 1

n
| = 1

n(n + 1)
≤ 1

n2
.

It follows that
∞∑

n=1

|T n+1x − T nx| ≤
∞∑

n=1

1

n2
< ∞.

4 Applications

Now, we give an application to variational inequality problem for strict pseudocon-
tractive mappings.
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A mapping T : C → C is called to be λ-strict pseudocontractive if there exists a
fixed constant λ ∈ (0, 1) such that

〈T x − Ty, j (x − y)〉 ≤ ‖x − y‖2 − λ ‖(I − T )x − (I − T )y‖2 , (41)

for some j (x − y) ∈ J (x − y) and for every x, y ∈ C. A simple computation shows
that (41)s is equivalent to the following inequality:

〈(I − T )x − (I − T )y, j (x − y)〉 ≥ λ ‖(I − T )x − (I − T )y‖2 (42)

for some j (x − y) ∈ J (x − y) and for every x, y ∈ C. Therefore, I −T is λ-inverse-
strongly accretive.

By Theorem 3.1, we can obtain the following results easily.

Theorem 4.1 Let C be a nonempty, closed, and convex subset of a 2-uniformly
smooth and uniformly convex Banach space E which admits a weakly sequentially
continuous duality mapping. Let PC be the sunny nonexpansive retraction from E

to C. Let the mappings A, B : C → C be α-strict pseudocontractive and β-strict
pseudocontractive, respectively. Let T : C → C be an asymptotically nonexpansive
mapping in the intermediate sense with F(T ) ∩ F(G) �= ∅, where G : C → C is a
mapping defined by Lemma 2.11. Let f : C → C be a strict contraction with coef-
ficient γ ∈ [0, 1) and F : C → C be a strongly positive linear bounded operator
with the coefficient γ̄ such that 0 < γ < γ̄ θ and 0 < θ ≤ ‖F‖−1. Assume that∑∞

n=1 cn < ∞, where cn is defined by (6). Pick any x1 ∈ C. Let {xn} be a sequence
generated by ⎧⎨

⎩
zn = (1 − μ)xn + μBxn,

yn = (1 − λ)zn + λAzn,

xn+1 = PC[αnf (xn) + (I − αnθF )T nyn],
(43)

where 0 < λ < α

K2 and 0 < μ <
β

K2 . Suppose that {αn} is a real sequence in [0, 1]
satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii)

∑∞
n=1 |αn+1 − αn| < ∞.

If
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞. Then, {xn} converges strongly to q ∈ F(T ) ∩
F(G), which is also the solution of the variational inequality:

〈f (q) − θFq, j (p − q)〉 ≤ 0 ∀p ∈ F(T ) ∩ F(G).

Theorem 4.2 Let C be a nonempty, closed, and convex subset of a 2-uniformly
smooth and uniformly convex Banach space E which admits a weakly sequentially
continuous duality mapping. Let PC be the sunny nonexpansive retraction from E

to C. Let the mappings A, B : C → C be α-strict pseudocontractive and β-strict
pseudocontractive, respectively. Let T : C → C be an asymptotically nonexpan-
sive mapping with F(T ) ∩ F(G) �= ∅, where G : C → C is a mapping defined by
Lemma 2.11. Let f : C → C be a strict contraction with coefficient γ ∈ [0, 1) and
F : C → C be a strongly positive linear bounded operator with the coefficient γ̄
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such that 0 < γ < γ̄ θ and 0 < θ ≤ ‖F‖−1. Pick any x1 ∈ C. Let {xn} be a sequence
generated by ⎧⎨

⎩
zn = (1 − μ)xn + μBxn,

yn = (1 − λ)zn + λAzn,

xn+1 = PC[αnf (xn) + (I − αnθF )T nyn],
(44)

where 0 < λ < α

K2 and 0 < μ <
β

K2 . Suppose that {αn} is a real sequence in [0, 1]
satisfying the following conditions:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;
(ii)

∑∞
n=1 |αn+1 − αn| < ∞.

If
∑∞

n=1

∥∥T n+1yn − T nyn

∥∥ < ∞. Then, {xn} converges strongly to q ∈ F(T ) ∩
F(G), which is also the solution of the variational inequality:

〈f (q) − θFq, j (p − q)〉 ≤ 0 ∀p ∈ F(T ) ∩ F(G).

5 Numerical example

Numerical examples of the problem considered in Section 3 (Theorem 3.1) are given
in this section. The stability, effectiveness, and easy implementation of the algorithm
(3.1) considered in Theorem 3.1 is demonstrated and comparison is made with algo-
rithm (11) in Cai et al. [17]. All codes were written in Matlab 2014b and run on Dell
i − 5 Dual-Core laptop.

