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Abstract In this paper, trigonometrically fitted multi-step Runge-Kutta (TFM-
SRK) methods for the numerical integration of oscillatory initial value problems
are proposed and studied. TFMSRK methods inherit the frame of multi-step
Runge-Kutta (MSRK) methods and integrate exactly the problem whose solu-
tions can be expressed as the linear combinations of functions from the set of
{exp(iwt), exp(−iwt)}, or equivalently the set {cos(wt), sin(wt)}, where w repre-
sents an approximation of the main frequency of the problem. The general order
conditions are given and four new explicit TFMSRK methods with order three and
four, respectively, are constructed. Stability of the new methods is examined and
the corresponding regions of stability are depicted. Numerical results show that our
new methods are more efficient in comparison with other well-known high quality
methods proposed in the scientific literature.
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1 Introduction

In this paper, we are concerned with the effective numerical integration of the initial
value problem of first-order differential equations in the form

{
y′(t) = f (t, y(t)), t ∈ [t0, T ],
y(t0) = y0,

(1)

whose solution has a oscillatory character, where y ∈ Rd , f : [t0, T ] × Rd → Rd is
sufficiently differentiable. Such a problem often arises in different fields of applied
sciences such as celestial mechanics, molecular dynamics, quantum mechanics, and
electronics [1–4]. Regarding the oscillatory feature of the problem (1), researchers
have proposed to develop integrators with frequency-dependent coefficients by some
techniques like trigonometrical/exponential fitting (see [5–9]). Early presentations
of these techniques are due to Gautschi [10] and Lyche [11]. Since then, a lot
of exponentially fitted linear multi-step methods have been proposed. Recently, in
the context of Runge-Kutta (RK) methods, exponentially fitted methods have been
considered, for instance, in [12, 13], while their trigonometrically fitted version
has been developed by Paternoster in [14]. All of these methods integrates exactly
first-order system (1) whose solution can be expressed as linear combination of func-
tions from the the set of functions {exp(iwt), exp(−iwt)} or equivalently the set
{cos(wt), sin(wt)}.

Multi-step Runge-Kutta (MSRK) methods have been developed by Burrage [15,
16]. In fact, multi-step Runge-Kutta methods belong to the class of general lin-
ear methods considered by Butcher [17]. Further more, a general class of two-step
Runge-Kutta methods that depend on stage values at two consecutive steps was stud-
ied by Jackiewicz et al. [18, 19]. For further study of general two-step Runge-Kutta
methods, we see [20–25]. An advantage of the MSRK methods over classical RK
methods is that they can reach higher order with fewer function evaluations

Inspired by the previous work, in this paper, we will extend the idea of trigono-
metrical fitting to MSRK methods. The rest of this paper is organized as follows:
In Section 2, we restate the general formulation of MSRK methods for the initial
value problems (1). In Section 3, trigonometrical fitting conditions and algebraic
order conditions for trigonometrically fitted MSRK (TFMSRK) methods are pre-
sented. In Section 4, the stability properties are analyzed. With the order conditions,
four new explicit TFMSRK methods of order three and four, respectively, are con-
structed in Section 5. In Section 6, numerical experiments are carried out and the
numerical results show the robustness of the new methods. Section 7 is concerned
with conclusions and discussions.

2 Multi-step Runge-Kutta methods

Multi-step Runge-Kutta (MSRK) methods for the first-order differential system (1)
are given in the following definition (see [15, 16]).
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Definition 1 An s-stage l-step Runge-Kutta method for the numerical integration of
the problem (1) is defined as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Yi =

l∑
k=1

uikyn−k+1 + h
s∑

j=1
aij f

(
tn + cjh, Yj

)
, i = 1, · · · , s,

yn+1 =
l∑

k=1
ηkyn−k+1 + h

s∑
i=1

bif (tn + cih, Yi) ,

(2)

where ci , uik , aij , ηk , and bi with i, j = 1, · · · , s, k = 1, · · · , l are all real
coefficients.

The method (2) can also be expressed briefly in the Butcher-type tableau as

or equivalently by the quintuplet (c, U, A, η, b). In the rest of this paper, under the
following conditions

l∑
k=1

uik = 1,
l∑

k=1

ηk = 1, (3)

we restrict ourselves to the autonomous case of the form{
y′(t) = f (y(t)), t ∈ [t0, T ],
y(t0) = y0.

(4)

The conditions for an MSRK method (2) to have algebraic order of accuracy p have
been investigated in [4, 15, 16] by using the theory of B-series. Firstly, the reader is
referred to those references for all the definitions and notations. As it is usual in the
case of RK methods, the local truncation error can be expanded in the form

y(tn+1)−yn+1 =
∑
t∈T

hρ(t)

ρ(t)!α(t)

(
1 −

l∑
k=1

ηk(1 − k)ρ(t) −
s∑

i=1

biψ
′
i (t)

)
F(t)(y(tn)),

(5)
where the values ψ ′

i (t) are given recursively by

ψi(t) =
l∑

k=1

ηk(1 − k)ρ(t) +
s∑

j=1

aijψ
′
j (t),

and
ψ ′

j (∅) = 0, ψ ′
j (τ ) = 1,

ψ ′
j (t) = ρ(t)

∏m
i=1 ψj(ti), f or t = [t1, · · · , tm] ∈ T .

(6)

The set T of rooted trees t , functions ρ(t), α(t) and F(t)(y) are defined in [3, 4].
Therefore, we restate the conditions for an MSRK method having order p as follows
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Theorem 1 For exact starting values (the local assumptions) yn−k+1 = y(tn+(−k+
1)h), k = 1, · · · , l, the MSRK method (2) is convergent of order p if and only if

1 =
l∑

k=1

ηk(1 − k)ρ(t) +
s∑

i=1

biψ
′
i (t), (7)

where ρ(t) ≤ p and t ∈ T .

3 Trigonometrically fitting conditions and order conditions

The idea of constructing methods which integrate exactly a set of linearly indepen-
dent functions different of the polynomials has been proposed by several authors [12,
13]. This idea consists of selecting the available parameter of MSRK method (2) in
order to make the method exact for a linear space of functions with basis

F = 〈 ϕ1(t), ϕ2(t), · · · , ϕr(t) 〉, r ≤ s.

In such case, the following conditions should be satisfied

ϕm(tn + cih) =
l∑

k=1
uikϕm(tn + (−k + 1)h) + h

s∑
j=1

aijϕ
′
m(tn + cjh),

i = 1, · · · , s, m = 1, · · · , r,

ϕm(tn + h) =
l∑

k=1
ηkϕm(tn + (−k + 1)h) + h

s∑
i=1

biϕ
′
m(tn + cih), m = 1, · · · , r.

When F contains only polynomial functions up to a certain degree (um(t) = tm+1)
the corresponding methods are the standard multi-step Runge-Kutta methods. Here,
we consider the following exponential functions as reference set of functions:

F1 = 〈 exp(iwt), exp(−iwt) 〉, with i2 = −1.

This leads to the following equations

exp (±iciv) =
l∑

k=1
uik exp (±i(1 − k)v) ± iv

s∑
j=1

aij exp (±icj v), i = 1, · · · , s,

exp (±iv) =
l∑

k=1
ηk exp (±i(1 − k)v) ± iv

s∑
i=1

bi exp (±iciv), v = wh.
(8)
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With the Euler formula exp(±iv) = cos(v) ± i sin(v), (9) are equivalent to the
following trigonometrical fitting (TF) conditions:

sin (civ) =
l∑

k=1
uik sin ((1 − k)v) + v

s∑
j=1

aij cos (cj v),

cos (civ) =
l∑

k=1
uik cos ((1 − k)v) − v

s∑
j=1

aij sin (cj v), i = 1, · · · , s,

sin (v) =
l∑

k=1
ηk sin ((1 − k)v) + v

s∑
i=1

bi cos (civ),

cos (v) =
l∑

k=1
ηk cos ((1 − k)v) − v

s∑
i=1

bi sin (civ).

(9)

An MSRK method (2) satisfying the TF conditions (9) will be called a trigonometri-
cally fitted MSRK (TFMSRK) method.

Now we study the order of accuracy for TFMSRK methods. In order to analyze
the conditions so that the local truncation error satisfies

y(tn + h) − yn+1 = O(hp+1),

we must have in mind that uik , aij , ηk , and bi also vary as the functions of the step-
size (they vary as functions of v = wh). So we have the following theorem on the
algebraic order.

Theorem 2 For exact starting values (the local assumptions) yn−k+1 = y(tn+(−k+
1)h), k = 1, · · · , l, the TFMSRK method (2) is convergent of order p if and only if

1 =
l∑

k=1

ηk(1 − k)ρ(t) +
s∑

i=1

biψ
′
i (t) + O(vp+1−ρ(t)), (10)

where ρ(t) ≤ p and t ∈ T .

Proof The “if” part is an immediate consequence of (5) and (10). Next we prove
the “only if” part. If a TFMSRK method is convergent of order p, the conditions (5)
imply that

1 −
l∑

k=1

ηk(1 − k)ρ(t) −
s∑

i=1

biψ
′
i (t) = O(hp+1−ρ(t)), (11)

for ρ(t) ≤ p and t ∈ T . In the conditions (11), ηk , bi , and ψi depend on v = wh,
which means that w and h appear in the form v. So the result is achieved.