Example 5.1 Let E = L2([0, 1]) and C be defined as C := {g ∈ L2([0, 1]) :∫ 1
0 tg(t)dt ≥ 0}. Suppose that A, B : C → E are defined by (Ax)(t) := ax(t) =

(Bx)(t), where 0 < a < 1. Furthermore, we define T : C → C by (T x)(t) := bx(t),
for some 0 < b < 1. Then, for all x, y ∈ C, we have

〈Ax − Ay, x − y〉 = 〈ax − ay, x − y〉
= a〈x − y, x − y〉 = a||x − y||2
≥ a2||x − y||2 = ||ax − ay||2
= ||Ax − Ay||2,

which implies that A (and hence B) is inverse-strongly accretive. Also, for every
x, y ∈ C, we have

||T nx − T ny|| = ||bn(x − y)||
= bn||x − y||
≤ (1 + bn)||x − y||,

which implies that T is asymptotically nonexpansive with kn = 1 + bn, ∀n ≥ 1.
Furthermore, it is easy to see that lim

n→∞||T n+1xn − T nxn|| = 0 for any bounded

sequence {xn} ⊂ C since for some M > 0, we have that

0 ≤ ||T n+1xn − T nxn|| = ||bnxn(b − 1)||
= bn(1 − b)||xn|| ≤ bn(1 − b)M.
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Table 1 Example 5.1, Case I: Algorithm 45 and Algorithm (11) in Cai et al. [17]

(λ, μ) (0.01, 0.01) (0.19, 0.19) (0.19, 0.01) (0.01, 0.19)

Alg. 45 No. of iterations 7 7 7 7

cpu (time) 0.0040 0.0044 0.0041 0.0041

G. Cai et al. Alg. (11) No. of iterations 17 17 17 17

cpu (time) 0.0055 0.0062 0.0068 0.0064

Next, we observe that problem (15) in the context of our choice of operators A and
B here has solution p = 0, a.e on [0, 1]. Similarly, F(T ) = {x ∈ C : x = 0, a.e.}.
Hence, 0 ∈ F(T ) ∩ F(G). Now, using the algorithm 16 of Theorem 3.1, we choose
αn = 1

n+1 . Then, all the assumptions are satisfied. Clearly, (f x)(t) = 1
2x(t) is a

contraction with γ = 1
2 . We then have the metric projection PC as

PC(x) = x − 〈c, x〉
||c||22

.

By our choices above with θ = 1 and F = I , our iterative algorithm 16 reduces to
the following algorithm:⎧⎪⎨

⎪⎩

zn = PC[(1 − μa)xn], n ≥ 1,

yn = PC[(1 − λa)zn],
xn+1 = PC

[
1

2(n+1)
xn +

(
1 − 1

n+1

)
bnyn

]
.

(45)
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Fig. 1 Example 5.1, Case I with (λ, μ) = (0.01, 0.01)
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We compare our algorithm (45) and algorithm (11) in Cai et al. [17]. Different
choices of x1, λ, and μ are used with ||xn+1−xn||

||x2−x1|| < 10−6 as stopping criterion for
fixed a = b = 0.1.

Case I: Consider x1 = 3e2t and different (λ, μ) = (0.01, 0.01), (λ, μ) =
(0.19, 0.19), (λ, μ) = (0.19, 0.01) and (λ, μ) = (0.01, 0.19). The
numerical results are displayed in Table 1 and the graphs are given in
Figs. 1, 2, 3 and 4.

Case II: Consider x1 = 3t2 + 2t + 5 and different (λ, μ) = (0.01, 0.01),
(λ, μ) = (0.19, 0.19), (λ, μ) = (0.19, 0.01), and (λ, μ) = (0.01, 0.19).
The numerical results are displayed in Table 2 and the graphs are given in
Figs. 5, 6, 7 and 8.

Remark 5.2 1. The numerical results from Example 5.1 above show that both the
algorithm (45) and Algorithm (11) in Cai et al. [17] are very efficient, consistent
across different choices of λ and μ. Irrespective of the choice of initial guess,
there is no significant difference in the number of iterations and the cpu time
taken for both algorithms.

2. Clearly from Tables 1–2 and Figs. 1–8 obtained for the Example 5,1, the
proposed algorithm is faster and has fewer number of iterations compare to
Algorithm (11) in Cai et al. [17].