Remark 1 As it may be observed, when the parameter v = hw → 0, conditions (10)
become the same as the standard conditions (7) for p-th order multi-step Runge-Kutta
methods.
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Remark 2 When p becomes bigger, the number of independent conditions to be
satisfied for order p becomes larger. In this case, the simplifying conditions

s∑
j=1

aij c
α
j = 1

α + 1

(
cα+1
i −

l∑
k=1

uik(1 − k)α+1

)
, α = 0, 1, 2, · · · (12)

can reduce the number of independent order conditions. The first and most important
simplifying condition is

s∑
j=1

aij = ci −
l∑

k=1

uik(1 − k).

For more simplifying conditions, we see [4, 15, 16].

Now we list the p-th order conditions (10) up to trees with ρ(t) ≤ 4.

• For the SN-trees τ (ρ(τ) = 1) and t with ρ(t) = 2, we have
s∑

i=1
bi = 1 −

l∑
k=1

ηk(1 − k) + O(vp),

s∑
i=1

bi

(
l∑

k=1
uik(1 − k) +

s∑
j=1

aij

)
= 1

2

(
1 −

l∑
k=1

ηk(1 − k)2
)

+ O(vp−1).

• For the SN-trees t with ρ(t) = 3, we have
s∑

i=1
bi

(
l∑

k=1
uik(1 − k) +

s∑
j=1

aij

)2

= 1
3

(
1 −

l∑
k=1

ηk(1 − k)3
)

+ O(vp−2),

s∑
i=1

bi

(
l∑

k=1
uik(1 − k)2 + 2

s∑
j=1

aij

(
l∑

k=1
ujk(1 − k) +

s∑
k=1

ajk

))

= 1
3

(
1 −

l∑
k=1

ηk(1 − k)3
)

+ O(vp−2).

• For the SN-trees t with ρ(t) = 4, we have
s∑

i=1
bi

(
l∑

k=1
uik(1 − k) +

s∑
j=1

aij

)3

= 1
4

(
1 −

l∑
k=1

ηk(1 − k)4
)

+ O(vp−3),

s∑
i=1

bi

(
l∑

k=1
uik(1−k)+

s∑
j=1

aij

)(
l∑

k=1
uik(1 − k)2 + 2

s∑
j=1

aij

(
l∑

k=1
ujk(1 − k) +

s∑
k=1

ajk

))

= 1
4

(
1 −

l∑
k=1

ηk(1 − k)4
)

+ O(vp−3),

s∑
i=1

bi

(
l∑

k=1
uik(1 − k)3 + 3

s∑
j=1

aij

(
l∑

k=1
ujk(1 − k) +

s∑
k=1

ajk

)2)

= 1
4

(
1 −

l∑
k=1

ηk(1 − k)4
)

+ O(vp−3),

s∑
i=1

bi

(
l∑

k=1
uik(1 − k)3 + 3

s∑
j=1

aij

(
l∑

k=1
ujk(1 − k)2 + 2

s∑
k=1

ajk

(
l∑

q=1
ukq(1 − q) +

s∑
q=1

akq

)))

= 1
4

(
1 −

l∑
k=1

ηk(1 − k)4
)

+ O(vp−3).

To end this section, we present some properties related with the algebraic order
reached by the TFMSRK methods.
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Proposition 1 An TFMSRK method satisfies the following relations

s∑
i=1

bi = 1 −
l∑

k=1
ηk(1 − k) + O(v2),

s∑
i=1

bici = 1
2

(
1 −

l∑
k=1

ηk(1 − k)2
)

+ O(v2),

s∑
j=1

aij = ci −
l∑

k=1
uik(1 − k) + O(v2),

s∑
j=1

aij cj = 1
2

(
c2i −

l∑
k=1

uik(1 − k)2
)

+ O(v2).

(13)

Proof First of all, we prove the second expression. Using the final condition given in
(9) and express the trigonometric function, we have

∞∑
m=0

(−1)mv2m

(2m)!

(
1 −

l∑
k=1

ηk(1 − k)2m

)
=

∞∑
m=0

(−1)mv2m

(2m + 1)!

(
−v2

s∑
i=1

bic
2m+1
i

)
.

With (3) in mind, the above formula can be expressed as

− v2

2

(
1 −

l∑
k=1

ηk(1 − k)2
)

+
∞∑

m=2

(−1)mv2m

(2m)!
(
1 −

l∑
k=1

ηk(1 − k)2m
)

= −v2
s∑

i=1
bici +

∞∑
m=1

(−1)mv2m

(2m)!
(

−v2
s∑

i=1
bic

2m
i

)
,

and therefore,
s∑

i=1

bici = 1

2

(
1 −

l∑
k=1

ηk(1 − k)2

)
+ O(v2).

The other expressions can be proved in a similar way.

Proposition 2 An TFMSRK method satisfies the following relations

s∑
i=1

bi

⎛
⎝ l∑

k=1

uik(1 − k) +
s∑

j=1

aij

⎞
⎠ = 1

2

(
1 −

l∑
k=1

ηk(1 − k)2

)
+ O(v2).

and therefore it has algebraic order at least two.