3. This Example 5.1 also displays the simple nature of the implementation of the
proposed algorithm and so, it can easily be applied.
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Fig. 2 Example 5.1, Case I with (λ, μ) = (0.19, 0.19)
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Fig. 3 Example 5.1, Case I with (λ, μ) = (0.19, 0.01)
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Fig. 4 Example 5.1, Case I with (λ, μ) = (0.01, 0.19)
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Table 2 Example 5.1, Case II: Algorithm 45 and Algorithm (11) in Cai et al. [17]

(λ, μ) (0.01, 0.01) (0.19, 0.19) (0.19, 0.01) (0.01, 0.19)

Alg. 45 No. of iterations 8 8 8 8

cpu (time) 0.0046 0.0047 0.0048 0.0047

G. Cai et al. Alg. (11) No. of iterations 17 17 17 17

cpu (time) 0.0066 0.0067 0.0055 0.0064

Example 5.3 We next compare in real Hilbert space, our proposed algorithm (3.1)
with algorithm (12) studied by Ceng et al. [9].

Let E = L2([0, 1]) and C be defined as C := {g ∈ L2([0, 1]) : ∫ 1
0 tg(t)dt ≥ 0}.

Suppose that A, B : C → E are defined by (Ax)(t) := ax(t) = (Bx)(t), where
0 < a < 1. Furthermore, we define S = T : C → C by (T x)(t) := bx(t), for
some 0 < b < 1. Then, it is easy to see that A and B are inverse-strongly monotone
and S and T are nonexpansive mapping with F(S) = F(T ). Also, by Example 5.1,
T satisfies the condition lim

n→∞||T n+1xn − T nxn|| = 0 for any bounded sequence

{xn} ⊂ C. Furthermore, F(T ) = {x ∈ C : x = 0, a.e.} and 0 ∈ F(T ) ∩ F(G).
Now, using the algorithm (16) of Theorem 3.1, we choose αn = 1

n+1 . Then, all the
assumptions are satisfied. Let f := u, where u is a fixed constant. Recall that the
metric projection PC is

PC(x) = x − 〈c, x〉
||c||22

.
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Fig. 5 Example 5.1, Case II with (λ, μ) = (0.01, 0.01)
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Fig. 6 Example 5.1, Case II with (λ, μ) = (0.19, 0.19)
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Fig. 7 Example 5.1, Case II with (λ, μ) = (0.19, 0.01)
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Fig. 8 Example 5.1, Case II with (λ, μ) = (0.01, 0.19)

Choose θ = 1 and F = I , our iterative algorithm (16) reduces to the following
algorithm:

⎧⎪⎨
⎪⎩

zn = PC[(1 − μa)xn], n ≥ 1,

yn = PC[(1 − λa)zn],
xn+1 = PC

[
1

n+1u +
(

1 − 1
n+1

)
byn

]
.

(46)

Furthermore with these choices, the algorithm (12) studied by Ceng et al. [9]
becomes (with αn = 1

n+1 , βn = n
4(n+1)

and γn = 3n
4(n+1)

)

⎧⎨
⎩

x1 = u ∈ C,

yn = PC[(1 − μa)xn],
xn+1 = 1

n+1u + n
4(n+1)

xn + 3n
4(n+1)

bPC[(1 − λa)yn].
(47)

Table 3 Example 5.3, Case I: Comparison between our proposed algorithm 46 and Ceng et al. algorithm
47

(λ, μ) (0.01, 0.01) (0.19, 0.19) (0.19, 0.01) (0.01, 0.19)

Proposed Alg. 46 No. of iterations 6 6 6 6

cpu (time) 0.017825 0.017018 0.015655 0.015826

Ceng et al. Alg. 47 No. of iterations 292 291 292 291

cpu (time) 0.74563 0.76279 0.71296 0.70151
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We compare our algorithm (46) and algorithm (47) with different choices of x1, λ

and μ are used with ||xn+1−xn||
||x2−x1|| < 10−6 as stopping criterion for fixed a = b = 0.1

and u = 2t .

Case I: Consider x1 = t3 + 5t2 − t + 20 and different (λ, μ) = (0.01, 0.01),
(λ, μ) = (0.19, 0.19), (λ, μ) = (0.19, 0.01) and (λ, μ) = (0.01, 0.19).
The numerical results are displayed in Table 3 and the graphs are given in
Figs. 9, 10, 11, and 12.