Proof Combining the second and third conditions of (13) yields

s∑
i=1

bi

⎛
⎝ l∑

k=1

uik(1 − k) +
s∑

j=1

aij

⎞
⎠ =

s∑
i=1

bi

(
ci + O(v2)

)

=
s∑

i=1

bici + O(v2) = 1

2

(
1 −

l∑
k=1

ηk(1 − k)2

)
+ O(v2).
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From the above result and the first condition of (13), the order conditions (10) are
satisfied for p = 2 and the TFMSRK method has algebraic order at least 2.

4 Stability

In order to analyze the stability of TFMSRK methods in this paper, following [26],
we choose to consider the following linear scalar problem

y′(t) = λy(t), (14)

where λ is a complex parameter such that Re(λ) < 0. Applying a TFMSRK method
(2) to the problem (14) yields

Y =
l∑

k=1
Ukyn−k+1 + HAY,

yn+1 =
l∑

k=1
ηkyn−k+1 + HbT Y,

where H = λh and Uk is the k-th column of the coefficient matrix U . Elimination of
the vector Y delivers the recursion

yn+1 −
l∑

k=1

mk(H, v)yn−k+1 = 0, (15)

where
mk(H, v) = ηk + HbT (I − HA)−1Uk, k = 1, · · · , l.

The stability properties of TFMSRKmethods (2) are determined by the characteristic
equation

ξ l −
l∑

k=1

mk(H, v)ξ l−k = 0. (16)

The behavior of the numerical solution will depend on the eigenvalues ri(H, v), i =
1, · · · , l of the characteristic (16). Geometrically, the characterization of stability
becomes a three-dimensional region in (Re(H), Im(H), v) space for a TFMSRK
method.

Definition 2 For the TFMSRK method (2) with the characteristic (16), the region of
the three-dimensional space


 := {(Re(H), Im(H), v) : |rk(H, v)| < 1, k = 1, · · · , l}
is called the region of stability. And any closed surface defined by max

1≤k≤l
|rk(H, v)| =

1 is a stability boundary of the method.

Remark 3 For a TFMSRK method, the three-dimensional stability region in
the(Re(H), Im(H), v) space is not very intuitive. In this paper, we will present a
selection of sections through the three-dimensional stability region by planes where
v is constant.
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5 Construction of explicit TFMSRK methods

In this section, we focus our attentions on the construction of the explicit TFMSRK
methods. We will consider explicit TFMSRK method of the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yk = yn−k+l , k = 1, · · · , l,

Yi =
l∑

k=1
uikyn−k+1 + h

i−1∑
j=1

aij f
(
Yj

)
, i = l + 1, · · · , s,

yn+1 =
l∑

k=1
ηkyn−k+1 + h

s∑
i=1

bif (Yi).

(17)

Remark 4 We note that after the starting procedure, the methods only require the
evaluation of f (yn), f (Yl+1), · · · , f (Ys) in each step (s−l+1 function evaluations).

As an example to demonstrate the process of constructing the algorithm, we only
consider two-step Runge-Kutta (TSRK) method which under the conditions (3) can
be equivalently expressed as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y1 = yn−1, Y2 = yn,

Yi = (1 − ui)yn + uiyn−1 + h
i−1∑
j=1

aij f
(
Yj

)
, i = 3, · · · , s,

yn+1 = (1 − θ)yn + θyn−1 + h
s∑

i=1
bif (Yi).

(18)

5.1 The case of s = 3

The order conditions for the explicit trigonometrically fitted TSRK (TFTSRK)
methods (18) of order three are

3∑
i=1

bi = 1 + θ + O(v3),

3∑
i=1

bi

(
−ui +

i−1∑
j=1

aij

)
= 1

2 (1 − θ) + O(v2),

3∑
i=1

bi

(
−ui +

i−1∑
j=1

aij

)2

= 1
3 (1 + θ) + O(v),

3∑
i=1

bi

(
ui + 2

i−1∑
j=1

aij

(
−uj +

j−1∑
k=1

ajk

))
= 1

3 (1 + θ) + O(v).

(19)

Here, we select

c3 = 1, u3 = 1, θ = 1. (20)

Using the TF conditions (9) and the following order condition

3∑
i=1

bi = 1 + θ,
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we obtain the coefficients as follows:

a31 = 0, a32 = 2 sin(v)
v

,

b1 = v−sin(v)
v−v cos(v)

, b2 = 2 + csc2
(

v
2

) (
−1 + sin(v)

v

)
, b3 = b1.

(21)

It is also interesting to check the algebraic third order conditions for the method

3∑
i=1

bi = 1 + θ + O(v3),
3∑

i=1
bi

(
−ui +

i−1∑
j=1

aij

)
= 1

2 (1 − θ) − v2

9 + · · · ,

3∑
i=1

bi

(
−ui +

i−1∑
j=1

aij

)2

= 1
3 (1 + θ) − v2

5 + · · · ,

3∑
i=1

bi

(
ui + 2

i−1∑
j=1

aij

(
−uj +

j−1∑
k=1

ajk

))
= 1

3 (1 + θ) + v2

45 + · · · .

−4 −3 −2 −1 0
−2

−1

0

1

2

v=1

Re(H)

Im
(
H
)

−4 −3 −2 −1 0
−2

−1

0

1

2

v=2

Re(H)

Im
(
H
)

−4 −3 −2 −1 0
−2

−1

0

1

2

v=3

Re(H)

Im
(
H
)

−4 −3 −2 −1 0
−2

−1

0

1

2

v=4

Re(H)

Im
(
H
)

Fig. 1 Sections through the stability region for the method ETFTSRK3S by plane v = 1, 2, 3, 4,
respectively
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For small values |v| → 0, the above formulae (21) are subject to heavy cancellations
and in that case the following Taylor series expansions must be used:

a31 = 0, a32 = 2 − v2

3 + v4

60 − v6

2520 + v8

181440 + · · · ,

b1 = 1
3 + v2

90 + v4

2520 + v6

75600 + v8

2395008 + · · · ,

b2 = 4
3 − v2

45 − v4

1260 − v6

37800 − v8

1197504 + · · · , b3 = b1.

(22)

Generally, we use the Taylor expansion (22) when |v| < 0.01. In the other TFMSRK
methods and the other trigonometrically fitted methods in the numerical experiments
of the paper, we take the same threshold about the use of the Taylor expansion.

We denote the method (18) determined by (20) and (22) as ETFTSRK3S. Sections
through the stability region for the method ETFTSRK3S by plane v = 1, 2, 3, 4,
respectively, are depicted in Fig. 1.

5.2 The case of s = 4

Under the first simplifying condition, the order conditions for the explicit trigono-
metrically fitted TSRK (TFTSRK) methods (18) of order four are reduced to

4∑
i=1

bi = 1 + θ + O(v4),
4∑

i=1
bici = 1

2 (1 − θ) + O(v3),

4∑
i=1

bic
2
i = 1

3 (1 + θ) + O(v2),
4∑

i=1
bi

(
ui + 2

i−1∑
j=1

aij cj

)
= 1

3 (1 + θ) + O(v2),

4∑
i=1

bic
3
i = 1

4 (1 − θ) + O(v),
4∑

i=1
bici

(
ui + 2

i−1∑
j=1

aij cj

)
= 1

4 (1 − θ) + O(v),

4∑
i=1

bi

(
−ui + 3

i−1∑
j=1

aij c
2
j

)
= 1

4 (1 − θ) + O(v),

4∑
i=1

bi

(
−ui + 3

i−1∑
j=1

aij

(
uj + 2

j−1∑
k=1

ajkck

))
= 1

4 (1 − θ) + O(v).

(23)
In this subsection, we select the following parameter

c4 = 1, u4 = 1, θ = 1. (24)

Using the TF conditions (9), the first simplifying condition and the following order
conditions

4∑
i=1

bi = 1 + θ,

4∑
i=1

bici = 1

2
(1 − θ),
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we obtain the coefficients as follows

a31 = −(1 + c3)v + c3v cos(v) + v cos(c3v) + sin(v) + sin(c3v) − sin((1 + c3)v)

v(−2 + 2 cos(v) + v sin(v))
,

a32 = −c3v − (1 + c3)v cos(v) + v cos((1 + c3)v) + sin(v) + sin(c3v) − sin((1 + c3)v)

v(−2 + 2 cos(v) + v sin(v))
,

u3 = −1 + cos(v) + cos(c3v) − cos((1 + c3)v) − c3v sin(v)

−2 + 2 cos(v) + v sin(v)
,

a41 = cos
(

c3v
2

)
csc

(
v
2

)
csc

(
1
2 (1 + c3)v

)
(v − sin(v))

/
v,

a42 = 2(v cos(v) + sin(v)(−1 + v cot(c3v) − csc(c3v) sin(v)))

v(−1 + cos(v) + cot(c3v) sin(v) − csc(c3v) sin(v))
,

a43 = 2 sin(v)(−v + sin(v))

(v((−1 + cos(c3v)) sin(v) + (−1 + cos(v)) sin(c3v)))
,

(25)

and

b1 = v − sin(v)

v − v cos(v)
, b2 = 2 + csc2

(v

2

) (
−1 + sin(v)

v

)
, b3 = 0, b4 = b1.