Case II: Consider x1 = 3t2 + 2t + 5 and different (λ, μ) = (0.01, 0.01),
(λ, μ) = (0.19, 0.19), (λ, μ) = (0.19, 0.01) and (λ, μ) = (0.01, 0.19).
The numerical results are displayed in Table 4 and the graphs are given in
Figs. 13, 14, 15, and 16.

Remark 5.4 1. This Example 5.3 also support the arguments as in Example 5.1
regarding our proposed in the sense that it is very efficient, reliable, consistent
across different choices of λ and μ, and very fast with very small number of
iterations required for convergence.

2. We can see from the comparison Tables 3 and 4 and the Fig. 9, 10, 11, 12, 13, 14,
15, and 16 obtained for this Example 5.3 that our proposed algorithm is faster
(about 400 % faster) and has fewer number of iterations compare to Ceng et al.
[9] Algorithm 47.
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Fig. 9 Example 5.3, Case I with (λ, μ) = (0.01, 0.01)
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Fig. 10 Example 5.3, Case I with (λ, μ) = (0.19, 0.19)
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Fig. 11 Example 5.3, Case I with (λ, μ) = (0.19, 0.01)
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Fig. 12 Example 5.3, Case I with (λ, μ) = (0.01, 0.19)

Example 5.5 Let inner product < ·, · >: R3 × R
3 → R be defined by

〈x, y〉 = x · y = x1 · y1 + x2 · y2 + x3 · y3

and the usual norm ‖·‖ : R
3 → R is defined by ‖x‖ =

√
x2

1 + y2
1 + z2

1 for all

x = (x1, x2, x3), y = (y1, y2, y3) ∈ R
3. For all x ∈ R, let T , A, B, F, f : R3 → R

3

be defined by T nx = n+1
n

x, Ax = 1
4x, Bx = 1

5x, Fx = x and f (x) = 1
2x,

respectively. Let αn = 1
2n

for all n ∈ N and λ = 1
5 , μ = 1

4 , θ = 1
2 . Let {xn} be a

sequence generated by (16), then {xn} converges strongly to 0.
It is easy to see that F(T ) ∩ F(G) = {0}, where G is defined by Lemma 2.11. We

rewrite (16) as follows:

xn+1 = 1444n2 + 1483n − 361

1600n2
xn. (48)

Choosing x1 = (1, 2, 3) in (48), we have the following numerical results in Figs. 17
and 18.

Table 4 Example 5.3, Case II: Comparison between our proposed algorithm 46 and Ceng et al. algorithm 47

(λ, μ) (0.01, 0.01) (0.19, 0.19) (0.19, 0.01) (0.01, 0.19)

Proposed Alg. 46 No. of iterations 6 6 6 6

cpu (time) 0.017115 0.016997 0.016146 0.018949

Ceng et al. Alg. 47 No. of iterations 392 392 392 392

cpu (time) 0.98679 0.94996 0.99117 0.97754
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Fig. 13 Example 5.3, Case II with (λ, μ) = (0.01, 0.01)
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Fig. 14 Example 5.3, Case II with (λ, μ) = (0.19, 0.19)
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Fig. 15 Example 5.3, Case II with (λ, μ) = (0.19, 0.01)
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Fig. 16 Example 5.3, Case II with (λ, μ) = (0.01, 0.19)
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Fig. 17 Example 5.5: Two Dimension

Fig. 18 Example 5.5: Three Dimension
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6 Conclusions

Recently, the algorithms for the existence of common fixed points for a finite family
of nonexpansive mappings has been studied by many authors (see [35–38] and the
references therein). For example, the well-known convex feasibility problem reduces
to finding a point in the intersection of the fixed point sets of a family of nonexpan-
sive mappings [37]. The problem of finding an optimal point that minimizes a given
cost function over the set of common fixed points of a family of nonexpansive map-
pings is of wide interdisciplinary interest and practical importance [36]. A simple
algorithmic solution to the problem of minimizing a quadratic function over the set
of common fixed points of a family of nonexpansive mappings is of extreme value in
many applications including set theoretic signal estimation [38]. On the other hand,
variational inequality theory has many applications in pure and applied sciences.
There are some numerical methods for solving variational inequality problems and
related optimization problems. An important method to solve variational inequality
problem is translating into fixed point problem. In this paper, by using a modified
extragradient method, we study a generalized viscosity algorithm for finding a com-
mon element for the set of fixed points of one asymptotically nonexpansive mapping
in the intermediate sense and the set of solutions of variational inequality problems
for two inverse-strongly monotone operators in 2-uniformly smooth and uniformly
convex Banach spaces. We also give three numerical examples to support our main
results.
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