(26)
(24), (25), and (26) form a one-parameter family of explicit fourth order methods
depending on c3. It is also interesting to check the algebraic fourth order conditions
for the family of methods

4∑
i=1

bi = 1 + θ,
4∑

i=1
bici = 1

2 (1 − θ),
4∑

i=1
bic

2
i = 1

3 (1 + θ) + v2

45 + · · · ,

4∑
i=1

bi

(
ui + 2

i−1∑
j=1

aij cj

)
= 1

3 (1 + θ) + 1
135 (−7 + 10c3)v2 + · · · ,

4∑
i=1

bic
3
i = 1

4 (1 − θ),

4∑
i=1

bici

(
ui + 2

i−1∑
j=1

aij cj

)
= 1

4 (1 − θ) + 2
27 (−1 + c3)v

2 + · · · ,

4∑
i=1

bi

(
−ui + 3

i−1∑
j=1

aij c
2
j

)
= 1

4 (1 − θ) + 1
90 (2 − 5c3 + 5c23)v

2 + · · · ,

4∑
i=1

bi

(
−ui + 3

i−1∑
j=1

aij

(
uj + 2

j−1∑
k=1

ajkck

))
= 1

4 (1 − θ) +
(

1
45 − c3

9

)
v2 + · · · .

For small values |v| → 0 the above formulae (25) and (26) are subject to heavy
cancellations and in that case the Taylor series expansions must be used. The choice
of

c3 = 1

2
(27)
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gives a TFTSRK method of order four with coefficients

a31 = 3

8
− 3v2

640
+ 19v4

179200
+ 113v6

86016000
+ 10831v8

264929280000
+ · · · ,

a32 = 9

8
− 33v2

640
+ 89v4

179200
− 437v6

86016000
− 8419v8

264929280000
+ · · · ,

u3 = 1 − 9v2

160
+ 27v4

44800
− 27v6

7168000
+ 201v8

22077440000
+ · · · ,

a41 = 4

9
+ 13v2

540
+ 257v4

181440
+ 593v6

7257600
+ 21491v8

4598415360
+ · · · ,

a42 = 2

3
+ 7v2

180
− 11v4

20160
+ v6

345600
− 19v8

1532805120
+ · · · ,

a43 = 8

9
− 17v2

270
− 79v4

90720
− 307v6

3628800
− 1531v8

328458240
+ · · · ,

b1 = 1

3
+ v2

90
+ v4

2520
+ v6

75600
+ v8

2395008
+ · · · ,

b2 = 4

3
− v2

45
− v4

1260
− v6

37800
− v8

1197504
+ · · · , b3 = 0, b4 = b1.

(28)

We denote the method (18) determined by (24), (27), and (28) as ETFTSRK4SL1.
Sections through the stability region for the method ETFTSRK4SL1 by plane v =
1, 2, 3, 4, respectively, are depicted in Fig. 2.

Selecting

c3 = 3

4
(29)

gives another method of order four with the coefficients

a31 = 63

64
− 147v2

4096
+ 427v4

655360
− 6517v6

1258291200
+ 123757v8

2214592512000
+ · · · ,

a32 = 147

64
− 735v2

4096
+ 595v4

131072
− 75257v6

1258291200
+ 947657v8

2214592512000
+ · · · ,

u3 = 81

32
− 441v2

2048
+ 1701v4

327680
− 13629v6

209715200
+ 178569v8

369098752000
+ · · · ,

a41 = 8

21
+ 47v2

2520
+ 1331v4

1128960
+ 44537v6

541900800
+ 238481v8

39239811072
+ · · · ,

a42 = 10

9
− 7v2

1080
− 521v4

1451520
− 311v6

33177600
− 146291v8

588597166080
+ · · · ,

a43 = 32

63
− 23v2

1890
− 2083v4

2540160
− 29593v6

406425600
− 122533v8

21021327360
+ · · · ,

b1 = 1

3
+ v2

90
+ v4

2520
+ v6

75600
+ v8

2395008
+ · · · ,

b2 = 4

3
− v2

45
− v4

1260
− v6

37800
− v8

1197504
+ · · · , b3 = 0, b4 = b1.

(30)
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We denote the method (18) determined by (24), (29), and (30) as ETFTSRK4SL2.
Sections through the stability region for the method ETFTSRK4SL2 by plane v =
1, 2, 3, 4, respectively, are depicted in Fig. 3.

Similarly, we take

c3 = 1

3
, (31)

and obtain

a31 = 4

27
+ 2v4

45927
+ 103v6

93002175
+ 25603v8

859340097000
+ · · · ,

a32 = 16

27
− 4v2

243
+ v4

76545
− 289v6

186004350
− 167857v8

5156040582000
+ · · · ,

u3 = 11

27
− 4v2

243
+ 13v4

229635
− 83v6

186004350
− 14239v8

5156040582000
+ · · · ,

a41 = 1

2
+ 7v2

270
+ 34v4

25515
+ 127v6

1968300
+ 1649v8

545612760
+ · · · ,

a42 = 16v2

135
− 52v4

25515
+ 101v6

3444525
+ v8

136403190
+ · · · ,

a43 = 3

2
− 13v2

90
+ 2v4

2835
− 431v6

4592700
− 551v8

181870920
+ · · · ,

b1 = 1

3
+ v2

90
+ v4

2520
+ v6

75600
+ v8

2395008
+ · · · ,

b2 = 4

3
− v2

45
− v4

1260
− v6

37800
− v8

1197504
+ · · · , b3 = 0, b4 = b1,

(32)

We denote the method (18) determined by (24), (31), and (32) as ETFTSRK4SL3.
Sections through the stability region for the method ETFTSRK4SL3 by plane v =
1, 2, 3, 4, respectively, are depicted in Fig. 4.

6 Numerical experiments

In this section, in order to show the competence and superiority of the new methods
compared with the well-known methods in the scientific literature, we use six model
problems. The criterion used in the numerical comparisons is the decimal logarithm
of the global error (GE) versus the computational effort measured in the decimal loga-
rithm of the number of function evaluations required by each method. The integrators
we select for comparison are

• ETFTSRK4SL1: The four-stage explicit TFTSRK method of order four derived
in Section 5 of this paper;

• ETFTSRK4SL2: The four-stage explicit TFTSRK method of order four derived
in Section 5 of this paper;

• ETFTSRK4SL3: The four-stage explicit TFTSRK method of order four derived
in Section 5 of this paper;
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Fig. 2 Sections through the stability region for the method ETFTSRK4SL1 by plane v = 1, 2, 3, 4,
respectively

• EFRK4B1: Exponentially fitted explicit Runge-Kutta methods of order four
introduced by Vanden Berghe in [12];

• EFRK4B2: Exponentially fitted explicit Runge-Kutta methods of order four
derived by Vanden Berghe in [13].

• ETSRK4SL1: The four-stage explicit two-step Runge-Kutta methods of order
four underlying ETFTSRK4SL1;

• ETSRK4SL2: The four-stage explicit two-step Runge-Kutta methods of order
four underlying ETFTSRK4SL2;

• ETSRK4SL3: The four-stage explicit two-step Runge-Kutta methods of order
four underlying ETFTSRK4SL3;

• KUTTA4S4P1: The classical four-stage four-order explicit Runge-Kutta meth-
ods given in II.1 of [3], pp. 138;

• KUTTA4S4P2: The classical four-stage four-order explicit Runge-Kutta meth-
ods given in II.1 of [3], pp. 138.
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Fig. 3 Sections through the stability region for the method ETFTSRK4SL2 by plane v = 1, 2, 3, 4,
respectively

In each step, the number of function evaluations required by ETFTSRK4SL1, ETFT-
SRK4SL2, ETFTSRK4SL3, ETSRK4SL1, ETSRK4SL2, and ETSRK4SL3 is three,
whereas the corresponding numbers for EFRK4B1, EFRK4B2, KUTTA4S4P1, and
KUTTA4S4P2 are four.
Problem 1. Consider the linear test problem used in Ref. [27]

y′′ + w2y = (w2 − 1) sin t, t ∈ [0, tend ],
y(0) = 1, y ′(0) = w + 1,

whose analytic solution is given by

y(t) = cos(wt) + sin(wt) + sin(t).

In our numerical test, we choose w = 5 as the fitting parameter. This problem has
been solved in the interval [0, 100] with the step sizes h = 1/2j for ETFTSRK4SL1,
ETFTSRK4SL2, ETFTSRK4SL3, ETSRK4SL1, ETSRK4SL2, and ETSRK4SL3,
h = 1/(3 · 2j−2) for EFRK4B1, EFRK4B2, KUTTA4S4P1, and KUTTA4S4P2,
where j = 3, 4, 5, 6. The numerical results are presented in Fig. 5.
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Fig. 4 Sections through the stability region for the method ETFTSRK4SL3 by plane v = 1, 2, 3, 4,
respectively

Problem 2. Consider the linear periodic problem used in Ref. [28]

y′′ + y = 0.001eit , t ∈ [0, tend ],
y(0) = 1, y′(0) = 0.9995i,

with analytic solution

y(t) = (1 − 0.0005it)eit .

This problem has been solved in the interval [0, 1000] with the fitting parameter w =
1 and the step sizes h = 1/2j for ETFTSRK4SL1, ETFTSRK4SL2, ETFTSRK4SL3,
ETSRK4SL1, ETSRK4SL2, and ETSRK4SL3, h = 1/(3 · 2j−2) for EFRK4B1,
EFRK4B2, KUTTA4S4P1, and KUTTA4S4P2, where j = 0, 1, 2, 3. The numerical
results are presented in Fig. 5.
Problem 3.We consider the two-dimensional problem in [29]

y′′ +
(

13 −12
−12 13

)
y =

(
f1(t)

f2(t)

)
, y(0) =

(
1
0

)
, y′(0) =

( −4
8

)
,
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Fig. 5 Efficiency curves for Problems 1 (left) and 2 (right)

in which f1(t) = 9 cos(2t) − 12 sin(2t), f2(t) = 12 cos(2t) + 9 sin(2t), whose
analytic solution is given by

y(t) =
(
sin(t) − sin(5t) + cos(2t)
sin(t) − sin(5t) + sin(2t)

)
.

In this test, we choose w = 5 as the fitting parameter. This problem has been
solved in the interval [0, 1000] with the step sizes h = 1/2j for ETFTSRK4SL1,
ETFTSRK4SL2, ETFTSRK4SL3, ETSRK4SL1, ETSRK4SL2, and ETSRK4SL3,
h = 1/(3 · 2j−2) for EFRK4B1, EFRK4B2, KUTTA4S4P1, and KUTTA4S4P2,
where j = 3, 4, 5, 6. The numerical results are presented in Fig. 6.
Problem 4.We consider the Duffing equation{

y′′ + 25y = 2k2y3 − k2y, t ∈ [0, tend ],
y(0) = 0, y′(0) = w,

(33)

where k = 0.03. The exact solution of this initial-value problem is y(t) =
sn(wt; k/w), the so-called Jacobian elliptic function. In this test, we choose the fre-
quency w = 5 as the fitting parameter. This problem has been solved in the interval
[0, 100] with the step sizes h = 1/2j for ETFTSRK4SL1, ETFTSRK4SL2, ETFT-
SRK4SL3, ETSRK4SL1, ETSRK4SL2, and ETSRK4SL3, h = 1/(3 · 2j−2) for
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Fig. 6 Efficiency curves for Problems 3 (left) and 4 (right)

EFRK4B1, EFRK4B2, KUTTA4S4P1, and KUTTA4S4P2, where j = 3, 4, 5, 6. The
numerical results are presented in Fig. 6.
Problem 5. A perturbed system was studied in [30]. As an example of a system we
consider

y′′
1 = −25y1 − ε(y2

1 + y2
2) + εf1(x), y1(0) = 1, y′

1(0) = 0,

y′′
2 = −25y2 − ε(y2

1 + y2
2) + εf2(x), y2(0) = ε, y′

2(0) = 5,

where

f1(x) = 1 + ε2 + 2ε sin(5x + x2) + 2 cos(x2) + (25 − 4x2) sin(x2),

f2(x) = 1 + ε2 + 2ε sin(5x + x2) − 2 sin(x2) + (25 − 4x2) cos(x2).

In our test, we choose ε = 10−3 and choose the frequency w = 5 as the fitting
parameter. The analytical solution is given by:

y1(x) = cos(5x) + ε sin(x2), y2(x) = sin(5x) + ε cos(x2).
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Fig. 7 Efficiency curves for Problems 5 (left) and 6 (right)

This problem has been solved in the interval [0, 100] with step sizes h = 1/2j

for ETFTSRK4SL1, ETFTSRK4SL2, ETFTSRK4SL3, ETSRK4SL1, ETSRK4SL2,
and ETSRK4SL3, h = 1/(3 · 2j−2) for EFRK4B1, EFRK4B2, KUTTA4S4P1, and
KUTTA4S4P2, where j = 2, 3, 4, 5. The numerical results stated in Fig. 7.
Problem 6. Consider the periodically forced nonlinear equation governing a periodic
motion of low frequency with a small perturbation of high frequency

{
y′′ + y = −y3 + (cos(x) + sin(10x))3 − 99ε sin(10x),

y(0) = 1, y′(0) = 10ε,

with ε = 10−4. The exact solution is

y(x) = cos(x) + ε sin(10x).

In our test, we choose the main frequency w = 1 and integrate the equation in the
interval [0, 100] with the step sizes h = 1/2j for ETFTSRK4SL1, ETFTSRK4SL2,
ETFTSRK4SL3, ETSRK4SL1, ETSRK4SL2, and ETSRK4SL3, h = 1/(3 · 2j−2)

for EFRK4B1, EFRK4B2, KUTTA4S4P1, and KUTTA4S4P2, where j = 2, 3, 4, 5.
The numerical results are shown in Fig. 7.



Numer Algor (2017) 76:237–258 257

7 Conclusions and discussions

We present and study trigonometrically fitted multi-step Runge-Kutta (TFMSRK)
method in this paper. These methods integrates exactly first-order systems (1) whose
solution can be expressed as linear combination of functions from the set of functions
{exp(iwt), exp(−iwt)}, or equivalently the set {cos(wt), sin(wt)}. The order condi-
tions for TFMSRK methods are derived. Based on the order conditions, four new
explicit TFMSRK methods of orders three and four, respectively, are constructed.
The results of the numerical experiments confirm that our new methods work more
efficiently than the high quality methods we select from the scientific literature.

The determination of the frequency w for a trigonometrically fitted method is a
critical issue, because the coefficients of the method depend on w. The knowledge
of an estimation to the unknown frequency is needed in order to apply the numerical
method efficiently. For the technique of frequency choice in trigonometrically fitted
methods, the reader is referred to [31, 32].
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comments and valuable suggestions.
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